JP2004259457A - Reversible cell for hydro electrolysis and fuel cell - Google Patents

Reversible cell for hydro electrolysis and fuel cell Download PDF

Info

Publication number
JP2004259457A
JP2004259457A JP2003045462A JP2003045462A JP2004259457A JP 2004259457 A JP2004259457 A JP 2004259457A JP 2003045462 A JP2003045462 A JP 2003045462A JP 2003045462 A JP2003045462 A JP 2003045462A JP 2004259457 A JP2004259457 A JP 2004259457A
Authority
JP
Japan
Prior art keywords
gas diffuser
mea
cell
bipolar plate
reversible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003045462A
Other languages
Japanese (ja)
Inventor
Hiroshi Tatsumi
浩史 辰己
Naokazu Kumagai
直和 熊谷
Takaaki Oku
隆了 屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Engineering Co Ltd
Hitachi Zosen Corp
Original Assignee
Daiki Engineering Co Ltd
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Engineering Co Ltd, Hitachi Zosen Corp filed Critical Daiki Engineering Co Ltd
Priority to JP2003045462A priority Critical patent/JP2004259457A/en
Publication of JP2004259457A publication Critical patent/JP2004259457A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reversible cell for hydro electrolysis and a fuel cell which can resolve the problems in machining/assembling dimensional accuracy associated with size increase and attain cost reduction, by adopting a flexible structure for a bipolar plate which is an important component part in the size increase and high performance of the reversible cell. <P>SOLUTION: The reversible cell includes at least one set of constitutional unit, consisting of a bipolar plate 1/a gas diffuser 2/an MEA 3/a gas diffuser 2/a bipolar plate 1, and the unit is sandwiched and pressurized by end plates 5. The polar plate 1 is a 0.2-3 mm thin-plate titanium or titanium alloy plate, molded by the superplasticity machining method. Mechanical damages to the gas diffuser and the MEA are reduced, and stable performance of the reversible cell over long term can be attained. When this constitutional unit is sandwiched and pressurized by the end plates, dimensional deviation of the gas diffuser or the MEA is absorbed due to the elastic effect of the bipolar plates, and the entire surface contact can be attained at a low pressure. As a result, the mechanical damages to the gas diffuser or the MEA are reduced, and the stable performance of the reversible cell in the long term can be attained. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水素および酸素製造のための水電解槽と、水素を燃料とし酸素を陽極活性物質として燃焼反応を電気化学的に行い電力を得る燃料電池との双方の機能を持つように構成された一体型反応器(この明細書において、「可逆セル」と称する)に関し、特に、高分子電解質膜を用いた水電解および燃料電池の可逆セルにする。
【0002】
【従来の技術】
高分子電解質膜を用いて、水を電気分解して水素及び酸素を製造する水電解槽(PEWE:Proton Exchange membrane type Water Electrolysis、以下、PEWEと称する)、及び逆に水素及び酸素を供給して発電する固体高分子形燃料電池(PEFC:Proton Exchange membrane type Fuel Cell、以下、PEFCと称する )は、従来より知られている。電気エネルギーを化学エネルギーに変換して水素及び酸素を得る水電解と化学エネルギーを電気エネルギーに変換して発電する燃料電池とは可逆反応であることから、これらを二次電池のように一体化することが可能である。
【0003】
実際に、PEFCとPEWEという二種類のモジュールは、基本的な構造が類似することから、これらを一体化した固体高分子型の燃料電池−水電解可逆セルの研究が行われている。高分子電解質膜を用いた可逆セルについては、Swetteらが、40cmの電極面積を持つURFCの15回の充放電を行った事を開示している(Intersociety Energy Conversion Engineering Conference p.1.1227−1.1232, 1993年)。
【0004】
また、Lawrence Livermore National Laboratory のMitliskyらは1999年にスイスで開催された“Portable Fuel Cell International Conference”で高分子電解質膜を用いた可逆セルが実用化されていることを紹介している(F. Militlisky, B.Myers, A.H. Weisberg, T.M. Molter, and W.F. Smith, “Reversible (Unitized) PEM Fuel Cell” invited presentation, Portable Fuel Cell International Conference, Switzerland, pp.3−16, June 21−24(1999); Feature Artcle, Fuel Cells Bulletin, No.11. Aug(1999); UCRL−JC−134538)。ここでは、46cmの電極面積を持つ2セルスタック及び93cmの電極面積を持つ1セルスタックの可逆セルが、紹介されている。
