WO2017006913A1 - Electrolytic cell and electrolyzed-water generation device - Google Patents

Electrolytic cell and electrolyzed-water generation device Download PDF

Info

Publication number
WO2017006913A1
WO2017006913A1 PCT/JP2016/069790 JP2016069790W WO2017006913A1 WO 2017006913 A1 WO2017006913 A1 WO 2017006913A1 JP 2016069790 W JP2016069790 W JP 2016069790W WO 2017006913 A1 WO2017006913 A1 WO 2017006913A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
cathode
anode
feeder
water
Prior art date
Application number
PCT/JP2016/069790
Other languages
French (fr)
Japanese (ja)
Inventor
孝士 橘
Original Assignee
株式会社日本トリム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本トリム filed Critical 株式会社日本トリム
Priority to KR1020177030815A priority Critical patent/KR102567676B1/en
Priority to CN201680020696.1A priority patent/CN107531519B/en
Publication of WO2017006913A1 publication Critical patent/WO2017006913A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an electrolytic cell that electrolyzes water to generate electrolytic hydrogen water, and an electrolyzed water generating apparatus including the same.
  • an electrolyzed water generating apparatus that includes an electrolyzer having an anode chamber and a cathode chamber partitioned by a diaphragm and electrolyzes raw water such as tap water introduced into the electrolyzer to generate electrolyzed hydrogen water is known.
  • an electrolyzer having an anode chamber and a cathode chamber partitioned by a diaphragm and electrolyzes raw water such as tap water introduced into the electrolyzer to generate electrolyzed hydrogen water.
  • Electrolytic hydrogen water generated in the cathode chamber of the electrolyzed water generator is expected to exhibit an excellent effect in improving gastrointestinal symptoms.
  • electrolytic hydrogen water in which hydrogen gas generated in the cathode chamber by the electrolysis is dissolved has been attracting attention as being suitable for removal of active oxygen.
  • FIG. 8 is an enlarged view of the electrolytic cell 104 having the same configuration as that of the electrolytic cell disclosed in Patent Document 1, cut along a cross section perpendicular to the flow of water.
  • the laminated body 45 of the anode power supply body 41, the diaphragm 43, and the cathode power supply body 42 is formed in a wave shape with a cross section orthogonal to the flow of water in the electrolysis chamber.
  • the inner surfaces 151 and 161 of the electrolytic cell 104 are formed on a pair of planes P1 and P2 that face each other in parallel with the stacked body 45 interposed therebetween.
  • the distances D11, D12, D13 from the anode power supply 41 to the inner surface 151 vary according to the distance from the second convex portion 63, and the distances D21, D22, D23 from the cathode power supply 42 to the inner surface 161 are changed. Also, it varies according to the distance from the first convex portion 53. As a result, the distance from the anode power supply body 41 to the inner surface 151 and the distance from the cathode power supply body 42 to the inner surface 161 are not uniform, and the flow velocity of water flowing between the power supply bodies 41 and 42 and the inner surfaces 151 and 161 is not uniform. It becomes uniform.
  • the hydrogen gas generated on the surface of the cathode power supply 42 is difficult to dissolve in water, and the hydrogen gas in the form of bubbles may flow out of the cathode chamber 40B together with the electrolytic hydrogen water. There was a risk of hindering the improvement of the hydrogen concentration.
  • the present invention has been devised in view of the above circumstances, and it is possible to easily increase the concentration of dissolved hydrogen by equalizing the flow rate of water flowing between each power feeder and the inner surface of the electrolytic cell.
  • the main object is to provide an electrolytic cell and an electrolyzed water generating device.
  • an electrolysis chamber to which water to be electrolyzed is supplied, and the anode power supply body and the cathode power supply body arranged to face each other in the electrolysis chamber, the anode power supply body, and the An electrolytic cell sandwiched by a cathode power supply and mounted with a diaphragm that divides the electrolysis chamber into an anode chamber on the anode power supply side and a cathode chamber on the cathode power supply side, wherein the anode power supply
  • the cathode feeder and the diaphragm are formed in a wave shape in a cross section orthogonal to the flow of water in the electrolytic chamber, and the inner surface of the electrolytic cell facing the electrolytic chamber is on the anode feeder side.
  • the inner surface protrudes from the first inner surface portion toward the anode power feeding body and contacts the anode power feeding body, and the cathode power feeding from the second inner surface portion. It is desirable that a second convex portion protruding to the body side and contacting the cathode power supply body is formed.
  • the first convex portion is opposed to the second inner surface portion, and the second convex portion is opposed to the first inner surface portion.
  • the first convex portion extends along the flow of water in the anode chamber, and the second convex portion extends along the flow of water in the cathode chamber. It is desirable.
  • the first convex portion is continuously formed from one end portion of the anode chamber to the other end portion, and the second convex portion is formed from one end portion of the cathode chamber. It is desirable to form continuously over the end.
  • the first inner surface portion is formed at a certain distance from the anode feeder in the thickness direction of the diaphragm, and the second inner surface portion is formed in the thickness direction of the diaphragm. It is desirable that the cathode power supply is formed at a certain distance.
  • a second invention of the present invention is an electrolyzed water generating apparatus comprising the electrolyzer according to any one of claims 1 to 6.
  • the diaphragm is sandwiched between the anode feeder and the cathode feeder, and the anode feeder, the cathode feeder, and the diaphragm are corrugated in a cross section orthogonal to the flow of water in the electrolytic chamber. Is formed.
  • the inner surface of the electrolytic cell facing the electrolytic chamber side is a first inner surface provided on the anode feeder side and away from the anode feeder on the anode feeder side, and the electrolytic vessel from the cathode feeder on the cathode feeder side. And a second inner surface portion provided apart from the outside.
  • the first inner surface portion is formed in a wave shape along the anode power supply body
  • the second inner surface portion is formed in a wave shape along the cathode power supply body. Therefore, the distance from the anode power supply to the first inner surface and the distance from the cathode power supply to the second inner surface are made uniform, and the flow velocity of the water flowing between each power supply and each inner surface is made uniform. As a result, the gas generated in the electrolysis chamber is easily dissolved in the electrolyzed water throughout the electrolysis chamber, and the dissolved hydrogen concentration can be easily increased.
  • the gas generated in the electrolysis chamber is easily dissolved in the electrolyzed water throughout the electrolysis chamber, and the dissolved hydrogen concentration is easily increased. Is possible.
  • FIG. 2 It is a block diagram which shows schematic structure of one Embodiment of the electrolyzed water generating apparatus of this invention. It is a perspective view before the assembly of the electrolytic cell of FIG. It is a perspective view which shows the 1st case piece and 2nd case piece of FIG. It is sectional drawing which cut
  • FIG. 1 shows a schematic configuration of an electrolyzed water generating apparatus 1 of the present embodiment.
  • the electrolyzed water generating apparatus 1 may be used for generating water for domestic beverages and cooking and for generating dialysate for hemodialysis.
  • the electrolyzed water generating apparatus 1 includes an electrolysis tank 4 in which an electrolysis chamber 40 to which water to be electrolyzed is supplied, and an anode power supply 41 and a cathode power supply 42 that are disposed to face each other in the electrolysis chamber 40. And a diaphragm 43 disposed between the anode power supply 41 and the cathode power supply 42.
  • Another electrolytic cell may be provided upstream or downstream of the electrolytic cell 4. Further, another electrolytic cell may be provided in parallel with the electrolytic cell 4. A configuration equivalent to that of the electrolytic cell 4 can also be applied to the electrolytic cell provided separately.
  • the diaphragm 43 divides the electrolysis chamber 40 into an anode chamber 40A on the anode feeder 41 side and a cathode chamber 40B on the cathode feeder 42 side. Water is supplied to both the anode chamber 40 ⁇ / b> A and the cathode chamber 40 ⁇ / b> B of the electrolysis chamber 40, and water is electrolyzed in the electrolysis chamber 40 by applying a DC voltage to the anode feeder 41 and the cathode feeder 42.
  • the diaphragm 43 allows ions generated by electrolysis to pass therethrough, and the anode feeder 41 and the cathode feeder 42 are electrically connected through the diaphragm 43.
  • a solid polymer material made of a fluorine-based resin having a sulfonic acid group is used for the diaphragm 43.
  • the electrolyzed water generating apparatus 1 further includes a control means 6 for controlling the electrolyzer 4, a water inlet 7 provided on the upstream side of the electrolyzer 4, and a water outlet 8 provided on the downstream side of the electrolyzer 4. ing.
  • the control means 6 includes, for example, a CPU (Central Processing Unit) that executes various arithmetic processes and information processing, a program that controls the operation of the CPU, and a memory that stores various information.
  • a CPU Central Processing Unit
  • a program that controls the operation of the CPU
  • a memory that stores various information.
  • Current detection means 44 is provided on the current supply line between the anode power supply 41 and the control means 6.
  • the current detection unit 44 may be provided in a current supply line between the cathode power supply 42 and the control unit 6.
  • the current detection unit 44 detects the electrolytic current supplied to the power feeding bodies 41 and 42 and outputs a signal corresponding to the value to the control unit 6.
  • the control means 6 performs feedback control of the voltage applied between the anode power supply 41 and the cathode power supply 42 based on the signal input from the current detection means 44. For example, when the electrolysis current is excessive, the control unit 6 decreases the voltage, and when the electrolysis current is excessive, the control unit 6 increases the voltage. Thereby, the electrolysis current supplied to the power feeding bodies 41 and 42 can be appropriately controlled.
  • the water inlet 7 has a water supply pipe 71, a flow rate sensor 72, a branching portion 73, a flow rate adjustment valve 74 and the like.
  • the water supply pipe 71 is connected to, for example, a water purification cartridge (not shown), and guides water supplied with water purified by the water purification cartridge to the electrolysis chamber 40.
  • the flow rate sensor 72 is provided in the water supply pipe 71. The flow rate sensor 72 periodically detects the flow rate per unit time of water supplied to the electrolysis chamber 40 (hereinafter sometimes simply referred to as “flow rate”) F, and outputs a signal corresponding to the value F to the control means 6. Output to.
  • the branch part 73 branches the water supply pipe 71 into two directions of the water supply pipes 71a and 71b.
  • the flow rate adjusting valve 74 connects the water supply pipes 71a and 71b to the anode chamber 40A or the cathode chamber 40B.
  • the flow rate of water supplied to the anode chamber 40A and the cathode chamber 40B is adjusted by the flow rate adjusting valve 74 under the control of the control means 6.
  • the flow rate adjusting valve 74 adjusts the flow rate of water supplied to the anode chamber 40A and the cathode chamber 40B in order to increase the use efficiency of water. This may cause a pressure difference between the anode chamber 40A and the cathode chamber 40B.
  • the flow rate sensor 72 is provided on the upstream side of the branching portion 73, the sum of the flow rate of water supplied to the anode chamber 40A and the flow rate of water supplied to the cathode chamber 40B, that is, A flow rate F of water supplied to the electrolysis chamber 40 is detected.
  • the water outlet 8 includes a flow path switching valve 81, a water discharge pipe 82, a drain pipe 83, and the like.
  • the flow path switching valve 81 selectively connects the anode chamber 40A and the cathode chamber 40B to the water discharge pipe 82 or the drain pipe 83.
  • the electrolyzed hydrogen water generated in the cathode chamber 40B dilutes the reverse osmosis membrane module for filtration and the dialysate stock solution through the water discharge pipe 82. Supplied to a dilution device or the like.
  • the control means 6 controls the polarity of the DC voltage applied to the anode power supply 41 and the cathode power supply 42.
  • the control means 6 integrates the flow rate F of water supplied to the electrolysis chamber 40 based on a signal input from the flow sensor 72, and when it reaches a predetermined integrated value, the anode power supply 41 and the cathode power supply 42.
  • the polarity of the DC voltage applied to is switched.
  • the control means 6 operates the flow rate adjustment valve 74 and the flow path switching valve 81 in synchronization. Thereby, the cathode chamber 40B and the water discharge pipe 82 are always connected, and the electrolytic hydrogen water generated in the cathode chamber 40B is discharged from the water discharge pipe 82.
  • FIG. 2 is a perspective view before assembly in which main parts before assembly of the electrolytic cell 4 are arranged.
  • the electrolytic cell 4 includes a first case piece 50 on the anode power supply 41 side and a second case piece 60 on the cathode power supply 42 side.
  • the first case piece 50 and the second case piece 60 arranged to face each other are fixed to each other, so that the electrolysis chamber 40 (see FIG. 1) is formed therein.
  • the electrolytic cell 4 accommodates a laminated body 45 in which an anode power supply 41, a diaphragm 43 and a cathode power supply 42 are stacked in an electrolysis chamber 40.
  • the anode feeder 41 and the cathode feeder 42 are each formed in a sheet shape.
  • water can be electrolyzed in a large area, and the generation efficiency of hydrogen gas is increased.
  • the anode power supply body 41 and the cathode power supply body 42 are configured such that water can travel back and forth in the thickness direction.
  • a net-like metal such as an expanded metal can be applied.
  • Such a net-like anode power supply 41 and cathode power supply 42 can distribute water to the surface of the diaphragm 43 while sandwiching the diaphragm 43, and promote electrolysis in the electrolytic chamber 40.
  • the net-like anode power supply body 41 and the cathode power supply body 42 are flexibly deformed together with the diaphragm 43 to suppress damage to the diaphragm 43.
  • the anode power supply body 41 and the cathode power supply body 42 be formed of a net-like metal having a small thickness and a small strand width.
  • the anode power supply body 41 and the cathode power supply body 42 one in which a platinum plating layer is formed on the surface of a titanium expanded metal is applied. The platinum plating layer prevents the oxidation of titanium.
  • the anode power supply body 41 is provided with a power supply terminal 41 a that passes through the first case piece 50 and protrudes outside the electrolytic cell 4.
  • a terminal 41f is attached to the power supply terminal 41a via a sealing member 41b, a bush 41c, and nuts 41d and 41e.
  • the cathode power supply body 42 is also provided with a power supply terminal 42 a that penetrates the second case piece 60 and protrudes outside the electrolytic cell 4.
  • a terminal 42f is attached to the power supply terminal 42a via a sealing member 42b, a bush 42c, and nuts 42d and 42e.
  • the terminals 41f and 42f are connected to the control means 6 shown in FIG.
  • a DC voltage is applied to the anode power supply 41 and the cathode power supply 42 via the power supply terminals 41a and 42a and the terminals 41f and 42f.
  • the electrolytic cell 4 having the diaphragm 43 using a solid polymer material neutral electrolyzed water is generated.
