JPH08260178A - Water electrolytic cell using solid high molecular electrolyte membrane - Google Patents
Water electrolytic cell using solid high molecular electrolyte membraneInfo
- Publication number
- JPH08260178A JPH08260178A JP7064441A JP6444195A JPH08260178A JP H08260178 A JPH08260178 A JP H08260178A JP 7064441 A JP7064441 A JP 7064441A JP 6444195 A JP6444195 A JP 6444195A JP H08260178 A JPH08260178 A JP H08260178A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- bipolar plate
- cathode
- anode
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、固体高分子電解質膜を
用いる水素および酸素製造のための水電解槽に関するも
のである。FIELD OF THE INVENTION The present invention relates to a water electrolysis cell for producing hydrogen and oxygen using a solid polymer electrolyte membrane.
【0002】[0002]
【従来の技術】従来、高分子電解質膜を用いて水電解に
よって水素および酸素を製造する場合のフィルタープレ
ス式水電解槽の構造は、図7に示すように、両端に配さ
れた陽極主電極(1) および陰極主電極(2) と、これらの
主電極(1) (2) の間に直列に配された複数の単位セル
と、これらを一体化する締め付けボルトおよびナットと
から主として構成されている。1つのセルは、複極板
(9) の陽極側、陽極給電体(7) 、電極接合体膜(3) 、陰
極給電体(8) および隣の複極板(9) の陰極側からなり、
電極接合体膜(3) は、イオン交換膜(4) とその両面に設
けられた触媒電極層(5)(6)とからなる。単位セルの個数
は、商業規模の電解槽では、80から600である。2. Description of the Related Art Conventionally, as shown in FIG. 7, the structure of a filter press type water electrolysis cell for producing hydrogen and oxygen by water electrolysis using a polymer electrolyte membrane is as shown in FIG. (1) and the cathode main electrode (2), a plurality of unit cells arranged in series between these main electrodes (1) and (2), and tightening bolts and nuts that integrate them. ing. One cell is a bipolar plate
It consists of the anode side of (9), the anode power supply (7), the electrode junction film (3), the cathode power supply (8) and the cathode side of the adjacent bipolar plate (9).
The electrode assembly membrane (3) comprises an ion exchange membrane (4) and catalyst electrode layers (5) and (6) provided on both sides thereof. The number of unit cells is 80 to 600 in a commercial scale electrolytic cell.
【0003】上記構成の電解槽において、水は電解槽下
部の給水ヘッダー(10)から各単位セル内に供給される
と、触媒電極層(5)(6)の表面で、陽極側では酸素、陰極
側では水素がそれぞれ発生する。発生した酸素および水
素はそれぞれ多孔質の給電体(7)(8)を通って複極板(9)
の陽極側および陰極側に達し、更に複極板に設けられた
垂直流路を通って電解槽上部に達し、電解槽上部の酸素
ヘッダー(11)および水素(12)を通って外部に排出され
る。In the electrolyzer having the above structure, when water is supplied into each unit cell from the water supply header (10) at the bottom of the electrolyzer, oxygen is generated on the surface of the catalyst electrode layers (5) and (6) on the anode side. Hydrogen is generated on the cathode side. The generated oxygen and hydrogen pass through the porous power feeders (7) (8), respectively, and the bipolar plate (9).
It reaches the anode side and the cathode side of the electrode, further reaches the upper part of the electrolytic cell through the vertical flow path provided in the bipolar plate, and is discharged to the outside through the oxygen header (11) and hydrogen (12) on the upper part of the electrolytic cell. It
【0004】これらの構成部材の中で、最も過酷な条件
を要求されるのは、複極板(9) である。つまり、材質的
な条件としては、電導率が良いことはもちろん、陽極側
では酸化性雰囲気、陰極側では還元性雰囲気という全く
逆の条件が1つの材料に要求される。更に構造的な条件
としては、給電体(7) (8) に電流を一様に伝えること、
並びに供給水および発生したガスを均一に流せる流路が
確保できることといった機能が要求される。このような
条件を満足するものとして、現状では、純チタンを機械
加工またはプレス加工するか、チタン合金の薄板を超塑
性加工し、得られた加工物の表面を白金メッキしたもの
や、カーボンをモールディングしたものが用いられてい
る。Of these constituent members, it is the bipolar plate (9) that requires the most severe conditions. In other words, as a material condition, not only good conductivity but also an oxidizing atmosphere on the anode side and a reducing atmosphere on the cathode side, which are exactly opposite conditions, are required for one material. A further structural requirement is that the current be evenly transmitted to the power supply (7) (8),
In addition, it is required to have a function of ensuring a flow path through which the supply water and the generated gas can flow uniformly. At present, as a material satisfying such conditions, pure titanium is machined or pressed, or a thin plate of titanium alloy is superplastically processed, and the surface of the obtained workpiece is plated with platinum, or carbon is used. The one that is molded is used.
【0005】[0005]
【発明が解決しようとする課題】しかし、上記従来技術
のうち、最も効果的であると考えられている、チタン合
金薄板の超塑性加工により複極板を作製する方法では、
次のような問題があった。However, of the above-mentioned conventional techniques, which is considered to be the most effective, a method for producing a bipolar plate by superplastic working of a titanium alloy thin plate,
There were the following problems.
