JP5152948B2 - Switching operation of reversible cell stack - Google Patents

Switching operation of reversible cell stack Download PDF

Info

Publication number
JP5152948B2
JP5152948B2 JP2005307288A JP2005307288A JP5152948B2 JP 5152948 B2 JP5152948 B2 JP 5152948B2 JP 2005307288 A JP2005307288 A JP 2005307288A JP 2005307288 A JP2005307288 A JP 2005307288A JP 5152948 B2 JP5152948 B2 JP 5152948B2
Authority
JP
Japan
Prior art keywords
reversible
cell
gas
fuel cell
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005307288A
Other languages
Japanese (ja)
Other versions
JP2007115588A (en
Inventor
敦史 加藤
大悟 橘高
隆了 屋
直和 熊谷
勉 五百蔵
誠 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Daiki Ataka Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Daiki Ataka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd, National Institute of Advanced Industrial Science and Technology AIST, Daiki Ataka Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2005307288A priority Critical patent/JP5152948B2/en
Publication of JP2007115588A publication Critical patent/JP2007115588A/en
Application granted granted Critical
Publication of JP5152948B2 publication Critical patent/JP5152948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は,固体高分子形の水電解装置(WE)と燃料電池(FC)とを一体化させた可逆セルを複数有する,可逆セル・スタックの運転切り替え方法に関するものである。   The present invention relates to an operation switching method for a reversible cell stack having a plurality of reversible cells in which a solid polymer water electrolyzer (WE) and a fuel cell (FC) are integrated.

固体高分子形の可逆セルとは,同形の水電解装置と燃料電池の機能を一体化させた機器であり,特許文献1に開示されているように,構成部材の最適化に関する研究が行われているが,現在のところ実用化までには至っていない。その理由としては,実用規模において,水電解装置と燃料電池という,正反対の物理現象を同一部材で成立させ,かつそれを制御することに対する技術的困難さが挙げられる。   A solid polymer reversible cell is a device in which the functions of a water electrolysis device and a fuel cell of the same shape are integrated. As disclosed in Patent Document 1, research on optimization of components has been conducted. However, it has not yet been put to practical use. This is because, on a practical scale, there are technical difficulties in establishing and controlling the opposite physical phenomena of water electrolysis device and fuel cell with the same member.

すなわち,運転モードの切替には,燃料電池運転→水電解装置運転の場合と,その逆の水電解装置運転→燃料電池運転の2つの場合がある。このうち,前者の燃料電池運転→水電解装置運転への切替時は,切替判断は格別不要である。つまりこの場合には,燃料電池運転で撥水性となっている可逆セルの内部基材,例えばイオン交換膜及び給/集電体を,水電解装置運転に必要な親水性に変える必要があるが,セル内部に電解水を供給するだけで容易にこれら内部基材は親水性となり,電極面に電解水が供給され水電解装置運転が可能なためである。   That is, there are two cases in which the operation mode is switched: fuel cell operation → water electrolyzer operation and vice versa. Among these, when switching from the former fuel cell operation to the water electrolysis device operation, the switching judgment is not particularly necessary. In other words, in this case, it is necessary to change the internal base material of the reversible cell that is water-repellent during fuel cell operation, such as an ion exchange membrane and a power supply / current collector, to the hydrophilicity necessary for water electrolyzer operation. This is because these internal base materials can be easily made hydrophilic simply by supplying electrolyzed water to the inside of the cell, and electrolyzed water can be supplied to the electrode surface so that the water electrolyzer can be operated.

しかし,後者の水電解装置運転→燃料電池運転への切替時には,適切な切替判断が必要である。これは水電解装置運転→燃料電池運転への切替時に,水電解装置運転で親水性となり,ガス透過性を失っている状態のセル内部基材に対して,反応ガスを供給しても,電極面まで十分なガスが供給されず燃料電池運転が不可能なためである。またたとえ部分的にガス透過性が回復しても,それ以外の部分は電極として有効に作用(反応)しないため,見かけ上の電極面積が減少したことになる。その結果,ガス透過性のある部分のみで集中的に反応が起こり,性能低下を招く。かかる場合,有効に作用する電極面積次第では,負荷運転開始直後に出力電圧の急降下が生じ,その反応に伴う温度上昇等により,イオン交換膜が乾燥し,水素ガスがH(プロトン)の状態ではなく,分子の状態でカソード側に透過(クロスリーク)し,その透過した水素ガスと,カソード側に供給される酸化剤ガスが電極上で反応すると爆発その他の燃焼が生じるため,イオン交換膜の破損を招く可能性もある。 However, when switching from the latter water electrolyzer operation to the fuel cell operation, an appropriate switching judgment is required. This is because, when switching from water electrolyzer operation to fuel cell operation, even if the reaction gas is supplied to the cell internal substrate that has become hydrophilic in the water electrolyzer operation and loses gas permeability, This is because sufficient gas is not supplied to the surface and fuel cell operation is impossible. Even if the gas permeability is partially recovered, the other parts do not effectively act (react) as electrodes, and the apparent electrode area is reduced. As a result, the reaction occurs intensively only in the gas permeable part, resulting in performance degradation. In such a case, depending on the area of the electrode that acts effectively, a sudden drop in output voltage occurs immediately after the start of load operation, the ion exchange membrane dries due to a temperature rise accompanying the reaction, etc., and the hydrogen gas is in the H + (proton) state. Rather, it penetrates to the cathode side in the state of molecules (cross leak), and when the permeated hydrogen gas and the oxidant gas supplied to the cathode react on the electrode, an explosion or other combustion occurs, so an ion exchange membrane There is also a possibility of causing damage.

このように燃料電池運転に運転モードを切り替える際に,セル内部が所定の撥水性を有する程度の乾燥状態に達していないと,上記した問題が発生する。また例えばセル内部のチャネルに電解水が残っている場合など,電解水が蒸発しきれない場合も考えられ,セル内部を乾燥させる乾燥処理を実施しても,そのように残留した電解水を蒸発させきれないこともありうる。しかも可逆セルを複数備えた可逆セル・スタックにおいては,各セルが同じように所定の乾燥状態になっていないと,所期の能力を発揮できなかったり,あるいは一部のセルが損傷したりするおそれがある。   As described above, when the operation mode is switched to the fuel cell operation, if the inside of the cell does not reach a dry state having a predetermined water repellency, the above-described problem occurs. In addition, for example, when electrolyzed water remains in the channel inside the cell, the electrolyzed water may not completely evaporate. Even if a drying process is performed to dry the inside of the cell, the remaining electrolyzed water evaporates. It may not be possible to do it. Moreover, in a reversible cell stack with multiple reversible cells, if each cell is not in the same dry state, the intended ability cannot be achieved or some cells may be damaged. There is a fear.