  • electrolytic hydrogen water in which hydrogen gas is dissolved is obtained in the cathode chamber 40B
  • electrolytic oxygen water in which oxygen gas is dissolved is obtained in the anode chamber 40A.
  • plating layers 43a made of platinum are formed on both surfaces of the diaphragm 43. The plating layer 43a, the anode power supply 41, and the cathode power supply 42 are in contact with each other and are electrically connected.
  • the diaphragm 43 is sandwiched between the anode power supply 41 and the cathode power supply 42 in the electrolysis chamber 40. Therefore, the shape of the diaphragm 43 is held by the anode power supply 41 and the cathode power supply 42. According to such a structure for holding the diaphragm 43, most of the stress caused by the pressure difference generated between the anode chamber 40A and the cathode chamber 40B is borne by the anode feeder 41 and the cathode feeder 42. The stress on 43 decreases.
  • the diaphragm 43 is sandwiched between the anode power feeding body 41 and the cathode power feeding body 42, the contact between the plating layer 43a and the anode power feeding body 41 of the diaphragm 43 and between the plating layer 43a and the cathode power feeding body 42.
  • the resistance is reduced and the voltage drop is suppressed.
  • electrolysis in the electrolysis chamber 40 is promoted by a sufficient electrolysis current I, and electrolytic hydrogen water having a high dissolved hydrogen concentration can be generated.
  • the outer sides of the outer periphery of the anode power supply 41 and the cathode power supply 42 are sealed to prevent water leakage from the mating surfaces of the first case piece 50 and the second case piece 60.
  • a stop member 46 is provided. The outer peripheral portion of the diaphragm 43 is sandwiched by the sealing member 46.
  • the case pieces 50 and 60 are made of, for example, a synthetic resin.
  • Each case piece 50 and 60 is formed in a rectangular shape that is long in the vertical direction V along the flow of water in the electrolysis chamber 40.
  • the electrolytic chamber 40 is formed in a rectangular shape that is long in the vertical direction V.
  • Such a vertically long electrolytic chamber 40 makes the flow path in the electrolytic cell 4 long.
  • the hydrogen gas generated in the cathode chamber 40B is easily dissolved in the water in the cathode chamber 40B, and the dissolved hydrogen concentration can be increased.
  • FIG. 3A is a perspective view of the first case piece 50 viewed from the inner surface side facing the electrolysis chamber 40 side
  • FIG. 3B is a second case viewed from the inner surface side facing the electrolysis chamber 40 side
  • 3 is a perspective view of a piece 60.
  • the first case piece 50 has a first inner surface portion 51.
  • the first inner surface portion 51 is provided away from the anode power supply body 41 to the outside of the electrolytic cell 4.
  • a space between the anode power supply body 41 and the first inner surface portion 51 constitutes an anode chamber 40A.
  • the second case piece 60 has a second inner surface portion 61.
  • the second inner surface portion 61 is provided away from the cathode power supply 42 to the outside of the electrolytic cell 4.
  • a space between the cathode power supply body 42 and the second inner surface portion 61 constitutes the cathode chamber 40B.
  • a mating surface 51A is formed on the outer edge portion of the first inner surface portion 51, and a mating surface 61A is formed on the outer edge portion of the second inner surface portion 61, respectively.
  • the first case piece 50 and the second case piece 60 are fixed to each other by bringing the mating surfaces 51A and 61A into contact with each other.
  • An electrolysis unit 52 is provided inside the mating surface 51A.
  • the electrolysis part 52 is formed by the first inner face part 51 being recessed from the mating face 51 ⁇ / b> A in the thickness direction of the first case piece 50.
  • an electrolytic unit 62 is provided inside the mating surface 61A.
  • the electrolysis part 62 is formed such that the second inner surface part 61 is depressed in the thickness direction of the second case piece 60 from the mating surface 61A.
  • the electrolysis unit 52 configures the anode chamber 40A, and the electrolysis unit 62 configures the cathode chamber 40B.
  • FIG. 4 shows a cross section in which the electrolytic cell 4 is cut in the horizontal direction H perpendicular to the vertical direction V along the flow of water in the electrolysis chamber 40.
  • FIG. 5 is an enlarged view of the laminate 45, the first inner surface portion 51, and the second inner surface portion 61 in the cross section of FIG.
  • the anode feeder 41, the cathode feeder 42, and the diaphragm 43 are formed in a wave shape with a cross section in the lateral direction H perpendicular to the flow of water in the electrolysis chamber 40.
  • the first inner surface portion 51 is formed in a wave shape along the anode power supply body 41. That is, the first inner surface 51 and the anode power supply 41 are arranged in parallel so that the phase of the wave-shaped first inner surface 51 matches the phase of the wave-shaped anode power supply 41. Accordingly, the distance from the anode power supply body 41 to the first inner surface portion 51 is made uniform, and the flow velocity of the water flowing between the anode power supply body 41 and the first inner surface portion 51 is made uniform. As a result, the oxygen gas generated in the anode chamber 40A can be easily dissolved in the electrolyzed water throughout the anode chamber 40A, and the dissolved oxygen concentration can be easily increased.
  • the second inner surface portion 61 is formed in a wave shape along the cathode power supply 42. Therefore, the distance from the cathode power supply 42 to the second inner surface 61 is made uniform, and the flow velocity of the water flowing between the cathode power supply 42 and the second inner surface 61 is made uniform. Thereby, the hydrogen gas generated in the cathode chamber 40B is easily dissolved in the electrolyzed water in the entire cathode chamber 40B, and the dissolved hydrogen concentration can be easily increased.
  • a plurality of first convex portions 53 are disposed on the inner surface of the first case piece 50.
  • Each first convex portion 53 protrudes from the first inner surface portion 51 toward the anode power feeding body 41, extends the electrolytic portion 52 in the vertical direction V, and is arranged in the horizontal direction H perpendicular to the vertical direction V.
  • a plurality of second convex portions 63 are arranged on the inner surface of the second case piece 60.
  • Each of the second convex portions 63 also protrudes from the second inner surface portion 61 toward the cathode power feeding body 42, extends the electrolytic portion 62 in the vertical direction V, and is arranged in the horizontal direction H perpendicular to the vertical direction V. .
  • each first convex portion 53 abuts on the anode power supply body 41 in the anode chamber 40A and presses the anode power supply body 41 toward the second case piece 60 side.
  • the tip of each second convex portion 63 abuts on the cathode power supply body 42 in the cathode chamber 40B and presses the cathode power supply body 42 toward the first case piece 50 side. Therefore, the laminated body 45 is sandwiched from both surfaces by the first convex portions 53 and the second convex portions 63.
  • the first convex portion 53 and the second convex portion 63 are alternately provided at equal intervals in the horizontal direction H of the electrolytic cell 4.
  • the laminated body 45 that is, the anode power supply body 41 and the cathode power supply body are formed by the first convex portion 53 and the second convex portion 63.
  • 42 and the diaphragm 43 can be corrected to a wave shape of substantially the same wavelength and supported.
  • each first convex portion 53 extends along the vertical direction V in which water flows in the anode chamber 40A.
  • the first convex portions 53 are arranged in the horizontal direction H. Such a first convex portion 53 does not hinder the movement of water flowing in the vertical direction V in the anode chamber 40A.
  • each of the second convex portions 63 extends along the vertical direction V in which water flows in the cathode chamber 40B.
  • the second convex portions 63 are arranged side by side in the horizontal direction H. Such a second convex portion 63 does not hinder the movement of water flowing in the vertical direction V in the cathode chamber 40B.
  • the first convex portion 53 extends from one end portion of the anode chamber 40A (in FIG. 3, the upper end portion of the electrolysis portion 52, that is, the region near the first water collecting channel 56) to the other end portion (in FIG. 3, the electrolysis portion 52). It is formed in a rib shape continuous over the lower end, that is, in the vicinity of the first water diversion channel 54).
  • the second convex portion 63 is also connected to one end of the cathode chamber 40B (in FIG. 3, the upper end of the electrolysis unit 62, that is, the region near the second water collection channel 66) and the other end (of the electrolysis unit 62 in FIG. 3).
  • the anode power supply body 41 and the cathode power supply body 42 can be uniformly pressed over a wide range in the vertical direction V. Thereby, the contact pressure between the diaphragm 43 and each of the power feeding bodies 41 and 42 is sufficiently ensured, and the contact resistance between the diaphragm 43 and each of the power feeding bodies 41 and 42 is reduced. Further, since the distribution of the contact pressure between the diaphragm 43 and each of the power feeding bodies 41 and 42 is made uniform, the electrolysis voltage is made uniform and the distribution of the generated hydrogen gas is made uniform. Therefore, a sufficient electrolysis current I can be easily obtained without excessively increasing the electrolysis voltage applied to each of the power supply bodies 41 and 42, and the generation efficiency of hydrogen gas can be easily increased.
  • the first convex portion 53 and the second convex portion 63 are preferably formed in the above-described rib shape, but as shown in FIG. 9 or FIG. The provided form may be sufficient.
  • the first convex portion 53 faces the second inner surface portion 61 through the laminated body 45, and the second convex portion 63 opposes the 1st inner surface part 51 through the laminated body 45.
  • the cathode power supply 42 protrudes toward the cathode chamber 40B.
  • the second inner surface portion 61 is formed in a wave shape along the cathode power supply body 42, the second inner surface portion 61 is located in the second case at a location facing the first convex portion 53.
  • the laminated body 45 is pressed and protrudes toward the first case piece 50 by the second convex portion 63, the anode power feeding body 41 protrudes toward the anode chamber 40A. Furthermore, in the present invention, since the first inner surface portion 51 is formed in a wave shape along the anode power supply body 41, the first inner surface portion 51 is located at the location facing the second convex portion 63 in the first case. It sinks in the thickness direction of the piece 50.
  • the first inner surface portion 51 is formed in the entire region sandwiched between the adjacent first convex portions 53.
  • the first inner surface portion 51 is formed in a partial region sandwiched between the adjacent first convex portions 53.
  • One inner surface portion 51 may be formed.
  • the second inner surface portion 61 is the same as the first inner surface portion 51.
  • the first inner surface portion 51 is preferably formed so as to have a constant distance D1 from the anode power supply body 41 in the thickness direction of the diaphragm 43. According to such a first inner surface portion 51, the distribution of the channel cross-sectional area per unit length in the lateral direction H becomes uniform in the anode chamber 40 ⁇ / b> A, and flows between the anode power supply 41 and the first inner surface portion 51. The water flow rate is made more uniform. As a result, the oxygen gas generated in the anode chamber 40A can be easily dissolved in the electrolyzed water throughout the anode chamber 40A, and the dissolved oxygen concentration can be easily increased.
  • the second inner surface portion 61 is formed so as to have a constant distance D2 from the cathode power supply body 42 in the thickness direction of the diaphragm 43.
  • the distribution of the channel cross-sectional area per unit length in the lateral direction H becomes uniform in the cathode chamber 40 ⁇ / b> B, and flows between the cathode power supply 42 and the second inner surface portion 61.
  • the water flow rate is made more uniform.
  • the hydrogen gas generated in the cathode chamber 40B is easily dissolved in the electrolyzed water in the entire cathode chamber 40B, and the dissolved hydrogen concentration can be easily increased.
  • the distance D1 and the distance D2 are set equal to each other. Is desirable.
  • FIG. 6 shows a cross section in which the electrolytic cell 4 is cut in the longitudinal direction V along the flow of water in the electrolysis chamber 40.
  • the first case piece 50 has a first water diversion channel 54 and a first slope portion 55 on the upstream side of the electrolysis unit 52, and a first water collection channel 56 and a first slope portion 57 on the downstream side of the electrolysis unit 52. Yes.
  • the first diversion channel 54 branches the water flowing from the joint 91 and supplies it to the electrolysis unit 52.
  • the first slope 55 is provided between the first water diversion channel 54 and the electrolysis unit 52. The flow of water flowing from the first water diversion channel 54 into the electrolysis unit 52 is smoothed by the first slope portion 55.
  • the first water collection channel 56 collects water flowing out from the electrolysis unit 52 and supplies it to the joint 93.
  • the first slope 57 is provided between the first water collecting channel 56 and the electrolysis unit 52.
  • the flow of water flowing out from the electrolysis unit 52 to the first water collecting channel 58 is smoothed by the first slope portion 57.
  • the second case piece 60 includes a second water diversion channel 64 and a second slope portion 65 on the upstream side of the electrolysis unit 62, and a second water collection channel 66 and a second slope portion 67 on the downstream side of the electrolysis unit 62, respectively.
  • a second water diversion channel 64, the second sloping surface portion 65, the second water collecting channel 66 and the second sloping surface portion 67, the first water diversion channel 54, the first sloping surface portion 55, the first water collecting channel 56 and the first sloping surface portion 57 Since it is equivalent, the description is abbreviate
  • FIG. 7 shows an electrolytic cell 4 ⁇ / b> A that is a modification of the electrolytic cell 4.
  • the electrolytic cell 4A has a first convex portion 53 at a position facing the second convex portion 63 via the laminated body 45 and a second convex portion at a position facing the first convex portion 53 via the laminated body 45. It differs from the electrolytic cell 4 shown by FIG. 4 by the point to which the shape part 63 is added, respectively.
  • the multilayer body 45 is sandwiched from both surfaces by the first convex portion 53 and the second convex portion 63 that are disposed at positions facing each other via the multilayer body 45.
  • the electrolyzed water generating apparatus 1 includes at least an electrolysis tank 4 in which an electrolysis chamber 40 to which water to be electrolyzed is supplied, an anode feeder 41 disposed opposite to each other in the electrolysis chamber 40, and A diaphragm 43 that is sandwiched between a cathode feeder 42, an anode feeder 41, and a cathode feeder 42, and divides the electrolysis chamber 40 into an anode chamber 40A on the anode feeder 41 side and a cathode chamber 40B on the cathode feeder 42 side.
  • the anode feeder 41, the cathode feeder 42 and the diaphragm 43 are formed in a wave shape in a cross section orthogonal to the flow of water in the electrolytic chamber 40, and the inner surface of the electrolytic cell 4 facing the electrolytic chamber 40 side is A first inner surface portion 51 that is provided on the anode feeder 41 side away from the anode feeder 41 outside the electrolytic cell 4 and is formed in a wave shape along the anode feeder 41, and on the cathode feeder 42 side.
  • It may have a second inner surface portion 61 which is formed in a waveform shape along the cathode current collector 42.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