【0006】(1) チタン合金薄板の超塑性加工物の陰極
側を白金メッキして水素脆化を防止する必要がある。(1) It is necessary to prevent hydrogen embrittlement by plating platinum on the cathode side of a superplastic processed titanium alloy thin plate.
【0007】(2) 上記のようにチタン合金薄板の超塑性
加工物の陰極側を白金メッキしても、水素脆化は完全に
は防止できない。(2) Hydrogen embrittlement cannot be completely prevented even if the cathode side of the superplastically processed titanium alloy thin plate is plated with platinum as described above.
【0008】(3) チタン合金はステンレス鋼に比べ高価
である。(3) Titanium alloy is more expensive than stainless steel.
【0009】本発明は、上記のような問題点を解決すべ
く工夫されたもので、チタン合金単独の超塑性加工では
避けられないチタン合金の水素脆化の問題を解決するこ
とができると共に、製造コストを大幅に低減することが
できる水電解槽を提供することを目的とする。The present invention has been devised to solve the above problems, and can solve the problem of hydrogen embrittlement of a titanium alloy that cannot be avoided by superplastic working of a titanium alloy alone. It is an object of the present invention to provide a water electrolysis tank that can significantly reduce manufacturing costs.
【0010】[0010]
【課題を解決するための手段】本発明者等は、鋭意研究
を重ねた結果、複極板(9) をチタン合金板とステンレス
鋼板の積層板で構成することによって上記課題が解決さ
れることを知見し、本発明を完成するに至った。Means for Solving the Problems The inventors of the present invention, as a result of intensive research, have solved the above problems by forming a bipolar plate (9) with a laminated plate of a titanium alloy plate and a stainless steel plate. That is, the present invention has been completed.
【0011】本発明による水電解槽は、両端に配された
陽極主電極(1) および陰極主電極(2) と、これら主電極
(1) (2) の間に直列に配された複数の単位セルと、これ
らを一体化する締め付け具とを具備し、1つのセルは、
複極板(9) の陽極側と、陽極給電体(7) と、固体高分子
電解質膜からなる電極接合体膜(3) と、陰極給電体(8)
と、隣の複極板(9) の陰極側からなる、フィルタープレ
ス式水電解槽において、複極板(9) をチタン合金板とス
テンレス鋼板の積層板で構成し、かつステンレス鋼板が
陰極側に来るように配置したことを特徴とするものであ
る。The water electrolyzer according to the present invention comprises an anode main electrode (1) and a cathode main electrode (2) arranged at both ends, and these main electrodes.
(1) A plurality of unit cells arranged in series between (2) and a tightening tool that integrates these unit cells are provided, and one cell is
The anode side of the bipolar plate (9), the anode power feed (7), the electrode junction membrane (3) consisting of a solid polymer electrolyte membrane, and the cathode power feed (8)
In the filter press type water electrolysis tank, which consists of the cathode side of the adjacent bipolar plate (9), the bipolar plate (9) is composed of a laminate of titanium alloy plate and stainless steel plate, and the stainless steel plate is the cathode side. It is characterized by being placed so that it comes to.
【0012】陽極給電体(7) は例えばチタン基材および
チタン繊維層を拡散接合してなる。陽極給電体(7) のチ
タン基材としてはマイクロメッシュ、フォトエッチ処
理、パンチングプレートなどが例示される。The anode power feeder (7) is formed by diffusion bonding a titanium base material and a titanium fiber layer, for example. Examples of the titanium base material of the anode power feeder (7) include micromesh, photoetching treatment, punching plate and the like.
【0013】陰極給電体(8) は例えばチタン基材を白金
メッキしてなる。陰極給電体(8) のチタン基材としては
やはりマイクロメッシュ、フォトエッチ処理、パンチン
グプレートなどが例示される。陰極給電体(8) のチタン
基材を白金メッキすることにより水素脆化が防止されて
いる。The cathode power feeder (8) is formed by plating a titanium base material with platinum. Examples of the titanium base material of the cathode power feeder (8) include micromesh, photoetching treatment, punching plate and the like. Hydrogen embrittlement is prevented by platinum-plating the titanium base material of the cathode power supply (8).
【0014】締め付け具としては、両端に配されたフラ
ンジを連結するボルト・ナットが一般的である。As the tightening tool, bolts and nuts for connecting flanges arranged at both ends are generally used.
【0015】電解槽の形状は、操業圧力を高める点では
円筒型であることが好ましい。角型の電解槽も使用でき
るが、この場合にはこれを圧力容器内に収納することが
好ましい。The electrolytic cell preferably has a cylindrical shape from the viewpoint of increasing the operating pressure. A rectangular electrolytic cell can be used, but in this case, it is preferable to store it in a pressure vessel.
【0016】複極板(9) は好ましくは超塑性加工物から
なる電極部と樹脂からなる外縁部とが一体成形されたも
のである。外縁部を構成する樹脂としては、耐熱性耐薬
品性のあるフッ素樹脂、ポリイミド樹脂、ポリスルホン
樹脂等が好ましい。The bipolar plate (9) is preferably formed by integrally forming an electrode portion made of a superplastic work and an outer edge portion made of a resin. As the resin forming the outer edge portion, a fluorine resin, a polyimide resin, a polysulfone resin or the like having heat resistance and chemical resistance is preferable.