【0005】
わが国でも、このような高分子電解質膜を用いた可逆セルに関する開発が行われており、例えば 特許文献1には、可逆セルに適した触媒材料が、特許文献2には、可逆セルを自動車に搭載するためのシステムが、特許文献3には、可逆セルを電力負荷平準化に利用するためのシステムがそれぞれ開示されている。
【0006】
可逆セルは、基本的には、1枚の固体高分子膜に白金族金属からなる電極触媒を転写、接合させた接合体(MEA:Membrane Electrode Assembly、この明細書において、「MEA」と称する)と、2枚の多孔質ガス拡散体と、2枚の複極板またはエンドプレートとからなる構成部材を、複極板/ガス拡散体/MEA/ガス拡散体/複極板の順で積層してなり、1セルあたりに酸素極室と水素極室とを各1室有するようなゼロギャップ隔膜室式のセルを1個または複数個(通常は多数個)有する構造をもつものである。
【0007】
【特許文献1】
特開2000−342965号公報
【0008】
【特許文献2】
特開2002−135911号公報
【0009】
【特許文献3】
特開2002−142386号公報
【0010】
【発明が解決しようとする課題】
本発明者らの一部は、可逆セルの大型化を目指し、発表されている93cmを上回る100cmの電極面積を持つMEAを試作し、大型する際に重要な技術を鋭意開発している。
【0011】
可逆セルとPEFCは基本構成部品において同一であるが、PEFCを可逆とするためには、水電解に適した構成部品の材質としなければならない、すなわち材質において異なってくる。さらに、PEFCの場合は水素を燃焼して生じる水を速やかに反応の場から排出するために、各構成部材に撥水性を持たせる必要があるが、可逆セルの場合、燃料電池運転時の撥水性と水電解運転時の親水性の両機能をバランスよく有することが求められ、この点で両者は大きく異なっている。
【0012】
一枚のMEAで構成される単セルを積層するために用いられる複極板はPEFCの場合、グラファイトなどの炭素材料で構成される。これは水素酸化や酸素還元雰囲気に炭素系材料が耐性を有しているからであって、これらの材料をPEWEにおいて用いると、酸素を発生するような高い酸化環境にさらされ、二酸化炭素となり消耗してしまう。このため、PEWEの複極板には白金メッキを施したチタン材料が用いられている。
【0013】
複極板には流路となる溝が設けられているが、従来の可逆セルでは、これら流路は、機械加工、もしくはプレス成型で作製されていた。そして、このような多数の溝を持つ複極板と複極板との間にガス拡散体/MEA/ガス拡散体を積層し、可逆セルが構成されている。これら積層物の均一な相互接触を十分にしなければ、接触抵抗が高くなり、結果として燃料電池あるいは水電解の際の内部抵抗が高くなって、高い効率のエネルギー変換器になり得ない。PEFCの場合、柔軟な炭素繊維材料等の多孔質体が存在し、寸法精度のズレは柔軟な炭素繊維材料等が吸収するが、可逆セルの場合は、炭素系材料を用いることができないので、それぞれの寸法精度を向上させないと、積層物の均一な相互接触は実現し得ないという問題がある。
【0014】
一方、複極板に挟まれる積層物は多孔質体および高分子膜であるため、寸法精度を均一にすることは非常に困難である。したがって、複極板に求められる加工寸法精度および組立寸法精度は高いものとなり、可逆セルを大型化する場合に、達成がより困難な課題となっている。
【0015】
本発明の目的は、可逆セルの大型化と高性能化において、重要な構成部品である複極板に柔軟な構造を持たせて、大型化に伴う加工・組立寸法精度の問題を解消し、コストメリットのある水電解および燃料電池の可逆セルを提供することにある。
【0016】
【課題を解決するための手段】
本発明による水電解および燃料電池の可逆セルは、複極板/ガス拡散体/MEA/ガス拡散体/複極板からなる構成ユニットを少なくとも1組有し、このユニットがエンドプレートによって挟み込まれて加圧されている水電解および燃料電池の可逆セルにおいて、複極板は、超塑性加工法により成型した厚さ0.2〜3mmの薄板チタンあるいはチタン合金であることを特徴とするものである。
【0017】
複極板の好適な態様は、チタンのようなバルブメタル、特に超塑性加工に適したチタン合金、例えばTi−4.5Al−3V−2Fe−2Moのチタン合金が好適である。また、より具体的には、Al:3.0〜5.0wt.%、V:2.1〜3.7wt.%、Mo:0.85〜3.15wt.%、O:0.15wt.%以下、を含有し、さらに、Fe、Ni、CoおよびCrのうちの1種または2種以上を含有し、且つ、0.85wt.%≦Fe(wt.%)+Ni(wt.%)+Co(wt.%)+0.9×Cr(wt.%)≦3.15wt.%、および、7wt.%≦2×Fe(wt.%)+2×Ni(wt.%)+2×Co(wt.%)+1.8×Cr(wt.%)+1.5×V(wt.%)+Mo(wt.%)≦13wt.%、の条件を満足し、残部:Tiおよび不可避的不純物、からなるチタン合金、または、Al:3.0〜5.0wt.%、V:2.1〜3.7wt.%、Mo:0.85〜3.15wt.%、O:0.15wt.%以下、を含有し、さらに、Fe、Ni、CoおよびCrのうちの1種または2種以上を含有し、且つ、0.85wt.%≦Fe(wt.%)+Ni(wt.%)+Co(wt.%)+0.9×Cr(wt.%)≦3.15wt.%、および、7wt.%≦2×Fe(wt.%)+2×Ni(wt.%)+2×Co(wt.%)+1.8×Cr(wt.%)+1.5×V(wt.%)+Mo(wt.%)≦13wt.%、の条件を満足し、残部:Tiおよび不可避的不純物、からなり、α晶粒径が5μm以下であるチタン合金が好適である
複極板は水素室側では水素脆化を、酸素室側では陽極酸化皮膜(酸化チタン)による絶縁化を防止するために厚さ0.3μ以上の白金メッキを施すことが望ましい。
【0018】
超塑性とは、ある限界以上の力を加えると、連続的に変形し、そのまま元に戻らない性質を言い、超塑性加工とはそのような性質を利用した加工方法である。チタンやチタン合金は、高温になると超塑性を示し、この特性を利用し、複雑な形状や高い強度を有し、生産性や経済面で問題があった難しい成形品を成形する技術を超塑性加工あるいは超塑性成形と呼んでいる。複極板に設けられる流路となる溝は、深さ0.1〜2mm、幅0.5〜3mm程度のピッチで設けられることが望ましく、また、複極板は、これらの間に挟まれたガス拡散体/MEA /ガス拡散体の空間を外部と遮断するためのガスケットを固定するための溝等、可逆セルに求められる機能を付与するための複雑な特殊形状を有している必要があり、超塑性加工は、このような複雑な形状を成形する手法として好適である。
【0019】
本発明において、超塑性加工する複極板の厚みを0.2〜3mmと限定した理由は、0.2mm以下の場合、強度不足のため、加圧した際に予め設けた溝が変形するためであって、3mm以上では、本発明の寸法精度のズレを吸収するに十分な柔軟性を有するに至らないからである。
【0020】
本発明の積層体を構成するMEAは、Pt、IrもしくはRuなどの白金族金属、またはそれらの酸化物・水酸化物のような、水素酸化および水素発生、ならびに酸素発生および酸素還元に対して活性を有する金属触媒の微粉末を、固体高分子電解質膜の向き合う両面に、固体高分子電解質およびPTFE(ポリテトラフルオロエチレン)との混合物からなる触媒層として形成させたものである。固体高分子電解質は、通常、市販のパーフルオロスルフォン酸型の陽イオン交換膜、例えばナフィオン、アシプレックス、フレミオン等が使用される。
【0021】
