JP2010153218A - Operation switching method of reversible cell - Google Patents

Operation switching method of reversible cell Download PDF

Info

Publication number
JP2010153218A
JP2010153218A JP2008330471A JP2008330471A JP2010153218A JP 2010153218 A JP2010153218 A JP 2010153218A JP 2008330471 A JP2008330471 A JP 2008330471A JP 2008330471 A JP2008330471 A JP 2008330471A JP 2010153218 A JP2010153218 A JP 2010153218A
Authority
JP
Japan
Prior art keywords
cell
reversible
air
supplied
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008330471A
Other languages
Japanese (ja)
Other versions
JP5419255B2 (en
Inventor
Atsushi Kato
敦史 加藤
Tetsuya Yoshida
哲也 吉田
Tsutomu Iokura
勉 五百蔵
Hiroshi Ito
伊藤  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Daiki Ataka Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Daiki Ataka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd, National Institute of Advanced Industrial Science and Technology AIST, Daiki Ataka Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2008330471A priority Critical patent/JP5419255B2/en
Publication of JP2010153218A publication Critical patent/JP2010153218A/en
Application granted granted Critical
Publication of JP5419255B2 publication Critical patent/JP5419255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a short-time and easy switching method of operation modes for a reversible cell integrating a solid polymer type water electrolysis device and a fuel cell. <P>SOLUTION: In the reversible cell 1 integrating the solid polymer type water electrolysis device and the fuel cell, when the operation mode is switched over from the water electrolysis device operation to the fuel cell operation, electrolyte water remaining in a channel is drained from inside the cell by supplying gas into a reaction gas channel inside the reversible cell 1 after finishing the water electrolysis operation and before starting the fuel cell operation. Afterwards, an interior substrate of the cell is dried by supplying air only to the reaction gas channel 14 on an oxidant electrode side when the fuel cell is in operation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体高分子形の水電解装置と燃料電池のセルを一体化した可逆セルにおいて、水電解運転から燃料電池運転への運転を切り替える、切り替え方法に関するものである。   The present invention relates to a switching method for switching operation from a water electrolysis operation to a fuel cell operation in a reversible cell in which a solid polymer water electrolysis device and a fuel cell are integrated.

同形状の固体高分子電解質型セルとして構成することができる水電解セルと燃料電池セルとを一体化した固体高分子形の可逆セルは、一般的には、固体電解質材料の膜(高分子膜)を両側から電極触媒層によって挟持して構成される発電ユニット(MEA:Membrane Electrode Assembly)と、その外側に接合した酸化剤極集電体及び燃料極集電体と、これら酸化剤極集電体及び燃料極集電体の各外側に配置したセパレータとによって主要部が構成されている。通常、セパレータは波板形状を有し、セパレータと酸化剤極集電体、及びセパレータと燃料極集電体とによって形成される各独立空間が、酸化剤(酸素ガス)、燃料(水素ガス)の反応ガスの流路を構成する。MEAと酸化剤極集電体及び燃料極集電体は、セル内部基材を構成している。   A solid polymer reversible cell in which a water electrolysis cell and a fuel cell that can be configured as a solid polymer electrolyte cell of the same shape are integrated is generally a membrane of a solid electrolyte material (polymer membrane). ) Are sandwiched by electrode catalyst layers from both sides, and a power generation unit (MEA: Electrode Assembly), an oxidant electrode current collector and a fuel electrode current collector joined to the outside thereof, and these oxidant electrode current collectors The main part is comprised by the separator arrange | positioned on each outer side of the body and the anode current collector. Usually, the separator has a corrugated plate shape, and each independent space formed by the separator, the oxidant electrode current collector, and the separator and the fuel electrode current collector includes an oxidant (oxygen gas) and a fuel (hydrogen gas). The reaction gas flow path is configured. The MEA, the oxidant electrode current collector, and the fuel electrode current collector form a cell internal substrate.

このような構造の可逆セルは、水電解と燃料電池の機能を一体化させた機器であるため、運転モードの切替操作が生じる。この切替には、水電解運転→燃料電池運転と、燃料電池運転→水電解運転の2通りがある。このうち水電解運転→燃料電池運転への切替においては、水電解運転でセル内部基材が完全に濡れた状態となっているため、その状態で燃料電池運転を開始しようとして反応ガスを供給しても、基材の濡れにより反応場までのガス供給が妨げられ、結果として燃料電池運転が不可能となる。可逆セルの運転切替を自在に行うためには、水電解運転→燃料電池運転への運転切替において、水電解運転後の基材の濡れを適切に制御し、反応ガスが反応場までスムーズに供給できる状態をいち早く確保する必要がある。   Since the reversible cell having such a structure is a device in which the functions of water electrolysis and a fuel cell are integrated, operation mode switching operation occurs. There are two types of switching: water electrolysis operation → fuel cell operation and fuel cell operation → water electrolysis operation. Among these, in switching from water electrolysis operation to fuel cell operation, since the cell internal substrate is completely wet in the water electrolysis operation, the reaction gas is supplied to start the fuel cell operation in that state. However, the gas supply to the reaction field is hindered by the wetting of the base material, and as a result, the fuel cell operation becomes impossible. In order to freely switch the operation of the reversible cell, in the operation switching from water electrolysis operation to fuel cell operation, wetting of the substrate after water electrolysis operation is appropriately controlled, and the reaction gas is smoothly supplied to the reaction field It is necessary to secure a state that can be done quickly.

この点に関し、たとえば従来提案されている技術としては、水電解運転により完全に濡れたセル内部基材を乾燥させるために、不活性ガスを使用しているものがある(特許文献1)。これは、酸化剤極側及び燃料極側の両極の反応ガス流路に不活性ガスを供給して、セル内部基材が持つ撥水性を回復させる目的でセル内部基材を一度完全に乾燥させるというものである。セル内部の乾燥状態は、プロトン伝導性を有する高分子膜の抵抗上昇値により判断するようにしている。そしてそのように不活性ガスを供給して乾燥させた後、加湿した反応ガスを供給して、過度に乾燥した高分子膜を適度な湿潤状態にした後に、負荷を印加(燃料電池運転を開始)するようにしている。   In this regard, for example, as a conventionally proposed technique, there is one that uses an inert gas in order to dry a cell internal substrate completely wetted by water electrolysis (Patent Document 1). This is because the inert gas is supplied to the reaction gas passages on both the oxidizer electrode side and the fuel electrode side, and the cell internal substrate is completely dried once for the purpose of restoring the water repellency of the cell internal substrate. That's it. The dry state inside the cell is judged by the resistance increase value of the polymer membrane having proton conductivity. And after supplying the inert gas and drying in that way, the humidified reaction gas is supplied and the excessively dried polymer film is brought into an appropriate wet state, and then a load is applied (starting fuel cell operation) )

またその他に、単セル(最小単位の電解・発電ユニット)を積層したスタックにおいて、各セル間の乾燥状態が偏る原因であるセル内部残留水を、一定量以上の不活性ガスを供給することで吹き飛ばし、もってセル内部基材を均一に乾燥する技術も提案されている(特許文献2)。   In addition, in a stack in which single cells (minimum unit electrolysis / power generation units) are stacked, the residual water inside the cells, which is the cause of uneven drying between the cells, can be supplied by supplying a certain amount or more of inert gas. A technique has also been proposed in which the cell base material is uniformly dried by blowing off (Patent Document 2).

特開2006−127807号公報JP 2006-127807 A 特開2007−115588号公報JP 2007-115588 A

特許文献1に記載の技術は、安全かつ確実な切替は可能であるが、別途不活性ガス設備が必要となる。セルの積層枚数が増加すれば、それに比例した量の不活性ガスが必要となるため、可逆セルの高出力化に伴い不活性ガス供給設備も大型化し、イニシャルコスト及びランニングコストも増加するという点も否めなかった。さらに、セル内部基材が持つ撥水性を回復させる目的で、高分子膜を一旦規定の値まで乾燥させ、その後反応加湿ガスで高分子膜を湿潤化させているため、制御の点で改善の余地があった。また特許文献2に記載の技術においても、やはり不活性ガス設備が必要であり、またチャネルに残留した残留電解水を排出する際の排水能力は重力とガス圧に依存している。またいずれも大量の不活性ガス(たとえば窒素ガス)を必要とする。   The technique described in Patent Document 1 can be switched safely and reliably, but requires an inert gas facility. If the number of stacked cells increases, an amount of inert gas proportional to the number of cells will be required, so that the inert gas supply equipment will become larger and the initial cost and running cost will increase as the output of the reversible cell increases. I could not deny it. Furthermore, for the purpose of restoring the water repellency of the cell internal substrate, the polymer film is once dried to the specified value, and then the polymer film is moistened with a reaction humidifying gas. There was room. The technique described in Patent Document 2 also requires an inert gas facility, and the drainage capacity when discharging the residual electrolyzed water remaining in the channel depends on gravity and gas pressure. All of them require a large amount of inert gas (for example, nitrogen gas).