【0017】陰極給電体(8) と複極板(9) と陽極給電体
(7) は、超塑性加工による複極板(9) の成形と、陰極給
電体(8) と複極板(9) と陽極給電体(7) の拡散接合とを
同時に行うことによって、一体成形されていることが好
ましい。複極板(9) を超塑性加工により成形した後、複
数枚の陰極給電体(8) と、複数枚の複極板(9) と、複数
枚の陽極給電体(7) とを拡散接合により一体化してもよ
い。Cathode feed (8), bipolar plate (9) and anode feed
(7) is integrated by simultaneously forming the bipolar plate (9) by superplastic forming and diffusion bonding the cathode feed (8), bipolar plate (9) and anode feed (7) simultaneously. It is preferably molded. After forming the bipolar plate (9) by superplastic processing, multiple cathode feeds (8), multiple bipolar plates (9), and multiple anode feeds (7) are diffusion bonded. May be integrated by
【0018】陰極給電体(8) と超塑性加工物からなる複
極板(9) の電極部と陽極給電体(7)とを、樹脂からなる
外縁部で一体化したものも使用できる。It is also possible to use a cathode power feeder (8), an electrode part of a bipolar plate (9) made of a superplastic processed product, and an anode power feeder (7), which are integrated by an outer edge portion made of resin.
【0019】[0019]
【作用】本発明による水電解槽では、複極板(9) がチタ
ン合金板とステンレス鋼板の積層板で構成されているの
で、高価なチタン合金板の使用量が少なくて済む。ま
た、複極板(9) はステンレス鋼板が陰極側に来るように
配置されているので、チタン合金の水素脆化防止のため
に複極板(9) の陰極側を白金メッキする必要がない。こ
うして、製造コストの大幅な削減が達成できる。In the water electrolysis cell according to the present invention, since the bipolar plate (9) is composed of a laminated plate of a titanium alloy plate and a stainless steel plate, the amount of expensive titanium alloy plate used can be reduced. Further, since the bipolar plate (9) is arranged so that the stainless steel plate is on the cathode side, it is not necessary to platinum-plat the cathode side of the bipolar plate (9) to prevent hydrogen embrittlement of the titanium alloy. . In this way, a significant reduction in manufacturing costs can be achieved.
【0020】[0020]
【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.
【0021】実施例1 図1に最も代表的な角型のフィルタープレス式水電解槽
の分解構造図を示す。フィルタープレス式水電解槽の構
造は、前述したように、両端に配された陽極主電極(1)
および陰極主電極(2) と、これら主電極(1) (2) の間に
直列に配された複数の単位セルと、これらを一体化する
各4本の締め付けボルトおよびナットとから主として構
成されている。1つのセルは、複極板(9) の陽極側、陽
極給電体(7) 、電極接合体膜(3) 、陰極給電体(8) およ
び隣の複極板(9) の陰極側からなり、電極接合体膜(3)
は、イオン交換膜(4) とその両面に設けられた触媒電極
層(5)(6)とからなる。単位セルの個数は、商業規模の電
解槽では、80から600である。Example 1 FIG. 1 shows an exploded structural view of a most typical rectangular filter press type water electrolysis cell. As described above, the structure of the filter press type water electrolysis cell is the anode main electrode (1) arranged at both ends.
And a cathode main electrode (2), a plurality of unit cells arranged in series between these main electrodes (1) and (2), and four tightening bolts and nuts each integrating these unit cells. ing. One cell consists of the anode side of the bipolar plate (9), the anode feed (7), the electrode junction membrane (3), the cathode feed (8) and the cathode side of the adjacent bipolar plate (9). , Electrode assembly membrane (3)
Is composed of an ion exchange membrane (4) and catalyst electrode layers (5) and (6) provided on both sides thereof. The number of unit cells is 80 to 600 in a commercial scale electrolytic cell.
【0022】上記構成のフィルタープレス式水電解槽に
おいて、複極板(9) はチタン合金板(28)とステンレス鋼
板(29)の積層板で構成され、かつステンレス鋼板(29)が
陰極側に来るように配置されている。In the filter press type water electrolysis cell having the above-mentioned structure, the bipolar plate (9) is composed of a laminated plate of the titanium alloy plate (28) and the stainless steel plate (29), and the stainless steel plate (29) is on the cathode side. It is arranged to come.
【0023】なお、図1において、(21)はフランジ、(2
2)はノズルプレート、(23)は絶縁パッキン、(24)はOリ
ングガスケット、(25)は多孔質スペーサー、(26)はシー
ルガスケットをそれぞれ示す。In FIG. 1, (21) is a flange, (2)
2) is a nozzle plate, (23) is an insulating packing, (24) is an O-ring gasket, (25) is a porous spacer, and (26) is a seal gasket.