An electrolyzed-water generation device that is provided with an electrolytic cell 4 that has an electrolysis chamber 40 formed therein, with a positive-electrode feeder 41 and a negative-electrode feeder 42 that are arranged so as to face inside the electrolysis chamber 40, and with a diaphragm 43 that is sandwiched and held by the positive-electrode feeder 41 and the negative-electrode feeder 42 and that partitions the electrolysis chamber 40 into a positive-electrode chamber 40A that is on the positive-electrode feeder 41 side and a negative-electrode chamber 40B that is on the negative-electrode feeder 42 side. The positive-electrode feeder 41, the negative-electrode feeder 42, and the diaphragm 43 are formed so as to be wave-shaped in a cross-section that is orthogonal to the flow of water inside the electrolysis chamber 40. Inner surfaces of the electrolytic cell 4 that face the electrolysis chamber 40 have first inner-surface sections 51 that are provided on the positive-electrode feeder 41 side so as to be separated from the positive-electrode feeder 41 toward the outside of the electrolytic cell 4 and that are formed to have a wave shape that parallels the positive-electrode feeder 41; and second inner-surface sections 61 that are provided on the negative-electrode feeder 42 side so as to be separated from the negative-electrode feeder 42 toward the outside of the electrolytic cell 4 and that are formed to have a wave shape that parallels the negative-electrode feeder 42.