特開2004−134134号公報JP 2004-134134 A

本発明はかかる点に鑑みてなされたものであり,固体高分子形の水電解装置(WE)と燃料電池(FC)とを一体化させた可逆セルを複数備えた可逆セル・スタックにおいて,水電解装置運転から燃料電池運転へと運転モードを切り替えるにあたって,運転モードの切り替えを安全に行うこと,並びに各セル間の乾燥状態のばらつきを抑えて,スタック全体としての機能を安全かつ効率よく発揮させることを目的としている。   The present invention has been made in view of the above, and in a reversible cell stack including a plurality of reversible cells in which a solid polymer water electrolyzer (WE) and a fuel cell (FC) are integrated, When switching the operation mode from the electrolyzer operation to the fuel cell operation, the operation mode is switched safely, and the variation in the dry state between cells is suppressed, and the function of the entire stack is exhibited safely and efficiently. The purpose is that.

本発明は,水電解装置運転と燃料電池運転との運転モードの切り替えが可能な固体高分子形の可逆セルを複数有する可逆セル・スタックを,水電解装置運転から燃料電池運転へと運転モードを切り替える方法において,
水電解装置運転の終了後,燃料電池運転を行う前に,各可逆セル内部のチャネル内に不活性ガスを供給して,チャネル入口と出口との圧力差によってセル内部に残留した電解水をセル内部から排出する排出工程と,前記排出工程の後,各可逆セル内部を乾燥する乾燥工程と,を有し,
前記乾燥工程が終了した後において未だ所定の乾燥状態に達しない可逆セルがある場合には,加湿した反応ガスを全ての可逆セルに供給して,定格運転よりも低い低負荷の燃料電池運転を所定時間行い,その後に再度乾燥工程を実施した後に,燃料電池運転を行うことを特徴としている。
The present invention relates to a reversible cell stack having a plurality of polymer electrolyte reversible cells capable of switching between water electrolyzer operation and fuel cell operation, and changes the operation mode from water electrolyzer operation to fuel cell operation. In the switching method,
After the operation of the water electrolyzer and before the operation of the fuel cell, an inert gas is supplied into the channel inside each reversible cell, and the electrolyzed water remaining inside the cell due to the pressure difference between the channel inlet and outlet is supplied to the cell. A discharge step of discharging from the inside, and a drying step of drying the inside of each reversible cell after the discharge step,
When there is a reversible cell that has not yet reached the predetermined dry state after the drying process is completed, the humidified reaction gas is supplied to all the reversible cells, and the fuel cell operation with a lower load than the rated operation is performed. It is characterized in that the fuel cell operation is performed after performing a predetermined time and then performing the drying process again.

定格運転よりも低い低負荷の燃料電池運転については,例えば電流密度が0.1A/cm以下となるような低負荷運転を実施するとよい。なおここでいう電流密度は,有効電極面積に対する電流密度である。そしてその後に再度乾燥工程を実施する。このように負荷を印加することで,その負荷に応じて各セルの反応部分が電流を流すために必要な量のガスが強制的に吸引される。そうすると反応ガスが確実にチャネル部へ供給されるため,結果的に流路閉塞が解消できる。これにより各セルの初期状態が均一化されるため,再度セルの乾燥を行うことによって各セル間の乾燥度合いのばらつきがなくなり,安全かつ確実な運転切替が可能となる。かかる場合,たとえセル内部が完全に乾燥していなくても,低負荷運転における反応部へのガス供給速度は十分に遅いため反応持続に問題とならないばかりか,局所的な反応が起きても発熱量が少ないため,逆にその際の発熱がセル内部を乾燥させる方向に作用し,交換膜を破損させる可能性は限りなく低い。なおこのとき,反応ガスを低加湿で供給することによってセル内部の乾燥効果を持たせながら低負荷運転を実施するのも有効である。 Fuel cell operation lower low load than the rated operation, for example when the current density is carried out low-load operation such that 0.1 A / cm 2 or less. Here, the current density is the current density with respect to the effective electrode area. Thereafter, the drying process is performed again. By applying the load in this way, an amount of gas necessary for the reaction part of each cell to flow current according to the load is forcibly sucked. As a result, the reaction gas is reliably supplied to the channel portion, and as a result, the blockage of the flow path can be eliminated. As a result, the initial state of each cell is made uniform, so that by drying the cell again, there is no variation in the degree of drying between the cells, and safe and reliable operation switching is possible. In such a case, even if the inside of the cell is not completely dry, the gas supply rate to the reaction section in low-load operation is sufficiently slow so that there is no problem in maintaining the reaction, and even if a local reaction occurs, heat is generated. Since the amount is small, the heat generated at that time acts in the direction of drying the inside of the cell, and the possibility of damaging the exchange membrane is extremely low. At this time, it is also effective to perform a low-load operation while providing a dry effect inside the cell by supplying the reaction gas with low humidification.

本発明によれば,固体高分子形の水電解装置と燃料電池とを一体化させた可逆セルを複数有する可逆セル・スタックにおいて,運転モードの切り替えを安全,かつ確実に行える。しかも各セル間の乾燥状態のばらつきを抑えて,スタックとしての機能を安全かつ効率よく発揮させることができる。   According to the present invention, operation modes can be switched safely and reliably in a reversible cell stack having a plurality of reversible cells in which a solid polymer water electrolyzer and a fuel cell are integrated. In addition, variations in the dry state between cells can be suppressed, and the function as a stack can be exhibited safely and efficiently.

以下本発明の好ましい実施の形態について説明する。図1は,実施の形態にかかる切り替え方法を実施する可逆セル・スタック1全体の構成の概略を示している。この可逆セル・スタック1は,両端部にエンドプレート2,3が配置され,その内側に配置されている給・集電板4,5間に,例えば10枚の可逆セルC1〜C10を有している。図2は,端部に位置している可逆セルC1の水平断面を示している。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 shows an outline of the configuration of the entire reversible cell stack 1 that implements the switching method according to the embodiment. This reversible cell stack 1 has end plates 2 and 3 arranged at both ends, and has, for example, 10 reversible cells C1 to C10 between power supply and current collecting plates 4 and 5 arranged inside thereof. ing. FIG. 2 shows a horizontal section of the reversible cell C1 located at the end.