【0024】図2は複極板(9) の平面図を示し、図3は
図2中のa−a断面、図4はb−b断面、図5はc−c
断面および図6はd−d断面をそれぞれ示す。この例で
は、複極板(9) はチタン合金板(28)とステンレス鋼板(2
9)の積層板に超塑性加工を施すことにより構成され、か
つステンレス鋼板(29)が陰極側に来るように配置され、
複極板として要求される条件をすべて満足している。つ
まり、図2中のa−a断面では、図3に示されるよう
に、電極接合体膜(3) と陽極給電体(7) と陰極給電体
(8) は、複極板(9) の山部および谷部の間隙がおおむね
1〜3mmとなり、山と谷が交互に組み合わされるよう
な構造になされたものであり、この構造により両給電体
(7)(8)の接触が維持され、且つセルの弾力性が得られ
る。また、陽極側および陰極側の谷部がそれぞれ酸素お
よび水素の上方への流路となっている。図3では、山部
と谷部の比率が等しくなっているが、山部と谷部の間隔
を超塑性加工において離型しやすい比率にすることも可
能である。複極板(9) の外周部に設けられた凹条(27)
は、シールのためのOリングガスケット(24)の嵌込み溝
である。複極板(9) の上下の部分は、流体が上下左右に
自由に流動でき且つ電極接合体膜(3) を均一にサポート
する機能が要求される部分である。この実施例では、図
2中のb−b断面を示す図4のように、略立方体の多数
の突起によって電極接合体膜(3) を両面からサポート
し、それ以外の部分が流路として機能する。FIG. 2 is a plan view of the bipolar plate (9), FIG. 3 is a sectional view taken along the line aa in FIG. 2, FIG. 4 is a sectional view taken along the line bb, and FIG.
Section and FIG. 6 show dd section respectively. In this example, the bipolar plate (9) is a titanium alloy plate (28) and a stainless steel plate (2).
It is configured by subjecting the laminated plate of 9) to superplastic working, and is arranged so that the stainless steel plate (29) comes to the cathode side,
It satisfies all the requirements for bipolar plates. That is, in the aa cross section in FIG. 2, as shown in FIG. 3, the electrode assembly film (3), the anode power feeding body (7) and the cathode power feeding body are
(8) has a structure in which the gap between the peaks and valleys of the bipolar plate (9) is approximately 1 to 3 mm, and the peaks and valleys are alternately combined.
(7) The contact of (8) is maintained and the elasticity of the cell is obtained. Further, the valleys on the anode side and the cathode side serve as upward flow paths for oxygen and hydrogen, respectively. In FIG. 3, the peaks and the valleys have the same ratio, but it is also possible to set the interval between the peaks and the valleys to a ratio that facilitates mold release in superplastic working. Recesses (27) provided on the outer periphery of the bipolar plate (9)
Is a fitting groove of the O-ring gasket (24) for sealing. The upper and lower portions of the bipolar plate (9) are required to have the function of allowing fluid to freely flow in the vertical and horizontal directions and uniformly supporting the electrode assembly membrane (3). In this embodiment, as shown in FIG. 4 showing the bb cross section in FIG. 2, the electrode assembly membrane (3) is supported from both sides by a large number of substantially cubic projections, and the other portion functions as a flow path. To do.
【0025】図2において、複極板(9) の下部の孔は給
水ヘッダー(10)であり、上部左側の孔は酸素ヘッダー(1
1)である。これらのヘッダーは、図5に示される断面の
ように加工することにより、水を陽極側に供給し、発生
した酸素を酸素ヘッダー(11)に排出する。図5および図
6において、複極板(9) の各ヘッダーの外周には、複極
板(9) と電極接合体膜(3) との間に多孔質スペーサー(2
5)が介在され、電極接合体膜(3) ともう1つの複極板
(9) との間にシールガスケット(26)が介在されている。
また、複極板(9) の上部右側の孔は水素ヘッダー(12)
で、この部分は、図6に示される断面のように加工する
ことにより、発生した水素を水素ヘッダー(12)に排出す
る。複極板(9) の中央部の電極部分では、流体が均一に
流れることが望ましい。偏流があると、極端な場合その
部分がドライになり、膜の損傷を来たすといった事故の
原因になる。この構造では、複極板(9) の上下部分に略
立方体の多数の突起を形状すること、およびその分布を
流体力学的に設計することにより、いっそう均一な流れ
を実現することが可能である。更に、水電解槽の各セ
ル、具体的には入口ヘッダーおよび出口ヘッダーに設置
するリング状の多孔質スペーサー(25)の空隙率または幅
を調整することにより、各セルへの水の流入量を均一に
することができる。このような構造を採用すると、単位
セルの厚さは2〜3.5mm程度となる。In FIG. 2, the lower hole of the bipolar plate (9) is the water supply header (10), and the upper left hole is the oxygen header (1).
1). By processing these headers as shown in the cross section of FIG. 5, water is supplied to the anode side and the generated oxygen is discharged to the oxygen header (11). 5 and 6, a porous spacer (2) is provided between the bipolar plate (9) and the electrode assembly membrane (3) on the outer periphery of each header of the bipolar plate (9).
5) is interposed, the electrode assembly membrane (3) and another bipolar plate
A seal gasket (26) is interposed between (9).
Also, the hole on the upper right side of the bipolar plate (9) is the hydrogen header (12).