本発明において、ガス拡散体の基材の材質としては、酸素極室側に配置するものにおいてはバルブメタルが適切であり、中でも、安価なTiが好適に用いられる。水素極室側に配置するものにおいては、バルブメタルはもちろん好適であるが、それ以外にも、ステンレス鋼やカーボンが使用できる。ガス拡散体を構成する繊維の集合体は、ガスおよび水の流通性、圧力損失の大小、PtおよびPTFEを塗布するために使用する液の浸透性などの観点から、繊維の直径が30〜100μmの不織布であって、気孔率70〜90%、厚さ0.3〜1.0mm程度のものが好ましい。不織布は、セル内に配置するとき、またはあらかじめ圧縮成型する場合に加わる、20〜150kgf/cmの応力の下においても、0.3〜0.7mmの厚さを維持できるような機械的強度と柔軟性を有するものが好ましい。
【0022】
酸素極室側に配置されるガス拡散体の基材は、バルブメタルであることを要し、そのため、導電性の確保を目的として、電気メッキ、無電解メッキまたは化合物の熱分解による、Ptの被覆を施すことが好ましい。水素極室内に配置するガス拡散体も、Tiを使用する場合は、水素脆化を防止するため、Pt被覆を施すとよい。Ptの被覆量は、0.4〜20mg/cmあれば、十分な効果が得られる。
【0023】
【発明の実施の形態】
本発明の実施の形態を、以下図面を参照して説明する。以下の説明において、上下は、図の上下をいうものとする。
【0024】
図1および図2は、本発明の水電解および燃料電池の可逆セルの実施形態を示している。
【0025】
可逆セルは、複極板(1)/ガス拡散体(2)/MEA(3)/ガス拡散体(2)/複極板(1)からなる構成ユニットを複数組有しており、これら複数組のユニットが、それらの両端側からエンドプレート(5)によって挟み込まれて加圧されることによって得られている。
【0026】
複極板(1)には、流路(4)が形成されている。複数組のユニットを2つに分けるように、クーラント導入板(6)が設けられている。各エンドプレート(5)の内側には、エンドプレート(5)に近い側に絶縁板(7)が、ユニットに近い側に給電板(8)がそれぞれ設けられている。また、クーラント導入板(6)とこの両側にあるユニットとの間には、通電板(9)が配置されており、締付け時に複極板(1)の中央部に配置されるガス拡散体(2)の圧接に影響を与えないようになされている。また、複極板(1)の周縁部には、複極板(1)とこれらの間に挟まれたガス拡散体(2)/MEA (3)/ガス拡散体(2)との空間を外部と遮断するためのガスケット(10)が配置されている。
【0027】
図2は、複極板(1)の流路(4)のうちクーラント用として使用されている流路を示すもので、クーラント導入板(6)が複極板(1)の間に挿入されることにより、複極板(1)の裏側流路(4a)が、そのままクーラント用の流路とされ、複極板(1)と通電板(9)との接電部の真裏をクーラントが通過するようになされている。
【0028】
複極板(1)は、超塑性加工法により成型した厚さ0.2〜3mmの薄板チタンあるいはチタン合金であり、流路(4)となる溝のほかに、ガスケット(11)を固定するための溝等を有している。複極板(1)に設けられる流路となる溝は、深さ0.1〜2mm、幅0.5〜3mm程度のピッチで設けられている。
【0029】
ガス拡散体(2)は、導電性不織布の集合体から構成されており、不織布の繊維の直径が30〜100μmであって、気孔率70〜90%、厚さ0.3〜1.0mm程度とされている。また、個々の繊維の表面に撥水性を持たせるフッ素樹脂が被覆されており、その被覆量は、0.06〜1.2mg/cmの範囲とされている。
【0030】
MEA(3)は、白金族金属触媒の微粉末を固体高分子電解質膜の向き合う両面に、固体高分子電解質およびPTFE(ポリテトラフルオロエチレン)との混合物からなる触媒層として形成させたものである。
【0031】
ガス拡散体(2)とMEA(3)とは、エンドプレート(5)による加圧の前に、加圧接合されている。
【0032】
(実施例)
上記の可逆セルにおいて、複極板(1)/ガス拡散体(2)/MEA(3)/ガス拡散体(2)/複極板(1)の相互接触が均一に行われているかを判断するために、MEAの代わりに厚み200μmの感圧紙(富士フィルム製、超極低圧用、0.2〜0.6MPa)(3)を挿入して、外部から加圧し、加圧力と接触の関係を調べた。本発明の一例として0.5mmチタン合金(Ti−4.5Al−3V−2Fe−2Mo) 薄板に、深さ2.8mm幅3.5mmの凹凸を設けた溝を150mm×167mmの範囲に平行して、超塑性加工で設けた複極板(1)を作製した。この複極板(1)を図3に示すように、厚さ20mmのチタン製エンドプレート(5)を介して加圧し、MEAに相当する感圧紙(3)へのガス拡散体(2)および複極板(1)の接触状況を調べた。
【0033】
比較例として、厚さ20mmのチタン板の表面に図4(a)(b)に示すような、深さ1mm幅2mmの凹凸の溝を100mm×100mmの範囲に平行して、切削機械加工で流路(14)を設けた2枚の複極板(11)で同じく感圧紙(3)を挟み、図5に示すように加圧した。これによりMEAに相当する感圧紙(3)へのガス拡散体(2)および複極板(11)の接触状況を調べた。
【0034】
まず、比較例のものについて、加圧荷重を2トン、4トン、6トンと上げていって、感圧紙(3)に記録された接触圧の痕跡を調査した。この結果、6トンの荷重をかけた時、当たり面の全体において接触が認められた。すなわち、比較例のものでは、6000kg÷100cm=60kg/cmの圧力で締め付ければ、全面接触が得られることが分かった。一方、超塑性加工により凹凸溝を設けた複極板(1)を使用した実施例では、4トンの締め付け荷重の時に全面接触の感圧痕が認められた。すなわち、実施例のものでは、4000kg÷250cm=16kg/cmと約1/4の圧力で締め付ければ、全面接触が得られることが分かった。
【0035】
高分子電解質膜で構成される可逆セルでは、複数の複極板(1)/ガス拡散体(2)/MEA(3)/ガス拡散体(2)/複極板(1)というユニットを外部より加圧して、それぞれの部材(1)(2)(3)の面接触を均一に図るということが行われる。その構成において、多孔質ガス拡散体(2)やMEA(3)といった寸法精度が均一でない部材が存在し、複極板(11)を機械加工で作製された剛体(比較例)とすると、全面接触を得るためには、加圧力を高める必要があることがわかる。一方本発明のように、超塑性加工法により成型した厚さ0.2〜3mmの薄板チタンあるいはチタン合金の複極板(1)を用いると、薄板の弾性効果により、多孔質ガス拡散体(2)やMEA(3)の寸法ズレを複極板(1)が吸収するため、低い圧力で全面接触が得られる。低い圧力で全面接触が得られると、ガス拡散体(2)やMEA(3)に対する機械的ダメージが少なく、長期安定した可逆セルの性能が得られる。
【0036】
【発明の効果】
本発明の水電解および燃料電池の可逆セルによると、複極板が超塑性加工法により成型した厚さ0.2〜3mmの薄板チタンあるいはチタン合金であるので、複極板/ガス拡散体/MEA/ガス拡散体/複極板からなる構成ユニットをエンドプレートによって挟み込んで加圧する際、複極板の弾性効果によって、ガス拡散体やMEAの寸法ずれが吸収され、低い圧力で全面接触が得られる。この結果、ガス拡散体やMEAに対する機械的ダメージが少なくなり、長期安定した可逆セルの性能が得られる。
【図面の簡単な説明】
【図1】本発明による水電解および燃料電池の可逆セルの実施形態を示す垂直断面図である。
【図2】同要部の水平断面図である。
【図3】本発明による水電解および燃料電池の可逆セルの実施例を示す斜視図である。
【図4】水電解および燃料電池の可逆セルの比較例の複極板を示す断面図である。
【図5】比較例の可逆セルを示す斜視図である。
【符号の説明】
(1) 複極板
(2) ガス拡散体
(3) MEA
(4) 流路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is configured to have both functions of a water electrolysis tank for producing hydrogen and oxygen, and a fuel cell for obtaining electric power by electrochemically performing a combustion reaction using hydrogen as fuel and oxygen as an anode active material. Integrated reactor (referred to as “reversible cell” in this specification), in particular, a reversible cell for water electrolysis and a fuel cell using a polymer electrolyte membrane.
[0002]
[Prior art]
Using a polymer electrolyte membrane, a water electrolyzer (PEWE: Proton Exchange membrane type Water Electrolysis, hereinafter referred to as PEWE) for electrolyzing water to produce hydrogen and oxygen, and supplying hydrogen and oxygen in reverse. 2. Description of the Related Art A polymer electrolyte fuel cell (PEFC: Proton Exchange membrane type Fuel Cell, hereinafter referred to as PEFC) for generating power has been conventionally known. Since water electrolysis, which converts electrical energy into chemical energy to obtain hydrogen and oxygen, and a fuel cell, which converts chemical energy into electrical energy to generate electricity, are reversible reactions, they are integrated like a secondary battery. It is possible.
[0003]
Actually, since the two types of modules, PEFC and PEWE, have similar basic structures, research has been conducted on a polymer electrolyte fuel cell-water electrolysis reversible cell integrating these two modules. For a reversible cell using a polymer electrolyte membrane, Sweet et al. Disclose that 15 times of charging / discharging of a ULFC having an electrode area of 40 cm 2 was performed (Intersociality Energy Conversion Conference p. 1.1227). -1.1232, 1993).
[0004]
In addition, Mitssky et al. Of Lawrence Livermore National Laboratory introduced that a reversible cell using a polymer electrolyte membrane was put to practical use in “Portable Fuel Cell International Conference” held in Switzerland in 1999 (F. Millitsky, B. Myers, AH Weisberg, T. M. Molter, and WF Smith, "Reversible (Unitized) PEM Fuel Cell, Internated presentation, Portable Cellphone, USA , June 21-24 (1 99);. Feature Artcle, Fuel Cells Bulletin, No.11 Aug (1999); UCRL-JC-134538). Here, a two-cell stack having an electrode area of 46 cm 2 and a one-cell stack having an electrode area of 93 cm 2 are introduced.
[0005]
In Japan, development of a reversible cell using such a polymer electrolyte membrane has been conducted. For example, Patent Document 1 discloses a catalyst material suitable for a reversible cell, and Patent Document 2 discloses a reversible cell for an automobile. Patent Literature 3 discloses a system for mounting the reversible cells for power load leveling, respectively.
[0006]
The reversible cell is basically a bonded body (MEA: Membrane Electrode Assembly, which is referred to as “MEA” in this specification) in which an electrode catalyst made of a platinum group metal is transferred and bonded to one solid polymer membrane. And two porous gas diffusers and two bipolar plates or end plates are laminated in the order of bipolar plate / gas diffuser / MEA / gas diffuser / dipolar plate. The structure has one or more (usually many) cells of the zero-gap diaphragm chamber type having one oxygen electrode chamber and one hydrogen electrode chamber per cell.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-342965
[Patent Document 2]
JP-A-2002-135911
[Patent Document 3]
JP, 2002-142386, A
[Problems to be solved by the invention]
Some of the present inventors, aiming an increase in the size of the reversible cell, a prototype MEA with an electrode area of 100 cm 2 greater than 93cm 2, which have been published, are intensively developed important technologies in the size .
[0011]
The reversible cell and the PEFC are the same in the basic components, but in order to make the PEFC reversible, the materials of the components must be suitable for water electrolysis, that is, the materials differ. Further, in the case of PEFC, it is necessary to make each component have water repellency in order to quickly discharge water generated by burning hydrogen from the reaction site. In the case of a reversible cell, however, the repellency during fuel cell operation is required. It is required to have both functions of water and hydrophilicity during the operation of water electrolysis in a well-balanced manner.
[0012]
In the case of PEFC, a bipolar plate used for laminating single cells composed of one MEA is composed of a carbon material such as graphite. This is because carbon-based materials have resistance to hydrogen oxidation and oxygen reduction atmospheres. When these materials are used in PEWE, they are exposed to a highly oxidizing environment that generates oxygen, and are consumed as carbon dioxide. Resulting in. For this reason, a titanium material plated with platinum is used for the double electrode plate of PEWE.
[0013]
The multipole plate is provided with grooves serving as flow paths. In the conventional reversible cell, these flow paths have been produced by machining or press molding. Then, a gas diffuser / MEA / gas diffuser is laminated between a bipolar plate having such a large number of grooves, thereby forming a reversible cell. If uniform contact between these laminates is not sufficient, the contact resistance will be high, and as a result, the internal resistance during fuel cell or water electrolysis will be high, and a high efficiency energy converter cannot be obtained. In the case of PEFC, there is a porous body such as a flexible carbon fiber material, and the deviation in dimensional accuracy is absorbed by the flexible carbon fiber material, but in the case of a reversible cell, a carbon-based material cannot be used. Unless the dimensional accuracy of each is improved, there is a problem that uniform mutual contact of the laminates cannot be realized.
[0014]
On the other hand, since the laminate sandwiched between the bipolar plates is a porous body and a polymer film, it is very difficult to make the dimensional accuracy uniform. Therefore, the processing dimensional accuracy and assembly dimensional accuracy required for the bipolar plate become high, and this is a more difficult problem to achieve when the size of the reversible cell is increased.
[0015]
An object of the present invention is to increase the size and performance of a reversible cell, to provide a flexible structure to a bipolar plate, which is an important component, to solve the problem of processing and assembly dimensional accuracy accompanying the increase in size. An object of the present invention is to provide a cost-effective reversible cell of a water electrolysis and fuel cell.
[0016]
[Means for Solving the Problems]
The reversible cell of the water electrolysis and fuel cell according to the present invention has at least one set of constituent units consisting of a bipolar plate / gas diffuser / MEA / gas diffuser / bipolar plate, and this unit is sandwiched between end plates. In the pressurized water electrolysis and fuel cell reversible cells, the bipolar plate is characterized by being a thin titanium plate or a titanium alloy having a thickness of 0.2 to 3 mm formed by a superplastic working method. .
[0017]
A preferred embodiment of the bipolar plate is a valve metal such as titanium, particularly a titanium alloy suitable for superplastic working, for example, a titanium alloy of Ti-4.5Al-3V-2Fe-2Mo. More specifically, Al: 3.0 to 5.0 wt. %, V: 2.1 to 3.7 wt. %, Mo: 0.85 to 3.15 wt. %, O: 0.15 wt. %, And further contains one or more of Fe, Ni, Co and Cr, and 0.85 wt. % ≦ Fe (wt.%) + Ni (wt.%) + Co (wt.%) + 0.9 × Cr (wt.%) ≦ 3.15 wt.% % And 7 wt. % ≦ 2 × Fe (wt.%) + 2 × Ni (wt.%) + 2 × Co (wt.%) + 1.8 × Cr (wt.%) + 1.5 × V (wt.%) + Mo (wt.%) %) ≦ 13 wt. %, And the balance is a titanium alloy consisting of Ti and unavoidable impurities, or Al: 3.0 to 5.0 wt. %, V: 2.1 to 3.7 wt. %, Mo: 0.85 to 3.15 wt. %, O: 0.15 wt. %, And further contains one or more of Fe, Ni, Co and Cr, and 0.85 wt. % ≦ Fe (wt.%) + Ni (wt.%) + Co (wt.%) + 0.9 × Cr (wt.%) ≦ 3.15 wt.% % And 7 wt. % ≦ 2 × Fe (wt.%) + 2 × Ni (wt.%) + 2 × Co (wt.%) + 1.8 × Cr (wt.%) + 1.5 × V (wt.%) + Mo (wt.%) %) ≦ 13 wt. %, The balance being Ti and unavoidable impurities, and a titanium alloy having an α crystal grain size of 5 μm or less is preferable. In this case, it is desirable to apply platinum plating with a thickness of 0.3 μm or more to prevent insulation by the anodic oxide film (titanium oxide).
[0018]
Superplasticity refers to the property of being continuously deformed when a force exceeding a certain limit is applied and not returning to its original state. Superplastic working is a processing method utilizing such properties. Titanium and titanium alloys exhibit superplasticity at high temperatures, making use of this property to apply a technology to form difficult molded products that have complex shapes and high strength, and have problems with productivity and economics. It is called processing or superplastic forming. It is desirable that grooves serving as flow paths provided in the bipolar plate are provided at a pitch of about 0.1 to 2 mm in depth and about 0.5 to 3 mm in width, and the bipolar plate is sandwiched between these. It is necessary to have a complicated special shape for providing a function required for the reversible cell, such as a groove for fixing a gasket for shielding the space of the gas diffuser / MEA / gas diffuser from the outside. Yes, superplastic working is suitable as a technique for forming such a complicated shape.
[0019]
In the present invention, the reason why the thickness of the bipolar plate subjected to superplastic working is limited to 0.2 to 3 mm is that, when the thickness is 0.2 mm or less, a groove provided in advance is deformed when pressed due to insufficient strength. This is because if it is 3 mm or more, it does not have sufficient flexibility to absorb the deviation of the dimensional accuracy of the present invention.
[0020]
The MEA constituting the laminate of the present invention is suitable for hydrogen oxidation and hydrogen generation, and oxygen generation and oxygen reduction, such as platinum group metals such as Pt, Ir or Ru, or oxides / hydroxides thereof. A fine powder of an active metal catalyst is formed as a catalyst layer composed of a mixture of a solid polymer electrolyte and PTFE (polytetrafluoroethylene) on both opposite surfaces of a solid polymer electrolyte membrane. As the solid polymer electrolyte, a commercially available cation exchange membrane of perfluorosulfonic acid type, for example, Nafion, Aciplex, Flemion or the like is usually used.
[0021]
In the present invention, as the material of the base material of the gas diffuser, a valve metal is suitable for the material disposed on the oxygen electrode chamber side, and in particular, inexpensive Ti is suitably used. In the case of the arrangement on the hydrogen electrode chamber side, valve metal is of course suitable, but other than that, stainless steel or carbon can be used. The aggregate of the fibers constituting the gas diffuser has a fiber diameter of 30 to 100 μm from the viewpoints of gas and water flow, pressure loss, permeability of a liquid used for applying Pt and PTFE, and the like. And a non-woven fabric having a porosity of 70 to 90% and a thickness of about 0.3 to 1.0 mm is preferable. The non-woven fabric has a mechanical strength capable of maintaining a thickness of 0.3 to 0.7 mm even under a stress of 20 to 150 kgf / cm 2 applied when placed in a cell or pre-compressed. And those having flexibility.
[0022]
The base material of the gas diffuser disposed on the oxygen electrode chamber side needs to be a valve metal, and therefore, for the purpose of securing conductivity, electroplating, electroless plating, or thermal decomposition of a compound, Preferably, a coating is applied. When Ti is also used for the gas diffuser disposed in the hydrogen electrode chamber, Pt coating may be applied to prevent hydrogen embrittlement. If the coating amount of Pt is 0.4 to 20 mg / cm 2 , a sufficient effect can be obtained.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In the following description, the upper and lower parts refer to the upper and lower parts of the figure.
[0024]
FIG. 1 and FIG. 2 show an embodiment of the reversible cell of the water electrolysis and fuel cell of the present invention.
[0025]
The reversible cell has a plurality of component units each composed of a bipolar plate (1) / a gas diffuser (2) / MEA (3) / a gas diffuser (2) / a bipolar plate (1). A set of units is obtained by being sandwiched by end plates (5) from both ends thereof and pressed.
[0026]
A flow path (4) is formed in the bipolar plate (1). A coolant introducing plate (6) is provided so as to divide the plurality of units into two. Inside each end plate (5), an insulating plate (7) is provided near the end plate (5), and a power supply plate (8) is provided near the unit. An electric conduction plate (9) is arranged between the coolant introduction plate (6) and the units on both sides thereof, and a gas diffuser (9) arranged at the center of the bipolar plate (1) at the time of tightening. The pressure welding of 2) is not affected. Further, a space between the bipolar plate (1) and the gas diffuser (2) / MEA (3) / gas diffuser (2) sandwiched between the bipolar plate (1) is provided around the periphery of the bipolar plate (1). A gasket (10) for shielding from the outside is arranged.
[0027]
FIG. 2 shows a flow path used for coolant among the flow paths (4) of the bipolar plate (1), in which a coolant introduction plate (6) is inserted between the bipolar plates (1). Thus, the flow path (4a) on the back side of the bipolar plate (1) is directly used as a flow path for the coolant, and the coolant flows directly behind the contact portion between the bipolar plate (1) and the conductive plate (9). It is made to pass.
[0028]
The bipolar plate (1) is a thin titanium or titanium alloy having a thickness of 0.2 to 3 mm formed by a superplastic working method, and fixes a gasket (11) in addition to a groove serving as a flow path (4). And a groove for the same. The grooves serving as flow paths provided in the bipolar plate (1) are provided at a pitch of about 0.1 to 2 mm in depth and about 0.5 to 3 mm in width.
[0029]
The gas diffuser (2) is composed of an aggregate of conductive nonwoven fabric, the fiber diameter of the nonwoven fabric is 30 to 100 μm, the porosity is 70 to 90%, and the thickness is about 0.3 to 1.0 mm. It has been. The surface of each fiber is coated with a fluororesin that imparts water repellency, and the coating amount is in the range of 0.06 to 1.2 mg / cm 2 .
[0030]
The MEA (3) is obtained by forming a fine powder of a platinum group metal catalyst on both opposite surfaces of a solid polymer electrolyte membrane as a catalyst layer composed of a mixture of a solid polymer electrolyte and PTFE (polytetrafluoroethylene). .
[0031]
The gas diffuser (2) and the MEA (3) are pressure-bonded before pressure by the end plate (5).
[0032]
(Example)
In the above reversible cell, it is determined whether the mutual contact of the bipolar plate (1) / gas diffuser (2) / MEA (3) / gas diffuser (2) / bipolar plate (1) is uniform. In order to do this, a pressure sensitive paper with a thickness of 200 μm (manufactured by Fuji Film, for ultra-low pressure, 0.2-0.6 MPa) (3) was inserted instead of the MEA, and pressure was applied from the outside, and the relationship between the pressing force and contact Was examined. As an example of the present invention, a groove provided with irregularities having a depth of 2.8 mm and a width of 3.5 mm is formed in a thin plate of 0.5 mm titanium alloy (Ti-4.5Al-3V-2Fe-2Mo) in a range of 150 mm × 167 mm. Thus, a bipolar plate (1) provided by superplastic working was produced. As shown in FIG. 3, the bipolar plate (1) is pressurized through a titanium end plate (5) having a thickness of 20 mm, and the gas diffuser (2) and pressure-sensitive paper (3) corresponding to the MEA are spread on the pressure-sensitive paper (3). The contact state of the bipolar plate (1) was examined.
[0033]
As a comparative example, as shown in FIGS. 4 (a) and 4 (b), uneven grooves having a depth of 1 mm and a width of 2 mm were formed on a surface of a titanium plate having a thickness of 20 mm in parallel with a range of 100 mm × 100 mm by cutting machining. Similarly, pressure-sensitive paper (3) was sandwiched between two bipolar plates (11) provided with flow paths (14), and pressure was applied as shown in FIG. The contact state of the gas diffuser (2) and the bipolar plate (11) with the pressure-sensitive paper (3) corresponding to the MEA was examined.
[0034]
First, for the comparative example, the pressure load was increased to 2 tons, 4 tons, and 6 tons, and traces of the contact pressure recorded on the pressure-sensitive paper (3) were examined. As a result, when a load of 6 tons was applied, contact was recognized on the entire contact surface. That is, in the case of the comparative example, it was found that the entire surface could be contacted by tightening at a pressure of 6000 kg ÷ 100 cm 2 = 60 kg / cm 2 . On the other hand, in the example using the bipolar plate (1) provided with the concave and convex grooves by the superplastic working, a pressure-sensitive impression of the entire surface contact was observed at a tightening load of 4 tons. That is, in the case of the example, it was found that the entire surface could be contacted by tightening at 4000 kg / 250 cm 2 = 16 kg / cm 2 and about 1/4 pressure.
[0035]
In a reversible cell composed of a polymer electrolyte membrane, a plurality of bipolar plates (1) / gas diffusers (2) / MEA (3) / gas diffusers (2) / multipolar plates (1) are externally connected. Pressing is further performed to achieve uniform contact between the members (1), (2), and (3). In such a configuration, there are non-uniform dimensional accuracy members such as the porous gas diffuser (2) and the MEA (3), and if the bipolar plate (11) is a rigid body manufactured by machining (comparative example), It can be seen that it is necessary to increase the pressure in order to obtain contact. On the other hand, when a thin plate of titanium or a titanium alloy having a thickness of 0.2 to 3 mm (1) formed by superplastic working is used as in the present invention, the porous gas diffuser ( Since the bipolar plate (1) absorbs the dimensional deviation of the MEA (3) and the MEA (3), the entire surface can be contacted with a low pressure. When the entire surface can be contacted at a low pressure, mechanical damage to the gas diffuser (2) and the MEA (3) is small, and a long-term stable reversible cell performance can be obtained.
[0036]
【The invention's effect】
According to the reversible cell of the water electrolysis and fuel cell of the present invention, since the bipolar plate is a thin titanium or titanium alloy having a thickness of 0.2 to 3 mm formed by a superplastic working method, the bipolar plate / gas diffuser / When the component unit consisting of MEA / gas diffuser / double electrode is sandwiched between the end plates and pressurized, the dimensional deviation of the gas diffuser and MEA is absorbed by the elastic effect of the double electrode, and the whole surface can be contacted at low pressure. Can be As a result, mechanical damage to the gas diffuser and the MEA is reduced, and long-term stable performance of the reversible cell is obtained.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view showing an embodiment of a reversible cell of a water electrolysis and fuel cell according to the present invention.
FIG. 2 is a horizontal sectional view of the main part.
FIG. 3 is a perspective view showing an embodiment of a water electrolysis and fuel cell reversible cell according to the present invention.
FIG. 4 is a cross-sectional view showing a bipolar plate of a comparative example of a reversible cell for water electrolysis and a fuel cell.
FIG. 5 is a perspective view showing a reversible cell of a comparative example.
[Explanation of symbols]
(1) Bipolar plate (2) Gas diffuser (3) MEA
(4) Channel

Claims (4)

複極板/ガス拡散体/MEA/ガス拡散体/複極板からなる構成ユニットを少なくとも1組有し、このユニットがエンドプレートによって挟み込まれて加圧されている水電解および燃料電池の可逆セルにおいて、複極板は、超塑性加工法により成型した厚さ0.2〜3mmの薄板チタンあるいはチタン合金であることを特徴とする水電解および燃料電池の可逆セル。A reversible cell for water electrolysis and a fuel cell having at least one set of constituent units consisting of a bipolar plate / gas diffuser / MEA / gas diffuser / bipolar plate, wherein the unit is sandwiched by end plates and pressurized. In the reversible cell for water electrolysis and fuel cell, the bipolar plate is a thin titanium sheet or a titanium alloy having a thickness of 0.2 to 3 mm formed by a superplastic working method. 複極板に設けられる流路となる溝は、深さ0.1〜2mm、幅0.5〜3mmで等間隔に設けられている請求項1の水電解および燃料電池の可逆セル。2. The reversible cell for a water electrolysis and fuel cell according to claim 1, wherein the grooves serving as flow paths provided in the bipolar plate are provided at equal intervals with a depth of 0.1 to 2 mm and a width of 0.5 to 3 mm. ガス拡散体とMEAとが加圧接合されている請求項1または2の水電解および燃料電池の可逆セル。The reversible cell for water electrolysis and fuel cell according to claim 1 or 2, wherein the gas diffuser and the MEA are pressure-bonded. ガス拡散体は、導電性物質の繊維の集合体であって、個々の繊維の表面に撥水性を持たせるフッ素樹脂が被覆されている請求項1または2の水電解および燃料電池の可逆セル。The reversible cell for water electrolysis and fuel cells according to claim 1 or 2, wherein the gas diffuser is an aggregate of fibers of a conductive substance, and the surface of each fiber is coated with a fluororesin having water repellency.