各可逆セルC1〜C10は同一構成であるので,例えば可逆セルC1を例にとってその構成を説明する。可逆セルC1は,図1,図2に示したように,2枚のセパレータ11,12と,このセパレータ11,12間に挟まれた複合プレート13とを有している。複合プレート13は,給・集電体14,15,及び給・集電体14,15に挟まれたMEA16を有している。MEA16は,2枚の電極触媒層によって構成されている電極部16a,16b間に,固体電解質材料によって構成されるイオン交換膜16cが配置されて複合化した発電ユニットである。給・集電体14,15は,例えば多孔質の材料からなる。そして水電解装置運転の際には,電極部16aがカソードとなり,電極部16bがアノードとなる。   Since each reversible cell C1-C10 is the same structure, the structure is demonstrated taking the reversible cell C1 as an example, for example. As shown in FIGS. 1 and 2, the reversible cell C <b> 1 has two separators 11 and 12 and a composite plate 13 sandwiched between the separators 11 and 12. The composite plate 13 has a power supply / current collector 14, 15 and an MEA 16 sandwiched between the power supply / current collector 14, 15. The MEA 16 is a combined power generation unit in which an ion exchange membrane 16c made of a solid electrolyte material is disposed between electrode portions 16a and 16b made of two electrode catalyst layers. The supply / current collectors 14 and 15 are made of, for example, a porous material. When the water electrolysis apparatus is operated, the electrode portion 16a becomes a cathode and the electrode portion 16b becomes an anode.

セパレータ11,12は各々断面が波型であり,端部の給・集電板4,5,とセパレータ11,12,あるいはセパレータ11,12同士で,MEA16と隔離された流路21,23を形成している。流路21,23は冷却水流路となる。またセパレータ11と給・集電体14によって構成された複数のチャネル(流路)22,セパレータ12と給・集電体15によって構成された複数のチャネル(流路)24は,反応ガスの流路となる。   Each of the separators 11 and 12 has a corrugated cross section. The separators 11 and 12 and the separators 11 and 12 or the separators 11 and 12 are connected to the flow channels 21 and 23 isolated from the MEA 16. Forming. The flow paths 21 and 23 are cooling water flow paths. In addition, a plurality of channels (flow paths) 22 constituted by the separator 11 and the supply / current collector 14 and a plurality of channels (flow paths) 24 constituted by the separator 12 and the supply / current collector 15 are provided for the flow of the reaction gas. It becomes a road.

図3は,例えば各チャネル22の上下の流通構成を模式的に示しており,各チャネル22の上部には,各チャネル22に連通する上部ヘッダ31が設けられ,各チャネル22の下部には,各チャネル22に連通する下部ヘッダ32が設けられている。上部ヘッダ31は入口マニホールド33に通じており,下部ヘッダ32は出口マニホールド34に通じている。可逆セルCにおける各チャネル24についても全く同様に,上部ヘッダ,下部ヘッダ並びに入口マニホールド,出口マニホールドを備えている。但し,チャネル22,24は独立しており,各々別系統のガスが供給,流通する。すなわち燃料電池運転時には,チャネル22には加湿した燃料ガス(水素ガス)が流れ,チャネル24には加湿した酸化剤ガス(酸素)が流れる。   FIG. 3 schematically shows, for example, the upper and lower flow configurations of each channel 22, and an upper header 31 communicating with each channel 22 is provided above each channel 22, and below each channel 22, A lower header 32 communicating with each channel 22 is provided. The upper header 31 communicates with the inlet manifold 33 and the lower header 32 communicates with the outlet manifold 34. Similarly, each channel 24 in the reversible cell C includes an upper header, a lower header, an inlet manifold, and an outlet manifold. However, the channels 22 and 24 are independent and supply and circulate gas of different systems. That is, during operation of the fuel cell, the humidified fuel gas (hydrogen gas) flows through the channel 22, and the humidified oxidant gas (oxygen) flows through the channel 24.

以上のガス供給,排出系統,並びに冷却水の供給,排出系統を図1に戻って説明すると,各可逆セルCのチャネル22の上部ヘッダ31に通ずる入口マニホールド33は,エンドプレート3の外側から加湿した燃料ガス(水素ガス)を供給するための第1ガス供給路41に通じている。第1ガス供給路41はエンドプレート3側の端部に位置する可逆セルC10側から順に各可逆セルCの入口マニホールドと連通し,エンドプレート2側に位置する可逆セルC1の入口マニホールド33と連通している。これによって,第1ガス供給路41から供給されたガスは,各可逆セルCの上部ヘッダ31から各チャネル22内を流れて下部ヘッダ32に流れる。そして下部ヘッダ32のガスは,出口マニホールド34で集合されて,各可逆セルCの下部に設定されている第1ガス排出路42を通じて,最後はエンドプレート3側の端部に位置する可逆セルC10の出口マニホールドに連通し,エンドプレート3の外側から排出されるようになっている。このようにして各可逆セルC1〜C10の各チャネル22は,均一配流が可能な流路構造となっている。そして第1ガス供給路41には,不活性ガス供給源,例えば窒素ガス供給源43が接続されている。   The gas supply / discharge system and the cooling water supply / discharge system will be described with reference to FIG. 1 again. The inlet manifold 33 leading to the upper header 31 of the channel 22 of each reversible cell C is humidified from the outside of the end plate 3. To the first gas supply path 41 for supplying the fuel gas (hydrogen gas). The first gas supply passage 41 communicates with the inlet manifold of each reversible cell C in order from the reversible cell C10 side located at the end on the end plate 3 side, and communicates with the inlet manifold 33 of the reversible cell C1 located on the end plate 2 side. doing. As a result, the gas supplied from the first gas supply path 41 flows from the upper header 31 of each reversible cell C through each channel 22 to the lower header 32. The gas in the lower header 32 is collected at the outlet manifold 34, and finally passes through the first gas discharge passage 42 set at the lower part of each reversible cell C, and finally the reversible cell C10 located at the end on the end plate 3 side. It is communicated with the outlet manifold and discharged from the outside of the end plate 3. In this way, each channel 22 of each reversible cell C1 to C10 has a flow path structure capable of uniform flow. The first gas supply path 41 is connected to an inert gas supply source, for example, a nitrogen gas supply source 43.