Then, this portion is processed as the cross section shown in FIG. 6 to discharge the generated hydrogen to the hydrogen header (12). It is desirable that the fluid flow uniformly in the central electrode portion of the bipolar plate (9). In the extreme case, if there is a drift, the part becomes dry, which causes an accident such as damage to the film. In this structure, it is possible to realize a more uniform flow by forming a large number of substantially cubic protrusions on the upper and lower parts of the bipolar plate (9) and by designing their distribution hydrodynamically. . Furthermore, by adjusting the porosity or width of the ring-shaped porous spacer (25) installed in each cell of the water electrolysis cell, specifically, the inlet header and the outlet header, the inflow amount of water into each cell can be adjusted. Can be uniform. If such a structure is adopted, the thickness of the unit cell will be about 2 to 3.5 mm.
【0026】つぎに、上記構成の水電解槽の作用を説明
する。Next, the operation of the water electrolysis cell having the above structure will be described.
【0027】先ず電解槽下部の給水ヘッダー(10)から供
給された水は、多孔質の陽極給電体(7) を通って、電極
接合体膜(3) の陽極側触媒電極層(図7における(5) )
に達する。ここで付加された電力により水の電気分解反
応が起こり、酸素が発生する。発生した酸素は陽極給電
体(7) を通り、陽極側電極に設けられた垂直流路内を未
反応の水とともに上昇し、複極板(9) の酸素ヘッダー(1
1)の外周に設けられた多孔質スペーサー(25)を通って酸
素ヘッダー(11)に排出される。一方、電極接合体膜(3)
の陰極側触媒電極層(図7における(6) )表面で発生し
た水素とイオン交換膜(図7における(4) )を透過した
水は、多孔質の陰極給電体(8) を通り、陰極側電極に設
けられた垂直流路内を上昇し、複極板(9) の水素ヘッダ
ー(12)の外周に設けられた多孔質スペーサー(25)を通っ
て水素ヘッダー(12)に排出される。First, the water supplied from the water supply header (10) at the lower part of the electrolytic cell passes through the porous anode power feeder (7) and the anode side catalyst electrode layer (in FIG. 7) of the electrode assembly membrane (3). (Five) )
Reach The electric power added here causes an electrolysis reaction of water to generate oxygen. The generated oxygen passes through the anode power supply (7) and rises along with unreacted water in the vertical flow path provided on the anode side electrode, and the oxygen header (1
It is discharged to the oxygen header (11) through the porous spacer (25) provided on the outer periphery of (1). On the other hand, electrode assembly membrane (3)
Hydrogen generated on the surface of the cathode side catalyst electrode layer ((6) in FIG. 7) and water permeating the ion exchange membrane ((4) in FIG. 7) pass through the porous cathode power supply body (8), It rises in the vertical flow path provided in the side electrode and is discharged to the hydrogen header (12) through the porous spacer (25) provided on the outer periphery of the hydrogen header (12) of the bipolar plate (9). .
【0028】上述の説明は、電解槽を水平に設置する場
合に付いてのものであるが、電解槽を垂直に設置する場
合も効果は同様である。The above description is for the case where the electrolytic cell is installed horizontally, but the effect is the same when the electrolytic cell is installed vertically.
【0029】実施例2 実施例1では水電解槽の形状は角型であったが、この実
施例では水電解槽の形状を円筒型とした。その他の構成
は実施例1のものと同じである。Example 2 In Example 1, the shape of the water electrolysis cell was rectangular, but in this Example, the shape of the water electrolysis cell was cylindrical. The other structure is the same as that of the first embodiment.
【0030】角型の水電解槽は、10kg/cm2 以下
の比較的運転圧力の低い条件でしか採用できないが、水
電解槽の形状を円筒型にすることにより、30kg/c
m2程度の運転圧力にも耐えられる水電解槽を製作する
ことができる。The square type water electrolysis cell can be used only under the condition of relatively low operating pressure of 10 kg / cm 2 or less. However, by changing the shape of the water electrolysis cell to 30 kg / c
It is possible to manufacture a water electrolysis cell that can withstand an operating pressure of about m 2 .
【0031】実施例3 実施例1の水電解槽では、複極板(9) はチタン合金板(2
8)とステンレス鋼板(29)の積層板に超塑性加工を施すこ
とにより、全体を一体成形したものであるが、導電性が
要求されるのは電極部だけであり、その周囲部は水、酸
素および水素をそれぞれ通す孔を有し、導電性は必要で
はなく、むしろ導電性がない方が操業上好ましい。Example 3 In the water electrolysis cell of Example 1, the bipolar plate (9) was a titanium alloy plate (2
By subjecting the laminated plate of 8) and the stainless steel plate (29) to superplastic processing, the whole is integrally molded, but conductivity is required only for the electrode part, and the surrounding part is water, There is a hole through which oxygen and hydrogen pass respectively, and conductivity is not necessary, and it is rather preferable that there is no conductivity in operation.
【0032】そこで、この実施例では、複極板(9) は、
超塑性加工物からなる電極部とフッ素樹脂からなる外縁
部とが一体成形されたものである。その他の構成は実施
例1のものと同じである。Therefore, in this embodiment, the bipolar plate (9) is
An electrode part made of a superplastic work and an outer edge part made of a fluororesin are integrally formed. The other structure is the same as that of the first embodiment.