本発明はかかる点に鑑みてなされたものであり、不活性ガス及びその供給設備を必要とせずに、水電解運転から燃料電池運転への運転切り替えを短時間にかつ簡潔に行うことを目的としている。   The present invention has been made in view of the above points, and it is intended to perform operation switching from a water electrolysis operation to a fuel cell operation in a short time and in a simple manner without requiring an inert gas and its supply equipment. Yes.

前記目的を達成するため、本発明は、固体高分子形の水電解装置と燃料電池とを一体化して、水電解装置運転と燃料電池運転との運転モードの切り替え可能な可逆セルを、水電解装置運転から燃料電池運転へと運転モードを切り替える方法において、水電解装置運転の終了後、燃料電池運転を行う前に、可逆セル内部の反応ガス流路に気体を供給して、流路内に残留した電解水をセル内部から排出し、その後、燃料電池運転時に酸化剤極となる側の反応ガス流路にのみ空気を供給し、セル内部基材を乾燥させることを特徴としている。   In order to achieve the above object, the present invention provides a reversible cell in which a solid polymer water electrolyzer and a fuel cell are integrated, and the operation mode can be switched between water electrolyzer operation and fuel cell operation. In the method of switching the operation mode from the device operation to the fuel cell operation, after the water electrolysis device operation is completed and before the fuel cell operation is performed, gas is supplied to the reaction gas flow channel inside the reversible cell, The remaining electrolyzed water is discharged from the inside of the cell, and then air is supplied only to the reaction gas flow path on the side that becomes the oxidant electrode during operation of the fuel cell to dry the cell internal substrate.

発明者らの知見によれば、酸化剤極となる側の反応ガス流路にのみ空気を供給した場合、酸化剤極側の水分は酸化剤極集電体から当該空気に伝達され、当該空気によって系外に排出される。一方燃料極側の水分については、まず燃料極集電体からMEA及び酸化剤側集電体を伝達して、最終的に当該空気に伝達され、当該空気によって系外に排出される。したがって、従来のように窒素ガスなどの不活性ガスを酸化剤極側及び燃料極側の両極の反応ガス流路に供給しなくとも、セル内部基材を好適に乾燥させることができる。本発明に用いる前記空気としては、もちろん大気中の空気をそのまま用いることができるほか、通常の空調機で減湿処理を行なったものを用いてもよい。好ましくは露点温度が20℃以下のものがよい。   According to the knowledge of the inventors, when air is supplied only to the reaction gas channel on the side that becomes the oxidant electrode, the moisture on the oxidant electrode side is transferred from the oxidant electrode current collector to the air, and the air Is discharged outside the system. On the other hand, the moisture on the fuel electrode side is first transmitted from the fuel electrode current collector to the MEA and the oxidant side current collector, finally transmitted to the air, and discharged outside the system by the air. Accordingly, the substrate inside the cell can be suitably dried without supplying an inert gas such as nitrogen gas to the reaction gas passages on both the oxidant electrode side and the fuel electrode side as in the prior art. Of course, as the air used in the present invention, air in the atmosphere can be used as it is, or air that has been subjected to dehumidification treatment by a normal air conditioner may be used. Preferably, the dew point temperature is 20 ° C or lower.

ここで、乾燥ガスとなる空気の中における集電体の濡れ状態は、空気の流れ方向、すなわち供給方向で変化する。したがって一方向のみから空気を供給して乾燥を行うと、上流は乾燥しているにもかかわらず下流はまだ乾燥していないという状態が発生するおそれがある。こうなると、下流側を乾燥させるために引き続き空気を供給する必要がある。しかしそのように上流側が乾燥しているにもかかわらず、引き続き空気を供給してしまうと、上流側のMEA、特に高分子膜が過度に乾燥して、膜がダメージを受けるおそれがある。   Here, the wet state of the current collector in the air serving as the dry gas varies depending on the air flow direction, that is, the supply direction. Therefore, when air is supplied from only one direction and drying is performed, there is a possibility that a state where the upstream is dry but the downstream is not yet dried may occur. In this case, it is necessary to continuously supply air in order to dry the downstream side. However, if air is continuously supplied even though the upstream side is dry, the MEA on the upstream side, particularly the polymer membrane, may be excessively dried, and the membrane may be damaged.

かかる場合に対処するため、空気を供給し、セル内部基材を乾燥させるにあたっては、乾燥途中で反応ガス流路に供給する空気の供給方向を逆転するようにしてもよい。これによって、最も乾燥させたい部分での水分伝達量が最大となるばかりでなく、空気の流れ方向で当該空気の水分量が増加していくため、逆転後は下流側(逆転前の上流側)において、MEAを適度に加湿してこれを保護することができ、結果としてセル内部基材全面を均一に乾燥させることができる。   In order to cope with such a case, when supplying air and drying the cell internal substrate, the supply direction of air supplied to the reaction gas flow path may be reversed during the drying. This not only maximizes the amount of moisture transferred in the portion that is most desired to be dried, but also increases the amount of moisture in the air flow direction, so downstream after the reverse rotation (upstream before the reverse rotation) In this case, the MEA can be appropriately humidified to protect it, and as a result, the entire cell inner substrate can be uniformly dried.

供給された空気に伝達されるセル内部基材からの水蒸気移動量を予め計算によって求め、その結果に基づいてセル内部基材の残留水分量が所定の値に達するまで前記空気の供給を行なうようにしてもよい。   The amount of water vapor transferred from the cell internal substrate to be transmitted to the supplied air is calculated in advance, and the air is supplied until the residual moisture content of the cell internal substrate reaches a predetermined value based on the result. It may be.

この場合、既述したように、本発明においては、空気とセル内部基材間の水分濃度差による水分(物質)伝達により行われ、水分の伝達経路は酸化剤極側は酸化剤極集電体から空気であり、燃料極側はまず燃料極集電体からMEAと酸化剤側集電体を伝達して、最終的に空気に伝達されて系外に排出される。そのため、水蒸気移動量を予め計算によって求める場合、厳密には両極集電体と膜の基材積層方向の拡散係数を求め、Fickの法則により、基材の厚み方向の濡れ状態を部材毎に算出し、さらに酸化剤極集電体表面と空気ドライガス間の物質伝達率を求めることで両極集電体の濡れ状況を算出する必要がある。しかしながら、両極集電体とMEAの積層方向の厚みは、僅か1mm以下と非常に薄いため、実用的な観点からすると基材内部積層方向の濡れ状態を算出する必要は無く、燃料極集電体から酸化剤極集電体を1つの基材とみなすことができる。このように1つの基材とみなした集電体と空気間で物質伝達計算を行うことで、空気流れ方向の水分移動量を算出することができ、それに基づいてセル内部基材の残留水分量が所定の値(乾燥度)に達するまでの時間等を求めることができるから、前記空気の供給時間の制御が容易である。   In this case, as described above, in the present invention, moisture (substance) transmission is performed by the difference in moisture concentration between the air and the cell internal substrate, and the moisture transmission path is the oxidant electrode current collector on the oxidant electrode side. Air from the body is the air, and the fuel electrode side first transmits the MEA and the oxidant side current collector from the fuel electrode current collector, and is finally transmitted to the air and discharged out of the system. Therefore, when the amount of water vapor movement is calculated in advance, strictly speaking, the diffusion coefficient of the bipolar current collector and the film in the substrate lamination direction is obtained, and the wet state in the thickness direction of the substrate is calculated for each member according to Fick's law. In addition, it is necessary to calculate the wet state of the bipolar current collector by determining the mass transfer rate between the surface of the oxidant electrode current collector and the air dry gas. However, since the thickness of the bipolar current collector and the MEA in the stacking direction is as thin as only 1 mm or less, there is no need to calculate the wet state in the base material internal stacking direction from a practical viewpoint. Therefore, the oxidant electrode current collector can be regarded as one substrate. In this way, by performing mass transfer calculation between the current collector regarded as one substrate and air, the amount of moisture movement in the air flow direction can be calculated, and based on that, the amount of residual moisture in the substrate inside the cell Since it is possible to obtain the time until the temperature reaches a predetermined value (dryness), it is easy to control the air supply time.

そのようにセル内部基材の残留水分量が所定の値に達する時点より前まで前記空気の供給を行ない、その後は空気の供給はそのままで、燃料極側の反応ガス流路に低加湿または無加湿燃料ガスを供給して、定格よりも低い低負荷燃料電池運転を行なうようにしてもよい。すなわち乾燥途中から、定格よりも低い低負荷(低電流密度)の燃料電池運転を行なうようにしもよい。そしてその後徐々に電流密度を上げて定格運転に近づけるようにしてもよい。これによって、初期の運転時には低負荷運転であるものの、次第に通常の定格運転を実施することができ、発電を伴わない乾燥運転の時間を短縮して、結果的に全体として効率のよい燃料電池運転を実施することができる。ここで低加湿、無加湿燃料ガスとは、露点温度がたとえば30℃以下のものをいう。   In this way, the air is supplied before the time when the residual moisture content of the cell internal substrate reaches a predetermined value, and after that, the supply of air remains as it is, and the humidified or non-humidified gas is not supplied to the reaction gas channel on the fuel electrode side. A humidified fuel gas may be supplied to perform low load fuel cell operation lower than the rated value. That is, a fuel cell operation with a low load (low current density) lower than the rating may be performed during the drying. Thereafter, the current density may be gradually increased to approach the rated operation. As a result, although it is a low load operation at the initial operation, it is possible to gradually carry out a normal rated operation, shortening the dry operation time without power generation, and as a result efficient fuel cell operation as a whole. Can be implemented. Here, the low-humidified and non-humidified fuel gas means one having a dew point temperature of, for example, 30 ° C. or less.

供給された空気に伝達されるセル内部基材からの水蒸気移動量を予め計算によって求めた結果に基づいてセル内部基材の残留水分量が所定の値に達するまで前記空気の供給を行なうことに代えて、可逆セルの開回路電圧を測定し、その測定結果が所定値に達するまで前記空気の供給を行なうようにしてもよい。開回路電圧とは、負荷をかけていない状態の電圧である。可逆セル中の高分子膜は、湿潤状態のときは開回路電圧が高いが、乾燥するにつれて開回路電圧は低下する特性があるので、それを利用して所定の値になった時点で、乾燥したこととみなして、運転を切り替えるようにしてもよい。   To supply the air until the residual moisture content of the cell internal substrate reaches a predetermined value based on the result of calculation in advance of the amount of water vapor transferred from the cell internal substrate transmitted to the supplied air. Instead, the open circuit voltage of the reversible cell may be measured, and the air may be supplied until the measurement result reaches a predetermined value. The open circuit voltage is a voltage in a state where no load is applied. The polymer membrane in the reversible cell has a high open circuit voltage when wet, but the open circuit voltage decreases as it dries. It may be considered that the operation has been switched.

可逆セルから排出される水分を多く含んだ空気を減湿し、湿度が低下した空気を、酸化剤極となる側の反応ガス流路に供給する空気として再び用いるようにすれば、切り替え用に供する空気を、別途確保する必要が無く、またこれを貯蔵したり、あるいは循環させる機構を付加することで、必要な空気、酸素を節約することができる。   If the air containing a lot of moisture discharged from the reversible cell is dehumidified, and the air whose humidity has been lowered is used again as the air supplied to the reaction gas flow path on the oxidizer electrode side, it can be used for switching. There is no need to secure the air to be provided separately, and the necessary air and oxygen can be saved by adding a mechanism for storing or circulating the air.

可逆セルにおける集電体に親水処理を行なって基材の表面張力を低下させることで、集電体自体の保水能力を低下させ水の自重による残留水の排水効果を高めることができる。このように自重による自然排水の効果割合を高めることで、また集電体間の物質(水分)伝達による乾燥の際の排出する水分量を飛躍的に減少させることができ、切替所要時間の短縮やブロアの送風動力等の切替所要動力の低減につながる。   By performing a hydrophilic treatment on the current collector in the reversible cell to reduce the surface tension of the base material, it is possible to reduce the water retention capacity of the current collector itself and enhance the drainage effect of residual water due to the weight of the water. In this way, by increasing the effective rate of natural drainage due to its own weight, the amount of water discharged during drying due to the transfer of substances (moisture) between current collectors can be drastically reduced, and the time required for switching can be shortened. This leads to a reduction in the power required for switching, such as the blower power of the blower.

一方、可逆セル中の反応ガス流路を形成するセパレータの表面に対して、親水処理を行うことで、切り替え初期の流路の残留水を排出するためのパージが不要となる。   On the other hand, by performing a hydrophilic treatment on the surface of the separator that forms the reaction gas flow path in the reversible cell, a purge for discharging the remaining water in the flow path at the initial stage of switching becomes unnecessary.

またセル内部基材における集電体の空隙率や開口率を高めることで、集電体内部鉛直方向の排水流路を確保することで排水効果をさらに高めることができ、また集電体を介しての物質伝達効率を向上させて、乾燥時間を短縮することができる。   In addition, by increasing the porosity and opening ratio of the current collector in the cell internal substrate, the drainage effect can be further enhanced by securing a drain flow path in the vertical direction inside the current collector, and through the current collector The mass transfer efficiency can be improved and the drying time can be shortened.

本発明によれば、固体高分子形の水電解装置と燃料電池とを一体化させた可逆セルにおいて、不活性ガス及びその供給設備を必要とせずに、水電解運転から燃料電池運転への運転切り替えを短時間にかつ簡潔に行うことが可能である。   According to the present invention, in a reversible cell in which a solid polymer type water electrolysis device and a fuel cell are integrated, an operation from a water electrolysis operation to a fuel cell operation without requiring an inert gas and its supply equipment is required. Switching can be performed in a short time and simply.

以下本発明の好ましい実施の形態について説明する。図1は、可逆セル1の内部を模式的に示しており、図2は、この可逆セル1の水平断面を示している。この可逆セル1は、図2に示したように、最も外側に各々給・集電板2、3が配置されている。給・集電板2、3間の中心には、電極触媒層によって構成される2枚の電極部4a、4b間に、固体電解質材料によって構成されるイオン交換膜4cが配置されて、複合化した発電ユニットであるMEA4が構成されている。各電極部4a、4bの外側には、例えば多孔質の材料からなる集電体5、6が配置されている。本実施の形態においては、これらMEA4と集電体5、6とでセル内部基材が構成されている。電極部4aは、水電解運転時にはカソードとなり、電極部4bは、水電解運転時にはアノードとなる。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 schematically shows the inside of the reversible cell 1, and FIG. 2 shows a horizontal cross section of the reversible cell 1. As shown in FIG. 2, the reversible cell 1 has power supply / collection plates 2 and 3 arranged on the outermost sides. An ion exchange membrane 4c made of a solid electrolyte material is arranged between the two electrode portions 4a and 4b made of an electrode catalyst layer at the center between the power supply and current collecting plates 2 and 3 to form a composite. The MEA 4 that is the generated power unit is configured. For example, current collectors 5 and 6 made of, for example, a porous material are disposed outside the electrode portions 4a and 4b. In the present embodiment, the MEA 4 and the current collectors 5 and 6 constitute a cell internal substrate. The electrode portion 4a serves as a cathode during the water electrolysis operation, and the electrode portion 4b serves as an anode during the water electrolysis operation.

集電体5と給・集電板2との間には空間Sが形成され、集電体6と給・集電板3との間には空間Sが形成されている。各空間S、S内には、各々断面が波型のセパレータ7が各々配置されている。そしてこの可逆セル1は水冷方式による冷却方法を採用しており、空間Sに配置されたセパレータ7によって、空間Sには、冷却水流路11と流路12が交互に形成されている。一方、空間Sに配置されたセパレータ7によって、空間Sにも、冷却水流路13と流路14が交互に形成されている。冷却水は、冷却水流路11とヒートポンプ介装の恒温水槽(図示せず)や冷却塔(図示せず)を循環し、可逆セル1の入り口で例えば60℃を維持するように運転される。 A space S 1 is formed between the current collector 5 and the supply / current collection plate 2, and a space S 2 is formed between the current collector 6 and the supply / current collection plate 3. In each of the spaces S 1 and S 2 , a corrugated separator 7 is disposed. The reversible cell 1 has adopted the cooling method by water cooling, by the separator 7 disposed in the space S 1, the space S 1, the cooling water passage 11 and the passage 12 are formed alternately. On the other hand, by the separator 7 disposed in the space S 2, in the space S 2, the cooling water passage 13 and the passage 14 are formed alternately. The cooling water is circulated through the cooling water passage 11 and a constant temperature water tank (not shown) and a cooling tower (not shown) provided with a heat pump, and is operated to maintain, for example, 60 ° C. at the entrance of the reversible cell 1.

再び図1に戻ってさらに説明すると、流路12の両端部には、流通口12a、12bが形成され、流路14の両端部には、流通口14a、14bが形成されている。   Returning again to FIG. 1, further description will be made. Flow ports 12 a and 12 b are formed at both ends of the flow channel 12, and flow ports 14 a and 14 b are formed at both ends of the flow channel 14.

次にこのような構成を有する可逆セル1のガス系統、排出系統等について説明する。図3に示したように、流通口12aには,流路31が接続され,流通口14aには,流路41が接続され,流通口14bには,流路51が接続され,流通口12bには,流路61が各々接続されている。各流路31、41、51、61、並びに後述のバイパス流路45、47はたとえばステンレス鋼の配管によって構成される。   Next, the gas system, discharge system, etc. of the reversible cell 1 having such a configuration will be described. As shown in FIG. 3, the flow channel 31 is connected to the flow port 12a, the flow channel 41 is connected to the flow port 14a, the flow channel 51 is connected to the flow port 14b, and the flow port 12b. Each is connected to a flow path 61. Each flow path 31, 41, 51, 61 and later-described bypass flow paths 45, 47 are constituted by, for example, stainless steel piping.

流路31には、水電解運転時の純水貯蔵タンクとなるタンク32を介して、流路33、34が接続されている。流路33、34には、各々弁33a、34aが設けられている。   Channels 33 and 34 are connected to the channel 31 via a tank 32 that serves as a pure water storage tank during water electrolysis operation. The flow paths 33 and 34 are provided with valves 33a and 34a, respectively.

流路41には、水電解運転時の純水貯蔵タンクとなるタンク42を介して、流路43、44が接続されている。流路43、44には、各々弁43a、44aが設けられている。また流路41と流路43との間には、タンク42をバイパスするバイパス流路45が接続され、バイパス流路45には弁45aが設けられている。流路43の端部には、水電解運転から燃料電池運転への運転切替時に、パージガスでありまた酸化剤としても作用する空気を供給するブロア46が設けられている。   Flow paths 43 and 44 are connected to the flow path 41 via a tank 42 that serves as a pure water storage tank during water electrolysis operation. Valves 43a and 44a are provided in the flow paths 43 and 44, respectively. Further, a bypass channel 45 that bypasses the tank 42 is connected between the channel 41 and the channel 43, and a valve 45 a is provided in the bypass channel 45. A blower 46 is provided at the end of the flow path 43 to supply air that is purge gas and also acts as an oxidant when switching from water electrolysis operation to fuel cell operation.

流路51には、弁51aが設けられており、また流路51とタンク42との間には流路52が接続され、流路52には、ポンプ53及び弁52aが設けられている。ポンプ53は、水電解運転時にタンク42に貯蔵してある純水を可逆セル1に供給するものである。また流路41と流路51との間には、流路52とは別のバイパス流路47が接続され、バイパス流路47には弁47aが設けられている。   A valve 51 a is provided in the flow path 51, a flow path 52 is connected between the flow path 51 and the tank 42, and a pump 53 and a valve 52 a are provided in the flow path 52. The pump 53 supplies pure water stored in the tank 42 to the reversible cell 1 during the water electrolysis operation. Further, a bypass channel 47 different from the channel 52 is connected between the channel 41 and the channel 51, and a valve 47 a is provided in the bypass channel 47.

流路61には、弁61aが設けられており、また流路61とタンク32との間には流路62が接続され、流路62には、ポンプ63及び弁62aが設けられている。ポンプ63は、水電解運転時にタンク32に貯蔵してある純水を可逆セル1に供給するものである。なお水電解運転時において、流路12内には、純水を供給する必要がないので、ポンプ63、弁62aは本来的には、設置しなくてもよいものであるが、万が一の場合の膜の乾燥防止、並びに発生水素を水で押し流すために、本実施の形態ではこれらポンプ63、弁62aが設けられている。特に万が一の場合の膜の乾燥防止についていえば、水電解運転時においては、燃料極側の水が十分ではない場合には、局所的に膜が乾燥して破損するおそれがある。かかる点に鑑み、水電解運転時においてもこれらポンプ63、弁62aを用いて燃料極側にも適宜水を供給しておくことで、そのような事態を未然に防止することができる。   A valve 61 a is provided in the flow path 61, a flow path 62 is connected between the flow path 61 and the tank 32, and a pump 63 and a valve 62 a are provided in the flow path 62. The pump 63 supplies the pure water stored in the tank 32 to the reversible cell 1 during the water electrolysis operation. In addition, since it is not necessary to supply pure water into the flow path 12 during the water electrolysis operation, the pump 63 and the valve 62a are not necessarily installed, but in the event of an emergency. In this embodiment, the pump 63 and the valve 62a are provided in order to prevent the membrane from drying and to flush out the generated hydrogen with water. In particular, in the case of an emergency, the membrane may be dried and damaged during water electrolysis operation if the water on the fuel electrode side is insufficient, causing the membrane to dry locally and break. In view of this point, even during the water electrolysis operation, such a situation can be prevented by supplying water appropriately to the fuel electrode side using the pump 63 and the valve 62a.

なお、本図では水素の供給源は明示していないが、水電解運転によって得られた水素を、高圧タンクや水素吸蔵合金に貯蔵したものや、化石燃料を改質したもの等の供給源を別途設置することができる。   Although the supply source of hydrogen is not clearly shown in this figure, supply sources such as those obtained by storing hydrogen obtained by water electrolysis operation in a high-pressure tank or hydrogen storage alloy, or those obtained by reforming fossil fuels It can be installed separately.

前記した各弁33a、34a、43a、44a、45a、47a、51a、52a、61a、62aは、いずれも制御装置71によって制御される。またこの制御装置71は、後述の規定時間の演算を実行する演算部(図示せず)を備え、さらに水電解運転時に可逆セル1に水の電気分解をするための電流を供給したり、燃料電池運転時に需要側に電力を供給する電源設備72をも制御する。   Each of the above-described valves 33a, 34a, 43a, 44a, 45a, 47a, 51a, 52a, 61a, 62a is controlled by the control device 71. Further, the control device 71 includes a calculation unit (not shown) that executes calculation for a specified time, which will be described later, and further supplies a current for electrolyzing water to the reversible cell 1 during water electrolysis operation, It also controls the power supply facility 72 that supplies power to the demand side during battery operation.

次にこのような主たる構成を有する可逆セル1の運転方法について説明する。
(燃料電池運転時)
弁33a、43a、51a、61aは開放され、弁34a、44a、45a、47a、52a、62aは、閉鎖される。そして流路33へ燃料(水素ガス)を導入し、タンク32において加湿を行った後に流路31、流通口12aを通じて可逆セル1に導入する。また流路43へ酸化剤(酸素ガスまたは空気)を導入し、タンク42において加湿を行った後に流通口14aを通じて可逆セル1に導入する。これによって可逆セル1のセル内部基材では、発電反応が起こり、電極部4aから電源設備72を通じて電極部4bへと電子が流れ、電流が発生する。なお発電反応においては外部の負荷に応じた量のガスが消費され、余剰の燃料(水素ガス)は、流通口12b、流路61を介して排出され、余剰の酸化剤(酸素ガスまたは空気)は、流通口14b、流路51を介して排出される。図1における太矢印は、その場合の反応ガスの流れを示している。
Next, an operation method of the reversible cell 1 having such a main configuration will be described.
(During fuel cell operation)
The valves 33a, 43a, 51a, 61a are opened, and the valves 34a, 44a, 45a, 47a, 52a, 62a are closed. Then, fuel (hydrogen gas) is introduced into the flow path 33, humidified in the tank 32, and then introduced into the reversible cell 1 through the flow path 31 and the circulation port 12 a. Further, an oxidant (oxygen gas or air) is introduced into the flow path 43, humidified in the tank 42, and then introduced into the reversible cell 1 through the flow port 14 a. As a result, a power generation reaction occurs in the cell internal substrate of the reversible cell 1, and electrons flow from the electrode portion 4 a to the electrode portion 4 b through the power supply facility 72, thereby generating a current. In the power generation reaction, an amount of gas corresponding to the external load is consumed, and surplus fuel (hydrogen gas) is discharged through the circulation port 12b and the flow path 61, and surplus oxidant (oxygen gas or air). Is discharged through the circulation port 14 b and the flow path 51. The thick arrows in FIG. 1 indicate the flow of the reaction gas in that case.

(水電解運転時)
弁33a、43a、51a、45a、47a、61aは閉鎖され、弁34a、44a、52a、62aは開放される。そしてタンク32に貯蔵した純水がポンプ63で吸込まれ、流路61、流通口12bを通じて可逆セル1内部に導入され、タンク42に貯蔵した純水がポンプ53で吸込まれ、流路51、流通口14bを通じて可逆セル1内部に導入される。一方、電源設備72からは、集電体5、6に与える電流が供給され(電子は集電体6→電源設備72→集電体5に流れる)、図1に示した流路14内の水は、電気分解され、供給された電流に応じた量の酸素と水素が発生する。
(During water electrolysis operation)
The valves 33a, 43a, 51a, 45a, 47a, 61a are closed, and the valves 34a, 44a, 52a, 62a are opened. The pure water stored in the tank 32 is sucked in by the pump 63 and introduced into the reversible cell 1 through the flow path 61 and the flow port 12b, and the pure water stored in the tank 42 is sucked in by the pump 53 and flows in the flow path 51, flow. It is introduced into the reversible cell 1 through the mouth 14b. On the other hand, a current applied to the current collectors 5 and 6 is supplied from the power supply facility 72 (electrons flow from the current collector 6 → the power supply facility 72 → the current collector 5), and the current in the flow path 14 shown in FIG. The water is electrolyzed to generate oxygen and hydrogen in amounts corresponding to the supplied current.

そしてかかる水電解運転において発生した水素は、流通口12aを介して流路31からタンク32へと流れ、タンク32において気液分離処理を行なった後、流路34を通じて外部へと排出される。一方水電解運転において発生した酸素は、流通口14aを介して流路41からタンク42へと流れ、タンク42において気液分離処理を行なった後、流路44を通じて外部へと排出される。なおこれら気液分離処理を行なった後の、純水素、純酸素は、別途設ける燃料貯蔵設備、酸化剤貯蔵設備(いずれも図示せず)に貯蔵しておくことで、次の燃料電池運転時の燃料、酸化剤として各々用いることができる。   The hydrogen generated in the water electrolysis operation flows from the flow path 31 to the tank 32 through the flow port 12a, and after performing a gas-liquid separation process in the tank 32, the hydrogen is discharged to the outside through the flow path 34. On the other hand, oxygen generated in the water electrolysis operation flows from the flow path 41 to the tank 42 via the flow port 14a, and after gas-liquid separation processing is performed in the tank 42, the oxygen is discharged to the outside through the flow path 44. The pure hydrogen and pure oxygen after these gas-liquid separation processes are stored in a separate fuel storage facility and oxidant storage facility (both not shown), so that the next fuel cell operation is possible. It can be used as a fuel and an oxidant.

そのような水電解装置運転から燃料電池運転に切り替える際には、図4に示したようなフローで切り替え運転が行なわれる。   When switching from such water electrolyzer operation to fuel cell operation, the switching operation is performed according to the flow shown in FIG.

すなわち、水電解装置運転が終了すると(ステップP1)、まず弁33a、43a、51a、61aのみが開放され、他の弁は全て閉鎖される(ステップP2)。そして電源設備72の回路を遮断した状態で、可逆セル1に残留した水を排出するために、燃料(水素ガス)を流路31から流通口12aを通じて可逆セル1内に導入し、酸化剤または空気を流路41から流通口14aを通じて可逆セル1内に導入する(ステップP3)。すなわちこれらのガスによる圧力差で流路内の水を系外に押し出すことに排出する。この時間は、数秒程度であり、またその際の流量は、例えば特開2007−115588号公報に開示された方法を採用して決定してもよい。前記した排出が完了した後は、電源設備72の回路の遮断を解除する。   That is, when the operation of the water electrolysis apparatus is completed (step P1), only the valves 33a, 43a, 51a, 61a are first opened and all other valves are closed (step P2). Then, in order to discharge water remaining in the reversible cell 1 with the circuit of the power supply facility 72 cut off, fuel (hydrogen gas) is introduced into the reversible cell 1 from the flow path 31 through the flow port 12a, and an oxidant or Air is introduced into the reversible cell 1 from the flow path 41 through the circulation port 14a (step P3). That is, the water in the flow path is discharged by pushing it out of the system by the pressure difference due to these gases. This time is about several seconds, and the flow rate at that time may be determined by adopting, for example, a method disclosed in Japanese Patent Application Laid-Open No. 2007-115588. After the above discharge is completed, the circuit of the power supply facility 72 is released.

次に弁33a、43aを閉鎖し、弁45aを開放し、ブロア46を起動して可逆セル1の内部基材の乾燥を、酸化剤極側のみから行う(ステップP4)。乾燥時間は、セル内部基材からパージガスに伝達した水分量が、あらかじめ求めておいた所定の値(=セル内部基材が燃料電池運転可能となる乾燥状態に達するまでの水分量)となる時間を制御装置71の演算部にて算出する。制御装置71の演算部(図示せず)では、あらかじめ求めておいたセル内部基材とブロア46によって供給される空気間の物質伝達率とそのときの乾燥条件から、セル内部の物質移動計算を行い、乾燥所要時間(規定の時間)を算出する(ステップP5)。   Next, the valves 33a and 43a are closed, the valve 45a is opened, the blower 46 is activated, and the internal substrate of the reversible cell 1 is dried only from the oxidant electrode side (step P4). The drying time is the time during which the amount of water transferred from the cell internal substrate to the purge gas becomes a predetermined value (= the amount of water until the cell internal substrate reaches a dry state where the fuel cell can be operated). Is calculated by the calculation unit of the control device 71. The calculation unit (not shown) of the control device 71 calculates the mass transfer inside the cell from the mass transfer rate between the cell internal substrate and air supplied by the blower 46 and the drying conditions at that time. The time required for drying (specified time) is calculated (step P5).

そして前記乾燥所要時間の間乾燥したら(ステップP6)、弁45aを閉鎖し、弁33a、43aを開放することで、可逆セル1に反応ガス(燃料、酸化剤)を供給し(ステップP7)、燃料電池運転を開始する(ステップP8)。なお、燃料電池運転から水電解装置運転への切替時は、特開2006−127807号公報にも開示されているように、特段の制御は不要である。   Then, after drying for the required drying time (step P6), the valve 45a is closed and the valves 33a and 43a are opened to supply the reaction gas (fuel, oxidant) to the reversible cell 1 (step P7). The fuel cell operation is started (step P8). When switching from the fuel cell operation to the water electrolysis apparatus operation, no special control is required as disclosed in Japanese Patent Application Laid-Open No. 2006-127807.

次に前記したステップP5における乾燥時間の算出について詳述する。まず集電体5、6と流路12、14をガス流れ方向にメッシュ分割し、各メッシュでの水蒸気移動量(=局所水蒸気移動量)mH2O(dif)[mol/s]を算出する。このときの濡れ面(集電体5、6の表面部)と空気(ドライガス)間の物質伝達率:hDH2O[m/s]は、流れの各種状態を考慮して実験的に求める。 Next, the calculation of the drying time in step P5 will be described in detail. First, the current collectors 5 and 6 and the flow paths 12 and 14 are divided into meshes in the gas flow direction, and a water vapor movement amount (= local water vapor movement amount) m H2O (dif) [mol / s] in each mesh is calculated. The mass transfer rate: h DH2O [m / s] between the wetted surfaces (the surface portions of the current collectors 5 and 6) and air (dry gas) at this time is experimentally determined in consideration of various states of the flow.

次に前記各メッシュの乾燥状態については、局所水蒸気移動量mH2O(dif)を乾燥時間で積分して、各時間における水蒸気移動総量を求める。その値を、切替初期に集電体5、6が保有する残留水量:mH2ORI[mol]から差引くことでその時点での残留水量を求める。ここでmH2ORIは集電体5、6が保有可能な最大の値とし、この値はあらかじめ実験的に測定可能である。 Next, regarding the dry state of each mesh, the local water vapor transfer amount m H2O (dif) is integrated with the drying time to obtain the total water vapor transfer amount at each time. By subtracting this value from the residual water amount held by the current collectors 5 and 6 at the beginning of switching: m H2ORI [mol], the residual water amount at that time is obtained. Here, m H2ORI is the maximum value that the current collectors 5 and 6 can hold, and this value can be experimentally measured in advance.

また可逆セル1の乾燥状態については、局所水蒸気移動量mH2O(dif)を空気の流れ方向で積分して、全水蒸気移動量MH2O(dif)[mol/s]を求める。その値を乾燥時間で積分して、集電体5、6が保有する全残留水量:MH2ORI[mol]から差引くことでその時点での残留水量を求める。なお、各値の算出には下記に示した式(1)〜(5)を用いた。ここでcSH2O[mol/m]は集電体5、6表面の水蒸気濃度、cCH2O[mol/m]は流路12、14の水蒸気濃度とする。 Further, regarding the dry state of the reversible cell 1, the total water vapor transfer amount M H2O (dif) [mol / s] is obtained by integrating the local water vapor transfer amount m H2O (dif) in the air flow direction. The value is integrated with the drying time, and the residual water amount at that time is obtained by subtracting from the total residual water amount held by the current collectors 5 and 6: MH2ORI [mol]. The following formulas (1) to (5) were used for calculating each value. Here, c SH2O [mol / m 3 ] is the water vapor concentration of the current collectors 5 and 6, and c CH2O [mol / m 3 ] is the water vapor concentration of the flow channels 12 and 14.

Figure 2010153218
Figure 2010153218

以上の計算により、MH2ORが0となる時間(=規定の時間)まで酸化剤極側(流路14)への空気の供給を行えば、集電体5、6内部の残留水は完全に排水され、反応ガス(燃料、酸化剤)の流路から反応場までの拡散ルート、すなわち集電体5、6を横切ってMEA4側に向かうルートが確保され、燃料電池運転が可能となる。なお、この方法は、あらかじめ濡れ面(集電体5、6表面)と、供給する空気間の物質伝達率、及び集電体5、6が保有可能な最大の値を求めておくことにより、可逆セル1の内部基材の形状や基材仕様が変化した場合にも適用可能である。 According to the above calculation, if the air is supplied to the oxidizer electrode side (flow path 14) until the time when MH2OR becomes 0 (= specified time), the remaining water inside the current collectors 5 and 6 is completely removed. Drained and a diffusion route from the flow path of the reaction gas (fuel, oxidant) to the reaction field, that is, a route crossing the current collectors 5 and 6 toward the MEA 4 side is secured, and fuel cell operation becomes possible. In this method, the mass transfer rate between the wetted surface (current collectors 5 and 6 surfaces) and the air to be supplied, and the maximum value that the current collectors 5 and 6 can hold are determined in advance. The present invention is also applicable when the shape of the internal base material or the base material specification of the reversible cell 1 changes.

以上の例では、ブロア46によって供給する空気の供給方向が、図1に即していえば、流通口14aから流通口14bへと向かう方向であったが、一方向のみから空気を供給して乾燥を行うと、上流側(流通口14aに近い側)は乾燥しているにもかかわらず下流側(流通口14bに近い側)はまだ乾燥していないという状態が発生するおそれがある。そしてそのまま空気の供給を行なうと、上流側のMEA、特に高分子膜であるイオン交換膜4cが過度に乾燥して、ダメージを受けるおそれがある。   In the above example, the supply direction of the air supplied by the blower 46 is the direction from the flow port 14a to the flow port 14b, according to FIG. 1, but the air is supplied from only one direction and dried. In this case, there is a possibility that the upstream side (side near the circulation port 14a) is dried, but the downstream side (side near the circulation port 14b) is not yet dried. If air is supplied as it is, the upstream MEA, particularly the ion exchange membrane 4c, which is a polymer membrane, may be excessively dried and damaged.

かかる事態を未然に防止するために、たとえば弁47a、44aを開放して、その他の弁は閉鎖して、ブロア46によって供給する空気を、流通口14bの側から可逆セル1内の流路14に供給して、空気の供給方向を逆転させるようにしてもよい。それによって、最も乾燥させたい部分での水分伝達量が最大となるばかりでなく、空気の流れ方向で当該空気の水分量が増加していくため、逆転後は下流側(流通口14aに近い側)において、MEA4を適度に加湿してこれを保護することができ、その結果、セル内部基材全面を均一に乾燥させることができる。   In order to prevent such a situation, for example, the valves 47a and 44a are opened, the other valves are closed, and the air supplied by the blower 46 is supplied from the flow port 14b to the flow path 14 in the reversible cell 1. The air supply direction may be reversed. This not only maximizes the amount of moisture transferred in the portion that is most desired to be dried, but also increases the amount of moisture in the air flow direction. Therefore, after the reverse rotation, the downstream side (the side closer to the circulation port 14a) ), The MEA 4 can be appropriately humidified to protect it, and as a result, the entire cell inner substrate can be uniformly dried.

また前記した図4に示したフローでは、制御装置71の演算部で算出した規定の時間の間空気を供給するようにしていたが、当該規定の時間の途中で燃料極側の反応ガス流路となる流路12には低加湿または無加湿燃料ガスを供給して、定格よりも低い低負荷燃料電池運転を行なうようにしてもよい。これによって、初期の際には低負荷運転であるものの、次第に通常の定格運転を実施することができ、発電を伴わない乾燥運転の時間を短縮して、結果的に全体として効率のよい燃料電池運転を実施することができる。   Further, in the flow shown in FIG. 4 described above, air is supplied for a specified time calculated by the calculation unit of the control device 71, but the reaction gas flow path on the fuel electrode side during the specified time. The low-humidity or non-humidified fuel gas may be supplied to the flow path 12 to perform a low-load fuel cell operation lower than the rating. As a result, although it is a low-load operation in the initial stage, the normal rated operation can be gradually performed, and the time for the dry operation without power generation is shortened, resulting in an efficient fuel cell as a whole. Driving can be carried out.

また前記した例では、供給された空気に伝達されるセル内部基材からの水蒸気移動量を予め計算によって求め、その結果に基づいてセル内部基材の残留水分量が所定の値に達するまでの乾燥時間を算出していたが、可逆セル1の開回路電圧を測定し、その測定結果が所定値に達するまで前記空気の供給を行なうようにしてもよい。開回路電圧の測定は、触媒の劣化を判断する際に使用されている公知のものを用いることができる。   In the example described above, the amount of water vapor transferred from the cell internal substrate to be transmitted to the supplied air is calculated in advance, and the residual moisture content of the cell internal substrate reaches a predetermined value based on the result. Although the drying time is calculated, the open circuit voltage of the reversible cell 1 may be measured, and the air may be supplied until the measurement result reaches a predetermined value. For the measurement of the open circuit voltage, a publicly known one used when judging deterioration of the catalyst can be used.

ところで、水電解装置運転から燃料電池運転に切り替えるための上記したような空気の供給によるセル内部基材の乾燥時間、すなわち切替所要時間は、集電体5、6が保有している水を系外に排出するまでの時間に依存する。したがって、このような切替時間をより短縮するためには、以下の方法が効果的である。   By the way, the drying time of the base material inside the cell by the supply of air as described above for switching from the water electrolyzer operation to the fuel cell operation, that is, the time required for switching is based on the water held by the current collectors 5 and 6. Depends on the time to discharge outside. Therefore, the following method is effective for further shortening such switching time.

まず集電体5、6の厚みを薄くすることで集電体5、6が保有できる水量を低減させ、排出する絶対量を減らす。MEA4や集電体5、6の膜厚を薄くすることで燃料極側から酸化剤極側への水の拡散速度を速めることができる。図5に同一電極面積の可逆セルにおいて、集電体5、6の厚みを変えたときの乾燥所要時間の違いを示す。   First, by reducing the thickness of the current collectors 5 and 6, the amount of water that the current collectors 5 and 6 can hold is reduced, and the absolute amount to be discharged is reduced. By reducing the thickness of the MEA 4 and the current collectors 5 and 6, the diffusion rate of water from the fuel electrode side to the oxidant electrode side can be increased. FIG. 5 shows the difference in time required for drying when the thickness of the current collectors 5 and 6 is changed in the reversible cell having the same electrode area.

また流路12、14の断面積を小さくしてガスの流速を早めたり、流路12、14のリブ部(セパレータ7が集電体5、6を押さえつける部分)を最小化して、空気と直接接触する濡れ部分の面積(集電体表面積)を増やすことで、空気に伝達する水分量を最大化する。図5に同一電極面積の可逆セルにおいて、空気と集電体5、6との接触面積を変えたときの乾燥所要時間の違いを示す。   In addition, the cross-sectional area of the flow paths 12 and 14 is reduced to increase the gas flow rate, or the rib portions of the flow paths 12 and 14 (portions where the separator 7 presses the current collectors 5 and 6) are minimized to directly connect with the air. The amount of moisture transferred to the air is maximized by increasing the area (current collector surface area) of the wetted part in contact. FIG. 5 shows the difference in drying time when the contact area between air and current collectors 5 and 6 is changed in a reversible cell having the same electrode area.

また集電体5、6に対して、超親水加工して基材の表面張力を低下させることで、集電体5、6自体の保水能力を低下させ水の自重による残留水の排水効果を高める。このとき、集電体5、6に例えばチタンやカーボンの繊維からなる緻密多孔質体を用いる場合には、集電体5、6自体の空隙率を高めるなどの方法により集電体内部鉛直方向の排水流路を確保することで、排水効果をさらに高めることができる。好ましくは、集電体5、6の空隙率が、75%以上であることがよい。またチタン板に微細穴加工による微小な貫通孔を形成したものを集電体5、6の材質に使用する場合には、開口率は50%以上がよい。このように自重による自然排水の効果割合を高めることで、物質伝達で排出する水分量を飛躍的に減少することができる。その結果、切替所要時間の大幅な短縮、ブロア46の送風動力等の切替所要動力の低減につながる。   In addition, the current collectors 5 and 6 are superhydrophilic processed to reduce the surface tension of the base material, thereby reducing the water retention capacity of the current collectors 5 and 6 themselves, and the drainage effect of residual water due to the weight of the water itself. Increase. At this time, in the case where a dense porous body made of, for example, titanium or carbon fiber is used for the current collectors 5 and 6, the current collector internal vertical direction is increased by a method such as increasing the porosity of the current collectors 5 and 6 themselves. The drainage effect can be further enhanced by securing the drainage channel. Preferably, the porosity of the current collectors 5 and 6 is 75% or more. Moreover, when using what formed the fine through-hole by the fine hole process in the titanium plate for the material of the electrical power collectors 5 and 6, an aperture ratio is good to be 50% or more. Thus, by increasing the effect ratio of natural drainage by its own weight, the amount of water discharged by mass transfer can be drastically reduced. As a result, the required switching time is greatly shortened and the required switching power such as the blower power of the blower 46 is reduced.

さらに、流路12、14を形成するセパレータ表面も超親水加工することで、切替初期の流路部の残留水を排出するためのパージが不要となり、さらに切替所要時間の短縮化を図ることができる。なお、自重による排水効果を最大限に活用するためには、排水ルートである流路12、14は鉛直下向きで一方向のパラレルフローとし、供給する空気の供給方向も鉛直した向きに流すことが最良である。   Furthermore, the surface of the separator that forms the flow paths 12 and 14 is also superhydrophilic processed, thereby eliminating the need for purging for discharging residual water in the flow path portion at the initial switching time and further reducing the time required for switching. it can. In order to make full use of the drainage effect due to its own weight, the channels 12 and 14 as drainage routes should be vertically downward and unidirectional parallel flow, and the supply direction of air to be supplied should also flow vertically. Is the best.

本発明は、固体高分子形の水電解装置と燃料電池のセルを一体化した可逆セルにおいて、水電解運転から燃料電池運転への運転を切り替える際に有用である。   The present invention is useful when switching from water electrolysis operation to fuel cell operation in a reversible cell in which a solid polymer water electrolysis device and a fuel cell are integrated.

実施の形態で用いた可逆セルの縦断面構成を模式的に示した説明図である。It is explanatory drawing which showed typically the longitudinal cross-section structure of the reversible cell used in embodiment. 図1の可逆セルの水平断面構成を模式的に示した説明図である。It is explanatory drawing which showed typically the horizontal cross-section structure of the reversible cell of FIG. 図1の可逆セルの系統を模式的に示した説明図である。It is explanatory drawing which showed typically the system | strain of the reversible cell of FIG. 実施の形態の切替運転のフローチャートである。It is a flowchart of switching operation of an embodiment. 従来よりも集電体の厚みを薄くし、接触面積を多くした場合の、乾燥所要時間を示すグラフである。It is a graph which shows the time required for drying when the thickness of the current collector is made thinner than before and the contact area is increased.

符号の説明Explanation of symbols

1 可逆セル
2、3 給・集電板
4 MEA
4a、4b 電極部
4c イオン交換膜
5、6 集電体
7 セパレータ
11,13 冷却水流路
12,14 流路(可逆セル内)
12a,12b,14a,14b 流通口
31、41、51、61 流路(可逆セル外)
32、42 タンク
33a、34a、43a、44a、45a、47a、51a、52a、61a、62a 弁
53、63 ポンプ
71 制御装置
72 電源設備
1 Reversible cell 2, 3 Supply / collection plate 4 MEA
4a, 4b Electrode portion 4c Ion exchange membrane 5, 6 Current collector 7 Separator 11, 13 Cooling water flow path 12, 14 Flow path (in reversible cell)
12a, 12b, 14a, 14b Flow port 31, 41, 51, 61 Flow path (outside reversible cell)
32, 42 Tank 33a, 34a, 43a, 44a, 45a, 47a, 51a, 52a, 61a, 62a Valve 53, 63 Pump 71 Controller 71 Power supply equipment

Claims (10)

固体高分子形の水電解装置と燃料電池とを一体化して、水電解装置運転と燃料電池運転との運転モードの切り替え可能な可逆セルを、水電解装置運転から燃料電池運転へと運転モードを切り替える方法において、
水電解装置運転の終了後、燃料電池運転を行う前に、可逆セル内部の反応ガス流路に気体を供給して、流路内に残留した電解水をセル内部から排出し、
その後、燃料電池運転時に酸化剤極となる側の反応ガス流路にのみ空気を供給し、セル内部基材を乾燥させることを特徴とする、可逆セルの運転切り替え方法。
By integrating the polymer electrolyte water electrolyzer and the fuel cell, a reversible cell that can be switched between water electrolyzer operation and fuel cell operation is switched from water electrolyzer operation to fuel cell operation. In the switching method,
After the operation of the water electrolysis apparatus, before performing the fuel cell operation, supply gas to the reaction gas flow path inside the reversible cell, and discharge the electrolyzed water remaining in the flow path from the inside of the cell,
Thereafter, air is supplied only to the reaction gas flow path on the side that becomes the oxidant electrode during operation of the fuel cell, and the cell internal substrate is dried.
空気を供給し、セル内部基材を乾燥させるにあたっては、乾燥途中で反応ガス流路に供給する空気の供給方向を逆転することを特徴とする、請求項1に記載の可逆セルの運転切り替え方法。 The method for switching operation of a reversible cell according to claim 1, wherein when air is supplied and the substrate inside the cell is dried, the supply direction of the air supplied to the reaction gas flow path is reversed during drying. . 供給された空気に伝達されるセル内部基材からの水蒸気移動量を予め計算によって求め、その結果に基づいてセル内部基材の残留水分量が所定の値に達するまで前記空気の供給を行なうことを特徴とする、請求項1または2に記載の可逆セルの運転切り替え方法。 The amount of water vapor transferred from the cell internal substrate transmitted to the supplied air is calculated in advance, and the air is supplied until the residual moisture content of the cell internal substrate reaches a predetermined value based on the result. The operation switching method of the reversible cell according to claim 1 or 2, characterized in that. 供給された空気に伝達されるセル内部基材からの水蒸気移動量を予め計算によって求め、その結果に基づいてセル内部基材の残留水分量が所定の値に達する時点より前の段階で、燃料極側の反応ガス流路には燃料ガスを供給して、定格よりも低い低負荷燃料電池運転を行なう事を特徴とする、請求項1または2に記載の可逆セルの運転切り替え方法。 The amount of water vapor transferred from the cell internal substrate to be transferred to the supplied air is calculated in advance, and based on the result, the amount of water remaining in the cell internal substrate reaches a predetermined value before the fuel is reached. The reversible cell operation switching method according to claim 1 or 2, wherein a fuel gas is supplied to the reaction gas flow path on the pole side to perform a low-load fuel cell operation lower than the rated value. 可逆セルの開回路電圧を測定し、その結果が所定値に達するまで前記空気の供給を行なうことを特徴とする、請求項1または2に記載の可逆セルの運転切り替え方法。 The method for switching operation of a reversible cell according to claim 1 or 2, wherein the open circuit voltage of the reversible cell is measured and the air is supplied until the result reaches a predetermined value. 酸化剤極となる側の反応ガス流路に供給した空気を、可逆セルから排出された後、減湿して、酸化剤極となる側の反応ガス流路に供給する空気として用いることを特徴とする、請求項1〜5のいずれかに記載の可逆セルの運転切り替え方法。 The air supplied to the reaction gas channel on the side serving as the oxidant electrode is exhausted from the reversible cell, and then dehumidified and used as the air supplied to the reaction gas channel on the side serving as the oxidant electrode. The operation switching method of the reversible cell according to any one of claims 1 to 5. 可逆セル中の集電体には親水処理が行なわれていることを特徴とする、請求項1〜6のいずれかに記載の可逆セルの運転切り替え方法。 The reversible cell operation switching method according to claim 1, wherein the current collector in the reversible cell is subjected to a hydrophilic treatment. 可逆セル中の反応ガス流路を形成するセパレータの表面は、親水処理が行なわれていることを特徴とする、請求項1〜7のいずれかに記載の可逆セルの運転切り替え方法。 The method for switching operation of a reversible cell according to any one of claims 1 to 7, wherein the surface of the separator forming the reaction gas flow path in the reversible cell is subjected to a hydrophilic treatment. セル内部基材における集電体が多孔質体によって構成され、その空隙率が、75%以上であることを特徴とする、請求項1〜8のいずれかに記載の可逆セルの運転切り替え方法。 The reversible cell operation switching method according to any one of claims 1 to 8, wherein the current collector in the cell internal substrate is constituted by a porous body, and the porosity thereof is 75% or more. セル内部基材における集電体が多孔板によって構成され、その開口率が、50%以上であることを特徴とする、請求項1〜8のいずれかに記載の可逆セルの運転切り替え方法。
The method of switching operation of a reversible cell according to any one of claims 1 to 8, wherein the current collector in the cell internal substrate is composed of a porous plate, and the aperture ratio is 50% or more.
JP2008330471A 2008-12-25 2008-12-25 Reversible cell operation switching method Active JP5419255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008330471A JP5419255B2 (en) 2008-12-25 2008-12-25 Reversible cell operation switching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008330471A JP5419255B2 (en) 2008-12-25 2008-12-25 Reversible cell operation switching method

Publications (2)

Publication Number Publication Date
JP2010153218A true JP2010153218A (en) 2010-07-08
JP5419255B2 JP5419255B2 (en) 2014-02-19

Family

ID=42572090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008330471A Active JP5419255B2 (en) 2008-12-25 2008-12-25 Reversible cell operation switching method

Country Status (1)

Country Link
JP (1) JP5419255B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282768A (en) * 2009-06-03 2010-12-16 Takasago Thermal Eng Co Ltd Reversible cell operating method
JP2014072119A (en) * 2012-10-01 2014-04-21 Takasago Thermal Eng Co Ltd Charge and discharge system
JP2014125644A (en) * 2012-12-25 2014-07-07 Takasago Thermal Eng Co Ltd Charge/discharge system
JP2014194916A (en) * 2013-02-27 2014-10-09 Takasago Thermal Eng Co Ltd Charge/discharge system and method for drying charge/discharge system
WO2018084175A1 (en) * 2016-11-01 2018-05-11 国立研究開発法人宇宙航空研究開発機構 Cell for water electrolysis/fuel cell power generation and cell stack body having a plurality of same cells stacked
JP2018078098A (en) * 2016-11-01 2018-05-17 国立研究開発法人宇宙航空研究開発機構 Water electrolysis/fuel battery power generation cell, and cell laminate arranged by laminating such power generation cells
KR20180130125A (en) * 2017-05-29 2018-12-07 주식회사 두산 Water Electrolysis Stack
JP2019514190A (en) * 2016-04-14 2019-05-30 エヌイー.エム.イー.エスワイエス.エスアールエル Rechargeable electrochemical device for electrical energy generation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241197A (en) * 1998-02-26 1999-09-07 Japan Storage Battery Co Ltd Solid polymer electrolyte-catalyst composite electrode and water electrolytic cell and fuel cell using that
JP2001057222A (en) * 1999-08-18 2001-02-27 Shinko Pantec Co Ltd Energy storage device and its operation method
JP2001525596A (en) * 1997-12-01 2001-12-11 バラード パワー システムズ インコーポレイティド Method and apparatus for distributing water to an ion exchange membrane of a fuel cell
JP2005032587A (en) * 2003-07-07 2005-02-03 Denso Corp Fuel cell system
JP2006107908A (en) * 2004-10-05 2006-04-20 Nissan Motor Co Ltd Fuel cell system
JP2006127807A (en) * 2004-10-26 2006-05-18 National Institute Of Advanced Industrial & Technology Operation control method of reversible cell and operation method of fuel cell
JP2007115588A (en) * 2005-10-21 2007-05-10 National Institute Of Advanced Industrial & Technology Operation switching method of reversible cell stack
JP2007188830A (en) * 2006-01-16 2007-07-26 Honda Motor Co Ltd Starting method for fuel cell system
JP2008210718A (en) * 2007-02-27 2008-09-11 Fujitsu Ltd Fuel cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001525596A (en) * 1997-12-01 2001-12-11 バラード パワー システムズ インコーポレイティド Method and apparatus for distributing water to an ion exchange membrane of a fuel cell
JPH11241197A (en) * 1998-02-26 1999-09-07 Japan Storage Battery Co Ltd Solid polymer electrolyte-catalyst composite electrode and water electrolytic cell and fuel cell using that
JP2001057222A (en) * 1999-08-18 2001-02-27 Shinko Pantec Co Ltd Energy storage device and its operation method
JP2005032587A (en) * 2003-07-07 2005-02-03 Denso Corp Fuel cell system
JP2006107908A (en) * 2004-10-05 2006-04-20 Nissan Motor Co Ltd Fuel cell system
JP2006127807A (en) * 2004-10-26 2006-05-18 National Institute Of Advanced Industrial & Technology Operation control method of reversible cell and operation method of fuel cell
JP2007115588A (en) * 2005-10-21 2007-05-10 National Institute Of Advanced Industrial & Technology Operation switching method of reversible cell stack
JP2007188830A (en) * 2006-01-16 2007-07-26 Honda Motor Co Ltd Starting method for fuel cell system
JP2008210718A (en) * 2007-02-27 2008-09-11 Fujitsu Ltd Fuel cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012040759; 加藤 敦史他: '「高出力密度/高効率な可逆セル・スタックの開発」' 第41回日本伝熱シンポジウム講演論文集 , 200405, pp.43-44 *
JPN6013013991; 加藤 敦史他: '「高出力密度,高効率な水電解・燃料電池可逆セルスタックの開発」' 日本冷凍空調学会論文集 Vol.23,No.4, 20061231, pp.365-375, 社団法人日本冷凍空調学会 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282768A (en) * 2009-06-03 2010-12-16 Takasago Thermal Eng Co Ltd Reversible cell operating method
JP2014072119A (en) * 2012-10-01 2014-04-21 Takasago Thermal Eng Co Ltd Charge and discharge system
JP2014125644A (en) * 2012-12-25 2014-07-07 Takasago Thermal Eng Co Ltd Charge/discharge system
JP2014194916A (en) * 2013-02-27 2014-10-09 Takasago Thermal Eng Co Ltd Charge/discharge system and method for drying charge/discharge system
JP2019514190A (en) * 2016-04-14 2019-05-30 エヌイー.エム.イー.エスワイエス.エスアールエル Rechargeable electrochemical device for electrical energy generation
WO2018084175A1 (en) * 2016-11-01 2018-05-11 国立研究開発法人宇宙航空研究開発機構 Cell for water electrolysis/fuel cell power generation and cell stack body having a plurality of same cells stacked
JP2018078098A (en) * 2016-11-01 2018-05-17 国立研究開発法人宇宙航空研究開発機構 Water electrolysis/fuel battery power generation cell, and cell laminate arranged by laminating such power generation cells
US11699801B2 (en) 2016-11-01 2023-07-11 Japan Aerospace Exploration Agency Cell for water electrolysis/fuel cell power generation and cell stack body having a plurality of same cells stacked
KR20180130125A (en) * 2017-05-29 2018-12-07 주식회사 두산 Water Electrolysis Stack
KR102405611B1 (en) * 2017-05-29 2022-06-03 주식회사 두산 Water Electrolysis Stack

Also Published As

Publication number Publication date
JP5419255B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5419255B2 (en) Reversible cell operation switching method
JP4456188B2 (en) Fuel cell stack
JP5743792B2 (en) Fuel cell system
JP4072707B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
JP5492460B2 (en) Reversible cell operation method
JP2022083098A (en) Control method of hydrogen/oxygen production system and hydrogen/oxygen production system
JP4028320B2 (en) Fuel circulation fuel cell system
JP6133365B2 (en) Operation method of fuel cell system
JP2008300057A (en) Fuel cell system
JP4542911B2 (en) Scavenging treatment apparatus and scavenging treatment method for fuel cell system
JP2006086015A (en) Fuel cell system
JP4665353B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
JP5152948B2 (en) Switching operation of reversible cell stack
JP4790964B2 (en) Fuel cell with dehumidifying device
JP7076418B2 (en) Fuel cell system and its control method
JP2014044872A (en) Method for operating fuel battery
JP5489093B2 (en) Fuel cell system and operation method thereof
JP2005108698A (en) Fuel cell system
JP5112525B2 (en) Starting method for polymer electrolyte fuel cell
JP2008010306A (en) Fuel cell system
JP2009134977A (en) Fuel cell system
JP2011154802A (en) Fuel cell system
JP2012234806A (en) Fuel cell system and control method thereof
JP2004071348A (en) Fuel circulation type fuel cell system
JP2009104921A (en) Method for operating solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Ref document number: 5419255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250