一方各可逆セルCのチャネル24側についても全く同様になっており,チャネル24のヘッダ31に通ずる入口マニホールド33は,エンドプレート3の外側から加湿した酸化剤ガス(酸素)を供給するための第2ガス供給路44に通じている。第2ガス供給路44はエンドプレート3側の端部に位置する可逆セルC10側から順に各可逆セルCと連通し,エンドプレート2側に位置する可逆セルC1のチャネル24に通ずる入口マニホールド33と連通している。これによって,第2ガス供給路44から供給されたガスは,各可逆セルCの上部ヘッダ31から各チャネル24内を流れて下部ヘッダ32に流れる。そして下部ヘッダ32のガスは,出口マニホールド34で集合されて,各可逆セルCの下部に設定されている第2ガス排出路45を通じて,最後はエンドプレート3側の端部に位置する可逆セルC10の出口マニホールドに連通し,エンドプレート3の外側から排出されるようになっている。このようにして各可逆セルC1〜C10の各チャネル24は,均一配流が可能な流路構造となっている。そして第2ガス供給路41には,不活性ガス供給源,例えば窒素ガス供給源46が接続されている。   On the other hand, the channel 24 side of each reversible cell C is exactly the same, and the inlet manifold 33 that communicates with the header 31 of the channel 24 supplies a humidified oxidant gas (oxygen) from the outside of the end plate 3. Two gas supply paths 44 are connected. The second gas supply path 44 communicates with each reversible cell C in order from the reversible cell C10 located at the end on the end plate 3 side, and an inlet manifold 33 communicated with the channel 24 of the reversible cell C1 located on the end plate 2 side. Communicate. As a result, the gas supplied from the second gas supply path 44 flows from the upper header 31 of each reversible cell C through the channels 24 to the lower header 32. The gas in the lower header 32 is gathered at the outlet manifold 34, and finally passes through the second gas discharge passage 45 set at the lower part of each reversible cell C, and finally the reversible cell C10 located at the end on the end plate 3 side. It is communicated with the outlet manifold and discharged from the outside of the end plate 3. In this way, the channels 24 of the reversible cells C1 to C10 have a flow path structure that enables uniform distribution. An inert gas supply source, for example, a nitrogen gas supply source 46 is connected to the second gas supply path 41.

なお冷却水についても,図1に示したように,エンドプレート3の外側から冷却水供給路47によって,各可逆セルC10〜C1の上部側から各流路21,23に供給され,各流路21,23を流れた冷却水は,各可逆セルC10〜C1の下部側に配置された冷却水排出路48を通じてエンドプレート3の外側に排出されるようになっている。   As shown in FIG. 1, the cooling water is also supplied from the outside of the end plate 3 to the flow paths 21 and 23 from the upper side of the reversible cells C10 to C1 by the cooling water supply path 47. The cooling water that has flowed through 21 and 23 is discharged to the outside of the end plate 3 through a cooling water discharge passage 48 disposed on the lower side of each of the reversible cells C10 to C1.

そして各可逆セルC1〜C10のセパレータ11,12間の導体抵抗(導体抵抗の上昇値=膜抵抗上昇値,交流抵抗測定器51によって四端子測定法でセル毎に測定されるようになっている。 The conductor resistance between the separators 11 and 12 of each reversible cell C1 to C10 (the increased value of the conductor resistance = the increased value of the membrane resistance is measured for each cell by the AC resistance measuring device 51 by the four-terminal measurement method. ing.

可逆セル・スタック1は以上のような主要構成を有している。次にかかる構成を有する可逆セル・スタック1の水電解装置運転から,燃料電池運転に切り替える方法について説明する。   The reversible cell stack 1 has the above main configuration. Next, a method of switching from the water electrolysis apparatus operation of the reversible cell stack 1 having such a configuration to the fuel cell operation will be described.

水電解装置運転の際には,チャネル22,24内に電解水が供給され,給・集電板4,5に外部から電力を供給することにより,電解水は電気分解され,純水素と純酸素とが発生する。   When the water electrolysis apparatus is operated, the electrolyzed water is supplied into the channels 22 and 24, and the electrolyzed water is electrolyzed by supplying electric power to the supply / collector plates 4 and 5 from the outside. Oxygen is generated.

そして水電解運転から燃料電池運転に切り替える際には,可逆セル・スタック1の各可逆セルC1〜C10の内部,とりわけ各チャネル22,24内部は完全に濡れ状態になっているので,そのままでは燃料電池運転ができないので,可逆セル1の内部を乾燥させる必要がある。   When switching from the water electrolysis operation to the fuel cell operation, the inside of the reversible cells C1 to C10 of the reversible cell stack 1, particularly the inside of the channels 22 and 24, is completely wetted. Since the battery cannot be operated, the inside of the reversible cell 1 needs to be dried.

したがってまず,各チャネル22,24内部を乾燥させて撥水性を回復させる必要がある。この場合,例えば各チャネル22,24内に不活性ガスを供給して乾燥させればよく,その乾燥状態は,各可逆セルCごとに交流抵抗測定器51によって測定される抵抗値によって知る事が出来る。すなわちセル内部が完全湿潤状態での抵抗値を基準として,不活性ガスを供給することにより生じる抵抗上昇値(=イオン交換膜の抵抗上昇値)から,セル内部の乾燥状況を判断することができる。発明者らの知見によれば,各可逆セルCの抵抗上昇値が0.1[Ω・cm]以上あれば,燃料電池運転に切り替えても支障なく,かつ安全に運転を実施することができる。但しこの値は固体高分子膜の厚さや切り替え温度によって異なる。膜厚t[cm],膜の導電率σ[1/Ω・cm]とすると,ここでいう抵抗値はt/σで表される。 Therefore, it is necessary to first restore the water repellency by drying the inside of each channel 22, 24. In this case, for example, an inert gas may be supplied into the channels 22 and 24 and dried, and the dry state can be known from the resistance value measured by the AC resistance measuring device 51 for each reversible cell C. I can do it. That is, based on the resistance value when the inside of the cell is completely wet, the dry state inside the cell can be determined from the resistance increase value (= resistance increase value of the ion exchange membrane) generated by supplying the inert gas. . According to the knowledge of the inventors, if the resistance increase value of each reversible cell C is 0.1 [Ω · cm 2 ] or more, it is possible to safely and safely carry out the operation without switching to the fuel cell operation. it can. However, this value varies depending on the thickness of the solid polymer film and the switching temperature. When the film thickness is t [cm] and the film conductivity is σ [1 / Ω · cm 2 ], the resistance value referred to here is expressed by t / σ.

ところで,たとえ乾燥している状態では各可逆セルC1〜C10への均一配流が可能な流路構造であったとしても,水電解装置運転から燃料電池運転への運転切替時に各可逆セルC1〜C10間で排水状態にばらつきがあると,各セル間の流路抵抗に違いが生じる。そうすると不活性ガスを供給して各チャネル22,24内を乾燥させる工程において,各セル間に供給される乾燥用の不活性ガスの流量に違いが生じるため,各セル間の乾燥状態(=膜抵抗上昇値:△R)にばらつきが発生する。さらに各セル間で排水状態にばらつきがあるということは,各セルに残留している水分量が異なることになるため,各セルで乾燥させるべき水分量も違ってくる。これによって上記の乾燥度合いのばらつきはさらに加速されてしまい,極端な場合には乾燥ガスがほとんど供給されないセルまで出現することになる。   By the way, even if the flow path structure is capable of uniform distribution to the reversible cells C1 to C10 in the dry state, the reversible cells C1 to C10 are switched at the time of switching from the water electrolysis device operation to the fuel cell operation. If there is a variation in drainage between the cells, there will be a difference in flow resistance between cells. Then, in the step of supplying the inert gas and drying the channels 22 and 24, the flow rate of the inert gas for drying supplied between the cells is different, so that the dry state between the cells (= film) The resistance rise value: ΔR) varies. Furthermore, the fact that the drainage state varies among cells means that the amount of water remaining in each cell is different, so the amount of water to be dried in each cell also differs. As a result, the variation in the degree of drying is further accelerated, and in an extreme case, a cell to which almost no drying gas is supplied appears.

図1の可逆セル・スタック1の各可逆セルC1〜C10について発明者らが実際に交流抵抗の抵抗上昇値からその乾燥状態を調べた結果,図4に示したようになった。なおこのときの乾燥条件は,不活性ガスの温度(TPG)が68℃,供給圧力(PPG)が0.1Mpa,供給流量(VPG)が3→20Nl/minであった。図4からわかるように,水電解装置運転から燃料電池運転への運転可能な乾燥下限値(切替可能下限値)Lを0.1[Ω・cm]とした場合,乾燥開始(不活性ガスの供給開始)から約20分後には,当該切替可能下限値Lを可逆セルC7を除く他の可逆セルは全てクリアしている。しかし可逆セルC7については,乾燥ガスがほとんど供給されていないものと推察される。 As a result of the inventors actually examining the dry state of each reversible cell C1 to C10 of the reversible cell stack 1 of FIG. 1 from the resistance increase value of the AC resistance, the result is as shown in FIG. The drying conditions at this time were an inert gas temperature (T PG ) of 68 ° C., a supply pressure (P PG ) of 0.1 Mpa, and a supply flow rate (V PG ) of 3 → 20 Nl / min. As can be seen from FIG. 4, when the lower limit dry value (switchable lower limit value) L from the water electrolyzer operation to the fuel cell operation is 0.1 [Ω · cm 2 ], the drying starts (inert gas About 20 minutes after the start of supply), all other reversible cells except the reversible cell C7 clear the switchable lower limit L. However, with respect to the reversible cell C7, it is assumed that almost no dry gas is supplied.

この状態でそのまま燃料電池運転を行うと,図6に示したように,各セル間の性能が低電流密度域から極端にばらつくため,それ以上の電流密度での運転や,運転の継続までもが不可能となる。なおこのときの運転条件は,作動温度(TFC)が68℃,作動圧力(PFC)が0.1MPa,水素ガス/酸素の流量(MH/O)が20/20Nl/minである。 If the fuel cell operation is performed in this state as it is, as shown in FIG. 6, the performance between the cells varies extremely from the low current density region, so operation at a higher current density or continued operation is also possible. Is impossible. The operating conditions at this time are an operating temperature (TFC) of 68 ° C., an operating pressure (PFC) of 0.1 MPa, and a hydrogen gas / oxygen flow rate (MH 2 / O 2 ) of 20/20 Nl / min.

可逆セルC7のように乾燥用の不活性ガスを供給しても交流抵抗値が殆ど上昇しない(乾燥しない)原因は,図3に示したようにチャネル22(あるいはチャネル24)内に,電解水Dが残留して,チャネル22(あるいはチャネル24)を閉塞していると考えられる。   The reason why the AC resistance value hardly increases (does not dry) even when an inert gas for drying is supplied as in the reversible cell C7 is that the electrolytic water is contained in the channel 22 (or channel 24) as shown in FIG. It is considered that D remains and blocks the channel 22 (or the channel 24).

チャネル22(あるいはチャネル24)に残留した電解水Dは,壁面との間に働く表面張力により,ある程度以上の力を加えなければそれを人為的に排出することはできない。そこで,均一かつ確実にチャネルに残留した電解水を排出するためには,閉塞部分を挟んでチャネルの上流と下流,すなわち上部ヘッダ31と下部ヘッダ32との間(ヘッダの上流と下流)の間に,この表面張力以上の力(差圧)を加えれば,残留している電解水Dを吹き飛ばす事ができると考えられる。   The electrolyzed water D remaining in the channel 22 (or the channel 24) cannot be artificially discharged unless a certain level of force is applied due to the surface tension acting between the walls. Therefore, in order to discharge the electrolyzed water remaining in the channel uniformly and reliably, the upstream and downstream sides of the channel, that is, between the upper header 31 and the lower header 32 (upstream and downstream of the header) across the blocking portion. In addition, it is considered that the remaining electrolyzed water D can be blown away by applying a force (differential pressure) that exceeds this surface tension.

このときの排出条件(吹き飛ばす為の条件)は,下記の力のバランスに基づいて算出可能である。すなわち図3,図4にも示したように,
残留水の自重 : F1=mg
チャネル部に働く表面張力 : F=σL
乾燥ガスの動圧に基づく力 : F=1/2ρV
チャネル上流ヘッター部の静圧に基づく力 : F=P
チャネル下流ヘッター部の静圧に基づく力 : F=P
としたとき,
+F+F>F+F ・・・(1)
を満たせば,残留している電解水Dを吹き飛ばす事ができる。
ここで,
m : 残留電解水の質量[kg]
g : 重力加速度[m/s
σ : 表面張力 [N/m]
L : 水と壁面の界面長さ(=チャネル断面の周長×2)[m]
ρ : 乾燥ガスの密度 [kg/m
V : 乾燥ガスの平均速度(=供給流量/断面積)[m/s]
A : チャネル断面積[m
: チャネル上流ヘッター部の静圧 [Pa]
: チャネル下流ヘッター部の静圧 [Pa]
である。しかしながら現実的には,式(1)を満たすように各諸元を定めるのはきわめて困難である。
The discharge conditions (conditions for blowing off) at this time can be calculated based on the following balance of forces. That is, as shown in FIGS.
Residual water weight: F 1 = mg
Surface tension acting on the channel part: F 2 = σL
Force based on dynamic pressure of dry gas: F 3 = 1 / 2ρV 2 A
Force based on static pressure of channel upstream header: F 4 = P 1 A
Force based on static pressure in channel downstream header: F 5 = P 2 A
When
F 1 + F 3 + F 4 > F 2 + F 5 (1)
If the above condition is satisfied, the remaining electrolyzed water D can be blown off.
here,
m: Mass of residual electrolyzed water [kg]
g: Gravity acceleration [m / s 2 ]
σ: surface tension [N / m]
L: Interface length between water and wall surface (= perimeter of channel cross section × 2) [m]
ρ: Dry gas density [kg / m 3 ]
V: Average speed of dry gas (= supply flow rate / cross-sectional area) [m / s]
A: Channel cross-sectional area [m 2 ]
P 1 : Static pressure in the channel upstream header [Pa]
P 2 : Static pressure in channel downstream header [Pa]
It is. However, in reality, it is extremely difficult to determine each specification so as to satisfy Equation (1).

このとき,チャネル毎に閉塞状況が違うことを勘案すると,乾燥用の不活性ガスの流速はチャネル毎に異なることが容易に想像できる。ここで,ヘッダ上流と下流の静圧差を△P[Pa]とすると,△P・AがF以上であれば,流路の閉塞状況に係わらず確実に流路閉塞を解消することが可能となる。すなわち,
1/2ρV・A>F ・・・(2)
を満たす条件であれば,たとえそれぞれのチャネル間で流量のばらつきが発生していても,全てのチャネルはヘッダ31でつながっており、また全セルのヘッダ31は第1ガス供給路41でつながっているため,全チャネル,全セルの押し込み圧力Pは同一となり,最低(完全に均一に流れたとき)でも,1/2ρV以上となるため,流路閉塞を確実に解消することができる。
At this time, it can be easily imagined that the flow rate of the inert gas for drying is different for each channel, considering that the clogging situation is different for each channel. Here, when the difference in static pressure between the upstream and downstream of the header is ΔP [Pa], if ΔP · A is F 2 or more, it is possible to reliably eliminate the blockage of the channel regardless of the blockage of the channel. It becomes. That is,
1 / 2ρV 2 · A> F 2 (2)
As long as the conditions are satisfied, even if there is a variation in flow rate between the respective channels, all the channels are connected by the header 31, and the headers 31 of all the cells are connected by the first gas supply path 41. because you are, pushing pressure P 1 of all the channels, all the cells become the same, but the lowest (when fully uniform flow), since the 1 / 2ρV 2 or more, it is possible to reliably eliminate the passage closing.

したがってこのような排出工程を実施した後,チャネル内に乾燥した不活性ガスを供給するなどして乾燥工程を実施すれば,各可逆セルC1〜C10をばらつきなく乾燥させる事ができ,水電解装置運転から燃料電池運転を安全かつ確実に行なう事ができ,また効率の良い運転を実現することが可能である。   Therefore, after performing such a discharge process, if the drying process is performed by supplying a dry inert gas into the channel, the reversible cells C1 to C10 can be dried without variation, and the water electrolysis apparatus It is possible to perform fuel cell operation safely and reliably from operation, and it is possible to realize efficient operation.

なお,セル内部の残留水を完全に排出した後の乾燥用の不活性ガスの流量は,必ずしも上記した排出工程の際の条件と同一にする必要は無く,乾燥を完了させたい時間等を勘案して任意に変えてもよい。すなわち排出工程終了後は,その流量を任意に変更して,引き続いてそのまま乾燥工程を実施してもよい。   It should be noted that the flow rate of the inert gas for drying after the residual water inside the cell is completely discharged is not necessarily the same as the conditions for the above-described discharging process, taking into consideration the time for which drying is to be completed. And may be changed arbitrarily. That is, after the discharge process is completed, the flow rate may be arbitrarily changed, and the drying process may be performed as it is.

ところで上記した排出工程を実施したとしても,可逆セル・スタック1においては何らかの偶発的な現象により各可逆セルC1〜C10間の乾燥ばらつきが発生することが十分に考えられる。そこで,そのような事態に陥ったとしても安全かつ確実に水電解装置運転から燃料電池運転を切り替える方法について以下に説明する。   By the way, even if the above-described discharging process is performed, it is fully conceivable that in the reversible cell stack 1, a variation in drying between the reversible cells C1 to C10 occurs due to some accidental phenomenon. Therefore, a method for switching from the water electrolysis device operation to the fuel cell operation safely and surely even if such a situation occurs will be described below.

各可逆セルC1〜C10間に乾燥ばらつきが発生した場合,長時間乾燥を行うことで全てのセルが規定の乾燥状態まで達したとしても,そのいわば代償として,乾燥し過ぎるセルが出現することがある(例えば図4の可逆セルC5など)。そうするとその後の加湿反応ガス供給をしたとたんに水素ガスや酸素ガスのクロスリーク等により,セルが破損する可能性がある。このような場合には,全てのセルが規定の乾燥状態に達した後,加湿反応ガスを供給して燃料電池運転を実施する前に,一旦加湿した不活性ガスを各可逆セルC1〜C10のチャネル22,24に供給することにより,各セル間の乾燥状態を安全かつ確実に均一化させることができる。   If drying variation occurs between the reversible cells C1 to C10, even if all the cells have reached the specified dry state by performing the drying for a long time, the cells may be overdried as a price. (For example, reversible cell C5 in FIG. 4). Then, as soon as the humidified reaction gas is supplied thereafter, the cell may be damaged due to a cross leak of hydrogen gas or oxygen gas. In such a case, after all the cells have reached the prescribed dry state, the humidified inert gas is supplied to the reversible cells C1 to C10 before supplying the humidified reaction gas and operating the fuel cell. By supplying the channels 22 and 24, the dry state between the cells can be made uniform safely and reliably.

このとき不活性ガスではなく,カソード側のみに,すなわち図2に即していえば,チャネル24側にのみ加湿反応ガス,すなわち加湿した酸素ガスや空気を供給しても同様の効果は得られる。   At this time, if the humidified reaction gas, that is, humidified oxygen gas or air, is supplied only to the cathode side, that is, according to FIG.

このように,ある程度の乾燥ばらつきが発生した場合には,以上のような対処法で十分である。しかし,全く乾燥しない(規定の乾燥状態まで達しない)セルが存在する場合(例えば図4の可逆セルC7など)には,新たな対処が必要となる。   In this way, when some variation in drying occurs, the above countermeasures are sufficient. However, if there is a cell that does not dry at all (not reach the specified dry state) (for example, the reversible cell C7 in FIG. 4), a new countermeasure is required.

かかる場合には,乾燥用の不活性ガスの供給を一旦中止して,加湿した反応ガス(水素ガスと酸素)とを各々対応する各チャネル22,24に流して,所定の定格運転より低い,低負荷運転,例えば電流密度が0.1A/cm以下となるような低負荷運転を一定時間実施する。そしてその後に再度,乾燥用の不活性ガスをチャネル22,24に供給することで,セル内部の乾燥状態を均一化することができる。この一定時間については例えば供給したガスの積算量によって判断してもよい。 In such a case, the supply of the inert gas for drying is temporarily stopped, and the humidified reaction gas (hydrogen gas and oxygen) is caused to flow through the corresponding channels 22 and 24, respectively. Low load operation, for example, low load operation in which the current density is 0.1 A / cm 2 or less is performed for a certain time. Then, by supplying again the inert gas for drying to the channels 22 and 24, the dry state inside the cell can be made uniform. For example, the certain time may be determined by the integrated amount of the supplied gas.

発明者らが実際に図4に示した乾燥結果を有する可逆セル・スタック1に対して,電流密度が0.1A/cmとなるように低負荷で燃料電池運転を所定時間,例えば10〜20min実施した後,再び不活性ガスの温度(TPG)が68℃,供給圧力(PPG)が0.1Mpa,供給流量(VPG)が10Nl/minの条件で不活性ガスによる乾燥工程を実施した結果を,図7に示した。 For the reversible cell stack 1 having the drying results shown in FIG. 4, the inventors have operated the fuel cell at a low load so that the current density is 0.1 A / cm 2 for a predetermined time, for example, 10 to 10. After carrying out for 20 minutes, the drying process with the inert gas was performed again under the conditions of the inert gas temperature (T PG ) of 68 ° C., the supply pressure (P PG ) of 0.1 Mpa, and the supply flow rate (V PG ) of 10 Nl / min. The results are shown in FIG.

これによれば,図4においては運転可能な乾燥下限値(切替可能下限値)Lをクリアできなかった可逆セルC7についても,乾燥開始後約10分経過した後には,当該乾燥下限値(切替可能下限値)Lをクリアしている。そしてその後に燃料電池運転を実施した結果は,図8に示したとおりであり,低電流密度の段階からばらつきのない運転が実現されている。   According to this, even in the case of the reversible cell C7 that could not clear the operable drying lower limit (switchable lower limit) L in FIG. Possible lower limit (L) is cleared. Then, the result of carrying out the fuel cell operation is as shown in FIG. 8, and the operation without variation is realized from the stage of low current density.

これは負荷を印加することで,その負荷に応じて各セルの反応部分が電流を流すために必要な量のガスを強制的に吸引する。すると反応ガスが確実にチャネルへ供給されるため,結果的に流路閉塞が解消できるのである。これによって各可逆セルC1〜C10の初期状態が均一化されるため,再度セルの乾燥を行うことにより各セル間の乾燥ばらつきがなくなり,安全かつ確実な運転切替が可能となったためである。   In this case, by applying a load, the reaction part of each cell forcibly sucks in an amount of gas necessary for flowing a current in accordance with the load. Then, the reaction gas is surely supplied to the channel, and as a result, the blockage of the flow path can be solved. This is because the initial state of each of the reversible cells C1 to C10 is made uniform, so that drying variation between the cells is eliminated by drying the cells again, thereby enabling safe and reliable operation switching.

ここで,例えセル内部が完全に乾燥していなくても,低負荷運転における反応部(チャネル)へのガス供給速度は,例えば全電極面積が使えたとして,水素ガス側は5.2×10−7[mol/s・cm],酸素ガス側は2.6×10−7[mol/s・cm]と,十分に遅いため,反応持続に問題とならないばかりか,局所的な反応が起きても発熱量が少ないため,逆にその発熱がセル内部を乾燥させる方向に作用するため,膜を破損させる可能性は限りなく低い。このとき,反応ガスを低加湿で供給することによりセル内部の乾燥効果を持たせながら低負荷運転を実施するのも有効である。 Here, even if the inside of the cell is not completely dry, the gas supply rate to the reaction part (channel) in the low load operation is, for example, that the entire electrode area can be used. -7 [mol / s · cm 2 ], and the oxygen gas side is 2.6 × 10 −7 [mol / s · cm 2 ], which is sufficiently slow so that it does not pose a problem for the duration of the reaction, and local reactions Since the amount of heat generated is small even if a spill occurs, the heat acts in the direction of drying the inside of the cell, so the possibility of damaging the membrane is extremely low. At this time, it is also effective to perform a low load operation while providing a drying effect inside the cell by supplying the reaction gas with low humidification.

以上のように,本発明によれば,可逆セル・スタックにおいても運転切替のために特段の設備を設けることなく可逆セル・スタックの運転切替が確実に行える。しかもスタックの運転切替において最も重要であるチャネルに残留した電解水を完全に排出するために,どんな形状のセルに対してもその形状に応じた必要条件を算出し,これを実現することが可能である。   As described above, according to the present invention, even in a reversible cell stack, the reversible cell stack can be reliably switched without providing any special equipment for switching the operation. Moreover, in order to completely discharge the electrolyzed water remaining in the channel, which is the most important for switching the stack operation, it is possible to calculate the necessary conditions according to the shape of any shape of the cell and realize it. It is.

本発明は,可逆セルを複数有する可逆セル・スタックにおいて,水電解装置運転から燃料電池運転に切り替える際に有用である。   The present invention is useful when switching from water electrolyzer operation to fuel cell operation in a reversible cell stack having a plurality of reversible cells.

実施の形態で用いた可逆セル・スタックの構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of the reversible cell stack used in embodiment. 実施の形態で用いた可逆セル・スタックの部分拡大水平断面図である。It is a partial expanded horizontal sectional view of the reversible cell stack used in the embodiment. 実施の形態で用いた可逆セルの内部のチャネルの流路系統を模式的に示した説明図である。It is explanatory drawing which showed typically the channel system of the channel inside the reversible cell used in embodiment. 乾燥時間に伴う各可逆セルの膜抵抗上昇値を示すグラフである。It is a graph which shows the membrane resistance rise value of each reversible cell with drying time. チャネルを閉塞している残留電解水の力のバランスを説明する説明図である。It is explanatory drawing explaining the balance of the force of the residual electrolyzed water which has obstruct | occluded the channel. 図4の乾燥状態を有する可逆セル・スタックを燃料電池運転した際の平均電流密度と出力電圧との関係を示すグラフである。5 is a graph showing the relationship between the average current density and the output voltage when the reversible cell stack having the dry state of FIG. 4 is operated as a fuel cell. 一旦低負荷運転を実施した後の乾燥時間に伴う各可逆セルの膜抵抗上昇値を示すグラフである。It is a graph which shows the membrane resistance rise value of each reversible cell accompanying the drying time after implementing low load operation once. 図7の乾燥状態を有する可逆セル・スタックを燃料電池運転した際の平均電流密度と出力電圧との関係を示すグラフである。It is a graph which shows the relationship between the average current density at the time of carrying out a fuel cell operation of the reversible cell stack which has the dry state of FIG.