【0033】実施例4 実施例3では複極板(9) が一体成形されているが、この
実施例では、陰極給電体(8) と複極板(9) と陽極給電体
(7) が、超塑性加工による複極板(9) の成形と、陰極給
電体(8) と複極板(9) と陽極給電体(7) の拡散接合とを
同時に行うことによって、一体成形されている。Fourth Embodiment In the third embodiment, the bipolar plate (9) is integrally formed. In this embodiment, however, in the present embodiment, the cathode feeder (8), the bipolar plate (9) and the anode feeder.
(7) integrated by simultaneously forming the bipolar plate (9) by superplastic forming and diffusion bonding the cathode feed (8), bipolar plate (9) and anode feed (7) simultaneously. It is molded.
【0034】複極板(9) を超塑性加工により成形した
後、複数枚の陰極給電体(8) と、複数枚の複極板(9)
と、複数枚の陽極給電体(7) とを拡散接合により一体化
してもよい。After forming the bipolar plate (9) by superplastic working, a plurality of cathode power feeding bodies (8) and a plurality of bipolar plates (9)
And a plurality of anode power feeders (7) may be integrated by diffusion bonding.
【0035】その他の構成は実施例1のものと同じであ
る。The other structure is the same as that of the first embodiment.
【0036】[0036]
【発明の効果】本発明による水電解槽は以上の如く構成
されているので、下記の効果を奏することができる。Since the water electrolysis cell according to the present invention is constructed as described above, the following effects can be obtained.
【0037】請求項1による水電解槽では、複極板(9)
はチタン合金板とステンレス鋼板の積層板で構成されて
いるので、高価なチタン合金板の使用量が少なくて済
み、製造コストを大幅に低減することができる。In the water electrolyzer according to claim 1, the bipolar plate (9)
Since is composed of a laminated plate of a titanium alloy plate and a stainless steel plate, the amount of expensive titanium alloy plate used can be small, and the manufacturing cost can be greatly reduced.
【0038】また、複極板(9) はステンレス鋼板が陰極
側に来るように配置されているので、チタン合金の水素
脆化防止のための白金メッキを施す必要がなく、この点
でも製造コストの削減が達成できる。Further, since the bipolar plate (9) is arranged so that the stainless steel plate is on the cathode side, there is no need to perform platinum plating for preventing hydrogen embrittlement of the titanium alloy, and in this respect also the manufacturing cost is high. Can be achieved.
【0039】請求項2による水電解槽は円筒型であるの
で、操業圧力を高めることができる。Since the water electrolysis cell according to the second aspect is a cylindrical type, the operating pressure can be increased.
【0040】請求項3による水電解槽では、複極板(9)
が超塑性加工物からなる電極部と樹脂からなる外縁部と
が一体成形されているので、電極部のみが導電性を有す
るものとなり、本電解槽によると、操業を容易に行うこ
とができる。In the water electrolyzer according to claim 3, the bipolar plate (9)
Since the electrode part made of superplastic work and the outer edge part made of resin are integrally formed, only the electrode part has conductivity, and the present electrolytic cell facilitates the operation.
【0041】請求項4による水電解槽では、陰極給電体
(8) と複極板(9) と陽極給電体(7)とが超塑性加工と拡
散接合の同時実施により一体成形されているので、セル
電圧を低下させることができると共に、組立の作業性を
向上させることができる。In the water electrolyzer according to claim 4, the cathode power supply body
(8), bipolar plate (9), and anode power supply (7) are integrally formed by simultaneous superplastic working and diffusion bonding, so the cell voltage can be lowered and the workability of assembly is improved. Can be improved.
【図1】 角型のフィルタープレス式水電解槽の分解状
態を示す分解斜視図である。FIG. 1 is an exploded perspective view showing a disassembled state of a rectangular filter press type water electrolysis cell.
【図2】 複極板(9) 全体を示す平面図である。FIG. 2 is a plan view showing the entire bipolar plate (9).
【図3】 図2中のa−a線に沿う断面を示す部分断面
図である。FIG. 3 is a partial cross-sectional view showing a cross section taken along line aa in FIG.
【図4】 図2中のb−b線に沿う断面を示す部分断面
図である。FIG. 4 is a partial cross-sectional view showing a cross section taken along line bb in FIG.
【図5】 図2中のc−c線に沿う断面を示す部分断面
図である。5 is a partial cross-sectional view showing a cross section taken along line cc in FIG.
【図6】 図2中のd−d線に沿う断面を示す部分断面
図である。FIG. 6 is a partial cross-sectional view showing a cross section taken along the line dd in FIG.
【図7】 従来の角型のフィルタープレス式水電解槽を
示す模式断面図である。FIG. 7 is a schematic cross-sectional view showing a conventional rectangular filter press type water electrolysis cell.