JP2003045462A 2003-02-24 2003-02-24 Reversible cell for hydro electrolysis and fuel cell Pending JP2004259457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045462A JP2004259457A (en) 2003-02-24 2003-02-24 Reversible cell for hydro electrolysis and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045462A JP2004259457A (en) 2003-02-24 2003-02-24 Reversible cell for hydro electrolysis and fuel cell

Publications (1)

Publication Number Publication Date
JP2004259457A true JP2004259457A (en) 2004-09-16

Family

ID=33112254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045462A Pending JP2004259457A (en) 2003-02-24 2003-02-24 Reversible cell for hydro electrolysis and fuel cell

Country Status (1)

Country Link
JP (1) JP2004259457A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300166A (en) * 2014-10-22 2015-01-21 苏州大学 Vehicle-mounted hydrogen fuel cell electrolytic generation tank
WO2018084175A1 (en) * 2016-11-01 2018-05-11 国立研究開発法人宇宙航空研究開発機構 Cell for water electrolysis/fuel cell power generation and cell stack body having a plurality of same cells stacked
JP2018078098A (en) * 2016-11-01 2018-05-17 国立研究開発法人宇宙航空研究開発機構 Water electrolysis/fuel battery power generation cell, and cell laminate arranged by laminating such power generation cells
WO2021187228A1 (en) 2020-03-16 2021-09-23 三菱マテリアル株式会社 Sponge titanium sheet material, and water electrolysis electrode and water electrolysis apparatus
KR20220144159A (en) * 2021-04-19 2022-10-26 단국대학교 천안캠퍼스 산학협력단 Method for preparing membrane electrode assembly for water electrolysis using nanodispersed ionomer binder and the membrane electrode assembly prepared therefrom

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252682A (en) * 1994-03-14 1995-10-03 Agency Of Ind Science & Technol Water electrolyzing cell using high-polymer electrolyte membrane
JPH08260179A (en) * 1995-03-23 1996-10-08 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Perforated spacer of water electrolyzing cell or fuel cell
JPH08260178A (en) * 1995-03-23 1996-10-08 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Water electrolytic cell using solid high molecular electrolyte membrane
JP2002135911A (en) * 2000-10-27 2002-05-10 Shinko Pantec Co Ltd Vehicle equipped with reversible fuel cell, and system and method for its fuel replenishment
JP2003017070A (en) * 2001-07-03 2003-01-17 Matsushita Electric Ind Co Ltd Electrode for fuel cell and its manufacturing method
JP2004134134A (en) * 2002-10-08 2004-04-30 National Institute Of Advanced Industrial & Technology Porous gas diffusion body, and reversible cell using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252682A (en) * 1994-03-14 1995-10-03 Agency Of Ind Science & Technol Water electrolyzing cell using high-polymer electrolyte membrane
JPH08260179A (en) * 1995-03-23 1996-10-08 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Perforated spacer of water electrolyzing cell or fuel cell
JPH08260178A (en) * 1995-03-23 1996-10-08 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Water electrolytic cell using solid high molecular electrolyte membrane
JP2002135911A (en) * 2000-10-27 2002-05-10 Shinko Pantec Co Ltd Vehicle equipped with reversible fuel cell, and system and method for its fuel replenishment
JP2003017070A (en) * 2001-07-03 2003-01-17 Matsushita Electric Ind Co Ltd Electrode for fuel cell and its manufacturing method
JP2004134134A (en) * 2002-10-08 2004-04-30 National Institute Of Advanced Industrial & Technology Porous gas diffusion body, and reversible cell using it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300166A (en) * 2014-10-22 2015-01-21 苏州大学 Vehicle-mounted hydrogen fuel cell electrolytic generation tank
WO2018084175A1 (en) * 2016-11-01 2018-05-11 国立研究開発法人宇宙航空研究開発機構 Cell for water electrolysis/fuel cell power generation and cell stack body having a plurality of same cells stacked
JP2018078098A (en) * 2016-11-01 2018-05-17 国立研究開発法人宇宙航空研究開発機構 Water electrolysis/fuel battery power generation cell, and cell laminate arranged by laminating such power generation cells
US11699801B2 (en) 2016-11-01 2023-07-11 Japan Aerospace Exploration Agency Cell for water electrolysis/fuel cell power generation and cell stack body having a plurality of same cells stacked
WO2021187228A1 (en) 2020-03-16 2021-09-23 三菱マテリアル株式会社 Sponge titanium sheet material, and water electrolysis electrode and water electrolysis apparatus
KR20220144159A (en) * 2021-04-19 2022-10-26 단국대학교 천안캠퍼스 산학협력단 Method for preparing membrane electrode assembly for water electrolysis using nanodispersed ionomer binder and the membrane electrode assembly prepared therefrom
KR102550369B1 (en) * 2021-04-19 2023-07-03 단국대학교 천안캠퍼스 산학협력단 Method for preparing membrane electrode assembly for water electrolysis using nanodispersed ionomer binder and the membrane electrode assembly prepared therefrom

Similar Documents

Publication Publication Date Title
JP5180473B2 (en) Membrane electrode assembly for water electrolysis
AU2020200913A1 (en) Flow fields for use with an electrochemical cell
EP2612390B1 (en) Assembly for reversible fuel cell
KR20100114887A (en) Modular unit fuel cell assembly
CN112838232A (en) Full-through-hole metal fiber sintered body fuel cell bipolar plate and fuel cell stack
US20150333340A1 (en) Flow fields for use with an electrochemical cell
CN211088400U (en) Composite structure of diffusion layer of separator flow channel and fuel cell using same
US20080138695A1 (en) Fuel Cell
JP2009503254A (en) Electrochemical cell with a flow field member comprising a plurality of compressible layers
JP2004103296A (en) Solid polymer type fuel cell
KR101410477B1 (en) Bipolar plate for fuel cell and method for manufacturing the same
JP5230174B2 (en) Fuel cell
JP2003510767A (en) Fuel cell having internal reformer and method of operating the same
JP2004259457A (en) Reversible cell for hydro electrolysis and fuel cell
JP2010216007A (en) Water electrolyzer
KR101145455B1 (en) Fuel cell stack having protrude type current collector
KR20090068262A (en) Fuel cell
JP2006049073A (en) Solid oxide fuel cell
JP2003308869A (en) Fuel cell
JP5136051B2 (en) Fuel cell
Yi et al. Performance Improvement of Wave‐Like PEMFC Stack with Compound Membrane Electrode Assembly
CN105428671A (en) High-power-density PEMFC (proton exchange membrane fuel cell) pile
RU70051U1 (en) FUEL CELL BATTERY FOR A STAND-ALONE POWER SUPPLY
JP5271067B2 (en) Stacked fuel cell
JP5275255B2 (en) Bipolar unit for a fuel cell provided with a porous current collector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028