符号の説明Explanation of symbols

1 可逆セル・スタック
4,5 給・集電板
11,12 セパレータ
13 複合プレート
14,15 給・集電体
16 MEA
16a,16b 電極触媒層
16c イオン交換膜
22.24 チャネル
31 上部ヘッダ
32 株ヘッダ
41 第1ガス供給路
42 第1ガス排出路
43,46 不活性ガス供給源
44 第2ガス供給路
45 第2ガス排出路
47 冷却水供給路
48 冷却水排出路
51 交流抵抗測定器
C1〜C10 可逆セル
1 Reversible cell stack 4,5 Supply / collection plate 11,12 Separator 13 Composite plate 14,15 Supply / collector 16 MEA
16a, 16b Electrocatalyst layer 16c Ion exchange membrane 22.24 Channel 31 Upper header 32 Stock header 41 First gas supply path 42 First gas discharge path 43, 46 Inert gas supply source 44 Second gas supply path 45 Second gas Discharge path 47 Cooling water supply path 48 Cooling water discharge path 51 AC resistance measuring device C1 to C10 Reversible cell

Claims (2)

水電解装置運転と燃料電池運転との運転モードの切り替えが可能な固体高分子形の可逆セルを複数有する可逆セル・スタックを,水電解装置運転から燃料電池運転へと運転モードを切り替える方法において,
水電解装置運転の終了後,燃料電池運転を行う前に,
各可逆セル内部のチャネル内に不活性ガスを供給して,チャネル入口と出口との圧力差によってセル内部に残留した電解水をセル内部から排出する排出工程と,
前記排出工程の後,各可逆セル内部を乾燥する乾燥工程と,
を有し,
前記乾燥工程が終了した後において未だ所定の乾燥状態に達しない可逆セルがある場合には,加湿した反応ガスを全ての可逆セルに供給して,定格運転よりも低い低負荷の燃料電池運転を所定時間行い,その後に再度乾燥工程を実施した後に,燃料電池運転を行うことを特徴とする,可逆セル・スタックの運転切り替え方法。
In a method of switching an operation mode from a water electrolysis device operation to a fuel cell operation, a reversible cell stack having a plurality of polymer electrolyte reversible cells capable of switching between an operation mode of a water electrolysis device and a fuel cell operation,
After the operation of the water electrolyzer, before operating the fuel cell,
A discharge step of supplying an inert gas into the channel inside each reversible cell and discharging the electrolyzed water remaining inside the cell due to a pressure difference between the channel inlet and the outlet from the inside of the cell;
A drying step of drying the inside of each reversible cell after the discharging step;
Have
When there is a reversible cell that has not yet reached the predetermined dry state after the drying process is completed, the humidified reaction gas is supplied to all the reversible cells, and the fuel cell operation with a lower load than the rated operation is performed. A method of switching operation of a reversible cell stack, characterized in that the fuel cell operation is performed after a predetermined time, and then a drying process is performed again .
前記低負荷運転は,電流密度が0.1A/cm 以下であることを特徴とする,請求項1に記載の可逆セル・スタックの運転切り替え方法。 The reversible cell stack operation switching method according to claim 1, wherein the low load operation has a current density of 0.1 A / cm 2 or less .
JP2005307288A 2005-10-21 2005-10-21 Switching operation of reversible cell stack Active JP5152948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005307288A JP5152948B2 (en) 2005-10-21 2005-10-21 Switching operation of reversible cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005307288A JP5152948B2 (en) 2005-10-21 2005-10-21 Switching operation of reversible cell stack

Publications (2)

Publication Number Publication Date
JP2007115588A JP2007115588A (en) 2007-05-10
JP5152948B2 true JP5152948B2 (en) 2013-02-27

Family

ID=38097577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005307288A Active JP5152948B2 (en) 2005-10-21 2005-10-21 Switching operation of reversible cell stack

Country Status (1)

Country Link
JP (1) JP5152948B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921390B1 (en) * 2007-09-25 2010-12-03 Commissariat Energie Atomique HIGH TEMPERATURE ELECTROLYSIS HOMOGENIZING TEMPERATURE DEVICE.
JP5419255B2 (en) * 2008-12-25 2014-02-19 独立行政法人産業技術総合研究所 Reversible cell operation switching method
JP5492460B2 (en) * 2009-06-03 2014-05-14 高砂熱学工業株式会社 Reversible cell operation method
JP6150269B2 (en) 2012-10-01 2017-06-21 国立研究開発法人宇宙航空研究開発機構 Regenerative fuel cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4027655C1 (en) * 1990-08-31 1991-10-31 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V., 8000 Muenchen, De
JP3509168B2 (en) * 1994-02-23 2004-03-22 トヨタ自動車株式会社 Fuel cell system
JP2001325974A (en) * 2000-05-15 2001-11-22 Sanyo Electric Co Ltd Fuel cell power generation system
US7252900B2 (en) * 2003-09-09 2007-08-07 Plug Power Inc. Combination fuel cell and ion pump, and methods and infrastructure systems employing same
JP2005203253A (en) * 2004-01-16 2005-07-28 Honda Motor Co Ltd Fuel cell stopping method

Also Published As

Publication number Publication date
JP2007115588A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
KR101248254B1 (en) Electricity production apparatus
JP5156797B2 (en) Fuel cell system
JP5419255B2 (en) Reversible cell operation switching method
JP5103998B2 (en) Fuel cell system
JP5339473B2 (en) Reversible cell operation control method
JP5287184B2 (en) Fuel cell system
JP2007172971A (en) Fuel cell system
JP2004199988A (en) Fuel cell system
JP6133365B2 (en) Operation method of fuel cell system
JP2017152113A (en) Low-temperature startup method of fuel cell system
JP5152948B2 (en) Switching operation of reversible cell stack
JP2011008916A (en) Fuel cell cooling system
JP4946087B2 (en) Fuel cell system
JP4826144B2 (en) Fuel cell stack
JPH08315843A (en) Starting method of solid high polymer type fuel cell
JP5109284B2 (en) Fuel cell system
JP2010129482A (en) Fuel cell separator, fuel cell stack, and fuel cell system
JP2008021448A (en) Fuel cell system and fuel cell control method
JP5947152B2 (en) Operation method of fuel cell
JP2011258396A (en) Fuel cell system
JP4919314B2 (en) Reversible cell operation control method and fuel cell operation method
JP2009245818A (en) Fuel cell device
JP7076418B2 (en) Fuel cell system and its control method
JP6200009B2 (en) Operation method of fuel cell system
JP2004529458A (en) Method for improving the moisture balance of a fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070328

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5152948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250