1:陽極主電極 2:陰極主電極 3:電極接合体膜 4:イオン交換膜 5:陽極側触媒電極層 6:陰極側触媒電極層 7:陽極給電体 8:陰極給電体 9:複極板 10:給水ヘッダー 11:酸素ヘッダー 12:水素ヘッダー 21:フランジ 22:ノズルプレート 23:絶縁パッキン 24:Oリングガスケット 25:多孔質スペーサー 26:シールガスケット 27:凹条 28:チタン合金板 29:ステンレス鋼板 1: Anode main electrode 2: Cathode main electrode 3: Electrode assembly film 4: Ion exchange membrane 5: Anode side catalyst electrode layer 6: Cathode side catalyst electrode layer 7: Anode power supply body 8: Cathode power supply body 9: Multipolar plate 10: Water supply header 11: Oxygen header 12: Hydrogen header 21: Flange 22: Nozzle plate 23: Insulating packing 24: O-ring gasket 25: Porous spacer 26: Seal gasket 27: Recessed line 28: Titanium alloy plate 29: Stainless steel plate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 前澤 彰二 東京都港区西新橋2丁目8番11号 第7東 洋海事ビル 財団法人地球環境産業技術研 究機構 CO2 固定化等プロジェクト室 内 (72)発明者 稲住 近 東京都港区西新橋2丁目8番11号 第7東 洋海事ビル 財団法人地球環境産業技術研 究機構 CO2 固定化等プロジェクト室 内 (72)発明者 加藤 守孝 東京都港区西新橋2丁目8番11号 第7東 洋海事ビル 財団法人地球環境産業技術研 究機構 CO2 固定化等プロジェクト室 内 (72)発明者 森 浩章 東京都港区西新橋2丁目8番11号 第7東 洋海事ビル 財団法人地球環境産業技術研 究機構 CO2 固定化等プロジェクト室 内 (72)発明者 小黒 啓介 大阪府池田市緑ケ丘1丁目8番31号工業技 術院大阪工業技術研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Shoji Maezawa 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Toyo Kaiji Building Incorporated Research Institute for Global Environment and Industrial Technology CO2 Immobilization Project Room (72 ) Inventor Inazumi, 2-8-11 Nishishinbashi, Minato-ku, Tokyo 7th Toyo Kaiji Building, Research Institute for Global Environmental Technology, CO2 fixation etc. project room (72) Inventor Moritaka Kato Minato-ku, Tokyo Nishishinbashi 2-8-11 7th Toyo Kaiji Building Incorporated Research Institute for Global Environment and Industrial Technology CO2 fixation etc. project room (72) Inventor Hiroaki Mori 2-8-11 Nishishinbashi, Minato-ku, Tokyo 7 Toyo Kaiji Building Inside the Project Office for CO2 fixation etc., Research Institute for Global Environmental Technology (72) Inventor Kei Oguro Osaka Prefecture Ikeda Midorigaoka 1-chome No. 8 No. 31 industrial technology Institute Osaka Industrial Technology Research Institute in
Claims (4)
極主電極(2) と、これら主電極(1) (2) の間に直列に配
された複数の単位セルと、これらを一体化する締め付け
具とを具備し、1つのセルは、複極板(9) の陽極側と、
陽極給電体(7) と、固体高分子電解質膜からなる電極接
合体膜(3) と、陰極給電体(8) と、隣の複極板(9) の陰
極側からなる、フィルタープレス式水電解槽において、
複極板(9) をチタン合金板とステンレス鋼板の積層板で
構成し、かつステンレス鋼板が陰極側に来るように配置
したことを特徴とする、固体高分子電解質膜を用いる水
電解槽。1. An anode main electrode (1) and a cathode main electrode (2) arranged at both ends, and a plurality of unit cells arranged in series between these main electrodes (1) (2), and these unit cells. It has an integrated tightening tool, and one cell is the anode side of the bipolar plate (9),
A filter press type water consisting of an anode power feed (7), an electrode assembly membrane (3) made of a solid polymer electrolyte membrane, a cathode power feed (8), and the cathode side of the adjacent bipolar plate (9). In the electrolytic cell,
A water electrolysis cell using a solid polymer electrolyte membrane, characterized in that the bipolar plate (9) is composed of a laminated plate of a titanium alloy plate and a stainless steel plate, and is arranged so that the stainless steel plate is on the cathode side.
記載の水電解槽。2. A cylindrical type.
The described water electrolysis cell.
部と樹脂からなる外縁部との一体成形物であることを特
徴とする請求項1または2記載の水電解槽。3. The water electrolysis cell according to claim 1, wherein the bipolar plate (9) is an integrally molded product of an electrode part made of a superplastic work product and an outer edge part made of a resin.