Description

電解槽及び電解水生成装置Electrolysis tank and electrolyzed water generator
 本発明は、水を電気分解して電解水素水を生成する電解槽及びそれを備えた電解水生成装置に関する。 The present invention relates to an electrolytic cell that electrolyzes water to generate electrolytic hydrogen water, and an electrolyzed water generating apparatus including the same.
 従来から、隔膜で仕切られた陽極室と陰極室を有する電解槽を備え、電解槽内に導入された水道水等の原水を電気分解して電解水素水を生成する電解水生成装置が知られている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, an electrolyzed water generating apparatus that includes an electrolyzer having an anode chamber and a cathode chamber partitioned by a diaphragm and electrolyzes raw water such as tap water introduced into the electrolyzer to generate electrolyzed hydrogen water is known. (For example, refer to Patent Document 1).
 電解水生成装置の陰極室で生成される還元性の電解水素水は、胃腸症状の改善に優れた効果を発揮することが期待されている。また、近年、上記電気分解により陰極室で生成された水素ガスが溶け込んだ電解水素水は、活性酸素の除去に適しているとして注目されている。 Electrolytic hydrogen water generated in the cathode chamber of the electrolyzed water generator is expected to exhibit an excellent effect in improving gastrointestinal symptoms. In recent years, electrolytic hydrogen water in which hydrogen gas generated in the cathode chamber by the electrolysis is dissolved has been attracting attention as being suitable for removal of active oxygen.
 ところで、電解水素水の溶存水素濃度を高めるためには、電解槽での水素ガスの発生量を多くすること、及び、発生した水素ガスを効率よく電解水に溶け込ませることが必要とされる。水素ガスを効率よく電解水に溶け込ませるためには、電解槽内での水の流速の分布を均一化することが重要である。 Incidentally, in order to increase the dissolved hydrogen concentration in the electrolytic hydrogen water, it is necessary to increase the amount of hydrogen gas generated in the electrolytic bath and to efficiently dissolve the generated hydrogen gas in the electrolytic water. In order to efficiently dissolve the hydrogen gas in the electrolyzed water, it is important to make the distribution of the water flow rate uniform in the electrolyzer.
特許第5639724号公報Japanese Patent No. 569724
 図8は、特許文献1に示される電解槽と同等の構成の電解槽104を水の流れに直交する断面で切断し、拡大して示している。電解槽104では、陽極給電体41、隔膜43及び陰極給電体42の積層体45は、電解室内での水の流れに直交する断面で波形状に形成されている。これに対して、電解槽104の内面151、161は、積層体45を挟んで互いに平行に対向する一対の平面P1、P2上に形成されている。このため、陽極給電体41から内面151までの距離D11、D12、D13は、第2凸状部63からの距離に応じて変動し、陰極給電体42から内面161までの距離D21、D22、D23も、第1凸状部53からの距離に応じて変動する。その結果、陽極給電体41から内面151までの距離及び陰極給電体42から内面161までの距離が不均一となり、各給電体41、42と内面151、161との間を流れる水の流速が不均一となる。 FIG. 8 is an enlarged view of the electrolytic cell 104 having the same configuration as that of the electrolytic cell disclosed in Patent Document 1, cut along a cross section perpendicular to the flow of water. In the electrolytic cell 104, the laminated body 45 of the anode power supply body 41, the diaphragm 43, and the cathode power supply body 42 is formed in a wave shape with a cross section orthogonal to the flow of water in the electrolysis chamber. On the other hand, the inner surfaces 151 and 161 of the electrolytic cell 104 are formed on a pair of planes P1 and P2 that face each other in parallel with the stacked body 45 interposed therebetween. Therefore, the distances D11, D12, D13 from the anode power supply 41 to the inner surface 151 vary according to the distance from the second convex portion 63, and the distances D21, D22, D23 from the cathode power supply 42 to the inner surface 161 are changed. Also, it varies according to the distance from the first convex portion 53. As a result, the distance from the anode power supply body 41 to the inner surface 151 and the distance from the cathode power supply body 42 to the inner surface 161 are not uniform, and the flow velocity of water flowing between the power supply bodies 41 and 42 and the inner surfaces 151 and 161 is not uniform. It becomes uniform.
 より具体的には、第1凸状部53の近傍では、陰極給電体42から内面161までの距離D21が小さいため、陰極給電体42の表面での水の流れが遅くなり、局所的に十分な量の水が供給され難くなる。その結果、例えば、各給電体41、42に供給する電解電流を大きくして、陰極給電体42の表面で大量の水素ガスを発生させる場合にあっては、第1凸状部53の近傍で、陰極室40Bの電解水素水の溶存水素濃度が局所的に飽和値に近づくおそれがある。このような場合、陰極給電体42の表面で発生した水素ガスが水に溶け込みにくく、電解水素水と共に気泡状の水素ガスが陰極室40Bから流出されることがあり、陰極室40B全体での溶存水素濃度の向上を妨げるおそれがあった。 More specifically, in the vicinity of the first convex portion 53, since the distance D21 from the cathode power supply 42 to the inner surface 161 is small, the flow of water on the surface of the cathode power supply 42 becomes slow, which is sufficient locally. It becomes difficult to supply a large amount of water. As a result, for example, in the case where a large amount of hydrogen gas is generated on the surface of the cathode power supply 42 by increasing the electrolysis current supplied to each of the power supply bodies 41 and 42, in the vicinity of the first convex portion 53. There is a possibility that the dissolved hydrogen concentration of the electrolytic hydrogen water in the cathode chamber 40B locally approaches the saturation value. In such a case, the hydrogen gas generated on the surface of the cathode power supply 42 is difficult to dissolve in water, and the hydrogen gas in the form of bubbles may flow out of the cathode chamber 40B together with the electrolytic hydrogen water. There was a risk of hindering the improvement of the hydrogen concentration.
 本発明は、以上のような実状に鑑み案出されたもので、各給電体と電解槽の内面との間を流れる水の流速を均一化することにより、溶存水素濃度を容易に高めることができる電解槽及び電解水生成装置を提供することを主たる目的としている。 The present invention has been devised in view of the above circumstances, and it is possible to easily increase the concentration of dissolved hydrogen by equalizing the flow rate of water flowing between each power feeder and the inner surface of the electrolytic cell. The main object is to provide an electrolytic cell and an electrolyzed water generating device.
 本発明の第1発明は、電気分解される水が供給される電解室が形成され、前記電解室内で、互いに対向して配置された陽極給電体及び陰極給電体と、前記陽極給電体と前記陰極給電体とによって挟持され、かつ、前記電解室を前記陽極給電体側の陽極室と、前記陰極給電体側の陰極室とに区分する隔膜とが装着される電解槽であって、前記陽極給電体、前記陰極給電体及び前記隔膜は、前記電解室内での水の流れに直交する断面で波形状に形成され、前記電解槽の前記電解室側を向く内面は、前記陽極給電体側で前記陽極給電体から前記電解槽の外方に離れて設けられ、前記陽極給電体に沿って波形状に形成された第1内面部と、前記陰極給電体側で前記陰極給電体から前記電解槽の外方に離れて設けられ、前記陰極給電体に沿って波形状に形成された第2内面部とを有することを特徴とする。 According to a first aspect of the present invention, there is formed an electrolysis chamber to which water to be electrolyzed is supplied, and the anode power supply body and the cathode power supply body arranged to face each other in the electrolysis chamber, the anode power supply body, and the An electrolytic cell sandwiched by a cathode power supply and mounted with a diaphragm that divides the electrolysis chamber into an anode chamber on the anode power supply side and a cathode chamber on the cathode power supply side, wherein the anode power supply The cathode feeder and the diaphragm are formed in a wave shape in a cross section orthogonal to the flow of water in the electrolytic chamber, and the inner surface of the electrolytic cell facing the electrolytic chamber is on the anode feeder side. A first inner surface formed in a wave shape along the anode feeder, and from the cathode feeder to the outside of the electrolytic vessel on the cathode feeder side Wave shape along the cathode feeder And having a second inner surface portion which is formed.
 本発明に係る前記電解槽において、前記内面には、前記第1内面部から前記陽極給電体側に突出し、前記陽極給電体と当接する第1凸状部と、前記第2内面部から前記陰極給電体側に突出し、前記陰極給電体と当接する第2凸状部とが形成されていることが望ましい。 In the electrolytic cell according to the present invention, the inner surface protrudes from the first inner surface portion toward the anode power feeding body and contacts the anode power feeding body, and the cathode power feeding from the second inner surface portion. It is desirable that a second convex portion protruding to the body side and contacting the cathode power supply body is formed.
 本発明に係る前記電解槽において、前記第1凸状部は、前記第2内面部と対向し、前記第2凸状部は、前記第1内面部と対向することが望ましい。 In the electrolytic cell according to the present invention, it is preferable that the first convex portion is opposed to the second inner surface portion, and the second convex portion is opposed to the first inner surface portion.
 本発明に係る前記電解槽において、前記第1凸状部は、前記陽極室内での水の流れに沿ってのび、前記第2凸状部は、前記陰極室内での水の流れに沿ってのびることが望ましい。 In the electrolytic cell according to the present invention, the first convex portion extends along the flow of water in the anode chamber, and the second convex portion extends along the flow of water in the cathode chamber. It is desirable.
 本発明に係る前記電解槽において、前記第1凸状部は、前記陽極室の一端部から他端部にわたって連続して形成され、前記第2凸状部は、前記陰極室の一端部から他端部にわたって連続して形成されていることが望ましい。 In the electrolytic cell according to the present invention, the first convex portion is continuously formed from one end portion of the anode chamber to the other end portion, and the second convex portion is formed from one end portion of the cathode chamber. It is desirable to form continuously over the end.
 本発明に係る前記電解槽において、前記第1内面部は、前記隔膜の厚さ方向で、前記陽極給電体から一定の距離に形成され、前記第2内面部は、前記隔膜の厚さ方向で、前記陰極給電体から一定の距離に形成されていることが望ましい。 In the electrolytic cell according to the present invention, the first inner surface portion is formed at a certain distance from the anode feeder in the thickness direction of the diaphragm, and the second inner surface portion is formed in the thickness direction of the diaphragm. It is desirable that the cathode power supply is formed at a certain distance.
 本発明の第2発明は、請求項1乃至6のいずれかに記載の前記電解槽を備えたことを特徴とする電解水生成装置である。 A second invention of the present invention is an electrolyzed water generating apparatus comprising the electrolyzer according to any one of claims 1 to 6.
 本発明の第1発明の電解槽は、隔膜が陽極給電体と陰極給電体とによって挟持され、陽極給電体、陰極給電体及び隔膜は、電解室内での水の流れに直交する断面で波形状に形成されている。そして、電解槽の電解室側を向く内面は、陽極給電体側で陽極給電体から電解槽の外方に離れて設けられた第1内面部と、陰極給電体側で前記陰極給電体から前記電解槽の外方に離れて設けられた第2内面部とを有する。第1内面部は、陽極給電体に沿って波形状に形成され、第2内面部は、陰極給電体に沿って波形状に形成されている。従って、陽極給電体から第1内面までの距離及び陰極給電体から第2内面部までの距離が均一化され、各給電体と各内面部との間を流れる水の流速が均一化される。これにより、電解室で発生したガスが電解室の全体で電解水に溶け込み易くなり、溶存水素濃度を容易に高めることが可能となる。 In the electrolytic cell of the first invention of the present invention, the diaphragm is sandwiched between the anode feeder and the cathode feeder, and the anode feeder, the cathode feeder, and the diaphragm are corrugated in a cross section orthogonal to the flow of water in the electrolytic chamber. Is formed. The inner surface of the electrolytic cell facing the electrolytic chamber side is a first inner surface provided on the anode feeder side and away from the anode feeder on the anode feeder side, and the electrolytic vessel from the cathode feeder on the cathode feeder side. And a second inner surface portion provided apart from the outside. The first inner surface portion is formed in a wave shape along the anode power supply body, and the second inner surface portion is formed in a wave shape along the cathode power supply body. Therefore, the distance from the anode power supply to the first inner surface and the distance from the cathode power supply to the second inner surface are made uniform, and the flow velocity of the water flowing between each power supply and each inner surface is made uniform. As a result, the gas generated in the electrolysis chamber is easily dissolved in the electrolyzed water throughout the electrolysis chamber, and the dissolved hydrogen concentration can be easily increased.
 本発明の第2発明の電解水生成装置によれば、上記第1発明と同様に、電解室で発生したガスが電解室の全体で電解水に溶け込み易くなり、溶存水素濃度を容易に高めることが可能となる。 According to the electrolyzed water generating device of the second invention of the present invention, as in the first invention, the gas generated in the electrolysis chamber is easily dissolved in the electrolyzed water throughout the electrolysis chamber, and the dissolved hydrogen concentration is easily increased. Is possible.
本発明の電解水生成装置の一実施形態の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of one Embodiment of the electrolyzed water generating apparatus of this invention. 図1の電解槽の組み立て前の斜視図である。It is a perspective view before the assembly of the electrolytic cell of FIG. 図2の第1ケース片及び第2ケース片を示す斜視図である。It is a perspective view which shows the 1st case piece and 2nd case piece of FIG. 図2の電解槽を水の流れに直交する断面で切断した断面図である。It is sectional drawing which cut | disconnected the electrolytic cell of FIG. 2 in the cross section orthogonal to the flow of water. 図4の電解槽を拡大して示す断面図である。It is sectional drawing which expands and shows the electrolytic cell of FIG. 図2の電解槽を水の流れに直交する断面で切断した断面図である。It is sectional drawing which cut | disconnected the electrolytic cell of FIG. 2 in the cross section orthogonal to the flow of water. 図2の電解槽の変形例を拡大して示す断面図である。It is sectional drawing which expands and shows the modification of the electrolytic cell of FIG. 従来の電解槽の主要部を水の流れに直交する断面で切断した断面図である。It is sectional drawing which cut | disconnected the principal part of the conventional electrolytic cell in the cross section orthogonal to the flow of water.
 以下、本発明の実施の一形態が図面に基づき説明される。
 図1は、本実施形態の電解水生成装置1の概略構成を示している。電解水生成装置1は、家庭の飲料用及び料理用の水の生成や血液透析の透析液の生成に用いられてもよい。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of an electrolyzed water generating apparatus 1 of the present embodiment. The electrolyzed water generating apparatus 1 may be used for generating water for domestic beverages and cooking and for generating dialysate for hemodialysis.
 電解水生成装置1は、電気分解される水が供給される電解室40が形成された電解槽4と、電解室40内で、互いに対向して配置された陽極給電体41及び陰極給電体42と、陽極給電体41と陰極給電体42との間に配された隔膜43とを備えている。電解槽4の上流側又は下流側に、別の電解槽が設けられていてもよい。また、電解槽4と並列に、別の電解槽が設けられていてもよい。別に設けられた電解槽についても、電解槽4と同等の構成が適用されうる。 The electrolyzed water generating apparatus 1 includes an electrolysis tank 4 in which an electrolysis chamber 40 to which water to be electrolyzed is supplied, and an anode power supply 41 and a cathode power supply 42 that are disposed to face each other in the electrolysis chamber 40. And a diaphragm 43 disposed between the anode power supply 41 and the cathode power supply 42. Another electrolytic cell may be provided upstream or downstream of the electrolytic cell 4. Further, another electrolytic cell may be provided in parallel with the electrolytic cell 4. A configuration equivalent to that of the electrolytic cell 4 can also be applied to the electrolytic cell provided separately.
 隔膜43は、電解室40を陽極給電体41側の陽極室40Aと、陰極給電体42側の陰極室40Bとに区分する。電解室40の陽極室40A及び陰極室40Bの両方に水が供給され、陽極給電体41及び陰極給電体42に直流電圧が印加されることにより、電解室40内で水が電気分解される。 The diaphragm 43 divides the electrolysis chamber 40 into an anode chamber 40A on the anode feeder 41 side and a cathode chamber 40B on the cathode feeder 42 side. Water is supplied to both the anode chamber 40 </ b> A and the cathode chamber 40 </ b> B of the electrolysis chamber 40, and water is electrolyzed in the electrolysis chamber 40 by applying a DC voltage to the anode feeder 41 and the cathode feeder 42.
 隔膜43は、電気分解で生じたイオンを通過させ、隔膜43を介して陽極給電体41と、陰極給電体42とが電気的に接続される。隔膜43には、例えば、スルホン酸基を有するフッ素系樹脂からなる固体高分子材料等が用いられている。 The diaphragm 43 allows ions generated by electrolysis to pass therethrough, and the anode feeder 41 and the cathode feeder 42 are electrically connected through the diaphragm 43. For the diaphragm 43, for example, a solid polymer material made of a fluorine-based resin having a sulfonic acid group is used.
 電解水生成装置1は、電解槽4を制御する制御手段6と、電解槽4の上流側に設けられた入水部7と、電解槽4の下流側に設けられた出水部8とをさらに備えている。 The electrolyzed water generating apparatus 1 further includes a control means 6 for controlling the electrolyzer 4, a water inlet 7 provided on the upstream side of the electrolyzer 4, and a water outlet 8 provided on the downstream side of the electrolyzer 4. ing.
 制御手段6は、例えば、各種の演算処理、情報処理等を実行するCPU(Central Processing Unit)及びCPUの動作を司るプログラム及び各種の情報を記憶するメモリ等を有している。 The control means 6 includes, for example, a CPU (Central Processing Unit) that executes various arithmetic processes and information processing, a program that controls the operation of the CPU, and a memory that stores various information.
 陽極給電体41と制御手段6との間の電流供給ラインには、電流検出手段44が設けられている。電流検出手段44は、陰極給電体42と制御手段6との間の電流供給ラインに設けられていてもよい。電流検出手段44は、給電体41、42に供給する電解電流を検出し、その値に相当する信号を制御手段6に出力する。 Current detection means 44 is provided on the current supply line between the anode power supply 41 and the control means 6. The current detection unit 44 may be provided in a current supply line between the cathode power supply 42 and the control unit 6. The current detection unit 44 detects the electrolytic current supplied to the power feeding bodies 41 and 42 and outputs a signal corresponding to the value to the control unit 6.
 制御手段6は、電流検出手段44から入力される信号に基づいて、陽極給電体41と陰極給電体42との間に印加する電圧をフィードバック制御する。例えば、電解電流が過大である場合、制御手段6は、上記電圧を減少させ、電解電流が過小である場合、制御手段6は、上記電圧を増加させる。これにより、給電体41、42に供給する電解電流が適切に制御されうる。 The control means 6 performs feedback control of the voltage applied between the anode power supply 41 and the cathode power supply 42 based on the signal input from the current detection means 44. For example, when the electrolysis current is excessive, the control unit 6 decreases the voltage, and when the electrolysis current is excessive, the control unit 6 increases the voltage. Thereby, the electrolysis current supplied to the power feeding bodies 41 and 42 can be appropriately controlled.
 入水部7は、給水管71と、流量センサー72と、分岐部73と、流量調整弁74等を有している。給水管71は、例えば、浄水カートリッジ(図示せず)に接続され、浄水カートリッジによって浄化された水が供給された水を電解室40に導く。流量センサー72は、給水管71に設けられている。流量センサー72は、電解室40に供給される水の単位時間あたりの流量(以下、単に「流量」と記すこともある)Fを定期的に検出し、その値に相当する信号を制御手段6に出力する。 The water inlet 7 has a water supply pipe 71, a flow rate sensor 72, a branching portion 73, a flow rate adjustment valve 74 and the like. The water supply pipe 71 is connected to, for example, a water purification cartridge (not shown), and guides water supplied with water purified by the water purification cartridge to the electrolysis chamber 40. The flow rate sensor 72 is provided in the water supply pipe 71. The flow rate sensor 72 periodically detects the flow rate per unit time of water supplied to the electrolysis chamber 40 (hereinafter sometimes simply referred to as “flow rate”) F, and outputs a signal corresponding to the value F to the control means 6. Output to.
 分岐部73は、給水管71を給水管71a、71bの二方に分岐する。流量調整弁74は、給水管71a、71bを陽極室40A又は陰極室40Bに接続する。陽極室40A及び陰極室40Bに供給される水の流量は、制御手段6の管理下で、流量調整弁74によって調整される。流量調整弁74は、水の利用効率を高めるために、陽極室40A及び陰極室40Bに供給される水の流量を調整する。これにより、陽極室40Aと陰極室40Bとの間で圧力差が生ずる場合がある。 The branch part 73 branches the water supply pipe 71 into two directions of the water supply pipes 71a and 71b. The flow rate adjusting valve 74 connects the water supply pipes 71a and 71b to the anode chamber 40A or the cathode chamber 40B. The flow rate of water supplied to the anode chamber 40A and the cathode chamber 40B is adjusted by the flow rate adjusting valve 74 under the control of the control means 6. The flow rate adjusting valve 74 adjusts the flow rate of water supplied to the anode chamber 40A and the cathode chamber 40B in order to increase the use efficiency of water. This may cause a pressure difference between the anode chamber 40A and the cathode chamber 40B.
 本実施形態では、流量センサー72は、分岐部73の上流側に設けられているので、陽極室40Aに供給される水の流量と陰極室40Bに供給される水の流量との総和、すなわち、電解室40に供給される水の流量Fを検出する。 In the present embodiment, since the flow rate sensor 72 is provided on the upstream side of the branching portion 73, the sum of the flow rate of water supplied to the anode chamber 40A and the flow rate of water supplied to the cathode chamber 40B, that is, A flow rate F of water supplied to the electrolysis chamber 40 is detected.
 出水部8は、流路切替弁81と、吐水管82と、排水管83等を有している。流路切替弁81は、陽極室40A、陰極室40Bを吐水管82又は排水管83に選択的に接続する。電解水生成装置1が血液透析の透析液の生成に用いられる場合、陰極室40Bで生成された電解水素水が吐水管82を介して、濾過処理用の逆浸透膜モジュール及び透析原液を希釈する希釈装置等に供給される。 The water outlet 8 includes a flow path switching valve 81, a water discharge pipe 82, a drain pipe 83, and the like. The flow path switching valve 81 selectively connects the anode chamber 40A and the cathode chamber 40B to the water discharge pipe 82 or the drain pipe 83. When the electrolyzed water generating apparatus 1 is used for generating a dialysate for hemodialysis, the electrolyzed hydrogen water generated in the cathode chamber 40B dilutes the reverse osmosis membrane module for filtration and the dialysate stock solution through the water discharge pipe 82. Supplied to a dilution device or the like.
 制御手段6は、陽極給電体41及び陰極給電体42に印加する直流電圧の極性を制御する。例えば、制御手段6は、流量センサー72から入力される信号に基づいて、電解室40に供給される水の流量Fを積算し、所定の積算値に達すると陽極給電体41及び陰極給電体42に印加する直流電圧の極性を切り替える。これに伴い、陽極室40Aと陰極室40Bとが相互に入れ替わる。直流電圧の極性の切り替えにあたっては、制御手段6は、流量調整弁74及び流路切替弁81を同期して動作させる。これにより、陰極室40Bと吐水管82とが常に接続され、陰極室40Bで生成された電解水素水が吐水管82から吐出される。 The control means 6 controls the polarity of the DC voltage applied to the anode power supply 41 and the cathode power supply 42. For example, the control means 6 integrates the flow rate F of water supplied to the electrolysis chamber 40 based on a signal input from the flow sensor 72, and when it reaches a predetermined integrated value, the anode power supply 41 and the cathode power supply 42. The polarity of the DC voltage applied to is switched. Along with this, the anode chamber 40A and the cathode chamber 40B are interchanged. In switching the polarity of the DC voltage, the control means 6 operates the flow rate adjustment valve 74 and the flow path switching valve 81 in synchronization. Thereby, the cathode chamber 40B and the water discharge pipe 82 are always connected, and the electrolytic hydrogen water generated in the cathode chamber 40B is discharged from the water discharge pipe 82.
 図2は、電解槽4の組み立て前の主要部品を配置した組み立て前の斜視図である。電解槽4は、陽極給電体41側の第1ケース片50と、陰極給電体42側の第2ケース片60とを有している。互いに対向して配置された第1ケース片50と第2ケース片60とが固着されることにより、その内部に電解室40(図1参照)が形成される。 FIG. 2 is a perspective view before assembly in which main parts before assembly of the electrolytic cell 4 are arranged. The electrolytic cell 4 includes a first case piece 50 on the anode power supply 41 side and a second case piece 60 on the cathode power supply 42 side. The first case piece 50 and the second case piece 60 arranged to face each other are fixed to each other, so that the electrolysis chamber 40 (see FIG. 1) is formed therein.
 電解槽4は、電解室40内に、陽極給電体41、隔膜43及び陰極給電体42が重ねられてなる積層体45を収容している。 The electrolytic cell 4 accommodates a laminated body 45 in which an anode power supply 41, a diaphragm 43 and a cathode power supply 42 are stacked in an electrolysis chamber 40.
 陽極給電体41及び陰極給電体42は、それぞれ、シート状に形成されている。このような陽極給電体41及び陰極給電体42によって、大きな面積で水を電気分解することができ、水素ガスの発生効率が高められる。 The anode feeder 41 and the cathode feeder 42 are each formed in a sheet shape. By such an anode power supply 41 and cathode power supply 42, water can be electrolyzed in a large area, and the generation efficiency of hydrogen gas is increased.
 陽極給電体41及び陰極給電体42は、それぞれ、その厚さ方向で水が行き来可能に構成されている。陽極給電体41及び陰極給電体42には、例えば、エクスパンドメタル等の網状金属が適用されうる。このような、網状の陽極給電体41及び陰極給電体42は、隔膜43を挟持しながら、隔膜43の表面に水を行き渡らせることができ、電解室40内での電気分解を促進する。また、網状の陽極給電体41及び陰極給電体42は、隔膜43と共に柔軟に変形することにより、隔膜43の損傷を抑制する。このため、陽極給電体41及び陰極給電体42は、厚さ及びストランド幅の小さい網状金属から形成されるのが望ましい。本実施形態では、陽極給電体41及び陰極給電体42として、チタニウム製のエクスパンドメタルの表面に白金のめっき層が形成されたものが適用されている。白金のめっき層は、チタニウムの酸化を防止する。 The anode power supply body 41 and the cathode power supply body 42 are configured such that water can travel back and forth in the thickness direction. For the anode power supply 41 and the cathode power supply 42, for example, a net-like metal such as an expanded metal can be applied. Such a net-like anode power supply 41 and cathode power supply 42 can distribute water to the surface of the diaphragm 43 while sandwiching the diaphragm 43, and promote electrolysis in the electrolytic chamber 40. Further, the net-like anode power supply body 41 and the cathode power supply body 42 are flexibly deformed together with the diaphragm 43 to suppress damage to the diaphragm 43. For this reason, it is desirable that the anode power supply body 41 and the cathode power supply body 42 be formed of a net-like metal having a small thickness and a small strand width. In the present embodiment, as the anode power supply body 41 and the cathode power supply body 42, one in which a platinum plating layer is formed on the surface of a titanium expanded metal is applied. The platinum plating layer prevents the oxidation of titanium.
 陽極給電体41には、第1ケース片50を貫通して電解槽4の外部に突出する給電端子41aが設けられている。給電端子41aには、例えば、封止部材41b、ブッシュ41c、ナット41d、41eを介して端子41fが装着される。同様に、陰極給電体42にも、第2ケース片60を貫通して電解槽4の外部に突出する給電端子42aが設けられている。給電端子42aには、例えば、封止部材42b、ブッシュ42c、ナット42d、42eを介して端子42fが装着される。端子41f、42fは、図1に示される制御手段6に接続されている。給電端子41a、42a及び端子41f、42fを介して、陽極給電体41及び陰極給電体42に直流電圧が印加される。 The anode power supply body 41 is provided with a power supply terminal 41 a that passes through the first case piece 50 and protrudes outside the electrolytic cell 4. For example, a terminal 41f is attached to the power supply terminal 41a via a sealing member 41b, a bush 41c, and nuts 41d and 41e. Similarly, the cathode power supply body 42 is also provided with a power supply terminal 42 a that penetrates the second case piece 60 and protrudes outside the electrolytic cell 4. For example, a terminal 42f is attached to the power supply terminal 42a via a sealing member 42b, a bush 42c, and nuts 42d and 42e. The terminals 41f and 42f are connected to the control means 6 shown in FIG. A DC voltage is applied to the anode power supply 41 and the cathode power supply 42 via the power supply terminals 41a and 42a and the terminals 41f and 42f.
 固体高分子材料を用いた隔膜43を有する電解槽4では、中性の電解水が生成される。電解室40内で水が電気分解されることにより、陰極室40Bでは、水素ガスが溶け込んだ電解水素水が得られ、陽極室40Aでは酸素ガスが溶け込んだ電解酸素水が得られる。隔膜43の両面には、白金からなるめっき層43aが形成されている。めっき層43aと陽極給電体41及び陰極給電体42とは、当接し、電気的に接続される。 In the electrolytic cell 4 having the diaphragm 43 using a solid polymer material, neutral electrolyzed water is generated. By electrolyzing water in the electrolytic chamber 40, electrolytic hydrogen water in which hydrogen gas is dissolved is obtained in the cathode chamber 40B, and electrolytic oxygen water in which oxygen gas is dissolved is obtained in the anode chamber 40A. On both surfaces of the diaphragm 43, plating layers 43a made of platinum are formed. The plating layer 43a, the anode power supply 41, and the cathode power supply 42 are in contact with each other and are electrically connected.
 隔膜43は、電解室40内で、陽極給電体41及び陰極給電体42によって挟持されている。従って、隔膜43の形状は陽極給電体41及び陰極給電体42によって保持されている。このような、隔膜43の保持構造によれば、陽極室40Aと陰極室40Bとの間に生ずる圧力差に起因する応力の大部分は、陽極給電体41及び陰極給電体42によって負担され、隔膜43にかかる応力は減少する。これにより、陽極室40Aと陰極室40Bとの間で大きな圧力差が生ずる状態で電解水生成装置1を動作させても、隔膜43には大きな応力が生じない。従って、隔膜43の損傷を抑制し、水の利用効率を容易に高めることが可能となる。 The diaphragm 43 is sandwiched between the anode power supply 41 and the cathode power supply 42 in the electrolysis chamber 40. Therefore, the shape of the diaphragm 43 is held by the anode power supply 41 and the cathode power supply 42. According to such a structure for holding the diaphragm 43, most of the stress caused by the pressure difference generated between the anode chamber 40A and the cathode chamber 40B is borne by the anode feeder 41 and the cathode feeder 42. The stress on 43 decreases. Thereby, even if the electrolyzed water generating apparatus 1 is operated in a state where a large pressure difference is generated between the anode chamber 40A and the cathode chamber 40B, no large stress is generated in the diaphragm 43. Therefore, it is possible to suppress damage to the diaphragm 43 and easily increase the water use efficiency.
 また、隔膜43が陽極給電体41及び陰極給電体42で挟持されているので、隔膜43のめっき層43aと陽極給電体41との間及びめっき層43aと陰極給電体42との間での接触抵抗が減少し、電圧降下が抑制される。これにより、十分な電解電流Iによって電解室40内での電気分解が促進され、高い溶存水素濃度の電解水素水が生成可能となる。 Further, since the diaphragm 43 is sandwiched between the anode power feeding body 41 and the cathode power feeding body 42, the contact between the plating layer 43a and the anode power feeding body 41 of the diaphragm 43 and between the plating layer 43a and the cathode power feeding body 42. The resistance is reduced and the voltage drop is suppressed. Thereby, electrolysis in the electrolysis chamber 40 is promoted by a sufficient electrolysis current I, and electrolytic hydrogen water having a high dissolved hydrogen concentration can be generated.
 図2に示されるように、陽極給電体41及び陰極給電体42の外周縁の外側には、第1ケース片50と第2ケース片60との合わせ面からの水漏れを防止するための封止部材46が設けられている。隔膜43の外周部は、封止部材46によって挟持されている。 As shown in FIG. 2, the outer sides of the outer periphery of the anode power supply 41 and the cathode power supply 42 are sealed to prevent water leakage from the mating surfaces of the first case piece 50 and the second case piece 60. A stop member 46 is provided. The outer peripheral portion of the diaphragm 43 is sandwiched by the sealing member 46.
 各ケース片50及び60は、例えば、合成樹脂によって形成されている。各ケース片50及び60は、電解室40内での水の流れに沿う縦方向Vに長い長方形状に形成されている。これに伴い、電解室40は、縦方向Vに長い長方形状に形成されている。このような縦長形状の電解室40によって、電解槽4内での流路が長くなる。その結果、陰極室40Bで発生した水素ガスが、陰極室40B内の水に溶け込みやすくなり、溶存水素濃度を高めることができる。 The case pieces 50 and 60 are made of, for example, a synthetic resin. Each case piece 50 and 60 is formed in a rectangular shape that is long in the vertical direction V along the flow of water in the electrolysis chamber 40. Accordingly, the electrolytic chamber 40 is formed in a rectangular shape that is long in the vertical direction V. Such a vertically long electrolytic chamber 40 makes the flow path in the electrolytic cell 4 long. As a result, the hydrogen gas generated in the cathode chamber 40B is easily dissolved in the water in the cathode chamber 40B, and the dissolved hydrogen concentration can be increased.
 図3(a)は、電解室40側を向く内面側から視た第1ケース片50の斜視図であり、図3(b)は、電解室40側を向く内面側から視た第2ケース片60の斜視図である。 3A is a perspective view of the first case piece 50 viewed from the inner surface side facing the electrolysis chamber 40 side, and FIG. 3B is a second case viewed from the inner surface side facing the electrolysis chamber 40 side. 3 is a perspective view of a piece 60. FIG.
 第1ケース片50は、第1内面部51を有している。第1内面部51は、陽極給電体41から電解槽4の外方に離れて設けられている。陽極給電体41と第1内面部51との間の空間が、陽極室40Aを構成する。同様に、第2ケース片60は、第2内面部61を有している。第2内面部61は、陰極給電体42から電解槽4の外方に離れて設けられている。陰極給電体42と第2内面部61との間の空間が、陰極室40Bを構成する。 The first case piece 50 has a first inner surface portion 51. The first inner surface portion 51 is provided away from the anode power supply body 41 to the outside of the electrolytic cell 4. A space between the anode power supply body 41 and the first inner surface portion 51 constitutes an anode chamber 40A. Similarly, the second case piece 60 has a second inner surface portion 61. The second inner surface portion 61 is provided away from the cathode power supply 42 to the outside of the electrolytic cell 4. A space between the cathode power supply body 42 and the second inner surface portion 61 constitutes the cathode chamber 40B.
 第1内面部51の外縁部には合わせ面51Aが、第2内面部61の外縁部には合わせ面61Aがそれぞれ形成されている。合わせ面51A及び61Aを互いに突き合わせて密着させることにより、第1ケース片50と第2ケース片60とが固着される。合わせ面51Aの内側には、電解部52が設けられている。電解部52は、第1内面部51が合わせ面51Aから第1ケース片50の厚さ方向に陥没して形成されている。同様に、合わせ面61Aの内側には、電解部62が設けられている。電解部62は、第2内面部61が合わせ面61Aから第2ケース片60の厚さ方向に陥没して形成されている。電解部52は陽極室40Aを構成し、電解部62は陰極室40Bを構成する。 A mating surface 51A is formed on the outer edge portion of the first inner surface portion 51, and a mating surface 61A is formed on the outer edge portion of the second inner surface portion 61, respectively. The first case piece 50 and the second case piece 60 are fixed to each other by bringing the mating surfaces 51A and 61A into contact with each other. An electrolysis unit 52 is provided inside the mating surface 51A. The electrolysis part 52 is formed by the first inner face part 51 being recessed from the mating face 51 </ b> A in the thickness direction of the first case piece 50. Similarly, an electrolytic unit 62 is provided inside the mating surface 61A. The electrolysis part 62 is formed such that the second inner surface part 61 is depressed in the thickness direction of the second case piece 60 from the mating surface 61A. The electrolysis unit 52 configures the anode chamber 40A, and the electrolysis unit 62 configures the cathode chamber 40B.
 図4は、電解室40内での水の流れに沿う縦方向Vに直交する横方向Hで、電解槽4を切断した断面を示している。図5は、図4の断面で、積層体45、第1内面部51及び第2内面部61を拡大して示している。 FIG. 4 shows a cross section in which the electrolytic cell 4 is cut in the horizontal direction H perpendicular to the vertical direction V along the flow of water in the electrolysis chamber 40. FIG. 5 is an enlarged view of the laminate 45, the first inner surface portion 51, and the second inner surface portion 61 in the cross section of FIG.
 図4及び5に示されるように陽極給電体41、陰極給電体42及び隔膜43は、電解室40内での水の流れに直交する横方向Hの断面で、波形状に形成されている。 As shown in FIGS. 4 and 5, the anode feeder 41, the cathode feeder 42, and the diaphragm 43 are formed in a wave shape with a cross section in the lateral direction H perpendicular to the flow of water in the electrolysis chamber 40.
 第1内面部51は、陽極給電体41に沿って波形状に形成されている。すなわち、波形状の第1内面部51の位相と波形状の陽極給電体41の位相とが一致するように、第1内面部51と陽極給電体41が平行に配置されている。従って、陽極給電体41から第1内面部51までの距離が均一化され、陽極給電体41と第1内面部51との間を流れる水の流速が均一化される。これにより、陽極室40Aで発生した酸素ガスが陽極室40Aの全体で電解水に溶け込み易くなり、溶存酸素濃度を容易に高めることが可能となる。 The first inner surface portion 51 is formed in a wave shape along the anode power supply body 41. That is, the first inner surface 51 and the anode power supply 41 are arranged in parallel so that the phase of the wave-shaped first inner surface 51 matches the phase of the wave-shaped anode power supply 41. Accordingly, the distance from the anode power supply body 41 to the first inner surface portion 51 is made uniform, and the flow velocity of the water flowing between the anode power supply body 41 and the first inner surface portion 51 is made uniform. As a result, the oxygen gas generated in the anode chamber 40A can be easily dissolved in the electrolyzed water throughout the anode chamber 40A, and the dissolved oxygen concentration can be easily increased.
 同様に、第2内面部61は、陰極給電体42に沿って波形状に形成されている。従って、陰極給電体42から第2内面部61までの距離が均一化され、陰極給電体42と第2内面部61との間を流れる水の流速が均一化される。これにより、陰極室40Bで発生した水素ガスが陰極室40Bの全体で電解水に溶け込み易くなり、溶存水素濃度を容易に高めることが可能となる。 Similarly, the second inner surface portion 61 is formed in a wave shape along the cathode power supply 42. Therefore, the distance from the cathode power supply 42 to the second inner surface 61 is made uniform, and the flow velocity of the water flowing between the cathode power supply 42 and the second inner surface 61 is made uniform. Thereby, the hydrogen gas generated in the cathode chamber 40B is easily dissolved in the electrolyzed water in the entire cathode chamber 40B, and the dissolved hydrogen concentration can be easily increased.
 図3乃至5に示されるように、第1ケース片50の内面には、複数の第1凸状部53が配設されている。各第1凸状部53は、第1内面部51から陽極給電体41の側に突出して電解部52を縦方向Vにのび、縦方向Vに垂直な横方向Hに並べて配設されている。一方、第2ケース片60の内面には、複数の第2凸状部63が配設されている。各第2凸状部63も、第2内面部61から陰極給電体42の側に突出して電解部62を縦方向Vにのび、縦方向Vに垂直な横方向Hに並べて配設されている。 3 to 5, a plurality of first convex portions 53 are disposed on the inner surface of the first case piece 50. Each first convex portion 53 protrudes from the first inner surface portion 51 toward the anode power feeding body 41, extends the electrolytic portion 52 in the vertical direction V, and is arranged in the horizontal direction H perpendicular to the vertical direction V. . On the other hand, a plurality of second convex portions 63 are arranged on the inner surface of the second case piece 60. Each of the second convex portions 63 also protrudes from the second inner surface portion 61 toward the cathode power feeding body 42, extends the electrolytic portion 62 in the vertical direction V, and is arranged in the horizontal direction H perpendicular to the vertical direction V. .
 各第1凸状部53の先端部は、陽極室40Aで陽極給電体41と当接し、陽極給電体41を第2ケース片60の側に押圧する。一方、各第2凸状部63の先端部は、陰極室40Bで陰極給電体42と当接し、陰極給電体42を第1ケース片50の側に押圧する。従って、各第1凸状部53及び各第2凸状部63によって、積層体45は、その両面から挟持される。 The tip of each first convex portion 53 abuts on the anode power supply body 41 in the anode chamber 40A and presses the anode power supply body 41 toward the second case piece 60 side. On the other hand, the tip of each second convex portion 63 abuts on the cathode power supply body 42 in the cathode chamber 40B and presses the cathode power supply body 42 toward the first case piece 50 side. Therefore, the laminated body 45 is sandwiched from both surfaces by the first convex portions 53 and the second convex portions 63.
 第1凸状部53と第2凸状部63とは、互いに電解槽4の横方向Hに交互かつ等間隔に設けられている。これにより、第1ケース片50と第2ケース片60とが固着されたとき、第1凸状部53及び第2凸状部63によって、積層体45、すなわち、陽極給電体41、陰極給電体42及び隔膜43が略同一波長の波形状に矯正され、支持されうる。 The first convex portion 53 and the second convex portion 63 are alternately provided at equal intervals in the horizontal direction H of the electrolytic cell 4. Thus, when the first case piece 50 and the second case piece 60 are fixed, the laminated body 45, that is, the anode power supply body 41 and the cathode power supply body are formed by the first convex portion 53 and the second convex portion 63. 42 and the diaphragm 43 can be corrected to a wave shape of substantially the same wavelength and supported.
 第1凸状部53及び第2凸状部63の形状及び配置は、任意である。例えば、各第1凸状部53は、陽極室40A内での水の流れる縦方向Vに沿ってのびている。そして、各第1凸状部53は、横方向Hに並べて配設されている。このような第1凸状部53は、陽極室40A内を縦方向Vに流れる水の移動を阻害しない。 The shape and arrangement of the first convex portion 53 and the second convex portion 63 are arbitrary. For example, each first convex portion 53 extends along the vertical direction V in which water flows in the anode chamber 40A. The first convex portions 53 are arranged in the horizontal direction H. Such a first convex portion 53 does not hinder the movement of water flowing in the vertical direction V in the anode chamber 40A.
 同様に、各第2凸状部63は、陰極室40B内での水の流れる縦方向Vに沿ってのびている。そして、各第2凸状部63は、横方向Hに並べて配設されている。このような第2凸状部63は、陰極室40B内を縦方向Vに流れる水の移動を阻害しない。 Similarly, each of the second convex portions 63 extends along the vertical direction V in which water flows in the cathode chamber 40B. The second convex portions 63 are arranged side by side in the horizontal direction H. Such a second convex portion 63 does not hinder the movement of water flowing in the vertical direction V in the cathode chamber 40B.
 さらに、第1凸状部53は、陽極室40Aの一端部(図3中、電解部52の上端部すなわち第1集水路56の近傍領域)から他端部(図3中、電解部52の下端部すなわち第1分水路54の近傍領域)にわたって連続するリブ状に形成されている。一方、第2凸状部63も、陰極室40Bの一端部(図3中、電解部62の上端部すなわち第2集水路66の近傍領域)から他端部(図3中、電解部62の下端部すなわち第2分水路64の近傍領域)にわたって連続するリブ状に形成されている。このような第1凸状部53及び第2凸状部63によって、陽極給電体41及び陰極給電体42が縦方向Vで広範にわたって均等に押圧されうる。これにより、隔膜43と各給電体41、42との接触圧力が十分に確保され、隔膜43と各給電体41、42との間の接触抵抗が低減される。また、隔膜43と各給電体41、42との接触圧力の分布が均一化されるので、電解電圧が均一化され、発生する水素ガスの分布が均一となる。従って、各給電体41、42に印加する電解電圧を過度に大きくすることなく、十分な電解電流Iが得られ易くなり、水素ガスの発生効率を容易に高めることが可能となる。 Further, the first convex portion 53 extends from one end portion of the anode chamber 40A (in FIG. 3, the upper end portion of the electrolysis portion 52, that is, the region near the first water collecting channel 56) to the other end portion (in FIG. 3, the electrolysis portion 52). It is formed in a rib shape continuous over the lower end, that is, in the vicinity of the first water diversion channel 54). On the other hand, the second convex portion 63 is also connected to one end of the cathode chamber 40B (in FIG. 3, the upper end of the electrolysis unit 62, that is, the region near the second water collection channel 66) and the other end (of the electrolysis unit 62 in FIG. 3). It is formed in a rib shape continuous over the lower end, that is, in the vicinity of the second water diversion channel 64. By such first convex portion 53 and second convex portion 63, the anode power supply body 41 and the cathode power supply body 42 can be uniformly pressed over a wide range in the vertical direction V. Thereby, the contact pressure between the diaphragm 43 and each of the power feeding bodies 41 and 42 is sufficiently ensured, and the contact resistance between the diaphragm 43 and each of the power feeding bodies 41 and 42 is reduced. Further, since the distribution of the contact pressure between the diaphragm 43 and each of the power feeding bodies 41 and 42 is made uniform, the electrolysis voltage is made uniform and the distribution of the generated hydrogen gas is made uniform. Therefore, a sufficient electrolysis current I can be easily obtained without excessively increasing the electrolysis voltage applied to each of the power supply bodies 41 and 42, and the generation efficiency of hydrogen gas can be easily increased.
 第1凸状部53及び第2凸状部63は、上述したリブ状に形成されるのが望ましいが、上記特許文献1の図9又は図10に示されるように、縦方向に離散的に設けられた形態であってもよい。 The first convex portion 53 and the second convex portion 63 are preferably formed in the above-described rib shape, but as shown in FIG. 9 or FIG. The provided form may be sufficient.
 図5に示されるように、この第1ケース片50及び第2ケース片60では、第1凸状部53は、積層体45を介して第2内面部61と対向し、第2凸状部63は、積層体45を介して第1内面部51と対向する。第1凸状部53によって積層体45が第2ケース片60の側に押圧されて突出するので、陰極給電体42は、陰極室40Bの側に突出している。さらに、本発明では、第2内面部61は、陰極給電体42に沿って波形状に形成されているので、第2内面部61は、第1凸状部53と対向する箇所で第2ケース片60の厚さ方向に陥没する。一方、第2凸状部63によって積層体45が第1ケース片50の側に押圧されて突出するので、陽極給電体41は、陽極室40Aの側に突出している。さらに、本発明では、第1内面部51は、陽極給電体41に沿って波形状に形成されているので、第1内面部51は、第2凸状部63と対向する箇所で第1ケース片50の厚さ方向に陥没する。 As shown in FIG. 5, in the first case piece 50 and the second case piece 60, the first convex portion 53 faces the second inner surface portion 61 through the laminated body 45, and the second convex portion 63 opposes the 1st inner surface part 51 through the laminated body 45. As shown in FIG. Since the laminated body 45 is pressed and protrudes toward the second case piece 60 by the first convex portion 53, the cathode power supply 42 protrudes toward the cathode chamber 40B. Furthermore, in the present invention, since the second inner surface portion 61 is formed in a wave shape along the cathode power supply body 42, the second inner surface portion 61 is located in the second case at a location facing the first convex portion 53. It sinks in the thickness direction of the piece 60. On the other hand, since the laminated body 45 is pressed and protrudes toward the first case piece 50 by the second convex portion 63, the anode power feeding body 41 protrudes toward the anode chamber 40A. Furthermore, in the present invention, since the first inner surface portion 51 is formed in a wave shape along the anode power supply body 41, the first inner surface portion 51 is located at the location facing the second convex portion 63 in the first case. It sinks in the thickness direction of the piece 50.
 本実施形態では、隣り合う第1凸状部53に挟まれた全領域に第1内面部51が形成されているのが、隣り合う第1凸状部53に挟まれた一部領域に第1内面部51が形成されていてもよい。第2内面部61についても、第1内面部51と同様である。 In the present embodiment, the first inner surface portion 51 is formed in the entire region sandwiched between the adjacent first convex portions 53. The first inner surface portion 51 is formed in a partial region sandwiched between the adjacent first convex portions 53. One inner surface portion 51 may be formed. The second inner surface portion 61 is the same as the first inner surface portion 51.
 図5に示されるように、第1内面部51は、隔膜43の厚さ方向で、陽極給電体41から一定の距離D1となるように形成されるのが望ましい。このような第1内面部51によれば、陽極室40Aで横方向Hの単位長さあたりの流路断面積の分布が均一となり、陽極給電体41と第1内面部51との間を流れる水の流速がより一層均一化される。これにより、陽極室40Aで発生した酸素ガスが陽極室40Aの全体で電解水に溶け込み易くなり、溶存酸素濃度を容易に高めることが可能となる。 As shown in FIG. 5, the first inner surface portion 51 is preferably formed so as to have a constant distance D1 from the anode power supply body 41 in the thickness direction of the diaphragm 43. According to such a first inner surface portion 51, the distribution of the channel cross-sectional area per unit length in the lateral direction H becomes uniform in the anode chamber 40 </ b> A, and flows between the anode power supply 41 and the first inner surface portion 51. The water flow rate is made more uniform. As a result, the oxygen gas generated in the anode chamber 40A can be easily dissolved in the electrolyzed water throughout the anode chamber 40A, and the dissolved oxygen concentration can be easily increased.
 同様に、第2内面部61は、隔膜43の厚さ方向で、陰極給電体42から一定の距離D2となるように形成されるのが望ましい。このような第2内面部61によれば、陰極室40Bで横方向Hの単位長さあたりの流路断面積の分布が均一となり、陰極給電体42と第2内面部61との間を流れる水の流速がより一層均一化される。これにより、陰極室40Bで発生した水素ガスが陰極室40Bの全体で電解水に溶け込み易くなり、溶存水素濃度を容易に高めることが可能となる。 Similarly, it is desirable that the second inner surface portion 61 is formed so as to have a constant distance D2 from the cathode power supply body 42 in the thickness direction of the diaphragm 43. According to such a second inner surface portion 61, the distribution of the channel cross-sectional area per unit length in the lateral direction H becomes uniform in the cathode chamber 40 </ b> B, and flows between the cathode power supply 42 and the second inner surface portion 61. The water flow rate is made more uniform. Thereby, the hydrogen gas generated in the cathode chamber 40B is easily dissolved in the electrolyzed water in the entire cathode chamber 40B, and the dissolved hydrogen concentration can be easily increased.
 本実施形態では、電解室40に供給される水の流量Fの積算値等に基づいて、給電体41、42の極性が切り替えられるので、距離D1と距離D2とが互いに等しく設定されているのが望ましい。 In the present embodiment, since the polarities of the power feeding bodies 41 and 42 are switched based on the integrated value of the flow rate F of water supplied to the electrolysis chamber 40, the distance D1 and the distance D2 are set equal to each other. Is desirable.
 図6は、電解室40内での水の流れに沿う縦方向Vで、電解槽4を切断した断面を示している。第1ケース片50は、電解部52の上流側に第1分水路54及び第1斜面部55を、電解部52の下流側に第1集水路56及び第1斜面部57をそれぞれ有している。第1分水路54は、継手91から流入した水を分岐して電解部52に供給する。第1斜面部55は、第1分水路54と電解部52との間に設けられている。第1斜面部55によって、第1分水路54から電解部52に流入する水の流れが円滑化される。第1集水路56は、電解部52から流出する水を集めて継手93に供給する。第1斜面部57は、第1集水路56と電解部52との間に設けられている。第1斜面部57によって、電解部52から第1集水路58に流出する水の流れが円滑化される。 FIG. 6 shows a cross section in which the electrolytic cell 4 is cut in the longitudinal direction V along the flow of water in the electrolysis chamber 40. The first case piece 50 has a first water diversion channel 54 and a first slope portion 55 on the upstream side of the electrolysis unit 52, and a first water collection channel 56 and a first slope portion 57 on the downstream side of the electrolysis unit 52. Yes. The first diversion channel 54 branches the water flowing from the joint 91 and supplies it to the electrolysis unit 52. The first slope 55 is provided between the first water diversion channel 54 and the electrolysis unit 52. The flow of water flowing from the first water diversion channel 54 into the electrolysis unit 52 is smoothed by the first slope portion 55. The first water collection channel 56 collects water flowing out from the electrolysis unit 52 and supplies it to the joint 93. The first slope 57 is provided between the first water collecting channel 56 and the electrolysis unit 52. The flow of water flowing out from the electrolysis unit 52 to the first water collecting channel 58 is smoothed by the first slope portion 57.
 同様に、第2ケース片60は、電解部62の上流側に第2分水路64及び第2斜面部65を、電解部62の下流側に第2集水路66及び第2斜面部67をそれぞれ有している。第2分水路64、第2斜面部65、第2集水路66及び第2斜面部67については、第1分水路54、第1斜面部55、第1集水路56及び第1斜面部57と同等であるので、その説明を省略する。 Similarly, the second case piece 60 includes a second water diversion channel 64 and a second slope portion 65 on the upstream side of the electrolysis unit 62, and a second water collection channel 66 and a second slope portion 67 on the downstream side of the electrolysis unit 62, respectively. Have. Regarding the second water diversion channel 64, the second sloping surface portion 65, the second water collecting channel 66 and the second sloping surface portion 67, the first water diversion channel 54, the first sloping surface portion 55, the first water collecting channel 56 and the first sloping surface portion 57 Since it is equivalent, the description is abbreviate | omitted.
 図7は、電解槽4の変形例である電解槽4Aを示している。同図に示される変形例のうち、以下で説明されてない部分については、上述した電解槽4の構成が採用されうる。電解槽4Aは、積層体45を介して第2凸状部63と対向する位置に第1凸状部53が、積層体45を介して第1凸状部53と対向する位置に第2凸状部63がそれぞれ追加されている点で、図4に示される電解槽4とは異なる。 FIG. 7 shows an electrolytic cell 4 </ b> A that is a modification of the electrolytic cell 4. Among the modifications shown in the figure, the configuration of the electrolytic cell 4 described above can be adopted for portions not described below. The electrolytic cell 4A has a first convex portion 53 at a position facing the second convex portion 63 via the laminated body 45 and a second convex portion at a position facing the first convex portion 53 via the laminated body 45. It differs from the electrolytic cell 4 shown by FIG. 4 by the point to which the shape part 63 is added, respectively.
 電解槽4Aでは、積層体45を介して互いに対向する位置に配された第1凸状部53と第2凸状部63とによって積層体45が両面から挟持される。これにより、隔膜43と各給電体41、42との接触圧力が十分に確保され、隔膜43と各給電体41、42との間の接触抵抗が低減される。従って、各給電体41、42に印加する電解電圧を過度に大きくすることなく、十分な電解電流Iが得られ易くなり、水素ガスの発生効率を容易に高めることが可能となる。 In the electrolytic cell 4A, the multilayer body 45 is sandwiched from both surfaces by the first convex portion 53 and the second convex portion 63 that are disposed at positions facing each other via the multilayer body 45. Thereby, the contact pressure between the diaphragm 43 and each of the power feeding bodies 41 and 42 is sufficiently ensured, and the contact resistance between the diaphragm 43 and each of the power feeding bodies 41 and 42 is reduced. Therefore, a sufficient electrolysis current I can be easily obtained without excessively increasing the electrolysis voltage applied to each of the power supply bodies 41 and 42, and the generation efficiency of hydrogen gas can be easily increased.
 以上、本実施形態の電解水生成装置1が詳細に説明されたが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。すなわち、電解水生成装置1は、少なくとも、電気分解される水が供給される電解室40が形成された電解槽4と、電解室40内で、互いに対向して配置された陽極給電体41及び陰極給電体42と、陽極給電体41と陰極給電体42とによって挟持され、電解室40を陽極給電体41側の陽極室40Aと、陰極給電体42側の陰極室40Bとに区分する隔膜43とを備え、陽極給電体41、陰極給電体42及び隔膜43は、電解室40内での水の流れに直交する断面で波形状に形成され、電解槽4の電解室40側を向く内面は、陽極給電体41側で陽極給電体41から電解槽4の外方に離れて設けられ、陽極給電体41に沿って波形状に形成された第1内面部51と、陰極給電体42側で陰極給電体42から電解槽4の外方に離れて設けられ、陰極給電体42に沿って波形状に形成された第2内面部61とを有していればよい。 As mentioned above, although the electrolyzed water generating apparatus 1 of this embodiment was demonstrated in detail, this invention is changed and implemented in various aspects, without being limited to said specific embodiment. That is, the electrolyzed water generating apparatus 1 includes at least an electrolysis tank 4 in which an electrolysis chamber 40 to which water to be electrolyzed is supplied, an anode feeder 41 disposed opposite to each other in the electrolysis chamber 40, and A diaphragm 43 that is sandwiched between a cathode feeder 42, an anode feeder 41, and a cathode feeder 42, and divides the electrolysis chamber 40 into an anode chamber 40A on the anode feeder 41 side and a cathode chamber 40B on the cathode feeder 42 side. The anode feeder 41, the cathode feeder 42 and the diaphragm 43 are formed in a wave shape in a cross section orthogonal to the flow of water in the electrolytic chamber 40, and the inner surface of the electrolytic cell 4 facing the electrolytic chamber 40 side is A first inner surface portion 51 that is provided on the anode feeder 41 side away from the anode feeder 41 outside the electrolytic cell 4 and is formed in a wave shape along the anode feeder 41, and on the cathode feeder 42 side. Provided away from the cathode feeder 42 to the outside of the electrolytic cell 4 , It may have a second inner surface portion 61 which is formed in a waveform shape along the cathode current collector 42.
  1  電解水生成装置
  4  電解槽
 40  電解室
 40A 陽極室
 40B 陰極室
 41  陽極給電体
 42  陰極給電体
 43  隔膜
 51  第1内面部
 53  第1凸状部
 62  第2内面部
 63  第2凸状部
 
 
 
 
 
 
 
 
DESCRIPTION OF SYMBOLS 1 Electrolyzed water production | generation apparatus 4 Electrolytic tank 40 Electrolytic chamber 40A Anode chamber 40B Cathode chamber 41 Anode feeder 42 Cathode feeder 43 Separator 51 First inner surface portion 53 First convex portion 62 Second inner surface portion 63 Second convex portion






Claims (7)

  1.  電気分解される水が供給される電解室が形成され、
     前記電解室内で、互いに対向して配置された陽極給電体及び陰極給電体と、
     前記陽極給電体と前記陰極給電体とによって挟持され、かつ、前記電解室を前記陽極給電体側の陽極室と、前記陰極給電体側の陰極室とに区分する隔膜とが装着される電解槽であって、
     前記陽極給電体、前記陰極給電体及び前記隔膜は、前記電解室内での水の流れに直交する断面で波形状に形成され、
     前記電解槽の前記電解室側を向く内面は、
     前記陽極給電体側で前記陽極給電体から前記電解槽の外方に離れて設けられ、前記陽極給電体に沿って波形状に形成された第1内面部と、
     前記陰極給電体側で前記陰極給電体から前記電解槽の外方に離れて設けられ、前記陰極給電体に沿って波形状に形成された第2内面部とを有することを特徴とする電解槽。
    An electrolysis chamber is formed to which water to be electrolyzed is supplied,
    An anode feeder and a cathode feeder disposed opposite to each other in the electrolytic chamber;
    An electrolytic cell sandwiched between the anode feeder and the cathode feeder and provided with a diaphragm that divides the electrolysis chamber into an anode chamber on the anode feeder side and a cathode chamber on the cathode feeder side. And
    The anode feeder, the cathode feeder and the diaphragm are formed in a wave shape in a cross section perpendicular to the flow of water in the electrolytic chamber,
    The inner surface of the electrolytic cell facing the electrolytic chamber side is
    A first inner surface portion provided on the anode feeder side away from the anode feeder on the outside of the electrolytic cell and formed in a wave shape along the anode feeder;
    An electrolytic cell comprising: a second inner surface portion formed in a wave shape along the cathode power supply, provided on the cathode power supply side and spaced apart from the cathode power supply to the outside of the electrolytic cell.
  2.  前記内面には、
     前記第1内面部から前記陽極給電体側に突出し、前記陽極給電体と当接する第1凸状部と、
     前記第2内面部から前記陰極給電体側に突出し、前記陰極給電体と当接する第2凸状部とが形成されている請求項1記載の電解槽。
    On the inner surface,
    A first convex portion that protrudes from the first inner surface portion toward the anode power feeding body and contacts the anode power feeding body;
    2. The electrolytic cell according to claim 1, wherein a second convex portion that protrudes from the second inner surface portion toward the cathode power feeder and contacts the cathode power feeder is formed.
  3.  前記第1凸状部は、前記第2内面部と対向し、前記第2凸状部は、前記第1内面部と対向する請求項2記載の電解槽。 3. The electrolytic cell according to claim 2, wherein the first convex portion is opposed to the second inner surface portion, and the second convex portion is opposed to the first inner surface portion.
  4.  前記第1凸状部は、前記陽極室内での水の流れに沿ってのび、
     前記第2凸状部は、前記陰極室内での水の流れに沿ってのびる請求項2又は3に記載の電解槽。
    The first convex portion extends along the flow of water in the anode chamber,
    The electrolytic cell according to claim 2 or 3, wherein the second convex portion extends along a flow of water in the cathode chamber.
  5.  前記第1凸状部は、前記陽極室の一端部から他端部にわたって連続して形成され、
     前記第2凸状部は、前記陰極室の一端部から他端部にわたって連続して形成されている請求項4記載の電解槽。
    The first convex portion is continuously formed from one end portion to the other end portion of the anode chamber,
    The electrolytic cell according to claim 4, wherein the second convex portion is continuously formed from one end portion to the other end portion of the cathode chamber.
  6.  前記第1内面部は、前記隔膜の厚さ方向で、前記陽極給電体から一定の距離に形成され、
     前記第2内面部は、前記隔膜の厚さ方向で、前記陰極給電体から一定の距離に形成されている請求項1乃至5のいずれかに記載の電解槽。
    The first inner surface portion is formed at a certain distance from the anode feeder in the thickness direction of the diaphragm,
    6. The electrolytic cell according to claim 1, wherein the second inner surface portion is formed at a certain distance from the cathode feeder in the thickness direction of the diaphragm.
  7.  請求項1乃至6のいずれかに記載の前記電解槽を備えたことを特徴とする電解水生成装置。
     
     
    An electrolyzed water generating apparatus comprising the electrolyzer according to any one of claims 1 to 6.

PCT/JP2016/069790 2015-07-08 2016-07-04 Electrolytic cell and electrolyzed-water generation device WO2017006913A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177030815A KR102567676B1 (en) 2015-07-08 2016-07-04 Electrolyzer and electrolyzed water generator
CN201680020696.1A CN107531519B (en) 2015-07-08 2016-07-04 Electrolytic cell and electrolyzed water generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015136795A JP6154859B2 (en) 2015-07-08 2015-07-08 Electrolysis tank and electrolyzed water generator
JP2015-136795 2015-07-08

Publications (1)

Publication Number Publication Date
WO2017006913A1 true WO2017006913A1 (en) 2017-01-12

Family

ID=57685638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069790 WO2017006913A1 (en) 2015-07-08 2016-07-04 Electrolytic cell and electrolyzed-water generation device

Country Status (4)

Country Link
JP (1) JP6154859B2 (en)
KR (1) KR102567676B1 (en)
CN (1) CN107531519B (en)
WO (1) WO2017006913A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6826170B1 (en) * 2019-08-26 2021-02-03 株式会社日本トリム Electrolysis unit
CN111559784A (en) * 2020-05-22 2020-08-21 佛山市顺德区美的洗涤电器制造有限公司 Electrolysis module and cleaning device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194272A (en) * 1981-05-26 1982-11-29 Asahi Glass Co Ltd Production of hydrogen
JPH111790A (en) * 1997-06-06 1999-01-06 First Ocean Kk Electrode for electrolysis of water
JPH1133559A (en) * 1997-07-23 1999-02-09 V M C:Kk Ozone water making apparatus
JP5702885B1 (en) * 2014-10-20 2015-04-15 株式会社日本トリム Electrolyzed water generator
JP5753638B1 (en) * 2015-03-02 2015-07-22 株式会社日本トリム Electrolyzed water generator
JP5756579B1 (en) * 2015-03-06 2015-07-29 株式会社日本トリム Electrolyzed water generator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572885B1 (en) * 1971-06-26 1982-01-19
JPS5639724U (en) 1979-08-31 1981-04-14
JP5639724B1 (en) * 2014-03-17 2014-12-10 株式会社日本トリム ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194272A (en) * 1981-05-26 1982-11-29 Asahi Glass Co Ltd Production of hydrogen
JPH111790A (en) * 1997-06-06 1999-01-06 First Ocean Kk Electrode for electrolysis of water
JPH1133559A (en) * 1997-07-23 1999-02-09 V M C:Kk Ozone water making apparatus
JP5702885B1 (en) * 2014-10-20 2015-04-15 株式会社日本トリム Electrolyzed water generator
JP5753638B1 (en) * 2015-03-02 2015-07-22 株式会社日本トリム Electrolyzed water generator
JP5756579B1 (en) * 2015-03-06 2015-07-29 株式会社日本トリム Electrolyzed water generator

Also Published As

Publication number Publication date
CN107531519A (en) 2018-01-02
JP2017018866A (en) 2017-01-26
CN107531519B (en) 2021-08-17
KR20180027408A (en) 2018-03-14
JP6154859B2 (en) 2017-06-28
KR102567676B1 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
JP5639724B1 (en) ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF
JP5753638B1 (en) Electrolyzed water generator
JP5702885B1 (en) Electrolyzed water generator
WO2016143540A1 (en) Electrolytic water generating apparatus
KR102567678B1 (en) Electrolyzer and electrolyzed water generator
WO2017010372A1 (en) Electrolytic cell and electrolyzed water generation device
WO2017006913A1 (en) Electrolytic cell and electrolyzed-water generation device
TW201813931A (en) Electrolyzed water generating device
JP6190424B2 (en) Electrolysis tank and electrolyzed water generator
JP6190427B2 (en) Electrolysis tank and electrolyzed water generator
JP6132234B2 (en) Electrolyzed water generator
JP6853048B2 (en) Electrolyzed water generator and dialysate preparation water production equipment
CN108473344B (en) Electrolyzed water production device and device for producing water for dialysate preparation using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177030815

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821382

Country of ref document: EP

Kind code of ref document: A1