WO2018084175A1 - Cell for water electrolysis/fuel cell power generation and cell stack body having a plurality of same cells stacked - Google Patents
Cell for water electrolysis/fuel cell power generation and cell stack body having a plurality of same cells stacked Download PDFInfo
- Publication number
- WO2018084175A1 WO2018084175A1 PCT/JP2017/039530 JP2017039530W WO2018084175A1 WO 2018084175 A1 WO2018084175 A1 WO 2018084175A1 JP 2017039530 W JP2017039530 W JP 2017039530W WO 2018084175 A1 WO2018084175 A1 WO 2018084175A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxygen
- water
- hydrogen
- side electrode
- electrode layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0656—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a water electrolysis / fuel cell power generation cell capable of reversibly switching between water electrolysis and fuel cell power generation in a single cell, and a cell laminate in which a plurality of the cells are stacked.
- This water electrolysis cell is an electrode composed of a proton-conductive porous electrolyte and a water-repellent material (hereinafter also referred to as “water-repellent electrode”), and is bonded to both surfaces of the porous electrolyte. Electrodes (cathode and anode) and means for supplying water to the porous electrolyte, and oxygen gas and hydrogen gas can be generated in the gas phase.
- hydrous titanium oxide nanoparticles are used as a porous electrolyte material.
- the water-repellent electrode is configured by supporting catalyst particles, platinum-supporting carbon is used as the catalyst, and Teflon (registered trademark) -modified porous carbon is used as the water-repellent conductive carrier.
- the water repellent electrode (anode and cathode) is composed of a gas diffusion electrode layer composed of a mixture of a semi-water repellent material and a catalyst on the joint surface side with the porous electrolyte, and an electrically conductive water repellent material on the outer side. It has a two-layer structure composed of a current collector layer.
- the water electrolysis cell proposed in Patent Document 2 since hydrogen gas and oxygen gas are generated in the gas phase, the conventional structure of generating hydrogen gas and oxygen gas in the liquid phase is known. Compared with the water electrolysis cell, energy required for generating bubbles is unnecessary, and the efficiency is improved accordingly. Moreover, the water supplied to the porous electrolyte can be pressurized by using a water-repellent material that prevents only water from entering and passes only gas as the electrode material. This makes it possible to easily generate pressurized hydrogen or pressurized oxygen. If this characteristic is used, for example, when high-pressure hydrogen is supplied to a fuel cell vehicle, a hydrogen vehicle, etc., it is possible to greatly reduce the energy that needs to be increased.
- Patent Document 1 proposes a reversible cell having means for supplying / drying water, but it takes a considerable time to switch the operation mode, and the operation is immediately switched from one mode to the other. Can't start. Moreover, although research regarding the optimization of the member which comprises a reversible cell is also performed (refer patent document 3), it has not reached practical use.
- the present invention has been made under the above circumstances, and is easy to switch between the water electrolysis mode and the fuel cell power generation mode, and immediately after switching from one to the other, It is an object of the present invention to provide a water electrolysis / fuel cell power generation reversible cell that can be operated in a mode.
- the present invention provides the following cells or cell laminates (1) to (8).
- a water electrolysis / fuel cell power generation cell that performs fuel cell power generation at the oxygen side electrode
- a second gas separator that allows hydrogen-containing gas separated from liquid water to pass therethrough is laminated between the oxygen side electrode layer and the electrolyte layer, and / or A cell stack portion in which a catalyst layer is provided between the electrolyte layer and the hydrogen-side electrode layer;
- a plurality of slits are formed in the oxygen side electrode layer, A plurality of grooves communicating with the water flow path are formed on one surface of the first gas separator, The first gas separator and the oxygen side electrode are stacked, the plurality of grooves are aligned with the plurality of slits of the oxygen side electrode, and water from the water channel is electrolyzed when water is electrolyzed.
- a ladder-like member is formed between the plurality of slits of the oxygen-side electrode layer, At least one oxygen-side vent hole penetrating to the other surface and communicating with the oxygen-containing gas flow path is formed in the ladder-like portion other than the plurality of grooves of the first gas separator, The oxygen-side vent is aligned with the ladder-like member of the oxygen-side electrode layer, and the oxygen-containing gas that has passed through the oxygen-side electrode layer during the electrolysis of water is circulated through the oxygen-containing gas flow path (1 ) Or (2) water electrolysis / fuel cell power generation cell.
- the water electrolysis / fuel cell power generation cell according to any one of (1) to (5), wherein the electrolyte is a proton (H + ) conductive porous electrolyte and / or a dense electrolyte.
- Cell (8) A cell stack comprising two or more cells according to any one of (1) to (7) stacked in the stacking direction, wherein at least some of the water flow paths in each cell are mutually connected.
- At least part of the oxygen flow path in each cell is connected to each other, at least part of the hydrogen flow path in each cell is connected to each other, and at least part of the oxygen-side electrode layer in each cell Are electrically connected to each other, and at least some of the hydrogen-side electrode layers in each of the cells are electrically connected to each other.
- the water electrolysis / fuel cell can be switched between the water electrolysis mode and the fuel cell power generation mode, and can be immediately operated in the mode after switching when switching from one to the other.
- a power generation reversible cell can be provided.
- FIG. 3 is a perspective view showing a cell stack according to the first embodiment.
- FIG. 2 is an exploded view showing components constituting the cell stack shown in FIG. 1 separated from each other in the direction of an arrow. It is a top view of a gas separator. It is the perspective view which showed only the groove
- FIG. 4 is a cross-sectional view taken along a line AA in FIG. 3 perpendicular to the paper surface. It is the top view which showed the positional relationship of the gas separator and gas diffusion electrode layer when a cell was assembled. It is the enlarged view which showed typically the cross section which cut one cell of the cell stack of the state completed by combining each component shown in FIG.
- FIG. 9 is an exploded view showing components constituting the cell stack shown in FIG. 8 separated from each other in the direction of the arrow. It is a top view of a solid electrolyte holding part. It is a top view of the gas diffusion and separator on the oxygen side.
- FIG. 10 is an enlarged view schematically showing a cross section of one cell of the cell stack in a state completed by combining the components shown in FIG. 9, taken along line BB in FIG. 10. It is sectional drawing which shows the state which transcribe
- FIG. 1 is a perspective view showing a cell stack 5 according to the first embodiment, and FIG. 2 shows the components constituting the cell stack 5 shown in FIG. It is an exploded view.
- the cell stack 5 shown in FIG. 1 is assembled by bringing the components shown in FIG. 2 into close contact with each other and fastening the eight bolts 50 1 to 50 8 and the corresponding nuts.
- the cell stack 5 in FIG. 1 is a stack of two water electrolysis / fuel cell power generation reversible cells (hereinafter sometimes simply referred to as “cells”) in the direction indicated by the arrow 6.
- the second cell is composed of end plates 33 and laminate part 21 2-27 2 shown in FIG.
- the intermediate plate 32 is shared by both the first and second cells.
- parts with the same reference numerals that differ only in the subscript are parts corresponding to each other and share the same function. Therefore, only the first cell will be described below, and the subscript will also be described. Omitted unless necessary.
- the component indicated by reference numeral 24 is an electrolyte layer made of a solid electrolyte.
- the left side of the electrolyte layer 24 is arranged on the oxygen side
- the right side of the electrolyte layer 24 is arranged on the hydrogen side.
- the arrangement of the oxygen side and the hydrogen side may be reversed.
- the gasket 23, the gas separator 22, the gasket 21, and the intermediate plate 32 are disposed on the left side (oxygen side) of the electrolyte layer 24.
- a gasket 25, a gas separator 26, a gasket 27, and an end plate 31 are arranged on the right side (hydrogen side) of the electrolyte layer 24.
- a square gas diffusion electrode layer 35 is fitted in the central portion of the oxygen-side gasket 23.
- the gas diffusion electrode layer 35 becomes an oxygen side electrode layer.
- the gas diffusion electrode layer 35 is provided with a plurality of parallel slits 45 (described later).
- a rectangular gas diffusion electrode layer 36 without a slit is fitted in the center of the hydrogen-side gasket 25.
- the gas diffusion electrode layer 36 becomes a hydrogen side electrode.
- FIG. 3 is a plan view with the right side of the gas separator 22 (the side not visible in FIG. 2) facing up. As shown in FIG. 3, six parallel grooves 60 1 to 60 6 dug in the thickness direction (direction perpendicular to the paper surface of FIG. 3) are formed in the central portion of the gas separator 22. As a result, elongated plate-like portions 61 1 to 61 5 are formed between the grooves.
- FIG. 4 is a perspective view showing only the groove 60 and the plate-like portion 61 shown in FIG. As shown in FIG. 4, the plate-like portions 61 1 to 61 5 and parallel opposite edges and which, vent holes 62 1-62 7 is provided. Each of the vent holes 62 1 to 62 7 passes through the gas separator 22.
- FIG. 5 is a cross-sectional view taken along a line AA in FIG. 3 in a direction perpendicular to the paper surface.
- a water flow path 63 is formed in a tunnel shape inside the gas separator 22.
- One of the water channels 63 is connected to the water channels 51 and 52 shown in FIG. 1, and the other is connected to the grooves 60 1 to 60 6 .
- the water flow paths 51 and 52 shown in FIG. 1 extend in parallel with the arrow 6, the water flow path 63 formed inside the gas separator 22 has a direction perpendicular to the arrow 6, that is, a direction perpendicular to the cell stacking direction. It extends to.
- a plurality of cells can be stacked in a compact manner.
- FIG. 6 is a plan view showing the positional relationship between the gas separator 22 and the gas diffusion electrode layer 35 when the cell is assembled. Actually, as shown in FIG. 2, the gas diffusion electrode layer 35 is fitted into the gasket 23. By assembling the entire cell including the gasket 23, the gas separator 22 and the gas diffusion electrode layer 35 are shown in FIG. Positional relationship.
- the slits 45 1 to 45 6 provided in the gas diffusion electrode layer 35 are aligned with the corresponding grooves 60 1 to 60 6 provided in the gas separator 22.
- Ladder member 46 1-46 7 between the slit and the slit of the gas diffusion electrode layer 35 is aligned with the corresponding plate-shaped portions 61 1 to 61 5 and parallel opposite edges and these gas separator 22, the plate The portions 61 1 to 61 5 and the vent holes 62 1 to 62 7 provided at the edges on both sides are closed.
- a plurality of grooves are also formed on the left surface of the gas separator 26, but this is not essential as in the case of the gas separator 22.
- Carbon paper (not shown) is fitted in the center of the gaskets 21 and 27 shown in FIG.
- the carbon paper fitted into the gasket 27 diffuses hydrogen gas passing therethrough and communicates with the hydrogen gas flow path 65 provided on the left surface of the end plate 31.
- the hydrogen gas flow path 65 is connected to a flow path 66 provided on the lower side, and communicates with the hydrogen gas flow path 54 shown in FIG.
- the gas diffusion layer fitted in the gasket 21 diffuses oxygen gas passing therethrough, and communicates with oxygen gas passages provided on the right side of the intermediate plate 32 (side not visible in FIG. 2).
- These oxygen gas flow paths are connected to a flow path 68 provided on the upper side thereof, and communicate with the oxygen gas flow path 53 shown in FIG.
- FIG. 7 is an enlarged view schematically showing a cross section of one cell of the cell stack 5 in a state completed by combining the components shown in FIG. FIG.
- the above-mentioned carbon paper is omitted because it is not an essential component.
- the electrolyte layer 24 is in the center, with the oxygen side above it and the hydrogen side below it.
- a proton (H + ) conductive porous electrolyte can be used as the solid electrolyte layer 24 .
- inorganic ceramics for example, hydrous titanium oxide nanoparticles
- Patent Document 2 As another example of the solid electrolyte constituting the electrolyte layer 24, a proton conductive Nafion (registered trademark) which is a dense electrolyte can be used.
- Teflon (registered trademark) modified porous carbon disclosed in Patent Document 2 is preferably used. be able to. By using this material, oxygen gas and hydrogen gas can pass through the inside. Further, the gas diffusion electrode layer 35 and the gas diffusion electrode layer 36 are subjected to water repellency treatment as a whole and have strong water repellency. As a result, water can be prevented from entering the gas diffusion electrode layer 35 and the gas diffusion electrode layer 36.
- Catalyst layers 35 1 and 36 1 are formed on the surfaces of the gas diffusion electrode layer 35 and the gas diffusion electrode layer 36 on the side to be joined to the electrolyte layer 24, respectively.
- the catalyst material platinum-supported carbon disclosed in Patent Document 2 can be suitably used. It is sufficient that the catalyst has several atomic layers.
- a method of spraying the catalyst material by spraying can be applied.
- the catalyst layers are formed on the oxygen-side gas diffusion electrode layer 35 and the hydrogen-side gas diffusion electrode layer 36, but a catalyst layer may be formed on the surface of the electrolyte layer 24.
- the hydrogen gas generated at the interface (catalyst layer) between the gas diffusion electrode layer 36 and the electrolyte layer 24 passes through the inside of the planar gas diffusion electrode layer 36 while being diffused, and enters the vent hole 64 of the gas separator 26.
- the gas flow path 65 and the flow path 66 provided in the end plate 31 are passed through the hydrogen gas flow path 54 shown in FIG. Is discharged.
- the gas diffusion electrode layers 35 and 36 have strong water repellency. Thereby, water supplied from the outside to the electrolyte layer 24 through the water flow path 63, the grooves 60 1 to 60 6 and the slits 45 1 to 45 6 does not enter the gas diffusion electrode layers 35 and 36. Therefore, the path of oxygen gas and hydrogen gas and the path of water are completely separated, and they do not mix.
- water is directly supplied to the electrolyte layer 24 made of a solid electrolyte in the water electrolysis mode. The supplied water is blocked by the water-repellent gas diffusion electrode layers 35 and 36 and does not enter the gas diffusion electrode layers 35 and 36 or the gas separators 22 and 26. That is, the water path, the oxygen gas path, and the hydrogen gas path are completely independent and separated from each other.
- the flow until oxygen gas and hydrogen gas supplied from the outside reaches the electrolyte layer 24 and the flow of water generated in the electrolyte layer 24 are opposite to those in the water electrolysis mode.
- the gas diffusion electrode layer 35 and the gas diffusion electrode layer 36 have strong water repellency, the supplied oxygen gas and hydrogen gas can be pressurized.
- pressurizing oxygen gas and hydrogen gas water generated in the electrolyte layer 24 is urged toward the slits 45 1 to 45 6 and is smoothly discharged.
- the cell stack 5 of the present embodiment does not cause water clogging even when the water electrolysis mode is switched to the fuel cell power generation mode, and stably in the fuel cell power generation mode immediately after the switching. Driving is possible. Further, even when the fuel cell power generation mode is switched to the water electrolysis mode, the operation in the water electrolysis mode can be performed immediately after the switching. In particular, in the switching between the fuel cell power generation mode and the water electrolysis mode, the process of drying / supplying the water required in the conventional cell is not required, so that it can be used as a reversible cell that can be switched seamlessly. .
- the supply and discharge of water are performed in the first direction substantially perpendicular to the stacking direction, and the supply and discharge of oxygen gas and hydrogen gas are performed in the second and substantially perpendicular directions to the stacking direction, respectively.
- the third direction by stacking a plurality of cells, the first cell and the second cell, a compact dimension in the stacking direction can be realized, and the water electrolysis cell and the fuel cell power generation cell Ability can be improved.
- FIG. 8 is a perspective view showing the cell stack 70 according to the second embodiment of the present invention
- FIG. 9 is a diagram showing the components constituting the cell stack 70 shown in FIG. It is the exploded view shown.
- the cell stack 70 shown in FIG. 8 is assembled by bringing the components shown in FIG. 9 into close contact with each other and fastening bolts and nuts (not shown).
- the cell stack 70 of the second embodiment shown in FIG. 8 is composed of one water electrolysis / fuel cell power generation reversible cell.
- any number of cells can be stacked in the direction indicated by the arrow 6 as in the cell stack 5 of the first embodiment.
- the term “cell stack (cell stack)” is also used in this embodiment for convenience.
- a component denoted by reference numeral 86 disposed in the center between the two end plates 80 and 92 is a solid electrolyte holding portion, and the left side of the drawing as viewed from the solid electrolyte holding portion 86 is oxygen.
- the right side and the right side are arranged on the hydrogen side.
- the arrangement of the oxygen side and the hydrogen side may be reversed.
- various gaskets may be used depending on the situation, but the illustration is omitted here for the sake of simplicity.
- the member 82 is an oxygen side gas diffusion and separator
- the member 90 is a hydrogen side gas diffusion and separator.
- FIG. 10 is a plan view of the solid electrolyte holding portion 86.
- the central portion of the solid electrolyte retention portion 86, central opening 86 1 is formed.
- the central opening 86 1 is described solid electrolyte 95 (Fig. 12) is fitted.
- a proton (H + ) conductive porous electrolyte or a proton conductive Nafion (registered trademark) which is a dense electrolyte can be used as the first embodiment.
- it may be a solid electrolyte containing both a porous electrolyte and a dense electrolyte.
- opening 86 2 As shown in FIG. 10, on the central opening 86 1 of the solid electrolyte retention portion 86 opening 86 2 is provided.
- the number of water passage 86 4 is formed between the central opening 86 1 and the opening portion 86 2, and connects between the central opening 86 1 and the opening portion 86 2.
- a large number of water passage 86 5 is formed between the central opening 86 1 and the opening portion 86 3, central opening 86 1 and the opening portion 86 3 Are connected.
- the water channel which connects a center opening and an opening part may be one if water can be distribute
- the openings 86 2 and 86 3 are connected to the water flow paths 75 1 and 75 2 shown in FIG. 8 when the cell stack 70 is assembled.
- the water electrolysis mode the water supplied from the water passage 75 1 and 75 2, supplied to the solid electrolyte 95 which is fitted in a central opening 86 through the opening 86 2, 86 3 through the water passage 86 4, 86 5 Is done.
- water is finally supplied to the catalyst layer on the surface side of the solid electrolyte
- Embodiment 2 water is supplied to the side surface side of the solid electrolyte as can be seen from FIG. .
- FIG. 11 is a plan view of the gas diffusion / separator 82 on the oxygen side.
- the gas diffusion and separator 90 on the hydrogen side has the same structure.
- a recess 82 1 is formed at the center of the gas diffusion / separator 82.
- the recess 82 1 is adapted to the shape of the gas diffusion electrode layer.
- Teflon (registered trademark) -modified porous carbon shown in Patent Document 2 can be suitably used.
- Teflon (registered trademark) -modified porous carbon shown in Patent Document 2 can be suitably used.
- the use of this material allows oxygen gas and hydrogen gas to permeate through the interior of the material, and as a whole, water repellent treatment is applied to provide strong water repellency, so that water is a gas diffusion electrode layer.
- invade into the inside of is also the same as that of Embodiment 1.
- an opening 82 2 is provided on the left side of the recess 82 1 . Further, between the recesses 82 1 and the opening portion 82 2, a number of grooves 82 3 is formed, which connects the recess 82 1 and the opening portion 82 2.
- channel which connects a recessed part and an opening part may be one if a gas can be distribute
- a groove 82 3 is provided on the right side of FIG. 9, and in the hydrogen side gas diffusion and separator 90, a groove 90 3 (not shown) is provided on the left side of FIG. Is provided). Therefore, when the cell stack 70 is assembled, the groove 82 3 shown in FIG. 11 communicates with the gas flow path 77 and the groove 90 3 communicates with the gas flow path 76. In the water electrolysis mode, the oxygen gas generated on the oxygen side reaches the opening 82 2 through the groove 82 3 and is guided to the gas flow path 77 from there. On the other hand, the hydrogen gas generated on the hydrogen side reaches the opening 90 3 through the groove 90 3 and is guided to the gas flow path 76 from there.
- FIG. 12 is an enlarged view schematically showing a cross section of a central region taken along the line BB of FIG. 10, showing one cell of the cell stack 70 in a state completed by combining the components shown in FIG. is there.
- a solid electrolyte 95 in the center, an oxygen-side gas diffusion electrode layer 96 on the upper side, and a hydrogen-side gas diffusion electrode layer 97 on the lower side.
- the solid electrolyte 95 because they are fitted in the central opening 86 1 of the solid electrolyte retention portion 86, as described above, the periphery of the solid electrolyte 95, in particular side surfaces of the left and right of FIG. 12 is stopped closing so as not to enter and exit the water .
- Catalyst layers 98 and 99 are formed on the surfaces of the gas diffusion electrode layer 96 and the gas diffusion electrode layer 97 on the side in contact with the solid electrolyte 95.
- the material and formation method of the catalyst layer are the same as those in the first embodiment.
- the catalyst layers are formed on the gas diffusion electrode layer 96 and the hydrogen-side gas diffusion electrode layer 97, but a catalyst layer may be formed on the surface of the solid electrolyte 95.
- a voltage is applied to the gas diffusion electrode layers 96 and 97.
- the water as described above, and supplies the water passage 75 1 and 75 2, the openings 86 2, 86 3, water channel 86 4, 86 5 solid electrolyte 95 fitted to the central opening 86 through. Therefore, in FIG. 12, water is supplied to the solid electrolyte 95 from a direction perpendicular to the paper surface.
- the oxygen gas generated at the bonding interface between the gas diffusion electrode layer 96 and the solid electrolyte 95 is guided to the right in the gas diffusion electrode layer 96 as shown by arrows in FIG. It reaches the opening 82 2 through 82 3, and is discharged from here through the gas flow path 77.
- the flow until oxygen gas and hydrogen gas supplied from the outside reaches the solid electrolyte 95 and the flow of water generated in the solid electrolyte 95 are opposite to those in the water electrolysis mode. Also in Embodiment 2, since the gas diffusion electrode layers 96 and 97 have strong water repellency, the supplied oxygen gas and hydrogen gas can be pressurized. By pressurizing the oxygen gas and hydrogen gas, the water generated in the solid electrolyte 95, it is urged toward the water channel 86 4, 86 5, and is discharged smoothly.
- the gas diffusion electrode layers 96 and 97 are subjected to water repellent treatment and have strong water repellency.
- the water supplied to the solid electrolyte 95 through the water passage 86 4, 86 5 from the outside it does not enter into the gas diffusion electrode layers 96 and 97. Therefore, the path of oxygen gas and hydrogen gas and the path of water are completely separated, and they do not mix. Therefore, even when the water electrolysis mode is switched to the fuel cell power generation mode, water clogging does not occur, and the operation in the fuel cell power generation mode can be stably performed immediately after the switching, as in the case of the first embodiment. is there.
- the supply and discharge of water are performed in the first direction substantially perpendicular to the stacking direction, and the supply and discharge of oxygen gas and hydrogen gas are performed in the second and substantially perpendicular directions to the stacking direction, respectively.
- the third direction it becomes possible to stack a plurality of cells, to realize a compact size in the stacking direction, and to improve the capacity of the water electrolysis cell and the fuel cell power generation cell. Is the same as that of the first embodiment.
- the gas diffusion electrode layer referred to in this embodiment is a material having a property of permeating hydrogen and oxygen generated during water electrolysis and used as an anode electrode or a cathode electrode.
- a gas diffusion layer GDL
- As a base material for the gas diffusion electrode layer for example, carbon paper with MPL (microporous layer) can be used. The thickness of the carbon paper used is about 0.16 mm.
- MPL microporous layer
- MPL microporous layer
- Such a carbon paper has a certain degree of mechanical strength, is electrically conductive, and has a characteristic of good gas permeability (good gas permeability).
- this material does not have sufficient water repellency as it is, it is necessary to perform treatment (water repellency treatment) for imparting sufficient water repellency to the gas diffusion electrode layer.
- the method of water repellent treatment of carbon paper in this embodiment is performed according to the following procedure.
- a water repellent a fluid obtained by dissolving acetylene black (AB) and polytetrafluoroethylene (PTFE) in a solvent at a predetermined ratio can be used.
- This fluid water-repellent agent is applied on each of the two aluminum foils serving as a transfer base so as to have an area sufficient to cover all of the carbon paper to be used, and dried as necessary.
- the carbon paper is sandwiched from both sides in a sandwich shape so that the surface to which the water repellent is applied is in contact with the surface of the carbon paper.
- This is mounted on a hot press machine and heated while being pressurized at a temperature of, for example, 360 ° C. exceeding the melting point (327 ° C.) of PTFE for several minutes.
- the water repellent is reversely transferred from the two aluminum foils to the carbon vapor.
- an aluminum foil is removed.
- it may be directly removed mechanically, but it is preferable to chemically remove the aluminum foil on the surface by dipping in an acidic solution (for example, a NaCL solution).
- an acidic solution for example, a NaCL solution
- FIG. 13A is a cross-sectional view showing the state of the end of the carbon paper 100 after the carbon paper 100 is coated with the water repellent 102 by the above-described method.
- the side surface of the carbon paper 100 is completely in contact with the water repellent. This is presumably because the water repellent that became a fluid wraps around the sides of each ladder-like branch by heating and pressurizing with a hot press.
- it is sufficient that the carbon paper is sealed with a water repellent, and there may be a slight gap between the side surface of the carbon paper and the water repellent 102 as shown in FIG. If it is sufficient to coat the water repellent only on one side of the carbon paper 100, as shown in FIG.
- the water repellent is applied to only one aluminum foil, so that the carbon repellent is applied. It is also possible to reversely coat the water repellent 102 on only one side of the paper 100. In FIGS. 13A to 13C, the thicknesses of the carbon paper 100 and the coated water repellent 102 are exaggerated from the actual ones.
- FIG. 14 is a cross-sectional view illustrating a state in which the carbon paper 100 having the same shape as that of the ladder-like gas diffusion electrode layer 35 illustrated in FIG. However, FIG. 14 shows the thickness of the carbon paper 100 and the coated water repellent 102 exaggerated from the actual one. As shown in the figure, the carbon paper 100 is covered with a water repellent 102 not only on the upper and lower surfaces but also on the side surfaces of each ladder-like branch. Thereafter, a catalyst layer is formed on the surface in contact with the electrolyte to form the gas diffusion electrode layer 35. However, the catalyst layer can also be formed on the carbon paper 100 before the water repellent layer 102 is formed.
- the water-repellent gas diffusion electrode layer of this embodiment it becomes possible to apply more pressure than ever before to water supplied during water electrolysis, and it is possible to improve performance as a water electrolysis cell.
- the water repellency is improved by covering the side surface of each ladder-like branch of the gas diffusion electrode layer 35 with the water-repellent agent 102, and water from the side surface of each branch is improved. The intrusion can be completely blocked.
- the characteristics of the third embodiment are summarized as follows. (1) applying a fluid water repellent to the transfer substrate; A step of covering one surface or both surfaces of a planar gas diffusion layer at a portion where the water repellent of the transfer substrate is applied; Heating the gas diffusion layer covered with the transfer substrate while applying pressure to transfer the water repellent to the gas diffusion layer; Removing the transfer substrate after transfer; A water repellent treatment method for a gas diffusion layer.
- a solution obtained by dissolving acetylene black and polytetrafluoroethylene in a solvent at a predetermined ratio can be used.
- the temperature at the time of heating in the transferring step can be higher than the melting point of polytetrafluoroethylene.
- Carbon paper can be used as the gas diffusion layer.
- a hot press machine can be used for the transferring step.
- the water repellency treatment of the gas diffusion electrode layer was performed as follows. [1] Preparation of spray coating solution as water repellent (1) To a 300 mL beaker, 1.0 g of Triton-X, 95 mL of distilled water and 5 mL of ethanol were added and stirred. (2) 2.0 g of Acetylene Black (AB) was added and stirred for 5 minutes. (3) Ultrasonic dispersion was performed for 15 minutes. (4) A ball mill (YTZ ball ⁇ 2.0 mms) was performed for 1 day. (5) 20 g of PTFE dispersion (60 wt%) was added.
- FIG. 15 shows an SEM image of the sample after reverse transfer.
- A is an SEM image without reverse transfer
- (b) is an SEM image when hot pressed at 280 ° C.
- (c) is an SEM image when hot pressed at 320 ° C.
- (d) is 360 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Fuel Cell (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
The present invention addresses the problem of providing a cell for water electrolysis/fuel cell power generation which is switchable between a water electrolysis mode and a fuel cell power generation mode, and, when switching from one mode to the other, is operational immediately in the mode after the switch. The present invention relates to the cell for water electrolysis/fuel cell power generation comprising, in a first direction substantially perpendicular to the cell stacking direction, a flow path for supplying or discharging water, in a second direction substantially perpendicular to the cell stacking direction, an oxygen-containing flow path for discharging or supplying an oxygen-containing gas, and, in a third direction substantially perpendicular to the cell stacking direction, a hydrogen-containing gas flow path for discharging or supplying a hydrogen-containing gas, wherein an oxygen-side electrode layer and a hydrogen-side electrode layer are water-repellent electrode layers.
Description
本発明は、単一のセルで水電解と燃料電池発電を可逆的に切り換え可能とする水電解/燃料電池発電用セル及びこれを複数積層したセル積層体に関する。
The present invention relates to a water electrolysis / fuel cell power generation cell capable of reversibly switching between water electrolysis and fuel cell power generation in a single cell, and a cell laminate in which a plurality of the cells are stacked.
近年、再生可能エネルギー利用や二酸化炭素排出量の削減のために、エネルギー源として水素の利用が注目されている。これに伴い、水素と酸素を燃料とした燃料電池、並びに水電解技術の研究が広く進められている。固体高分子形の水電解と燃料電池発電においては、使用するセルの基本的な構造が類似することから、単一のセルで水電解と燃料電池発電の両方を可逆的に切り換え可能とする水電解/燃料電池発電可逆セルの研究が行われている(例えば、特許文献1参照)。
In recent years, the use of hydrogen as an energy source has attracted attention for the use of renewable energy and the reduction of carbon dioxide emissions. Accordingly, research on fuel cells using hydrogen and oxygen as fuels and water electrolysis technology has been widely promoted. In solid polymer water electrolysis and fuel cell power generation, the basic structure of the cells used is similar, so that water electrolysis and fuel cell power generation can be switched reversibly in a single cell. Research on electrolysis / fuel cell power generation reversible cells has been conducted (see, for example, Patent Document 1).
また、本願発明者の一人によって、気相界面での水素及び酸素の生成を目的とする新たな水電解セルについての提案がなされている(特許文献2)。この水電解セルは、プロトン伝導性の多孔質電解質と、撥水性材料を含んで構成された電極(以下では「撥水性電極」ともいう)であって前述の多孔質電解質の両面にそれぞれ接合される電極(陰極及び陽極)と、前記多孔質電解質に水を供給する手段とを備えており、気相中において酸素ガス及び水素ガスを生成することを可能とした。
In addition, one of the inventors of the present application has proposed a new water electrolysis cell for the purpose of generating hydrogen and oxygen at the gas phase interface (Patent Document 2). This water electrolysis cell is an electrode composed of a proton-conductive porous electrolyte and a water-repellent material (hereinafter also referred to as “water-repellent electrode”), and is bonded to both surfaces of the porous electrolyte. Electrodes (cathode and anode) and means for supplying water to the porous electrolyte, and oxygen gas and hydrogen gas can be generated in the gas phase.
特許文献2において提案されている水電解セルでは、多孔質電解質の材料として含水酸化チタンナノ粒子が使用されている。また、撥水性電極は、触媒粒子を担持させて構成されており、触媒としては白金担持カーボンが使用され、撥水性伝導性担体としてはテフロン(登録商標)修飾多孔質カーボンが使用されている。また、撥水性電極(陽極及び陰極)は、多孔質電解質との接合面側における半撥水性材料と触媒の混合物により構成されるガス拡散電極層と、その外側における電気伝導性の撥水性材料により構成される集電体層とからなる2層構造とされている。
In the water electrolysis cell proposed in Patent Document 2, hydrous titanium oxide nanoparticles are used as a porous electrolyte material. The water-repellent electrode is configured by supporting catalyst particles, platinum-supporting carbon is used as the catalyst, and Teflon (registered trademark) -modified porous carbon is used as the water-repellent conductive carrier. The water repellent electrode (anode and cathode) is composed of a gas diffusion electrode layer composed of a mixture of a semi-water repellent material and a catalyst on the joint surface side with the porous electrolyte, and an electrically conductive water repellent material on the outer side. It has a two-layer structure composed of a current collector layer.
特許文献2において提案されている水電解セルによれば、水素ガスや酸素ガスが気相中において生成される構造とされているため、液相中で水素ガスや酸素ガスを生成させる構造の従来の水電解セルと比較して、気泡生成に必要なエネルギーが不要となり、その分効率が向上する。また、電極材料として水の浸入を阻止しガスのみを通過させる撥水性材料を用いることにより、多孔質電解質に供給する水を加圧することができる。これにより、加圧水素又は加圧酸素の生成が容易に可能となる。この特性を利用すれば、例えば燃料電池自動車や水素自動車等への高圧水素の供給に際して、昇圧を要するエネルギーの大幅削減が可能となる。
According to the water electrolysis cell proposed in Patent Document 2, since hydrogen gas and oxygen gas are generated in the gas phase, the conventional structure of generating hydrogen gas and oxygen gas in the liquid phase is known. Compared with the water electrolysis cell, energy required for generating bubbles is unnecessary, and the efficiency is improved accordingly. Moreover, the water supplied to the porous electrolyte can be pressurized by using a water-repellent material that prevents only water from entering and passes only gas as the electrode material. This makes it possible to easily generate pressurized hydrogen or pressurized oxygen. If this characteristic is used, for example, when high-pressure hydrogen is supplied to a fuel cell vehicle, a hydrogen vehicle, etc., it is possible to greatly reduce the energy that needs to be increased.
これまでの水電解/燃料電池発電可逆セルには、運転モードの切り換え時におけるセル内部の水の供給及び水の除去(乾燥)という問題がある。すなわち、水電解モードのときは電解質層に水が供給され、電解質層で生成された水素ガス及び酸素ガスをセル外部に排出する必要があり、燃料電池発電モードのときには供給された水素ガスあるいは酸素ガスにガス拡散層を透過させて電極層に到達させる必要がある。また、燃料電池発電モードにおいては、ガス拡散層の部分は乾燥している必要があるが、電解質の部分は水素ガスがプロトン(H+)の状態でなければならないため湿潤している必要がある。このように、水電解モードと燃料電池発電モードでは、セル内部の各部において要求される性能(親水性・撥水性)が相反するため、既存のセル構造では、両方のモードについて満足のゆく性能を得ることは容易ではない。
Conventional water electrolysis / fuel cell power generation reversible cells have a problem of water supply and water removal (drying) inside the cells when the operation mode is switched. That is, in the water electrolysis mode, water is supplied to the electrolyte layer, and hydrogen gas and oxygen gas generated in the electrolyte layer must be discharged to the outside of the cell. In the fuel cell power generation mode, the supplied hydrogen gas or oxygen is required. It is necessary to allow gas to pass through the gas diffusion layer and reach the electrode layer. In the fuel cell power generation mode, the gas diffusion layer portion needs to be dry, but the electrolyte portion needs to be wet because hydrogen gas must be in a proton (H + ) state. . As described above, in the water electrolysis mode and the fuel cell power generation mode, the performance (hydrophilicity / water repellency) required in each part inside the cell is contradictory, so the existing cell structure has satisfactory performance in both modes. It is not easy to get.
また、特許文献1では、水を供給/乾燥する手段を備えた可逆セルが提案されているが、運転モードの切り換えにかなりの時間を要し、一方のモードから他方のモードに切り換えて直ちに運転を開始することはできない。また、可逆セルを構成する部材の最適化に関する研究も行われているが(特許文献3参照)、実用化には至っていない。
Also, Patent Document 1 proposes a reversible cell having means for supplying / drying water, but it takes a considerable time to switch the operation mode, and the operation is immediately switched from one mode to the other. Can't start. Moreover, although research regarding the optimization of the member which comprises a reversible cell is also performed (refer patent document 3), it has not reached practical use.
本発明は、以上のような状況のもとでなされたものであり、水電解モードと燃料電池発電モードとの間での切り換えが容易であり、一方から他方へ切り換えた場合に直ちに切り換え後のモードでの運転が可能となる水電解/燃料電池発電可逆セルを提供することを目的とする。
The present invention has been made under the above circumstances, and is easy to switch between the water electrolysis mode and the fuel cell power generation mode, and immediately after switching from one to the other, It is an object of the present invention to provide a water electrolysis / fuel cell power generation reversible cell that can be operated in a mode.
本発明は、以下の(1)~(8)のセル又はセル積層体を提供する。
(1) 水素側電極と酸素側電極の間に電圧を印加して電解質に供給された水の電気分解を行い、又は、供給された水素含有ガス及び酸素含有ガスによって前記水素側電極、前記電解質及び前記酸素側電極において燃料電池発電を行う水電解/燃料電池発電用セルであって、
酸素側電極層、電解質層、水素側電極層、前記酸素側電極層と前記電解質層との間で液体の水から分離された酸素含有ガスを通過させる第1のガスセパレータ、及び、前記電解質層と前記水素側電極層との間で液体の水から分離された水素含有ガスを通過させる第2のガスセパレータが積層され、前記酸素側電極層と前記電解質層との間、及び/又は、前記電解質層と前記水素側電極層との間に触媒層が設けられたセル積層部と、
セルの積層方向に実質的に垂直な第1の方向において、水の供給又は排出を行う水流路と、
セルの積層方向に実質的に垂直な第2の方向において、酸素含有ガスの排出又は供給を行う酸素含有ガス流路と、
セルの積層方向に実質的に垂直な第3の方向において、水素含有ガスの排出又は供給を行う水素含有ガス流路と、
を備え、
前記酸素側電極層及び前記水素側電極層が撥水性電極層である、水電解/燃料電池発電用セル。
(2) 前記酸素側電極層に複数のスリットが形成され、
前記第1のガスセパレータの一方の面に前記水流路と連通する複数の溝が形成され、
前記第1のガスセパレータと前記酸素側電極とが積層され、前記複数の溝が前記酸素側電極の複数のスリットと整列し、水の電気分解時に前記水流路からの水を前記電解質層の表面へ供給する、(1)の水電解/燃料電池発電用セル。
(3) 前記酸素側電極層の前記複数のスリット間にはしご状部材が形成され、
前記第1のガスセパレータの前記複数の溝以外の部分はしご状部分に、他方の面まで貫通して前記酸素含有ガス流路と連通する少なくとも1つの酸素側通気孔が形成され、
前記酸素側通気孔が前記酸素側電極層の前記はしご状部材と整列して、水の電気分解時に前記酸素側電極層を通過した前記酸素含有ガスを前記酸素含有ガス流路に流通させる(1)又は(2)の水電解/燃料電池発電用セル。
(4) 前記第2のガスセパレータに、貫通して前記水素含有ガス流路と連通する少なくもと1つの水素側通気孔が形成され、
水の電気分解時に前記水素側電極層を通過した前記水素含有ガスを前記水素含有ガス流路に流通させる、(1)~(3)のいずれかに記載の水電解/燃料電池発電用セル。
(5) 水素側電極と酸素側電極の間に電圧を印加して電解質に供給された水の電気分解を行い、又は、供給された水素含有ガス及び酸素含有ガスによって前記水素側電極、前記電解質及び前記酸素側電極において燃料電池発電を行う水電解/燃料電池発電用セルであって、
第1のガス拡散兼セパレータ、前記第1のガス拡散兼セパレータに保持される酸素側電極層、電解質層及びこれを保持する電解質保持部、水素側電極層、前記水素側電極層を保持する第2のガス拡散兼セパレータが積層され、前記酸素側電極層と前記電解質層との間、及び/又は、前記電解質層と前記水素側電極層との間に触媒層が設けられたセル積層部と、
前記第1のガス拡散兼セパレータに前記積層方向に実質的に垂直な第2の方向に設けられた酸素含有ガス流路と、
前記第2のガス拡散兼セパレータに前記積層方向及び前記第2の方向に実質的に垂直な第3の方向に設けられた水素含有ガス流路と、
前記電解質保持部に前記積層方向と実質的に垂直な第1の方向に設けられ、前記電解質を含む層の側面から水を供給し又は水を排出する水流路と、
を備え、前記酸素側電極層及び前記水素側電極層が撥水性電極層である、水電解/燃料電池発電用セル。
(6) 前記電解質は、プロトン(H+)伝導性の多孔質電解質、及び/又は緻密電解質である、(1)~(5)のいずれかに記載の水電解/燃料電池発電用セル。
(7) 前記酸素側電極層及び水素側電極層の一方又は両方は、テフロン(登録商標)修飾多孔質カーボンを備える、(1)~(6)のいずれかに記載の水電解/燃料電池発電用セル。
(8) (1)~(7)のいずれかに記載のセルを前記積層方向において2以上積層してなるセル積層体であって、前記各セルにおける前記水用流路の少なくとも一部は互いに接続され、前記各セルにおける酸素用流路の少なくとも一部は互いに接続され、前記各セルにおける水素用流路の少なくとも一部は互いに接続され、前記各セルにおける前記酸素側電極層の少なくとも一部は互いに電気的に接続され、前記各セルにおける前記水素側電極層の少なくとも一部は互いに電気的に接続されていることを特徴とするセル積層体。 The present invention provides the following cells or cell laminates (1) to (8).
(1) Electrolysis of water supplied to the electrolyte by applying a voltage between the hydrogen side electrode and the oxygen side electrode, or the hydrogen side electrode and the electrolyte by the supplied hydrogen-containing gas and oxygen-containing gas And a water electrolysis / fuel cell power generation cell that performs fuel cell power generation at the oxygen side electrode,
An oxygen-side electrode layer, an electrolyte layer, a hydrogen-side electrode layer, a first gas separator that passes an oxygen-containing gas separated from liquid water between the oxygen-side electrode layer and the electrolyte layer, and the electrolyte layer A second gas separator that allows hydrogen-containing gas separated from liquid water to pass therethrough is laminated between the oxygen side electrode layer and the electrolyte layer, and / or A cell stack portion in which a catalyst layer is provided between the electrolyte layer and the hydrogen-side electrode layer;
A water flow path for supplying or discharging water in a first direction substantially perpendicular to the cell stacking direction;
An oxygen-containing gas flow path for discharging or supplying the oxygen-containing gas in a second direction substantially perpendicular to the stacking direction of the cells;
A hydrogen-containing gas flow path for discharging or supplying the hydrogen-containing gas in a third direction substantially perpendicular to the cell stacking direction;
With
A cell for water electrolysis / fuel cell power generation, wherein the oxygen side electrode layer and the hydrogen side electrode layer are water repellent electrode layers.
(2) A plurality of slits are formed in the oxygen side electrode layer,
A plurality of grooves communicating with the water flow path are formed on one surface of the first gas separator,
The first gas separator and the oxygen side electrode are stacked, the plurality of grooves are aligned with the plurality of slits of the oxygen side electrode, and water from the water channel is electrolyzed when water is electrolyzed. (1) A cell for water electrolysis / fuel cell power generation.
(3) A ladder-like member is formed between the plurality of slits of the oxygen-side electrode layer,
At least one oxygen-side vent hole penetrating to the other surface and communicating with the oxygen-containing gas flow path is formed in the ladder-like portion other than the plurality of grooves of the first gas separator,
The oxygen-side vent is aligned with the ladder-like member of the oxygen-side electrode layer, and the oxygen-containing gas that has passed through the oxygen-side electrode layer during the electrolysis of water is circulated through the oxygen-containing gas flow path (1 ) Or (2) water electrolysis / fuel cell power generation cell.
(4) In the second gas separator, at least one hydrogen side vent hole penetrating and communicating with the hydrogen-containing gas flow path is formed,
The water electrolysis / fuel cell power generation cell according to any one of (1) to (3), wherein the hydrogen-containing gas that has passed through the hydrogen-side electrode layer is circulated through the hydrogen-containing gas flow path during water electrolysis.
(5) Electrolysis of water supplied to the electrolyte by applying a voltage between the hydrogen side electrode and the oxygen side electrode, or the hydrogen side electrode and the electrolyte by the supplied hydrogen-containing gas and oxygen-containing gas And a water electrolysis / fuel cell power generation cell that performs fuel cell power generation at the oxygen side electrode,
A first gas diffusion / separator, an oxygen side electrode layer held by the first gas diffusion / separator, an electrolyte layer and an electrolyte holding unit for holding the same, a hydrogen side electrode layer, a first for holding the hydrogen side electrode layer A cell stack portion in which two gas diffusion / separators are stacked and a catalyst layer is provided between the oxygen side electrode layer and the electrolyte layer and / or between the electrolyte layer and the hydrogen side electrode layer; ,
An oxygen-containing gas flow path provided in a second direction substantially perpendicular to the stacking direction of the first gas diffusion and separator;
A hydrogen-containing gas flow path provided in the third direction substantially perpendicular to the stacking direction and the second direction in the second gas diffusion and separator;
A water flow path provided in the electrolyte holding unit in a first direction substantially perpendicular to the stacking direction, supplying water from a side surface of the layer containing the electrolyte, or discharging water;
A cell for water electrolysis / fuel cell power generation, wherein the oxygen side electrode layer and the hydrogen side electrode layer are water repellent electrode layers.
(6) The water electrolysis / fuel cell power generation cell according to any one of (1) to (5), wherein the electrolyte is a proton (H + ) conductive porous electrolyte and / or a dense electrolyte.
(7) The water electrolysis / fuel cell power generation according to any one of (1) to (6), wherein one or both of the oxygen side electrode layer and the hydrogen side electrode layer comprises Teflon (registered trademark) modified porous carbon. Cell.
(8) A cell stack comprising two or more cells according to any one of (1) to (7) stacked in the stacking direction, wherein at least some of the water flow paths in each cell are mutually connected. Connected, at least part of the oxygen flow path in each cell is connected to each other, at least part of the hydrogen flow path in each cell is connected to each other, and at least part of the oxygen-side electrode layer in each cell Are electrically connected to each other, and at least some of the hydrogen-side electrode layers in each of the cells are electrically connected to each other.
(1) 水素側電極と酸素側電極の間に電圧を印加して電解質に供給された水の電気分解を行い、又は、供給された水素含有ガス及び酸素含有ガスによって前記水素側電極、前記電解質及び前記酸素側電極において燃料電池発電を行う水電解/燃料電池発電用セルであって、
酸素側電極層、電解質層、水素側電極層、前記酸素側電極層と前記電解質層との間で液体の水から分離された酸素含有ガスを通過させる第1のガスセパレータ、及び、前記電解質層と前記水素側電極層との間で液体の水から分離された水素含有ガスを通過させる第2のガスセパレータが積層され、前記酸素側電極層と前記電解質層との間、及び/又は、前記電解質層と前記水素側電極層との間に触媒層が設けられたセル積層部と、
セルの積層方向に実質的に垂直な第1の方向において、水の供給又は排出を行う水流路と、
セルの積層方向に実質的に垂直な第2の方向において、酸素含有ガスの排出又は供給を行う酸素含有ガス流路と、
セルの積層方向に実質的に垂直な第3の方向において、水素含有ガスの排出又は供給を行う水素含有ガス流路と、
を備え、
前記酸素側電極層及び前記水素側電極層が撥水性電極層である、水電解/燃料電池発電用セル。
(2) 前記酸素側電極層に複数のスリットが形成され、
前記第1のガスセパレータの一方の面に前記水流路と連通する複数の溝が形成され、
前記第1のガスセパレータと前記酸素側電極とが積層され、前記複数の溝が前記酸素側電極の複数のスリットと整列し、水の電気分解時に前記水流路からの水を前記電解質層の表面へ供給する、(1)の水電解/燃料電池発電用セル。
(3) 前記酸素側電極層の前記複数のスリット間にはしご状部材が形成され、
前記第1のガスセパレータの前記複数の溝以外の部分はしご状部分に、他方の面まで貫通して前記酸素含有ガス流路と連通する少なくとも1つの酸素側通気孔が形成され、
前記酸素側通気孔が前記酸素側電極層の前記はしご状部材と整列して、水の電気分解時に前記酸素側電極層を通過した前記酸素含有ガスを前記酸素含有ガス流路に流通させる(1)又は(2)の水電解/燃料電池発電用セル。
(4) 前記第2のガスセパレータに、貫通して前記水素含有ガス流路と連通する少なくもと1つの水素側通気孔が形成され、
水の電気分解時に前記水素側電極層を通過した前記水素含有ガスを前記水素含有ガス流路に流通させる、(1)~(3)のいずれかに記載の水電解/燃料電池発電用セル。
(5) 水素側電極と酸素側電極の間に電圧を印加して電解質に供給された水の電気分解を行い、又は、供給された水素含有ガス及び酸素含有ガスによって前記水素側電極、前記電解質及び前記酸素側電極において燃料電池発電を行う水電解/燃料電池発電用セルであって、
第1のガス拡散兼セパレータ、前記第1のガス拡散兼セパレータに保持される酸素側電極層、電解質層及びこれを保持する電解質保持部、水素側電極層、前記水素側電極層を保持する第2のガス拡散兼セパレータが積層され、前記酸素側電極層と前記電解質層との間、及び/又は、前記電解質層と前記水素側電極層との間に触媒層が設けられたセル積層部と、
前記第1のガス拡散兼セパレータに前記積層方向に実質的に垂直な第2の方向に設けられた酸素含有ガス流路と、
前記第2のガス拡散兼セパレータに前記積層方向及び前記第2の方向に実質的に垂直な第3の方向に設けられた水素含有ガス流路と、
前記電解質保持部に前記積層方向と実質的に垂直な第1の方向に設けられ、前記電解質を含む層の側面から水を供給し又は水を排出する水流路と、
を備え、前記酸素側電極層及び前記水素側電極層が撥水性電極層である、水電解/燃料電池発電用セル。
(6) 前記電解質は、プロトン(H+)伝導性の多孔質電解質、及び/又は緻密電解質である、(1)~(5)のいずれかに記載の水電解/燃料電池発電用セル。
(7) 前記酸素側電極層及び水素側電極層の一方又は両方は、テフロン(登録商標)修飾多孔質カーボンを備える、(1)~(6)のいずれかに記載の水電解/燃料電池発電用セル。
(8) (1)~(7)のいずれかに記載のセルを前記積層方向において2以上積層してなるセル積層体であって、前記各セルにおける前記水用流路の少なくとも一部は互いに接続され、前記各セルにおける酸素用流路の少なくとも一部は互いに接続され、前記各セルにおける水素用流路の少なくとも一部は互いに接続され、前記各セルにおける前記酸素側電極層の少なくとも一部は互いに電気的に接続され、前記各セルにおける前記水素側電極層の少なくとも一部は互いに電気的に接続されていることを特徴とするセル積層体。 The present invention provides the following cells or cell laminates (1) to (8).
(1) Electrolysis of water supplied to the electrolyte by applying a voltage between the hydrogen side electrode and the oxygen side electrode, or the hydrogen side electrode and the electrolyte by the supplied hydrogen-containing gas and oxygen-containing gas And a water electrolysis / fuel cell power generation cell that performs fuel cell power generation at the oxygen side electrode,
An oxygen-side electrode layer, an electrolyte layer, a hydrogen-side electrode layer, a first gas separator that passes an oxygen-containing gas separated from liquid water between the oxygen-side electrode layer and the electrolyte layer, and the electrolyte layer A second gas separator that allows hydrogen-containing gas separated from liquid water to pass therethrough is laminated between the oxygen side electrode layer and the electrolyte layer, and / or A cell stack portion in which a catalyst layer is provided between the electrolyte layer and the hydrogen-side electrode layer;
A water flow path for supplying or discharging water in a first direction substantially perpendicular to the cell stacking direction;
An oxygen-containing gas flow path for discharging or supplying the oxygen-containing gas in a second direction substantially perpendicular to the stacking direction of the cells;
A hydrogen-containing gas flow path for discharging or supplying the hydrogen-containing gas in a third direction substantially perpendicular to the cell stacking direction;
With
A cell for water electrolysis / fuel cell power generation, wherein the oxygen side electrode layer and the hydrogen side electrode layer are water repellent electrode layers.
(2) A plurality of slits are formed in the oxygen side electrode layer,
A plurality of grooves communicating with the water flow path are formed on one surface of the first gas separator,
The first gas separator and the oxygen side electrode are stacked, the plurality of grooves are aligned with the plurality of slits of the oxygen side electrode, and water from the water channel is electrolyzed when water is electrolyzed. (1) A cell for water electrolysis / fuel cell power generation.
(3) A ladder-like member is formed between the plurality of slits of the oxygen-side electrode layer,
At least one oxygen-side vent hole penetrating to the other surface and communicating with the oxygen-containing gas flow path is formed in the ladder-like portion other than the plurality of grooves of the first gas separator,
The oxygen-side vent is aligned with the ladder-like member of the oxygen-side electrode layer, and the oxygen-containing gas that has passed through the oxygen-side electrode layer during the electrolysis of water is circulated through the oxygen-containing gas flow path (1 ) Or (2) water electrolysis / fuel cell power generation cell.
(4) In the second gas separator, at least one hydrogen side vent hole penetrating and communicating with the hydrogen-containing gas flow path is formed,
The water electrolysis / fuel cell power generation cell according to any one of (1) to (3), wherein the hydrogen-containing gas that has passed through the hydrogen-side electrode layer is circulated through the hydrogen-containing gas flow path during water electrolysis.
(5) Electrolysis of water supplied to the electrolyte by applying a voltage between the hydrogen side electrode and the oxygen side electrode, or the hydrogen side electrode and the electrolyte by the supplied hydrogen-containing gas and oxygen-containing gas And a water electrolysis / fuel cell power generation cell that performs fuel cell power generation at the oxygen side electrode,
A first gas diffusion / separator, an oxygen side electrode layer held by the first gas diffusion / separator, an electrolyte layer and an electrolyte holding unit for holding the same, a hydrogen side electrode layer, a first for holding the hydrogen side electrode layer A cell stack portion in which two gas diffusion / separators are stacked and a catalyst layer is provided between the oxygen side electrode layer and the electrolyte layer and / or between the electrolyte layer and the hydrogen side electrode layer; ,
An oxygen-containing gas flow path provided in a second direction substantially perpendicular to the stacking direction of the first gas diffusion and separator;
A hydrogen-containing gas flow path provided in the third direction substantially perpendicular to the stacking direction and the second direction in the second gas diffusion and separator;
A water flow path provided in the electrolyte holding unit in a first direction substantially perpendicular to the stacking direction, supplying water from a side surface of the layer containing the electrolyte, or discharging water;
A cell for water electrolysis / fuel cell power generation, wherein the oxygen side electrode layer and the hydrogen side electrode layer are water repellent electrode layers.
(6) The water electrolysis / fuel cell power generation cell according to any one of (1) to (5), wherein the electrolyte is a proton (H + ) conductive porous electrolyte and / or a dense electrolyte.
(7) The water electrolysis / fuel cell power generation according to any one of (1) to (6), wherein one or both of the oxygen side electrode layer and the hydrogen side electrode layer comprises Teflon (registered trademark) modified porous carbon. Cell.
(8) A cell stack comprising two or more cells according to any one of (1) to (7) stacked in the stacking direction, wherein at least some of the water flow paths in each cell are mutually connected. Connected, at least part of the oxygen flow path in each cell is connected to each other, at least part of the hydrogen flow path in each cell is connected to each other, and at least part of the oxygen-side electrode layer in each cell Are electrically connected to each other, and at least some of the hydrogen-side electrode layers in each of the cells are electrically connected to each other.
本発明によれば、水電解モードと燃料電池発電モードとの間での切り換えが可能であり、一方から他方へ切り換えた場合に直ちに切り換え後のモードでの運転が可能となる水電解/燃料電池発電可逆セルを提供することができる。
According to the present invention, the water electrolysis / fuel cell can be switched between the water electrolysis mode and the fuel cell power generation mode, and can be immediately operated in the mode after switching when switching from one to the other. A power generation reversible cell can be provided.
以下に、本実施形態について説明するが、以下の実施形態によって限定的に解釈されるものではない。
また、以下の説明においては、「酸素」、「酸素ガス」、「水素」、「水素ガス」という記載があるが、「酸素含有ガス」であってもよく、「水素含有ガス」であってもよい。 Hereinafter, the present embodiment will be described, but the present invention is not limited to the following embodiment.
Further, in the following description, there is a description of “oxygen”, “oxygen gas”, “hydrogen”, “hydrogen gas”, but it may be “oxygen-containing gas” or “hydrogen-containing gas”. Also good.
また、以下の説明においては、「酸素」、「酸素ガス」、「水素」、「水素ガス」という記載があるが、「酸素含有ガス」であってもよく、「水素含有ガス」であってもよい。 Hereinafter, the present embodiment will be described, but the present invention is not limited to the following embodiment.
Further, in the following description, there is a description of “oxygen”, “oxygen gas”, “hydrogen”, “hydrogen gas”, but it may be “oxygen-containing gas” or “hydrogen-containing gas”. Also good.
[実施形態1]
図1は、本実施形態1に係るセルスタック5を示す斜視図であり、図2は、図1に示したセルスタック5を構成する各部品を矢印6の方向に相互に離間して示した分解図である。図1に示すセルスタック5は、図2に示した各部品を互いに密着させ、8本のボルト501~508と対応するナットとを締着することによって組み立てられる。 [Embodiment 1]
FIG. 1 is a perspective view showing acell stack 5 according to the first embodiment, and FIG. 2 shows the components constituting the cell stack 5 shown in FIG. It is an exploded view. The cell stack 5 shown in FIG. 1 is assembled by bringing the components shown in FIG. 2 into close contact with each other and fastening the eight bolts 50 1 to 50 8 and the corresponding nuts.
図1は、本実施形態1に係るセルスタック5を示す斜視図であり、図2は、図1に示したセルスタック5を構成する各部品を矢印6の方向に相互に離間して示した分解図である。図1に示すセルスタック5は、図2に示した各部品を互いに密着させ、8本のボルト501~508と対応するナットとを締着することによって組み立てられる。 [Embodiment 1]
FIG. 1 is a perspective view showing a
図1のセルスタック5は、2つの水電解/燃料電池発電可逆セル(以下単に「セル」という場合もある)を矢印6で示す方向に積層したものであり、第1のセルは、図2に示す積層部品211~271及びエンドプレート31より構成され、第2のセルは図2に示すエンドプレート33及び積層部品212~272より構成される。中間プレート32は第1及び第2のセルの両方で共用される。図2に示す第1のセルと第2のセルにおいて、添え字のみ異なる同じ符号の部品は互いに対応する部品であり機能も共通するため、以下では第1のセルについてのみ説明し、添え字も必要な場合を除いて省略する。
The cell stack 5 in FIG. 1 is a stack of two water electrolysis / fuel cell power generation reversible cells (hereinafter sometimes simply referred to as “cells”) in the direction indicated by the arrow 6. to be configured from the multilayer part 21 1-27 1 and the end plate 31 shown, the second cell is composed of end plates 33 and laminate part 21 2-27 2 shown in FIG. The intermediate plate 32 is shared by both the first and second cells. In the first cell and the second cell shown in FIG. 2, parts with the same reference numerals that differ only in the subscript are parts corresponding to each other and share the same function. Therefore, only the first cell will be described below, and the subscript will also be described. Omitted unless necessary.
図2において、符号24で示した部品は、固体電解質からなる電解質層である。本実施形態では、電解質層24の左側を酸素側、電解質層24の右側を水素側の配置としている。ただし、酸素側と水素側の配置はこの逆であってもよい。
In FIG. 2, the component indicated by reference numeral 24 is an electrolyte layer made of a solid electrolyte. In the present embodiment, the left side of the electrolyte layer 24 is arranged on the oxygen side, and the right side of the electrolyte layer 24 is arranged on the hydrogen side. However, the arrangement of the oxygen side and the hydrogen side may be reversed.
電解質層24の左側(酸素側)には、ガスケット23、ガスセパレータ22、ガスケット21、中間プレート32が配置されている。一方、電解質層24の右側(水素側)には、ガスケット25、ガスセパレータ26、ガスケット27、エンドプレート31が配置されている。酸素側のガスケット23の中央部には、四角形のガス拡散電極層35がはめ込まれている。ガス拡散電極層35は、酸素側電極層となる。ガス拡散電極層35には、複数の平行なスリット45(後述する)が設けられている。一方、水素側のガスケット25の中央部には、スリットのない四角形のガス拡散電極層36がはめ込まれる。ガス拡散電極層36は、水素側電極となる。
The gasket 23, the gas separator 22, the gasket 21, and the intermediate plate 32 are disposed on the left side (oxygen side) of the electrolyte layer 24. On the other hand, a gasket 25, a gas separator 26, a gasket 27, and an end plate 31 are arranged on the right side (hydrogen side) of the electrolyte layer 24. A square gas diffusion electrode layer 35 is fitted in the central portion of the oxygen-side gasket 23. The gas diffusion electrode layer 35 becomes an oxygen side electrode layer. The gas diffusion electrode layer 35 is provided with a plurality of parallel slits 45 (described later). On the other hand, a rectangular gas diffusion electrode layer 36 without a slit is fitted in the center of the hydrogen-side gasket 25. The gas diffusion electrode layer 36 becomes a hydrogen side electrode.
図3は、ガスセパレータ22の右側の面(図2では見えない側の面)を上にした平面図である。図3に示すように、ガスセパレータ22の中央部には、その厚さ方向(図3の紙面に垂直な方向)に掘られた6本の平行な溝601~606が形成されており、その結果、溝と溝の間に細長い板状部分611~615が形成されている。図4は、図3に示した溝60及び板状部分61の部分のみを示した斜視図である。図4に示すように、板状部分611~615及びこれと平行な両側の縁には、通気孔621~627が設けられている。各通気孔621~627は、ガスセパレータ22を貫通している。
FIG. 3 is a plan view with the right side of the gas separator 22 (the side not visible in FIG. 2) facing up. As shown in FIG. 3, six parallel grooves 60 1 to 60 6 dug in the thickness direction (direction perpendicular to the paper surface of FIG. 3) are formed in the central portion of the gas separator 22. As a result, elongated plate-like portions 61 1 to 61 5 are formed between the grooves. FIG. 4 is a perspective view showing only the groove 60 and the plate-like portion 61 shown in FIG. As shown in FIG. 4, the plate-like portions 61 1 to 61 5 and parallel opposite edges and which, vent holes 62 1-62 7 is provided. Each of the vent holes 62 1 to 62 7 passes through the gas separator 22.
図5は、図3のA-Aに沿って紙面に垂直な方向に切った断面図である。同図に示すように、ガスセパレータ22の内部には水流路63がトンネル状に形成されている。この水流路63の一方は図1に示す水流路51、52と繋がり、他方は各溝601~606に繋がっている。図1に示す水流路51、52は矢印6と平行に延びているが、ガスセパレータ22の内部に形成された水流路63は、矢印6と垂直な方向、すなわちセルの積層方向と垂直な方向に延びている。このように水流路63をセルの積層方向と垂直な方向に設けることによって、複数のセルをコンパクトに積層することが可能となる。
FIG. 5 is a cross-sectional view taken along a line AA in FIG. 3 in a direction perpendicular to the paper surface. As shown in the figure, a water flow path 63 is formed in a tunnel shape inside the gas separator 22. One of the water channels 63 is connected to the water channels 51 and 52 shown in FIG. 1, and the other is connected to the grooves 60 1 to 60 6 . Although the water flow paths 51 and 52 shown in FIG. 1 extend in parallel with the arrow 6, the water flow path 63 formed inside the gas separator 22 has a direction perpendicular to the arrow 6, that is, a direction perpendicular to the cell stacking direction. It extends to. Thus, by providing the water flow path 63 in a direction perpendicular to the cell stacking direction, a plurality of cells can be stacked in a compact manner.
図6は、セルを組み立てたときガスセパレータ22とガス拡散電極層35とがどのような位置関係にあるかを示した平面図である。実際には、図2に示すように、ガス拡散電極層35はガスケット23にはめ込まれ、このガスケット23を含めてセル全体を組み立てることにより、ガスセパレータ22とガス拡散電極層35は図6に示す位置関係となる。
FIG. 6 is a plan view showing the positional relationship between the gas separator 22 and the gas diffusion electrode layer 35 when the cell is assembled. Actually, as shown in FIG. 2, the gas diffusion electrode layer 35 is fitted into the gasket 23. By assembling the entire cell including the gasket 23, the gas separator 22 and the gas diffusion electrode layer 35 are shown in FIG. Positional relationship.
図6に示すように、ガス拡散電極層35に設けられた各スリット451~456は、ガスセパレータ22に設けられた対応する溝601~606と整列する。ガス拡散電極層35のスリットとスリットの間の梯子状部材461~467は、ガスセパレータ22の対応する板状部分611~615及びこれらと平行な両側の縁と整列し、板状部分611~615及び両側の縁に設けられている通気孔621~627を塞いでいる。これにより、後述のように通気孔621~627に水が入り込むのを防止することができる。
As shown in FIG. 6, the slits 45 1 to 45 6 provided in the gas diffusion electrode layer 35 are aligned with the corresponding grooves 60 1 to 60 6 provided in the gas separator 22. Ladder member 46 1-46 7 between the slit and the slit of the gas diffusion electrode layer 35 is aligned with the corresponding plate-shaped portions 61 1 to 61 5 and parallel opposite edges and these gas separator 22, the plate The portions 61 1 to 61 5 and the vent holes 62 1 to 62 7 provided at the edges on both sides are closed. Thus, it is possible to prevent water from entering the vent holes 62 1-62 7 as will be described later.
図2に示すように、ガスセパレータ26の左側表面にも複数の溝が形成されているが、これはガスセパレータ22の場合のように必須ではない。
As shown in FIG. 2, a plurality of grooves are also formed on the left surface of the gas separator 26, but this is not essential as in the case of the gas separator 22.
図2に示すガスケット21、27の中央部には、カーボンペーパー(不図示)がはめ込まれる。ガスケット27にはめ込まれるカーボンペーパーは、ここを通過する水素ガスを拡散し、それぞれエンドプレート31の左側の面に設けられた水素ガス流路65に連通する。水素ガス流路65は、下側に設けられた流路66に繋がり、ここを介して図1に示した水素ガス流路54と連通する。一方、ガスケット21にはめ込まれるガス拡散層は、ここを通過する酸素ガスを拡散し、それぞれ中間プレート32の右側(図2では見えない側)に設けられた酸素ガス流路に連通する。これらの酸素ガス流路は、その上側に設けられた流路68に繋がりここを介して図1に示した酸素ガス流路53と連通する。
2) Carbon paper (not shown) is fitted in the center of the gaskets 21 and 27 shown in FIG. The carbon paper fitted into the gasket 27 diffuses hydrogen gas passing therethrough and communicates with the hydrogen gas flow path 65 provided on the left surface of the end plate 31. The hydrogen gas flow path 65 is connected to a flow path 66 provided on the lower side, and communicates with the hydrogen gas flow path 54 shown in FIG. On the other hand, the gas diffusion layer fitted in the gasket 21 diffuses oxygen gas passing therethrough, and communicates with oxygen gas passages provided on the right side of the intermediate plate 32 (side not visible in FIG. 2). These oxygen gas flow paths are connected to a flow path 68 provided on the upper side thereof, and communicate with the oxygen gas flow path 53 shown in FIG.
図7は、図2に示した各部品を組み合わせて完成させた状態のセルスタック5の一つのセルを、図5とは異なり板状部60と垂直に切った断面を模式的に示した拡大図である。図7では、上述のカーボンペーパーは、必須の構成要素ではないので省略してある。図7に示すように電解質層24が中央部にあり、その上が酸素側、その下が水素側となる。
FIG. 7 is an enlarged view schematically showing a cross section of one cell of the cell stack 5 in a state completed by combining the components shown in FIG. FIG. In FIG. 7, the above-mentioned carbon paper is omitted because it is not an essential component. As shown in FIG. 7, the electrolyte layer 24 is in the center, with the oxygen side above it and the hydrogen side below it.
電解質層24を構成する固体電解質としては、プロトン(H+)伝導性の多孔質電解質を使用することができる。具体的な材料としては、特許文献2に示されている無機セラミックス(例えば含水酸化チタンナノ粒子)を好適に使用することができる。電解質層24を構成する固体電解質の別の例として、緻密電解質であるプロトン伝導性のナフィオン(登録商標)等を使用することもできる。
As the solid electrolyte constituting the electrolyte layer 24, a proton (H + ) conductive porous electrolyte can be used. As a specific material, inorganic ceramics (for example, hydrous titanium oxide nanoparticles) disclosed in Patent Document 2 can be suitably used. As another example of the solid electrolyte constituting the electrolyte layer 24, a proton conductive Nafion (registered trademark) which is a dense electrolyte can be used.
電解質層24を挟む酸素側のガス拡散電極層35及び水素側のガス拡散電極層36の材料としては、例えば特許文献2に示されているテフロン(登録商標)修飾多孔質カーボンを好適に使用することができる。この材料を使用することにより、その内部を酸素ガス及び水素ガスが透過できるようにすることができる。また、ガス拡散電極層35及びガス拡散電極層36は、全体として撥水処理が施され、強い撥水性を有している。これにより、水がガス拡散電極層35及びガス拡散電極層36の内部へ浸入することを防ぐことができる。
As materials for the oxygen-side gas diffusion electrode layer 35 and the hydrogen-side gas diffusion electrode layer 36 sandwiching the electrolyte layer 24, for example, Teflon (registered trademark) modified porous carbon disclosed in Patent Document 2 is preferably used. be able to. By using this material, oxygen gas and hydrogen gas can pass through the inside. Further, the gas diffusion electrode layer 35 and the gas diffusion electrode layer 36 are subjected to water repellency treatment as a whole and have strong water repellency. As a result, water can be prevented from entering the gas diffusion electrode layer 35 and the gas diffusion electrode layer 36.
ガス拡散電極層35及びガス拡散電極層36の電解質層24と接合する側の表面には、それぞれ触媒層351及び361が形成されている。触媒材料としては、特許文献2に示されている白金担持カーボンを好適に使用することができる。触媒は、原子層で数層程度あれば十分であり、そのために例えばスプレーで触媒材料を噴霧状にして吹きつけるなどの方法を適用できる。また、ここでは酸素側のガス拡散電極層35及び水素側のガス拡散電極層36に触媒層を形成しているが、電解質層24の表面に触媒層を形成するようにしてもよい。
Catalyst layers 35 1 and 36 1 are formed on the surfaces of the gas diffusion electrode layer 35 and the gas diffusion electrode layer 36 on the side to be joined to the electrolyte layer 24, respectively. As the catalyst material, platinum-supported carbon disclosed in Patent Document 2 can be suitably used. It is sufficient that the catalyst has several atomic layers. For this purpose, for example, a method of spraying the catalyst material by spraying can be applied. Here, the catalyst layers are formed on the oxygen-side gas diffusion electrode layer 35 and the hydrogen-side gas diffusion electrode layer 36, but a catalyst layer may be formed on the surface of the electrolyte layer 24.
水電解モードでは、ガス拡散電極層35及び36に電圧を印加する。その結果、ガス拡散電極層35と電解質層24との界面(触媒層)で発生した酸素ガスは、ガス拡散電極層35の梯子状部材46を透過してガスセパレータ22の通気孔621~627へ導かれ、ここを通って不図示のカーボンペーパーで拡散されたあと、中間プレート32又はエンドプレート33に設けられたガス流路67、流路68を通って、図1に示した酸素ガス流路53から外部へ排出される。一方、ガス拡散電極層36と電解質層24との界面(触媒層)で発生した水素ガスは、平面状のガス拡散電極層36の内部を拡散されながら透過し、ガスセパレータ26の通気孔64へ導かれ、ここを通って不図示のガスカーボンペーパーで拡散されたあと、エンドプレート31に設けられたガス流路65、流路66を通って、図1に示した水素ガス流路54から外部へ排出される。
In the water electrolysis mode, a voltage is applied to the gas diffusion electrode layers 35 and 36. As a result, oxygen gas generated at the interface (catalyst layer) between the gas diffusion electrode layer 35 and the electrolyte layer 24 passes through the ladder member 46 of the gas diffusion electrode layer 35 and passes through the air holes 62 1 to 62 of the gas separator 22. 1 and is diffused by carbon paper (not shown) through this, and then passes through a gas flow path 67 and a flow path 68 provided in the intermediate plate 32 or the end plate 33, and then the oxygen gas shown in FIG. It is discharged from the flow path 53 to the outside. On the other hand, the hydrogen gas generated at the interface (catalyst layer) between the gas diffusion electrode layer 36 and the electrolyte layer 24 passes through the inside of the planar gas diffusion electrode layer 36 while being diffused, and enters the vent hole 64 of the gas separator 26. After being guided and diffused by gas carbon paper (not shown), the gas flow path 65 and the flow path 66 provided in the end plate 31 are passed through the hydrogen gas flow path 54 shown in FIG. Is discharged.
前述のように、ガス拡散電極層35、36は強い撥水性を備えている。これにより、外部から水流路63、溝601~606、スリット451~456を通って電解質層24へ供給される水が、ガス拡散電極層35、36へ入り込むことはない。したがって、酸素ガス、水素ガスの経路と、水の経路とは完全に分離され、これらが混ざり合うことはない。このように、本実施形態のセルは、水電解モードにおいて、固体電解質からなる電解質層24に直接水が供給される。供給された水は、撥水性のガス拡散電極層35、36によって塞ぎ止められ、ガス拡散電極層35、36の内部やガスセパレータ22、26の内部へは浸入しない。すなわち、水の経路、酸素ガスの経路、水素ガスの経路が完全に独立し、互いに切り離される。
As described above, the gas diffusion electrode layers 35 and 36 have strong water repellency. Thereby, water supplied from the outside to the electrolyte layer 24 through the water flow path 63, the grooves 60 1 to 60 6 and the slits 45 1 to 45 6 does not enter the gas diffusion electrode layers 35 and 36. Therefore, the path of oxygen gas and hydrogen gas and the path of water are completely separated, and they do not mix. Thus, in the cell of this embodiment, water is directly supplied to the electrolyte layer 24 made of a solid electrolyte in the water electrolysis mode. The supplied water is blocked by the water-repellent gas diffusion electrode layers 35 and 36 and does not enter the gas diffusion electrode layers 35 and 36 or the gas separators 22 and 26. That is, the water path, the oxygen gas path, and the hydrogen gas path are completely independent and separated from each other.
一方、燃料電池発電モードでは、外部から供給される酸素ガス及び水素ガスが電解質層24に到達するまでの流れ、並びに電解質層24で生成される水の流れは水電解モードとは逆になる。このとき、ガス拡散電極層35及びガス拡散電極層36が強い撥水性を備えていることから、供給する酸素ガス及び水素ガスを加圧することができる。酸素ガス及び水素ガスを加圧することによって、電解質層24で生成された水は、スリット451~456へ向かうよう促されスムーズに排出される。
On the other hand, in the fuel cell power generation mode, the flow until oxygen gas and hydrogen gas supplied from the outside reaches the electrolyte layer 24 and the flow of water generated in the electrolyte layer 24 are opposite to those in the water electrolysis mode. At this time, since the gas diffusion electrode layer 35 and the gas diffusion electrode layer 36 have strong water repellency, the supplied oxygen gas and hydrogen gas can be pressurized. By pressurizing oxygen gas and hydrogen gas, water generated in the electrolyte layer 24 is urged toward the slits 45 1 to 45 6 and is smoothly discharged.
以上のように構成したことにより、本実施形態のセルスタック5は、水電解モードから燃料電池発電モードに切り換えた場合でも水詰まりは起こらず、切り換えた直後から安定的に燃料電池発電モードでの運転が可能となる。また、燃料電池発電モードから水電解モードに切り換えた場合も、切り換え後直ちに水電解モードでの運転が可能となる。特に、燃料電池発電モードと水電解モードの切り換えにおいて、従来のセルにおいて必要とされた水の乾燥/供給の過程が不要となるため、シームレスに切り換え可能な可逆セルとして使用することが可能となる。
With the configuration as described above, the cell stack 5 of the present embodiment does not cause water clogging even when the water electrolysis mode is switched to the fuel cell power generation mode, and stably in the fuel cell power generation mode immediately after the switching. Driving is possible. Further, even when the fuel cell power generation mode is switched to the water electrolysis mode, the operation in the water electrolysis mode can be performed immediately after the switching. In particular, in the switching between the fuel cell power generation mode and the water electrolysis mode, the process of drying / supplying the water required in the conventional cell is not required, so that it can be used as a reversible cell that can be switched seamlessly. .
また、前述のように、水の供給及び排出を積層方向と実質的に垂直な第1の方向において行い、酸素ガス及び水素ガスの供給及び排出を積層方向と実質的に垂直なそれぞれ第2及び第3の方向において行うようにしたことによって、第1のセルと第2のセルという複数のセルを積層することによって、積層方向におけるコンパクトな寸法を実現でき、水電解セル及び燃料電池発電セルの能力を向上させることができる。
Further, as described above, the supply and discharge of water are performed in the first direction substantially perpendicular to the stacking direction, and the supply and discharge of oxygen gas and hydrogen gas are performed in the second and substantially perpendicular directions to the stacking direction, respectively. By performing in the third direction, by stacking a plurality of cells, the first cell and the second cell, a compact dimension in the stacking direction can be realized, and the water electrolysis cell and the fuel cell power generation cell Ability can be improved.
[実施形態2]
図8は、本発明の実施形態2に係るセルスタック70を示す斜視図であり、図9は、図8に示したセルスタック70を構成する各部品を矢印6の方向に相互に離間して示した分解図である。図8に示すセルスタック70は、図9に示した各部品を互いに密着させ、不図示のボルトとナットを締着することによって組み立てられる。図8に示す実施形態2のセルスタック70は、1つの水電解/燃料電池発電可逆セルからなる。しかしながら、実施形態1のセルスタック5と同様に、矢印6で示す方向に任意の数のセルを積層することができる。このため、本実施形態でも便宜上「セルスタック(セル積層体)」という用語を用いる。 [Embodiment 2]
FIG. 8 is a perspective view showing thecell stack 70 according to the second embodiment of the present invention, and FIG. 9 is a diagram showing the components constituting the cell stack 70 shown in FIG. It is the exploded view shown. The cell stack 70 shown in FIG. 8 is assembled by bringing the components shown in FIG. 9 into close contact with each other and fastening bolts and nuts (not shown). The cell stack 70 of the second embodiment shown in FIG. 8 is composed of one water electrolysis / fuel cell power generation reversible cell. However, any number of cells can be stacked in the direction indicated by the arrow 6 as in the cell stack 5 of the first embodiment. For this reason, the term “cell stack (cell stack)” is also used in this embodiment for convenience.
図8は、本発明の実施形態2に係るセルスタック70を示す斜視図であり、図9は、図8に示したセルスタック70を構成する各部品を矢印6の方向に相互に離間して示した分解図である。図8に示すセルスタック70は、図9に示した各部品を互いに密着させ、不図示のボルトとナットを締着することによって組み立てられる。図8に示す実施形態2のセルスタック70は、1つの水電解/燃料電池発電可逆セルからなる。しかしながら、実施形態1のセルスタック5と同様に、矢印6で示す方向に任意の数のセルを積層することができる。このため、本実施形態でも便宜上「セルスタック(セル積層体)」という用語を用いる。 [Embodiment 2]
FIG. 8 is a perspective view showing the
図9に示す各部品のうち、2つのエンドプレート80及び92の間の中央に配置される符号86で示す部品は固体電解質保持部であり、この固体電解質保持部86からみて図の左側を酸素側、右側を水素側の配置としている。ただし、酸素側と水素側の配置が逆であってもよい点は、実施形態1と同様である。なお、実際のセルスタック70では、状況に応じて種々のガスケットを使用することもあるが、ここでは説明を簡単にするため図示を省略している。部材82は酸素側のガス拡散兼セパレータであり、部材90は水素側のガス拡散兼セパレータである。
Among the components shown in FIG. 9, a component denoted by reference numeral 86 disposed in the center between the two end plates 80 and 92 is a solid electrolyte holding portion, and the left side of the drawing as viewed from the solid electrolyte holding portion 86 is oxygen. The right side and the right side are arranged on the hydrogen side. However, as in the first embodiment, the arrangement of the oxygen side and the hydrogen side may be reversed. In the actual cell stack 70, various gaskets may be used depending on the situation, but the illustration is omitted here for the sake of simplicity. The member 82 is an oxygen side gas diffusion and separator, and the member 90 is a hydrogen side gas diffusion and separator.
図10は、固体電解質保持部86の平面図である。固体電解質保持部86の中央部には、中央開口861が形成されている。中央開口861には、後述の固体電解質95(図12)がはめ込まれる。固体電解質としては、実施形態1と同様に、プロトン(H+)伝導性の多孔質電解質、あるいは緻密電解質であるプロトン伝導性のナフィオン(登録商標)を使用することができる。また、多孔質電解質と緻密電解質の両方を含む固体電解質であってもよい。
FIG. 10 is a plan view of the solid electrolyte holding portion 86. The central portion of the solid electrolyte retention portion 86, central opening 86 1 is formed. The central opening 86 1 is described solid electrolyte 95 (Fig. 12) is fitted. As the solid electrolyte, as in the first embodiment, a proton (H + ) conductive porous electrolyte or a proton conductive Nafion (registered trademark) which is a dense electrolyte can be used. Further, it may be a solid electrolyte containing both a porous electrolyte and a dense electrolyte.
図10に示すように、固体電解質保持部86の中央開口861の上には開口部862が設けられている。そして、中央開口861と開口部862との間に多数の水流路864が形成され、中央開口861と開口部862の間を繋いでいる。同様に中央開口861の下には開口部863が設けられ、中央開口861と開口部863との間に多数の水流路865が形成され、中央開口861と開口部863との間を繋いでいる。なお、中央開口と開口部とを繋ぐ水流路は、水を流通させることができれば一本であってもよい。
As shown in FIG. 10, on the central opening 86 1 of the solid electrolyte retention portion 86 opening 86 2 is provided. The number of water passage 86 4 is formed between the central opening 86 1 and the opening portion 86 2, and connects between the central opening 86 1 and the opening portion 86 2. Similarly, under the central opening 86 first opening 86 3 is provided, a large number of water passage 86 5 is formed between the central opening 86 1 and the opening portion 86 3, central opening 86 1 and the opening portion 86 3 Are connected. In addition, the water channel which connects a center opening and an opening part may be one if water can be distribute | circulated.
開口部862及び863は、セルスタック70を組み立てたときに、図8に示す水流路751及び752とそれぞれ繋がる。したがって、水電解モードでは、水流路751及び752から供給された水は、開口部862、863から水流路864、865を経て中央開口86にはめ込まれた固体電解質95に供給される。水流路864及び865の形成方向は、セルスタックの積層方向(矢印6で示す方向)と垂直な方向となる。このように、積層方向と垂直な方向に水流路864、865を設けることによって複数のセルの積層が可能となる点は、実施形態1と同様である。ただし、実施形態1では水は最終的に固体電解質の表面側の触媒層へ供給されていたのに対し、実施形態2では、図10から分かるように固体電解質の側面側へ水が供給される。
The openings 86 2 and 86 3 are connected to the water flow paths 75 1 and 75 2 shown in FIG. 8 when the cell stack 70 is assembled. Thus, the water electrolysis mode, the water supplied from the water passage 75 1 and 75 2, supplied to the solid electrolyte 95 which is fitted in a central opening 86 through the opening 86 2, 86 3 through the water passage 86 4, 86 5 Is done. Forming direction of the water flow path 86 4 and 86 5, the stacking direction of the cell stack (the direction indicated by arrow 6) and perpendicular. Thus, that it is possible to stack a plurality of cells by providing the water channel 86 4, 86 5 in the stacking direction perpendicular to the direction is the same as the first embodiment. However, in Embodiment 1, water is finally supplied to the catalyst layer on the surface side of the solid electrolyte, whereas in Embodiment 2, water is supplied to the side surface side of the solid electrolyte as can be seen from FIG. .
図11は、酸素側のガス拡散兼セパレータ82の平面図である。水素側のガス拡散兼セパレータ90も同様の構造である。ガス拡散兼セパレータ82の中央部には凹部821が形成されている。凹部821は、ガス拡散電極層の形状に合わせてある。ガス拡散電極層の材料としては、実施形態1と同様に、特許文献2に示されているテフロン(登録商標)修飾多孔質カーボンを好適に使用することができる。この材料を使用することにより、その内部を酸素ガス及び水素ガスが透過できるようにしてある点も、また、全体として撥水処理が施され、強い撥水性を備えていて水がガス拡散電極層の内部へ浸入できない点も実施形態1と同様である。
FIG. 11 is a plan view of the gas diffusion / separator 82 on the oxygen side. The gas diffusion and separator 90 on the hydrogen side has the same structure. A recess 82 1 is formed at the center of the gas diffusion / separator 82. The recess 82 1 is adapted to the shape of the gas diffusion electrode layer. As a material for the gas diffusion electrode layer, as in the first embodiment, Teflon (registered trademark) -modified porous carbon shown in Patent Document 2 can be suitably used. The use of this material allows oxygen gas and hydrogen gas to permeate through the interior of the material, and as a whole, water repellent treatment is applied to provide strong water repellency, so that water is a gas diffusion electrode layer. The point which cannot penetrate | invade into the inside of is also the same as that of Embodiment 1.
図11に示すように、凹部821の左側には、開口部822が設けられている。そして、凹部821と開口部822の間には、多数の溝823が形成され、凹部821と開口部822とを繋いでいる。なお、凹部と開口部とを繋ぐ溝は、ガスを流通させることができれば一本であってもよい。セルスタック70を組み立てると、図11に示す酸素側のガス拡散兼セパレータ82と水素側のガス拡散兼セパレータ90は、間に固体電解質を介して互いに向き合うように配置される。このため、図9に示した酸素側のガス拡散兼セパレータ82では、図9の右側に溝823が設けられ、水素側のガス拡散兼セパレータ90では、図9の左側に溝903(不図示)が設けられる。したがって、セルスタック70を組み立てたときに、図11に示される溝823はガス流路77と連通し、溝903はガス流路76と連通する。水電解モードでは、酸素側で発生した酸素ガスは溝823を通って開口部822に達し、そこからガス流路77へ導かれる。一方、水素側で発生した水素ガスは溝903を通って開口部903に達し、そこからガス流路76へ導かれる。
As shown in FIG. 11, an opening 82 2 is provided on the left side of the recess 82 1 . Further, between the recesses 82 1 and the opening portion 82 2, a number of grooves 82 3 is formed, which connects the recess 82 1 and the opening portion 82 2. In addition, the groove | channel which connects a recessed part and an opening part may be one if a gas can be distribute | circulated. When the cell stack 70 is assembled, the oxygen-side gas diffusion / separator 82 and the hydrogen-side gas diffusion / separator 90 shown in FIG. 11 are arranged so as to face each other with a solid electrolyte therebetween. Therefore, in the oxygen side gas diffusion and separator 82 shown in FIG. 9, a groove 82 3 is provided on the right side of FIG. 9, and in the hydrogen side gas diffusion and separator 90, a groove 90 3 (not shown) is provided on the left side of FIG. Is provided). Therefore, when the cell stack 70 is assembled, the groove 82 3 shown in FIG. 11 communicates with the gas flow path 77 and the groove 90 3 communicates with the gas flow path 76. In the water electrolysis mode, the oxygen gas generated on the oxygen side reaches the opening 82 2 through the groove 82 3 and is guided to the gas flow path 77 from there. On the other hand, the hydrogen gas generated on the hydrogen side reaches the opening 90 3 through the groove 90 3 and is guided to the gas flow path 76 from there.
図12は、図9に示した各部品を組み合わせて完成させた状態のセルスタック70の一つのセルを、図10のB-Bで切った中央領域の断面を模式的に示した拡大図である。図12に示すように、中央部に固体電解質95があり、その上側に酸素側のガス拡散電極層96、その下側に水素側のガス拡散電極層97がある。また、固体電解質95は、前述のように固体電解質保持部86の中央開口861にはめ込まれるため、固体電解質95の周囲、特に図12の左右の両側面は水が出入りしないように塞ぎ止められる。ガス拡散電極層96及びガス拡散電極層97の固体電解質95と接する側の表面には、触媒層98、99が形成されている。触媒層の材料及び形成方法は、実施形態1の場合と同様である。また、ここではガス拡散電極層96及び水素側のガス拡散電極層97に触媒層を形成しているが、固体電解質95の表面に触媒層を形成するようにしてもよい。
FIG. 12 is an enlarged view schematically showing a cross section of a central region taken along the line BB of FIG. 10, showing one cell of the cell stack 70 in a state completed by combining the components shown in FIG. is there. As shown in FIG. 12, there is a solid electrolyte 95 in the center, an oxygen-side gas diffusion electrode layer 96 on the upper side, and a hydrogen-side gas diffusion electrode layer 97 on the lower side. Further, the solid electrolyte 95, because they are fitted in the central opening 86 1 of the solid electrolyte retention portion 86, as described above, the periphery of the solid electrolyte 95, in particular side surfaces of the left and right of FIG. 12 is stopped closing so as not to enter and exit the water . Catalyst layers 98 and 99 are formed on the surfaces of the gas diffusion electrode layer 96 and the gas diffusion electrode layer 97 on the side in contact with the solid electrolyte 95. The material and formation method of the catalyst layer are the same as those in the first embodiment. Here, the catalyst layers are formed on the gas diffusion electrode layer 96 and the hydrogen-side gas diffusion electrode layer 97, but a catalyst layer may be formed on the surface of the solid electrolyte 95.
水電解モードでは、ガス拡散電極層96及び97に電圧を印加する。そして水を、前述のように、水流路751及び752、開口部862、863、水流路864、865を介して中央開口86にはめ込まれた固体電解質95に供給する。したがって、図12では、紙面と垂直な方向から固体電解質95に水が供給される。その結果、ガス拡散電極層96と固体電解質95との接合界面で発生した酸素ガスは、図12に矢印で示すように、ガス拡散電極層96の中を右側へ導かれ、図11に示す溝823を通って開口部822へ達し、ここからガス流路77を経て外部へ排出される。一方、ガス拡散電極層97と固体電解質95との接合界面で発生した水素ガスは、図12に矢印で示すように、ガス拡散電極層97の中を左側へ導かれ、溝903を通って開口部902へ達し、ここからガス流路76を経て外部へ排出される。
In the water electrolysis mode, a voltage is applied to the gas diffusion electrode layers 96 and 97. The water, as described above, and supplies the water passage 75 1 and 75 2, the openings 86 2, 86 3, water channel 86 4, 86 5 solid electrolyte 95 fitted to the central opening 86 through. Therefore, in FIG. 12, water is supplied to the solid electrolyte 95 from a direction perpendicular to the paper surface. As a result, the oxygen gas generated at the bonding interface between the gas diffusion electrode layer 96 and the solid electrolyte 95 is guided to the right in the gas diffusion electrode layer 96 as shown by arrows in FIG. It reaches the opening 82 2 through 82 3, and is discharged from here through the gas flow path 77. On the other hand, the hydrogen gas generated at the bonding interface between the gas diffusion electrode layer 97 and the solid electrolyte 95, as shown by the arrows in FIG. 12, is led through the gas diffusion electrode layer 97 to the left side, through the groove 90 3 It reached the opening 90 2 is discharged to the outside through the gas passage 76 from here.
燃料電池発電モードでは、外部から供給される酸素ガス及び水素ガスが固体電解質95に到達するまでの流れ、並びに固体電解質95で生成される水の流れは水電解モードとは逆になる。実施形態2でも、ガス拡散電極層96及び97が強い撥水性を備えていることから、供給する酸素ガス及び水素ガスを加圧することができる。酸素ガス及び水素ガスを加圧することによって、固体電解質95で生成された水は、水流路864、865へ向かうよう促され、スムーズに排出される。
In the fuel cell power generation mode, the flow until oxygen gas and hydrogen gas supplied from the outside reaches the solid electrolyte 95 and the flow of water generated in the solid electrolyte 95 are opposite to those in the water electrolysis mode. Also in Embodiment 2, since the gas diffusion electrode layers 96 and 97 have strong water repellency, the supplied oxygen gas and hydrogen gas can be pressurized. By pressurizing the oxygen gas and hydrogen gas, the water generated in the solid electrolyte 95, it is urged toward the water channel 86 4, 86 5, and is discharged smoothly.
前述のように、ガス拡散電極層96、97は撥水処理が施され、強い撥水性を備えている。これにより、外部から水流路864、865を介して固体電解質95へ供給される水が、ガス拡散電極層96、97へ入り込むことはない。したがって、酸素ガス、水素ガスの経路と、水の経路とは完全に分離され、これらが混ざり合うことはない。このため水電解モードから燃料電池発電モードに切り換えた場合でも水詰まりは起こらず、切り換えた直後から安定的に燃料電池発電モードでの運転が可能となる点は、実施形態1の場合と同様である。
As described above, the gas diffusion electrode layers 96 and 97 are subjected to water repellent treatment and have strong water repellency. Thus, the water supplied to the solid electrolyte 95 through the water passage 86 4, 86 5 from the outside, it does not enter into the gas diffusion electrode layers 96 and 97. Therefore, the path of oxygen gas and hydrogen gas and the path of water are completely separated, and they do not mix. Therefore, even when the water electrolysis mode is switched to the fuel cell power generation mode, water clogging does not occur, and the operation in the fuel cell power generation mode can be stably performed immediately after the switching, as in the case of the first embodiment. is there.
また、前述のように、水の供給及び排出を積層方向と実質的に垂直な第1の方向において行い、酸素ガス及び水素ガスの供給及び排出を積層方向と実質的に垂直なそれぞれ第2及び第3の方向において行うようにしたことによって、複数のセルを積層することが可能となり、積層方向におけるコンパクトな寸法を実現し、水電解セル及び燃料電池発電セルの能力を向上させることができる点も、実施形態1と同様である。
In addition, as described above, the supply and discharge of water are performed in the first direction substantially perpendicular to the stacking direction, and the supply and discharge of oxygen gas and hydrogen gas are performed in the second and substantially perpendicular directions to the stacking direction, respectively. By performing in the third direction, it becomes possible to stack a plurality of cells, to realize a compact size in the stacking direction, and to improve the capacity of the water electrolysis cell and the fuel cell power generation cell. Is the same as that of the first embodiment.
[実施形態3]
次に、ガス拡散電極層の撥水処理について、実施形態3として説明する。本実施形態でいうガス拡散電極層は、水電解時に生成された水素及び酸素を透過する性質を持つものをアノード電極又はカソード電極として使用したもので、一般的にはガス拡散層(GDL)とも呼ばれる。ガス拡散電極層の基材としては、一例としてMPL(マイクロポーラス層)付きカーボンペーパーを使用することができる。使用するカーボンペーパーの厚さは約0.16mmである。ただし、MPLは必ずしも必要ではない。このようなカーボンペーパーはある程度の機械的強度を有し、電気伝導性があり、さらにガスを良好に透過するという特性(良好なガス透過性)を備えている。しかしながら、この材料はそのままでは十分な撥水性を備えていないため、ガス拡散電極層に十分な撥水性を付与するための処理(撥水処理)を施すことが必要となる。 [Embodiment 3]
Next, water repellency treatment of the gas diffusion electrode layer will be described as Embodiment 3. The gas diffusion electrode layer referred to in this embodiment is a material having a property of permeating hydrogen and oxygen generated during water electrolysis and used as an anode electrode or a cathode electrode. Generally, a gas diffusion layer (GDL) is also used. be called. As a base material for the gas diffusion electrode layer, for example, carbon paper with MPL (microporous layer) can be used. The thickness of the carbon paper used is about 0.16 mm. However, MPL is not always necessary. Such a carbon paper has a certain degree of mechanical strength, is electrically conductive, and has a characteristic of good gas permeability (good gas permeability). However, since this material does not have sufficient water repellency as it is, it is necessary to perform treatment (water repellency treatment) for imparting sufficient water repellency to the gas diffusion electrode layer.
次に、ガス拡散電極層の撥水処理について、実施形態3として説明する。本実施形態でいうガス拡散電極層は、水電解時に生成された水素及び酸素を透過する性質を持つものをアノード電極又はカソード電極として使用したもので、一般的にはガス拡散層(GDL)とも呼ばれる。ガス拡散電極層の基材としては、一例としてMPL(マイクロポーラス層)付きカーボンペーパーを使用することができる。使用するカーボンペーパーの厚さは約0.16mmである。ただし、MPLは必ずしも必要ではない。このようなカーボンペーパーはある程度の機械的強度を有し、電気伝導性があり、さらにガスを良好に透過するという特性(良好なガス透過性)を備えている。しかしながら、この材料はそのままでは十分な撥水性を備えていないため、ガス拡散電極層に十分な撥水性を付与するための処理(撥水処理)を施すことが必要となる。 [Embodiment 3]
Next, water repellency treatment of the gas diffusion electrode layer will be described as Embodiment 3. The gas diffusion electrode layer referred to in this embodiment is a material having a property of permeating hydrogen and oxygen generated during water electrolysis and used as an anode electrode or a cathode electrode. Generally, a gas diffusion layer (GDL) is also used. be called. As a base material for the gas diffusion electrode layer, for example, carbon paper with MPL (microporous layer) can be used. The thickness of the carbon paper used is about 0.16 mm. However, MPL is not always necessary. Such a carbon paper has a certain degree of mechanical strength, is electrically conductive, and has a characteristic of good gas permeability (good gas permeability). However, since this material does not have sufficient water repellency as it is, it is necessary to perform treatment (water repellency treatment) for imparting sufficient water repellency to the gas diffusion electrode layer.
本実施形態におけるカーボンペーパーの撥水処理の方法は、次の手順で行う。まず、撥水剤を用意する。撥水剤としては、アセチレンブラック(AB)及びポリテトラフルオロエチレン(PTFE)を所定の割合で溶剤に溶かして流動体としたものを用いることができる。この流動体の撥水剤を、転写基材となる2枚のアルミ箔それぞれの上に、使用するカーボンペーパーをすべて覆うのに十分な面積となるように塗布し、必要に応じて乾燥させる。
The method of water repellent treatment of carbon paper in this embodiment is performed according to the following procedure. First, prepare a water repellent. As the water repellent, a fluid obtained by dissolving acetylene black (AB) and polytetrafluoroethylene (PTFE) in a solvent at a predetermined ratio can be used. This fluid water-repellent agent is applied on each of the two aluminum foils serving as a transfer base so as to have an area sufficient to cover all of the carbon paper to be used, and dried as necessary.
次に、撥水剤を塗布した面がカーボンペーパーの表面と接するように、2枚のアルミ箔でカーボンペーパーを両側からサンドイッチ状に挟んで密着させる。これをホットプレス機に装着し、PTFEの融点(327℃)を超える例えば360℃の温度で数分間、加圧しながら加熱する。こうすることにより、撥水剤は2枚のアルミ箔からカーボンベーパーに逆転写される。そして、これを冷却した後、アルミ箔を除去する。アルミ箔を除去する方法としては、直接機械的に剥がしてもよいが、酸性溶液(例えばNaCL溶液)に浸して表面のアルミ箔を化学的に除去するのが好ましい。これにより、カーボンペーパーの全体が撥水剤によって均一に被覆された状態となる。
Next, the carbon paper is sandwiched from both sides in a sandwich shape so that the surface to which the water repellent is applied is in contact with the surface of the carbon paper. This is mounted on a hot press machine and heated while being pressurized at a temperature of, for example, 360 ° C. exceeding the melting point (327 ° C.) of PTFE for several minutes. By doing so, the water repellent is reversely transferred from the two aluminum foils to the carbon vapor. And after cooling this, an aluminum foil is removed. As a method for removing the aluminum foil, it may be directly removed mechanically, but it is preferable to chemically remove the aluminum foil on the surface by dipping in an acidic solution (for example, a NaCL solution). As a result, the entire carbon paper is uniformly coated with the water repellent.
図13(a)は、上述の方法によって、カーボンペーパー100に、撥水剤102を被覆したあとのカーボンペーパー100の端部の状態を示した断面図である。図13(a)では、カーボンペーパー100の側面が完全に撥水剤と密着している。これは、ホットプレス機で加熱及び加圧したことによって、流動体となった撥水剤が梯子状の各枝の側面に回り込んだためと考えられる。しかしながら、カーボンペーパーが撥水剤で密閉されれば足り、図13(b)に示すように、カーボンペーパーの側面と撥水剤102との間に多少の隙間があってもよい。また、カーボンペーパー100の片側のみ撥水剤を被覆すれば十分な場合には、図13(c)に示すように、1枚のアルミ箔のみに撥水剤を塗布しておくことによって、カーボンペーパー100の片面のみに撥水剤102を逆転写して被覆することも可能である。なお、図13(a)~(c)では、カーボンペーパー100及び被覆された撥水剤102の厚さを実際よりも誇張して示している。上述のように撥水剤を逆転写する方法でカーボンペーパー100に撥水剤102を被覆することによって、カーボンペーパーの電気伝導性を維持しつつ、カーボンペーパーに所定の撥水性を付与することができる。
FIG. 13A is a cross-sectional view showing the state of the end of the carbon paper 100 after the carbon paper 100 is coated with the water repellent 102 by the above-described method. In FIG. 13A, the side surface of the carbon paper 100 is completely in contact with the water repellent. This is presumably because the water repellent that became a fluid wraps around the sides of each ladder-like branch by heating and pressurizing with a hot press. However, it is sufficient that the carbon paper is sealed with a water repellent, and there may be a slight gap between the side surface of the carbon paper and the water repellent 102 as shown in FIG. If it is sufficient to coat the water repellent only on one side of the carbon paper 100, as shown in FIG. 13 (c), the water repellent is applied to only one aluminum foil, so that the carbon repellent is applied. It is also possible to reversely coat the water repellent 102 on only one side of the paper 100. In FIGS. 13A to 13C, the thicknesses of the carbon paper 100 and the coated water repellent 102 are exaggerated from the actual ones. By covering the carbon paper 100 with the water repellent 102 by the reverse transfer method of the water repellent as described above, it is possible to give the carbon paper a predetermined water repellency while maintaining the electrical conductivity of the carbon paper. it can.
図14は、図6に示した梯子状のガス拡散電極層35と同形状のカーボンペーパー100をGDLとして、上述の方法で撥水剤102を被覆した状態を示す断面図である。ただし、図14は、カーボンペーパー100及び被覆された撥水剤102の厚さを実際よりも誇張して示している。同図に示すように、カーボンペーパー100には、上下の面だけでなく、梯子状の各枝の側面にも撥水剤102が回り込んで被覆されている。この後、電解質に接する側の面に触媒層を形成して、ガス拡散電極層35とする。ただし、触媒層については、撥水層102を形成する前にカーボンペーパー100の上に形成することもできる。
FIG. 14 is a cross-sectional view illustrating a state in which the carbon paper 100 having the same shape as that of the ladder-like gas diffusion electrode layer 35 illustrated in FIG. However, FIG. 14 shows the thickness of the carbon paper 100 and the coated water repellent 102 exaggerated from the actual one. As shown in the figure, the carbon paper 100 is covered with a water repellent 102 not only on the upper and lower surfaces but also on the side surfaces of each ladder-like branch. Thereafter, a catalyst layer is formed on the surface in contact with the electrolyte to form the gas diffusion electrode layer 35. However, the catalyst layer can also be formed on the carbon paper 100 before the water repellent layer 102 is formed.
本実施形態の撥水性ガス拡散電極層によれば、水電解時に供給する水にこれまで以上の圧力を加えることが可能となり、水電解セルとしての性能の向上を図ることができる。これは、図7に示すように、ガス拡散電極層35の梯子状の各枝の側面にも撥水剤102が被覆されていることで撥水性が向上し、各枝の側面からの水の侵入も完全に遮ることができることによるものと考えられる。
According to the water-repellent gas diffusion electrode layer of this embodiment, it becomes possible to apply more pressure than ever before to water supplied during water electrolysis, and it is possible to improve performance as a water electrolysis cell. As shown in FIG. 7, the water repellency is improved by covering the side surface of each ladder-like branch of the gas diffusion electrode layer 35 with the water-repellent agent 102, and water from the side surface of each branch is improved. The intrusion can be completely blocked.
上記実施形態3の特徴をまとめると以下のようになる。
(1)流動体の撥水剤を転写基材に塗布するステップと、
前記転写基材の撥水剤が塗布された部分で、平面状のガス拡散層の一方の面又は両面を覆うステップと、
前記転写基材で覆われた前記ガス拡散層を加圧しながら加熱して前記撥水剤を前記ガス拡散層に転写するステップと、
転写後の前記転写基材を除去するステップと、
を備える、ガス拡散層の撥水処理方法。
(2)前記流動体の撥水剤は、アセチレンブラック及びポリテトラフルオロエチレンを所定の割合で溶剤に溶かしたものを使用することができる。
(3)前記転写するステップで加熱する際の温度は、ポリテトラフルオロエチレンの融点よりも高い温度とすることができる。
(4)前記ガス拡散層としては、カーボンペーパーを使用するとことができる。
(5)前記転写するステップには、ホットプレス機を使用することができる。 The characteristics of the third embodiment are summarized as follows.
(1) applying a fluid water repellent to the transfer substrate;
A step of covering one surface or both surfaces of a planar gas diffusion layer at a portion where the water repellent of the transfer substrate is applied;
Heating the gas diffusion layer covered with the transfer substrate while applying pressure to transfer the water repellent to the gas diffusion layer;
Removing the transfer substrate after transfer;
A water repellent treatment method for a gas diffusion layer.
(2) As the water repellent of the fluid, a solution obtained by dissolving acetylene black and polytetrafluoroethylene in a solvent at a predetermined ratio can be used.
(3) The temperature at the time of heating in the transferring step can be higher than the melting point of polytetrafluoroethylene.
(4) Carbon paper can be used as the gas diffusion layer.
(5) A hot press machine can be used for the transferring step.
(1)流動体の撥水剤を転写基材に塗布するステップと、
前記転写基材の撥水剤が塗布された部分で、平面状のガス拡散層の一方の面又は両面を覆うステップと、
前記転写基材で覆われた前記ガス拡散層を加圧しながら加熱して前記撥水剤を前記ガス拡散層に転写するステップと、
転写後の前記転写基材を除去するステップと、
を備える、ガス拡散層の撥水処理方法。
(2)前記流動体の撥水剤は、アセチレンブラック及びポリテトラフルオロエチレンを所定の割合で溶剤に溶かしたものを使用することができる。
(3)前記転写するステップで加熱する際の温度は、ポリテトラフルオロエチレンの融点よりも高い温度とすることができる。
(4)前記ガス拡散層としては、カーボンペーパーを使用するとことができる。
(5)前記転写するステップには、ホットプレス機を使用することができる。 The characteristics of the third embodiment are summarized as follows.
(1) applying a fluid water repellent to the transfer substrate;
A step of covering one surface or both surfaces of a planar gas diffusion layer at a portion where the water repellent of the transfer substrate is applied;
Heating the gas diffusion layer covered with the transfer substrate while applying pressure to transfer the water repellent to the gas diffusion layer;
Removing the transfer substrate after transfer;
A water repellent treatment method for a gas diffusion layer.
(2) As the water repellent of the fluid, a solution obtained by dissolving acetylene black and polytetrafluoroethylene in a solvent at a predetermined ratio can be used.
(3) The temperature at the time of heating in the transferring step can be higher than the melting point of polytetrafluoroethylene.
(4) Carbon paper can be used as the gas diffusion layer.
(5) A hot press machine can be used for the transferring step.
以下に上記実施形態3の実施例を記載する。なお、本発明は以下の実施例に限定されるものではない。
ガス拡散電極層の撥水処理を以下のとおり実施した。
〔1〕撥水剤としてのスプレーコート液の調製
(1)300mLビーカーにTriton-X 1.0g、蒸留水95mL、エタノール5mLを加え、攪拌した。
(2)Acetylene Black(AB)を2.0g加え、攪拌を5分間行った。
(3)超音波分散を15分間行った。
(4)ボールミル(YTZボールφ2.0mms)を1日間行った。
(5)PTFE分散液(60wt%)を20g加えた。
(6)ボールミル(YTZボールφ2.0mm)を1時間行った。
(7)メンブレンフィルター(孔径5.0μm)でろ過を行った。
AB/PTFE重量比(PTFE体積割合)が1/6(84%)の)スプレーコート液が得られた。
〔2〕逆転写による成膜
(1)ホットプレート温度200℃上でアルミ箔上にスプレーコート機を用いてコートを行った。
(2)真空乾燥(温度200℃)にて15分間行った。
(3)φ22mmにカットしたMPLカーボンペーパー(GDL29BC)を用意し、コートしたアルミ箔で両面を挟み込んだ。
(4)所定の温度(280℃、320℃、360℃)にてホットプレス(260kg/cm2、3分間)行った。
(5)ホットプレス後、5MNaCl水溶液中に浸漬し、アルミ箔を溶解した。
(6)蒸留水で洗浄した。
(7)淵をカッターでカットした。
〔3〕SEMによる観察結果
逆転写後のサンプルのSEM像を図15に示す。同図(a)は逆転写しない場合のSEM画像、(b)は280℃でホットプレスした場合のSEM画像、(c)は320℃でホットプレスした場合のSEM画像、(d)は360℃でホットプレスした場合のSEM画像である。ホットプレス温度280℃、320℃のサンプルは、クラックが観測された。実際に耐水圧試験を実施した場合も、0.01MPaで水漏れが起こった。一方、ホットプレス温度を360℃で行ったもの(図15(d))は、クラックが観測されなかった。耐水圧試験は0.3MPaまでクリアした。これは、PTFEの融点(327℃)以上でホットプレスを行ったことで、PTFE粒子が溶解した状態で転写されたためと考えられた。また、ガス透過率は4mL/atm cm2minであり、ガス透過性を確認した。 Examples of the third embodiment will be described below. In addition, this invention is not limited to a following example.
The water repellency treatment of the gas diffusion electrode layer was performed as follows.
[1] Preparation of spray coating solution as water repellent (1) To a 300 mL beaker, 1.0 g of Triton-X, 95 mL of distilled water and 5 mL of ethanol were added and stirred.
(2) 2.0 g of Acetylene Black (AB) was added and stirred for 5 minutes.
(3) Ultrasonic dispersion was performed for 15 minutes.
(4) A ball mill (YTZ ball φ2.0 mms) was performed for 1 day.
(5) 20 g of PTFE dispersion (60 wt%) was added.
(6) A ball mill (YTZ ball φ2.0 mm) was performed for 1 hour.
(7) Filtration was performed with a membrane filter (pore size: 5.0 μm).
A spray coating solution having an AB / PTFE weight ratio (PTFE volume ratio) of 1/6 (84%) was obtained.
[2] Film formation by reverse transfer (1) Coating was carried out on an aluminum foil using a spray coater at a hot plate temperature of 200 ° C.
(2) It was performed by vacuum drying (temperature 200 ° C.) for 15 minutes.
(3) MPL carbon paper (GDL29BC) cut to φ22 mm was prepared, and both sides were sandwiched between coated aluminum foils.
(4) Hot pressing (260 kg / cm 2 , 3 minutes) was performed at a predetermined temperature (280 ° C., 320 ° C., 360 ° C.).
(5) After hot pressing, the aluminum foil was dissolved by dipping in a 5M NaCl aqueous solution.
(6) Washed with distilled water.
(7) The scissors were cut with a cutter.
[3] Observation Result by SEM FIG. 15 shows an SEM image of the sample after reverse transfer. (A) is an SEM image without reverse transfer, (b) is an SEM image when hot pressed at 280 ° C., (c) is an SEM image when hot pressed at 320 ° C., and (d) is 360 ° C. It is a SEM image at the time of hot-pressing by. Cracks were observed in the samples having hot press temperatures of 280 ° C. and 320 ° C. Even when the water pressure resistance test was actually carried out, water leakage occurred at 0.01 MPa. On the other hand, in the case where the hot pressing temperature was 360 ° C. (FIG. 15D), no crack was observed. The water pressure test was cleared to 0.3 MPa. This was thought to be because the PTFE particles were transferred in a dissolved state by performing hot pressing at a melting point (327 ° C.) or higher of PTFE. Further, the gas permeability was 4 mL / atm cm 2 min, and the gas permeability was confirmed.
ガス拡散電極層の撥水処理を以下のとおり実施した。
〔1〕撥水剤としてのスプレーコート液の調製
(1)300mLビーカーにTriton-X 1.0g、蒸留水95mL、エタノール5mLを加え、攪拌した。
(2)Acetylene Black(AB)を2.0g加え、攪拌を5分間行った。
(3)超音波分散を15分間行った。
(4)ボールミル(YTZボールφ2.0mms)を1日間行った。
(5)PTFE分散液(60wt%)を20g加えた。
(6)ボールミル(YTZボールφ2.0mm)を1時間行った。
(7)メンブレンフィルター(孔径5.0μm)でろ過を行った。
AB/PTFE重量比(PTFE体積割合)が1/6(84%)の)スプレーコート液が得られた。
〔2〕逆転写による成膜
(1)ホットプレート温度200℃上でアルミ箔上にスプレーコート機を用いてコートを行った。
(2)真空乾燥(温度200℃)にて15分間行った。
(3)φ22mmにカットしたMPLカーボンペーパー(GDL29BC)を用意し、コートしたアルミ箔で両面を挟み込んだ。
(4)所定の温度(280℃、320℃、360℃)にてホットプレス(260kg/cm2、3分間)行った。
(5)ホットプレス後、5MNaCl水溶液中に浸漬し、アルミ箔を溶解した。
(6)蒸留水で洗浄した。
(7)淵をカッターでカットした。
〔3〕SEMによる観察結果
逆転写後のサンプルのSEM像を図15に示す。同図(a)は逆転写しない場合のSEM画像、(b)は280℃でホットプレスした場合のSEM画像、(c)は320℃でホットプレスした場合のSEM画像、(d)は360℃でホットプレスした場合のSEM画像である。ホットプレス温度280℃、320℃のサンプルは、クラックが観測された。実際に耐水圧試験を実施した場合も、0.01MPaで水漏れが起こった。一方、ホットプレス温度を360℃で行ったもの(図15(d))は、クラックが観測されなかった。耐水圧試験は0.3MPaまでクリアした。これは、PTFEの融点(327℃)以上でホットプレスを行ったことで、PTFE粒子が溶解した状態で転写されたためと考えられた。また、ガス透過率は4mL/atm cm2minであり、ガス透過性を確認した。 Examples of the third embodiment will be described below. In addition, this invention is not limited to a following example.
The water repellency treatment of the gas diffusion electrode layer was performed as follows.
[1] Preparation of spray coating solution as water repellent (1) To a 300 mL beaker, 1.0 g of Triton-X, 95 mL of distilled water and 5 mL of ethanol were added and stirred.
(2) 2.0 g of Acetylene Black (AB) was added and stirred for 5 minutes.
(3) Ultrasonic dispersion was performed for 15 minutes.
(4) A ball mill (YTZ ball φ2.0 mms) was performed for 1 day.
(5) 20 g of PTFE dispersion (60 wt%) was added.
(6) A ball mill (YTZ ball φ2.0 mm) was performed for 1 hour.
(7) Filtration was performed with a membrane filter (pore size: 5.0 μm).
A spray coating solution having an AB / PTFE weight ratio (PTFE volume ratio) of 1/6 (84%) was obtained.
[2] Film formation by reverse transfer (1) Coating was carried out on an aluminum foil using a spray coater at a hot plate temperature of 200 ° C.
(2) It was performed by vacuum drying (temperature 200 ° C.) for 15 minutes.
(3) MPL carbon paper (GDL29BC) cut to φ22 mm was prepared, and both sides were sandwiched between coated aluminum foils.
(4) Hot pressing (260 kg / cm 2 , 3 minutes) was performed at a predetermined temperature (280 ° C., 320 ° C., 360 ° C.).
(5) After hot pressing, the aluminum foil was dissolved by dipping in a 5M NaCl aqueous solution.
(6) Washed with distilled water.
(7) The scissors were cut with a cutter.
[3] Observation Result by SEM FIG. 15 shows an SEM image of the sample after reverse transfer. (A) is an SEM image without reverse transfer, (b) is an SEM image when hot pressed at 280 ° C., (c) is an SEM image when hot pressed at 320 ° C., and (d) is 360 ° C. It is a SEM image at the time of hot-pressing by. Cracks were observed in the samples having hot press temperatures of 280 ° C. and 320 ° C. Even when the water pressure resistance test was actually carried out, water leakage occurred at 0.01 MPa. On the other hand, in the case where the hot pressing temperature was 360 ° C. (FIG. 15D), no crack was observed. The water pressure test was cleared to 0.3 MPa. This was thought to be because the PTFE particles were transferred in a dissolved state by performing hot pressing at a melting point (327 ° C.) or higher of PTFE. Further, the gas permeability was 4 mL / atm cm 2 min, and the gas permeability was confirmed.
5 セルスタック(セル積層体)
21,23,25,27 ガスケット
22,26 ガスセパレータ
24 電解質層
31,33 エンドプレート
32 中間プレート
35,36 ガス拡散電極層
45 スリット
51,52 水流路
54 水素ガス流路
60 溝
62 通気孔
63 水流路
65,67 ガス流路
66,68 流路
70 セルスタック
76,77 ガス流路
80,92 エンドプレート
82,90 ガス拡散兼セパレータ
86 固体電解質保持部
864,865 水流路
95 固体電解質
96,97 ガス拡散電極層
100 カーボンペーパー
102 撥水剤 5 Cell stack (cell stack)
21, 23, 25, 27 Gasket 22, 26 Gas separator 24 Electrolyte layer 31, 33 End plate 32 Intermediate plate 35, 36 Gas diffusion electrode layer 45 Slit 51, 52 Water flow channel 54 Hydrogen gas flow channel 60 Groove 62 Vent hole 63 Water flow road 65,67 gas channel 66, 68 the channel 70 cell stack 76, 77 gas passages 80,92 end plates 82 and 90 the gas diffusion and the separator 86 solid electrolyte retention portion 86 4, 86 5 water channel 95 the solid electrolyte 96, 97 Gas diffusion electrode layer 100 Carbon paper 102 Water repellent
21,23,25,27 ガスケット
22,26 ガスセパレータ
24 電解質層
31,33 エンドプレート
32 中間プレート
35,36 ガス拡散電極層
45 スリット
51,52 水流路
54 水素ガス流路
60 溝
62 通気孔
63 水流路
65,67 ガス流路
66,68 流路
70 セルスタック
76,77 ガス流路
80,92 エンドプレート
82,90 ガス拡散兼セパレータ
86 固体電解質保持部
864,865 水流路
95 固体電解質
96,97 ガス拡散電極層
100 カーボンペーパー
102 撥水剤 5 Cell stack (cell stack)
21, 23, 25, 27
Claims (8)
- 水素側電極と酸素側電極の間に電圧を印加して電解質に供給された水の電気分解を行い、又は、供給された水素含有ガス及び酸素含有ガスによって前記水素側電極、前記電解質及び前記酸素側電極において燃料電池発電を行う水電解/燃料電池発電用セルであって、 酸素側電極層、電解質層、水素側電極層、前記酸素側電極層と前記電解質層との間で液体の水から分離された酸素含有ガスを通過させる第1のガスセパレータ、及び、前記電解質層と前記水素側電極層との間で液体の水から分離された水素含有ガスを通過させる第2のガスセパレータが積層され、前記酸素側電極層と前記電解質層との間、及び/又は、前記電解質層と前記水素側電極層との間に触媒層が設けられたセル積層部と、
セルの積層方向に実質的に垂直な第1の方向において、水の供給又は排出を行う水流路と、
セルの積層方向に実質的に垂直な第2の方向において、酸素含有ガスの排出又は供給を行う酸素含有ガス流路と、
セルの積層方向に実質的に垂直な第3の方向において、水素含有ガスの排出又は供給を行う水素含有ガス流路と、
を備え、
前記酸素側電極層及び前記水素側電極層が撥水性電極層である、水電解/燃料電池発電用セル。 Electrolysis of water supplied to the electrolyte by applying a voltage between the hydrogen side electrode and the oxygen side electrode, or the hydrogen side electrode, the electrolyte and the oxygen by the supplied hydrogen-containing gas and oxygen-containing gas A water electrolysis / fuel cell power generation cell that performs fuel cell power generation at a side electrode, comprising: an oxygen side electrode layer, an electrolyte layer, a hydrogen side electrode layer, and liquid water between the oxygen side electrode layer and the electrolyte layer A first gas separator that passes the separated oxygen-containing gas and a second gas separator that passes the hydrogen-containing gas separated from liquid water between the electrolyte layer and the hydrogen-side electrode layer are stacked. A cell stack portion provided with a catalyst layer between the oxygen side electrode layer and the electrolyte layer and / or between the electrolyte layer and the hydrogen side electrode layer;
A water flow path for supplying or discharging water in a first direction substantially perpendicular to the cell stacking direction;
An oxygen-containing gas flow path for discharging or supplying the oxygen-containing gas in a second direction substantially perpendicular to the stacking direction of the cells;
A hydrogen-containing gas flow path for discharging or supplying the hydrogen-containing gas in a third direction substantially perpendicular to the cell stacking direction;
With
A cell for water electrolysis / fuel cell power generation, wherein the oxygen side electrode layer and the hydrogen side electrode layer are water repellent electrode layers. - 前記酸素側電極層に複数のスリットが形成され、
前記第1のガスセパレータの一方の面に前記水流路と連通する複数の溝が形成され、
前記第1のガスセパレータと前記酸素側電極とが積層され、前記複数の溝が前記酸素側電極の複数のスリットと整列し、水の電気分解時に前記水流路からの水を前記電解質層の表面へ供給する、請求項1記載の水電解/燃料電池発電用セル。 A plurality of slits are formed in the oxygen side electrode layer,
A plurality of grooves communicating with the water flow path are formed on one surface of the first gas separator,
The first gas separator and the oxygen side electrode are stacked, the plurality of grooves are aligned with the plurality of slits of the oxygen side electrode, and water from the water channel is electrolyzed when water is electrolyzed. The cell for water electrolysis / fuel cell power generation according to claim 1, wherein - 前記酸素側電極層の前記複数のスリット間にはしご状部材が形成され、
前記第1のガスセパレータの前記複数の溝以外の部分はしご状部分に、他方の面まで貫通して前記酸素含有ガス流路と連通する少なくとも1つの酸素側通気孔が形成され、
前記酸素側通気孔が前記酸素側電極層の前記はしご状部材と整列して、水の電気分解時に前記酸素側電極層を通過した前記酸素含有ガスを前記酸素含有ガス流路に流通させる、請求項1又は2記載の水電解/燃料電池発電用セル。 A ladder-like member is formed between the plurality of slits of the oxygen side electrode layer,
At least one oxygen-side vent hole penetrating to the other surface and communicating with the oxygen-containing gas flow path is formed in the ladder-like portion other than the plurality of grooves of the first gas separator,
The oxygen-side vent hole is aligned with the ladder-shaped member of the oxygen-side electrode layer, and the oxygen-containing gas that has passed through the oxygen-side electrode layer during water electrolysis is circulated through the oxygen-containing gas flow path. Item 3. The water electrolysis / fuel cell power generation cell according to Item 1 or 2. - 前記第2のガスセパレータに、貫通して前記水素含有ガス流路と連通する少なくもと1つの水素側通気孔が形成され、
水の電気分解時に前記水素側電極層を通過した前記水素含有ガスを前記水素含有ガス流路に流通させる、請求項1~3のいずれか一項記載の水電解/燃料電池発電用セル。 At least one hydrogen-side vent hole penetrating through the second gas separator and communicating with the hydrogen-containing gas flow path is formed,
The water electrolysis / fuel cell power generation cell according to any one of claims 1 to 3, wherein the hydrogen-containing gas that has passed through the hydrogen-side electrode layer is circulated through the hydrogen-containing gas flow path during water electrolysis. - 水素側電極と酸素側電極の間に電圧を印加して電解質に供給された水の電気分解を行い、又は、供給された水素含有ガス及び酸素含有ガスによって前記水素側電極、前記電解質及び前記酸素側電極において燃料電池発電を行う水電解/燃料電池発電用セルであって、
第1のガス拡散兼セパレータ、前記第1のガス拡散兼セパレータに保持される酸素側電極層、電解質層及びこれを保持する電解質保持部、水素側電極層、前記水素側電極層を保持する第2のガス拡散兼セパレータが積層され、前記酸素側電極層と前記電解質層との間、及び/又は、前記電解質層と前記水素側電極層との間に触媒層が設けられたセル積層部と、
前記第1のガス拡散兼セパレータに前記積層方向に実質的に垂直な第2の方向に設けられた酸素含有ガス流路と、
前記第2のガス拡散兼セパレータに前記積層方向及び前記第2の方向に実質的に垂直な第3の方向に設けられた水素含有ガス流路と、
前記電解質保持部に前記積層方向と実質的に垂直な第1の方向に設けられ、前記電解質を含む層の側面から水を供給し又は水を排出する水流路と、
を備え、前記酸素側電極層及び前記水素側電極層が撥水性電極層である、水電解/燃料電池発電用セル。 Electrolysis of water supplied to the electrolyte by applying a voltage between the hydrogen side electrode and the oxygen side electrode, or the hydrogen side electrode, the electrolyte and the oxygen by the supplied hydrogen-containing gas and oxygen-containing gas A water electrolysis / fuel cell power generation cell that performs fuel cell power generation at a side electrode,
A first gas diffusion / separator, an oxygen side electrode layer held by the first gas diffusion / separator, an electrolyte layer and an electrolyte holding unit for holding the same, a hydrogen side electrode layer, a first for holding the hydrogen side electrode layer A cell stack portion in which two gas diffusion / separators are stacked and a catalyst layer is provided between the oxygen side electrode layer and the electrolyte layer and / or between the electrolyte layer and the hydrogen side electrode layer; ,
An oxygen-containing gas flow path provided in a second direction substantially perpendicular to the stacking direction of the first gas diffusion and separator;
A hydrogen-containing gas flow path provided in the third direction substantially perpendicular to the stacking direction and the second direction in the second gas diffusion and separator;
A water flow path provided in the electrolyte holding unit in a first direction substantially perpendicular to the stacking direction, supplying water from a side surface of the layer containing the electrolyte, or discharging water;
A cell for water electrolysis / fuel cell power generation, wherein the oxygen side electrode layer and the hydrogen side electrode layer are water repellent electrode layers. - 前記電解質は、プロトン(H+)伝導性の多孔質電解質、及び/又は緻密電解質である、請求項1~5のいずれか一項記載の水電解/燃料電池発電用セル。 The water electrolysis / fuel cell power generation cell according to any one of claims 1 to 5, wherein the electrolyte is a proton (H + ) conductive porous electrolyte and / or a dense electrolyte.
- 前記酸素側電極層及び水素側電極層の一方又は両方は、テフロン(登録商標)修飾多孔質カーボンを備える、請求項1~6のいずれか一項記載の水電解/燃料電池発電用セル。 The water electrolysis / fuel cell power generation cell according to any one of claims 1 to 6, wherein one or both of the oxygen side electrode layer and the hydrogen side electrode layer comprises Teflon (registered trademark) modified porous carbon.
- 請求項1~7のいずれか一項記載のセルを前記積層方向において2以上積層してなるセル積層体であって、前記各セルにおける前記水用流路の少なくとも一部は互いに接続され、前記各セルにおける酸素用流路の少なくとも一部は互いに接続され、前記各セルにおける水素用流路の少なくとも一部は互いに接続され、前記各セルにおける前記酸素側電極層の少なくとも一部は互いに電気的に接続され、前記各セルにおける前記水素側電極層の少なくとも一部は互いに電気的に接続されていることを特徴とするセル積層体。 A cell laminate formed by laminating two or more cells according to any one of claims 1 to 7 in the laminating direction, wherein at least some of the water flow paths in each cell are connected to each other, At least a part of the oxygen flow path in each cell is connected to each other, at least a part of the hydrogen flow path in each cell is connected to each other, and at least a part of the oxygen-side electrode layer in each cell is electrically connected to each other. And at least part of the hydrogen-side electrode layers in each cell are electrically connected to each other.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/344,824 US11699801B2 (en) | 2016-11-01 | 2017-11-01 | Cell for water electrolysis/fuel cell power generation and cell stack body having a plurality of same cells stacked |
DE112017005528.8T DE112017005528T5 (en) | 2016-11-01 | 2017-11-01 | WATER ELECTROLYSIS CELL / FUEL CELL ENERGY GENERATION AND CELL STACK BODY WITH A MULTIPLE OF SAME STACKED CELLS |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016214586 | 2016-11-01 | ||
JP2016-214586 | 2016-11-01 | ||
JP2017182777A JP6845436B2 (en) | 2016-11-01 | 2017-09-22 | Cell for water electrolysis / fuel cell power generation and cell laminate in which a plurality of these are laminated |
JP2017-182777 | 2017-09-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018084175A1 true WO2018084175A1 (en) | 2018-05-11 |
Family
ID=62075952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/039530 WO2018084175A1 (en) | 2016-11-01 | 2017-11-01 | Cell for water electrolysis/fuel cell power generation and cell stack body having a plurality of same cells stacked |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018084175A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118028844A (en) * | 2023-06-29 | 2024-05-14 | 广东卡沃罗氢科技有限公司 | PEM electrolytic cell and intermediate water channel plate thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004259457A (en) * | 2003-02-24 | 2004-09-16 | Hitachi Zosen Corp | Reversible cell for hydro electrolysis and fuel cell |
JP2007012315A (en) * | 2005-06-28 | 2007-01-18 | National Institute Of Advanced Industrial & Technology | Solid polymer electrolyte type water electrolysis / fuel cell reversible cell and its oxygen electrode |
JP2008053193A (en) * | 2006-08-28 | 2008-03-06 | Daiki Ataka Engineering Co Ltd | Electrocatalyst for hydrogen-air / solid polymer electrolyte type reversible cell and reversible cell using the same |
JP2010153218A (en) * | 2008-12-25 | 2010-07-08 | National Institute Of Advanced Industrial Science & Technology | Operation switching method of reversible cell |
JP2014194916A (en) * | 2013-02-27 | 2014-10-09 | Takasago Thermal Eng Co Ltd | Charge/discharge system and method for drying charge/discharge system |
-
2017
- 2017-11-01 WO PCT/JP2017/039530 patent/WO2018084175A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004259457A (en) * | 2003-02-24 | 2004-09-16 | Hitachi Zosen Corp | Reversible cell for hydro electrolysis and fuel cell |
JP2007012315A (en) * | 2005-06-28 | 2007-01-18 | National Institute Of Advanced Industrial & Technology | Solid polymer electrolyte type water electrolysis / fuel cell reversible cell and its oxygen electrode |
JP2008053193A (en) * | 2006-08-28 | 2008-03-06 | Daiki Ataka Engineering Co Ltd | Electrocatalyst for hydrogen-air / solid polymer electrolyte type reversible cell and reversible cell using the same |
JP2010153218A (en) * | 2008-12-25 | 2010-07-08 | National Institute Of Advanced Industrial Science & Technology | Operation switching method of reversible cell |
JP2014194916A (en) * | 2013-02-27 | 2014-10-09 | Takasago Thermal Eng Co Ltd | Charge/discharge system and method for drying charge/discharge system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118028844A (en) * | 2023-06-29 | 2024-05-14 | 广东卡沃罗氢科技有限公司 | PEM electrolytic cell and intermediate water channel plate thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2922132B2 (en) | Polymer electrolyte fuel cell | |
US8795919B2 (en) | Fuel cell layer | |
JP2005209605A (en) | Electrolyte membrane / electrode structure and fuel cell | |
CA2988369C (en) | Solid oxide fuel cell | |
JP5298469B2 (en) | Gas diffusion electrode for fuel cell | |
JP2014053118A (en) | Fuel cell and manufacturing method of the same | |
CN1331264C (en) | Electrolyte membrane-electrode assembly for fuel cell and manufacturing method thereof | |
JP4965834B2 (en) | Solid polymer electrolyte membrane electrode assembly and solid polymer fuel cell | |
US8586265B2 (en) | Method of forming membrane electrode assemblies for electrochemical devices | |
JP2008146928A (en) | Gas diffusing electrode for fuel cell and its manufacturing method | |
WO2018084175A1 (en) | Cell for water electrolysis/fuel cell power generation and cell stack body having a plurality of same cells stacked | |
JP2009140652A (en) | Manufacturing method of membrane / electrode assembly | |
JP2002343377A (en) | Electrolyte film-electrode joined body for fuel cell, and manufacturing method of the same | |
KR20210148719A (en) | Fuel cell comprising durability enhancing layer, and preparing method thereof | |
JP2006338943A (en) | Electrolyte membrane-electrode assembly | |
JP5341321B2 (en) | Electrolyte membrane / electrode structure for polymer electrolyte fuel cells | |
JP6845436B2 (en) | Cell for water electrolysis / fuel cell power generation and cell laminate in which a plurality of these are laminated | |
JP2012190720A (en) | Membrane electrode assembly in solid polymer fuel cell and method for manufacturing the same | |
JP2010232062A (en) | Fuel cell | |
JP2015050073A (en) | Method for manufacturing gas diffusion layer for fuel battery | |
JP5614468B2 (en) | Manufacturing method of gas diffusion electrode for fuel cell | |
JP5804449B2 (en) | Manufacturing method of membrane electrode assembly | |
JP4965833B2 (en) | Solid polymer electrolyte membrane electrode assembly and solid polymer fuel cell | |
JP2009129650A (en) | Fuel cell | |
JP5087216B2 (en) | Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17868478 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17868478 Country of ref document: EP Kind code of ref document: A1 |