複極板(9) の電極部と陽極給電体(7) とを、樹脂からな
る外縁部で一体化したことを特徴とする請求項1〜3の
うち1記載の水電解槽。4. The cathode power feed (8), the electrode part of the bipolar plate (9) made of a superplastic work, and the anode power feed (7) are integrated at the outer edge portion made of resin. The water electrolysis cell according to claim 1 in any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7064441A JP3072333B2 (en) | 1995-03-23 | 1995-03-23 | Water electrolyzer using solid polymer electrolyte membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7064441A JP3072333B2 (en) | 1995-03-23 | 1995-03-23 | Water electrolyzer using solid polymer electrolyte membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08260178A true JPH08260178A (en) | 1996-10-08 |
JP3072333B2 JP3072333B2 (en) | 2000-07-31 |
Family
ID=13258377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7064441A Expired - Lifetime JP3072333B2 (en) | 1995-03-23 | 1995-03-23 | Water electrolyzer using solid polymer electrolyte membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3072333B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004259457A (en) * | 2003-02-24 | 2004-09-16 | Hitachi Zosen Corp | Reversible cell for hydro electrolysis and fuel cell |
JP2014508213A (en) * | 2010-12-10 | 2014-04-03 | ユニバーシティー オブ ウロンゴング | Improvement regarding multi-layer water splitting apparatus and manufacturing method thereof |
WO2018174281A1 (en) * | 2017-03-23 | 2018-09-27 | 旭化成株式会社 | Water electrolysis system, water electrolysis method and method for producing hydrogen |
WO2018182005A1 (en) * | 2017-03-31 | 2018-10-04 | 旭化成株式会社 | Water electrolysis system, water electrolysis method, and method for producing hydrogen |
JP2021039917A (en) * | 2019-09-05 | 2021-03-11 | 株式会社豊田中央研究所 | Electrode plate |
US11133512B2 (en) | 2018-05-10 | 2021-09-28 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Bipolar plate |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112014031220A2 (en) | 2012-06-12 | 2017-06-27 | Univ Monash | breathable electrode structure and method and system for use in water separation |
RU2016106905A (en) | 2013-07-31 | 2017-09-01 | Аквахайдрекс Пти Лтд | MODULAR ELECTROCHEMICAL CELLS |
JP2015051155A (en) * | 2013-09-06 | 2015-03-19 | 株式会社アサヒ | Work bench or wagon |
US20220145479A1 (en) | 2019-02-01 | 2022-05-12 | Aquahydrex, Inc. | Electrochemical system with confined electrolyte |
-
1995
- 1995-03-23 JP JP7064441A patent/JP3072333B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004259457A (en) * | 2003-02-24 | 2004-09-16 | Hitachi Zosen Corp | Reversible cell for hydro electrolysis and fuel cell |
JP2014508213A (en) * | 2010-12-10 | 2014-04-03 | ユニバーシティー オブ ウロンゴング | Improvement regarding multi-layer water splitting apparatus and manufacturing method thereof |
WO2018174281A1 (en) * | 2017-03-23 | 2018-09-27 | 旭化成株式会社 | Water electrolysis system, water electrolysis method and method for producing hydrogen |
JPWO2018174281A1 (en) * | 2017-03-23 | 2019-11-07 | 旭化成株式会社 | Water electrolysis system, water electrolysis method, and hydrogen production method |
WO2018182005A1 (en) * | 2017-03-31 | 2018-10-04 | 旭化成株式会社 | Water electrolysis system, water electrolysis method, and method for producing hydrogen |
JPWO2018182005A1 (en) * | 2017-03-31 | 2019-11-07 | 旭化成株式会社 | Water electrolysis system, water electrolysis method, and hydrogen production method |
US11133512B2 (en) | 2018-05-10 | 2021-09-28 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Bipolar plate |
JP2021039917A (en) * | 2019-09-05 | 2021-03-11 | 株式会社豊田中央研究所 | Electrode plate |
Also Published As
Publication number | Publication date |
---|---|
JP3072333B2 (en) | 2000-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6706436B2 (en) | Electrochemical cell design using a bipolar plate | |
US8691060B2 (en) | Water electrolysis apparatus | |
KR102311123B1 (en) | Electrolysis cell of alkali solutions | |
US9487871B2 (en) | High-pressure water electolysis apparatus | |
JP2001507406A (en) | Electrochemical cell and electrochemical system | |
US20110147202A1 (en) | Water electrolysis apparatus | |
WO1987005951A1 (en) | Method and apparatus for electrolysing water | |
KR890002061B1 (en) | A monopolar electrochemical cell,cell unit and process for conducting electrolysis in monopolar cell series | |
JPH08260178A (en) | Water electrolytic cell using solid high molecular electrolyte membrane | |
JP2893238B2 (en) | Water electrolyzer using polymer electrolyte membrane | |
CN216838211U (en) | Multi-stage PEM (proton exchange membrane) electrolytic tank structure for electrolyzing water | |
JP3122734B2 (en) | Water electrolysis tank using solid polymer electrolyte membrane | |
US4738763A (en) | Monopolar, bipolar and/or hybrid membrane cell | |
WO1986003787A1 (en) | A monopolar or bipolar electrochemical terminal unit having an electric current transmission element | |
JPH0995791A (en) | Solid polyelectrolyte water electrolyzer and its electrode structure | |
US4604171A (en) | Unitary central cell element for filter press, solid polymer electrolyte electrolysis cell structure and process using said structure | |
JP3051893B2 (en) | Porous spacer in water electrolyzer or fuel cell | |
US4560452A (en) | Unitary central cell element for depolarized, filter press electrolysis cells and process using said element | |
JP3037128B2 (en) | Hydrogen / oxygen generator | |
US6027620A (en) | Filter press electrolyzer | |
JP4451954B2 (en) | Separator and electrolytic cell structure using the same | |
US4690748A (en) | Plastic electrochemical cell terminal unit | |
JP3122736B2 (en) | Bipolar plate for water electrolysis tank and method for producing the same | |
JP2972925B2 (en) | Water electrolyzer using solid polymer electrolyte membrane | |
JP3988002B2 (en) | Filter-press type solid polymer water electrolysis cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000328 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080602 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080602 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090602 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100602 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100602 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110602 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120602 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120602 Year of fee payment: 12 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120602 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130602 Year of fee payment: 13 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |