JP5339473B2 - Reversible cell operation control method - Google Patents

Reversible cell operation control method Download PDF

Info

Publication number
JP5339473B2
JP5339473B2 JP2011048603A JP2011048603A JP5339473B2 JP 5339473 B2 JP5339473 B2 JP 5339473B2 JP 2011048603 A JP2011048603 A JP 2011048603A JP 2011048603 A JP2011048603 A JP 2011048603A JP 5339473 B2 JP5339473 B2 JP 5339473B2
Authority
JP
Japan
Prior art keywords
cell
water
reversible
reversible cell
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011048603A
Other languages
Japanese (ja)
Other versions
JP2011146395A (en
Inventor
敦史 加藤
大悟 橘高
隆了 屋
直和 熊谷
勉 五百蔵
誠 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Daiki Ataka Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Daiki Ataka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd, National Institute of Advanced Industrial Science and Technology AIST, Daiki Ataka Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2011048603A priority Critical patent/JP5339473B2/en
Publication of JP2011146395A publication Critical patent/JP2011146395A/en
Application granted granted Critical
Publication of JP5339473B2 publication Critical patent/JP5339473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To achieve efficient operation by safely and surely carrying out switching over of an operation mode in a reversible cell formed by integrating a solid polymer water electrolysis device and a fuel cell. <P>SOLUTION: In the reversible cell 1 formed by integrating the solid polymer water electrolysis device and the fuel cell, when the operation mode is switched over from water electrolysis device operation to fuel cell operation, inert gas is supplied from an inert gas supply source 31 to a flow passage interior of the reversible cell 1 to dry the interior of the reversible cell 1. A dry situation is determined based on increase in resistance between current supply/current collecting plates 2, 3 by an AC resistance measuring instrument 35, and after a resistance increased value reaches within an appropriate range, a control device 34 stops the supply of gas, and then starts the operation of the fuel cell. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、固体高分子形の水電解装置(WE)と燃料電池(FC)とを一体化させた可逆セルの運転制御方法に関するものである。   The present invention relates to an operation control method for a reversible cell in which a solid polymer water electrolyzer (WE) and a fuel cell (FC) are integrated.

固体高分子形の可逆セルとは、同形の水電解装置と燃料電池の機能を一体化させた機器であり、日本では、特許文献1に開示されているように、構成部材の最適化に関する研究が行われているが、現在のところ実用化までには至っていない。その理由としては、実用規模において、水電解装置と燃料電池という、正反対の物理現象を同一部材で成立させ、かつそれを制御することに対する技術的困難さが挙げられる。   A solid polymer reversible cell is a device in which the functions of a water electrolysis device and a fuel cell of the same shape are integrated. In Japan, as disclosed in Patent Document 1, research on optimization of components is performed. However, it has not been put into practical use at present. The reason for this is that, on a practical scale, there are technical difficulties in establishing and controlling the opposite physical phenomena of water electrolysis device and fuel cell with the same member.

すなわち、運転モードの切替には、燃料電池運転→水電解装置運転の場合と、その逆の水電解装置運転→燃料電池運転の2つの場合がある。このうち、前者の燃料電池運転→水電解装置運転への切替時は、切替判断は格別不要である。つまりこの場合には、燃料電池運転で撥水性となっている可逆セルの内部基材、例えばイオン交換膜及び給/集電体を、水電解装置運転に必要な親水性に変える必要があるが、セル内部に電解水を供給するだけで容易にこれら内部基材は親水性となり、電極面に電解水が供給され水電解装置運転が可能なためである。   That is, there are two cases in which the operation mode is switched: a fuel cell operation → water electrolyzer operation and a reverse water electrolyzer operation → fuel cell operation. Among these, when switching from the former fuel cell operation to the water electrolysis apparatus operation, the switching determination is not particularly necessary. That is, in this case, it is necessary to change the internal base material of the reversible cell that is water-repellent during fuel cell operation, such as the ion exchange membrane and the current supply / current collector, to the hydrophilicity necessary for water electrolysis apparatus operation. This is because these internal base materials can be easily made hydrophilic simply by supplying electrolyzed water to the inside of the cell, and electrolyzed water can be supplied to the electrode surface and the water electrolyzer can be operated.

しかし、後者の水電解装置運転→燃料電池運転への切替時には、適切な切替判断が必要である。これは水電解装置運転→燃料電池運転への切替時に、水電解装置運転で親水性となり、ガス透過性を失っている状態のセル内部基材に対して、反応ガスを供給しても、電極面まで十分なガスが供給されず燃料電池運転が不可能なためである。またたとえ部分的にガス透過性が回復しても、それ以外の部分は電極として有効に作用(反応)しないため、見かけ上の電極面積が減少したことになる。その結果、ガス透過性のある部分のみで集中的に反応が起こり、性能低下を招く。かかる場合、有効に作用する電極面積次第では、負荷運転開始直後に出力電圧の急降下が生じ、その反応に伴う温度上昇等により、イオン交換膜が乾燥し、水素ガスがH(プロトン)の状態ではなく、分子の状態でカソード側に透過(クロスリーク)し、その透過した水素ガスと、カソード側に供給される酸化剤ガスが電極上で反応すると爆発その他の燃焼が生じるため、イオン交換膜の破損を招く可能性もある。 However, when switching from the latter water electrolyzer operation to the fuel cell operation, an appropriate switching determination is required. This is because, when switching from water electrolyzer operation to fuel cell operation, even if the reaction gas is supplied to the cell internal substrate that has become hydrophilic in the water electrolyzer operation and loses gas permeability, This is because sufficient gas is not supplied to the surface and fuel cell operation is impossible. Further, even if the gas permeability is partially recovered, other portions do not effectively act (react) as electrodes, so that the apparent electrode area is reduced. As a result, the reaction occurs intensively only in the gas permeable portion, resulting in performance degradation. In such a case, depending on the area of the electrode that acts effectively, a sudden drop in the output voltage occurs immediately after the start of the load operation, the ion exchange membrane dries due to the temperature rise accompanying the reaction, etc., and the hydrogen gas is in the H + (proton) state Rather than permeating to the cathode side in the state of molecules (cross leak), the hydrogen gas that permeates and the oxidant gas supplied to the cathode react on the electrode, causing explosion and other combustion, so the ion exchange membrane There is also a possibility of causing damage.

特開2004−134134号公報JP 2004-134134 A

本発明はかかる点に鑑みてなされたものであり、固体高分子形の水電解装置(WE)と燃料電池(FC)とを一体化させた可逆セルにおいて、運転モードの切り替えを安全、かつ確実に行え、そして効率の良い運転を繰り返し実現するための制御方法を提供することを目的としている。   The present invention has been made in view of the above points, and in a reversible cell in which a solid polymer water electrolyzer (WE) and a fuel cell (FC) are integrated, the operation mode can be switched safely and reliably. It is an object of the present invention to provide a control method for repeatedly realizing efficient operation.

前記した現象を防ぐには、水電解装置運転終了後に可逆セルの内部基材を撥水性が回復するまで一旦乾燥させることにより、給・集電体のガス透過性を回復させ、電極面全てが有効に反応できる状態に戻す必要がある。しかし、同時にセル内部基材の1つであるイオン交換膜については、ある程度の湿潤状態を確保しておく必要もある。   In order to prevent the phenomenon described above, the gas repellent property of the supply / current collector is recovered by drying the internal base material of the reversible cell until the water repellency is recovered after the operation of the water electrolysis apparatus is completed. It is necessary to return to a state where it can respond effectively. However, it is also necessary to ensure a certain degree of wetness for the ion exchange membrane, which is one of the cell inner substrates.

そこで本発明では、水電解装置運転と燃料電池運転との運転モードの切り替えが可能な固体高分子形の可逆セルにおいて、水電解装置運転から燃料電池運転への運転モードの切り替えにあたって、水電解装置運転における電解水の供給を停止した状態で、可逆セルを水電解装置運転を実施して、可逆セル内部を乾燥させ、
前記可逆セルの内部のイオン交換膜の抵抗上昇値又はイオン交換膜表面の活量に基づいて前記運転モードの切り替えを行うことを特徴としている。
Therefore, in the present invention, in the polymer electrolyte reversible cell capable of switching the operation mode between the water electrolyzer operation and the fuel cell operation, the water electrolyzer is used for switching the operation mode from the water electrolyzer operation to the fuel cell operation. In a state where the supply of electrolyzed water in operation is stopped, the reversible cell is operated with a water electrolyzer and the inside of the reversible cell is dried.
The operation mode is switched based on the resistance increase value of the ion exchange membrane inside the reversible cell or the activity of the ion exchange membrane surface.

このように水電解装置運転における電解水の供給を停止した状態で、可逆セルを水電解装置運転を実施して、可逆セル内部を乾燥させて、前記可逆セルの内部のイオン交換膜の抵抗上昇値又はイオン交換膜表面の活量に基づいて前記運転モードの切り替え制御を行うようにしたので、どこまで乾燥させれば有効電極面積の減少による性能低下を生じないかという、確実な切替が可能であり、かつどこまで乾燥させても乾燥させ過ぎによる前述のようなクロスリークが生じない、安全な切替が可能かの判断が可能となる。 With the supply of electrolyzed water in the water electrolyzer operation stopped in this manner , the reversible cell is operated with the water electrolyzer and the inside of the reversible cell is dried to increase the resistance of the ion exchange membrane inside the reversible cell. Since the switching of the operation mode is performed based on the value or the activity of the ion exchange membrane surface, it is possible to surely switch how much the drying does not cause a performance degradation due to a decrease in the effective electrode area. It is possible to determine whether the safe switching can be performed without causing the above-described cross leak due to excessive drying.

前記乾燥は、例えばセル内部、たとえば燃料ガスや酸化剤ガスの流路に不活性ガスを供給することによって行うことができ、乾燥状況の判断は、可逆セルの出口ガス温度を求め、そのときの供給ガス流量及び流路内部のガス圧力とから出口ガス温度での飽和水蒸気量を求めることにより、セル内部からの蒸発水分量を求めることによって可能である。
可逆セル内部への不活性ガスの供給方向は、次回からの乾燥の際には、適宜供給方向を変えるようにしてもよい。例えば上方から供給、下方から排出した場合、次回からは交互にあるいは適当な回数ごとに、下方から供給、上方から排出する。これによって、乾燥の偏りを防止することができる。
The drying can be performed, for example, by supplying an inert gas to the inside of the cell, for example, the flow path of the fuel gas or the oxidant gas . It is possible to obtain the amount of evaporated water from the inside of the cell by obtaining the saturated water vapor amount at the outlet gas temperature from the supply gas flow rate and the gas pressure inside the flow path.
The supply direction of the inert gas into the reversible cell may be changed as appropriate during the next drying. For example, when supplying from above and discharging from below, supply from below and discharge from above alternately or every appropriate number of times from the next time. Thereby, unevenness of drying can be prevented.

また前記乾燥状況の判断は、可逆セルの出口ガス温度を求め、そのときの供給ガス流量及び流路内部のガス圧力とから出口ガス温度での飽和水蒸気量を求めることにより、セル内部からの蒸発水分量を求めることによっても可能である。 In addition, the determination of the drying condition is performed by obtaining the outlet gas temperature of the reversible cell, and obtaining the saturated water vapor amount at the outlet gas temperature from the supply gas flow rate and the gas pressure inside the flow path at that time, thereby evaporating from the inside of the cell. It is also possible by determining the amount of moisture.

なお前記乾燥状況の判断は、可逆セルの内部から排出される物質量、例えば蒸発した水分、凝縮して液化したドレン(例えば水)の量に基づいて行うことできる。 The determination of the drying state can also be made based on the amount of substance discharged from the inside of the reversible cell, for example, the amount of evaporated water, the amount of drained condensed (eg, water).

さらにまた前記乾燥は、可逆セルを水電解装置運転の運転モードを実施して行ってもよい。可逆セルを水電解装置運転することで、バルブを閉じていわば空焚きすることになり、可逆セル内部の水を、酸素と水素に分解して乾燥させることができる。可逆セルに対してそのような空焚きの水電解装置運転を実施して前記乾燥を行った場合には、水電解装置運転の運転モードにおいて生成されるガス、つまり酸素と水素の積算量に基づいて乾燥状況を把握して判断することができる。   Further, the drying may be performed by operating the reversible cell in the operation mode of the water electrolysis apparatus. When the reversible cell is operated as a water electrolysis device, if the valve is closed, the reversible cell is empty, and the water inside the reversible cell can be decomposed into oxygen and hydrogen and dried. In the case where the drying is performed by performing such an empty water electrolyzer operation on the reversible cell, it is based on the gas generated in the operation mode of the water electrolyzer operation, that is, the integrated amount of oxygen and hydrogen. It is possible to determine the dry situation.

以上3つの判断方法のいずれかを採用すれば、徒な通電の防止、不十分な状態での燃料電池運転を適切に防止できる。つまり効率的な運転と装置寿命の伸長を実現することができる。   If any one of the above three determination methods is employed, it is possible to appropriately prevent energization and fuel cell operation in an insufficient state. In other words, efficient operation and extension of the device life can be realized.

なお前記した乾燥状況の判断は、いずれも予め所定の値、つまり燃料電池運転を開始するのに適した値、範囲を求めておき、この範囲に入った際に燃料電池運転を開始するようにすればよい。こうすることで、汎用化、自動化、規格化した可逆セルや燃料電池を提供できる。   It should be noted that in the above-described determination of the drying state, a predetermined value, that is, a value and range suitable for starting the fuel cell operation are obtained in advance, and the fuel cell operation is started when entering this range. do it. By doing so, a general-purpose, automated, and standardized reversible cell or fuel cell can be provided.

本発明によれば、固体高分子形の水電解装置と燃料電池とを一体化させた可逆セルにおいて、運転モードの切り替えを安全、かつ確実に行え、そして効率の良い運転を繰り返し実現することが可能である。   According to the present invention, in a reversible cell in which a solid polymer water electrolyzer and a fuel cell are integrated, the operation mode can be switched safely and reliably, and efficient operation can be repeatedly realized. Is possible.

実施の形態で用いた可逆セルの内部構造を模式的に示した説明図である。It is explanatory drawing which showed typically the internal structure of the reversible cell used in embodiment. 実施の形態で用いた可逆セルの部分拡大水平断面図である。It is a partial expanded horizontal sectional view of the reversible cell used in the embodiment. 水電解装置運転時の可逆セル周りのガス流通状況を示す説明図である。It is explanatory drawing which shows the gas distribution condition around the reversible cell at the time of water electrolysis apparatus driving | operation. 燃料電池運転時の可逆セル周りのガス流通状況を示す説明図である。It is explanatory drawing which shows the gas distribution condition around the reversible cell at the time of fuel cell operation. 不活性ガスを供給して乾燥運転しているときの可逆セル周りのガス流通状況を示す説明図である。It is explanatory drawing which shows the gas distribution condition around a reversible cell when supplying inert gas and performing dry operation. 水電解装置運転から燃料電池運転への切り替えた後の燃料電池の出力安定性を示すグラフである。It is a graph which shows the output stability of the fuel cell after switching from water electrolyzer operation to fuel cell operation. 膜表面の活量と給・集電板間抵抗上昇値との関係を示すグラフである。It is a graph which shows the relationship between the activity of a film | membrane surface, and the resistance increase value between supply and current collecting plates. 可逆セル内部の蒸発水分量と給・集電板間抵抗上昇値との関係を示すグラフである。It is a graph which shows the relationship between the amount of evaporating water inside a reversible cell, and the resistance increase value between supply and current collecting plates. 不活性ガス供給条件による最短切替可能時間を示すグラフである。It is a graph which shows the shortest switchable time by inert gas supply conditions. 加熱によって乾燥運転しているときの可逆セル周りのガス流通状況を示す説明図である。It is explanatory drawing which shows the gas distribution condition around a reversible cell when carrying out the drying operation by heating. 冷却によって乾燥運転しているときの可逆セル周りのガス流通状況を示す説明図である。It is explanatory drawing which shows the gas distribution condition around a reversible cell when drying operation is carried out by cooling. 水電解運転によって乾燥運転しているときの可逆セル周りのガス流通状況を示す説明図である。It is explanatory drawing which shows the gas distribution condition around a reversible cell when performing dry operation by water electrolysis operation.

以下本発明の好ましい実施の形態について説明する。図1は、可逆セル1の内部を模式的に示しており、図2は、この可逆セル1の水平断面を示している。この可逆セル1は、図2に示したように、最も外側に、各々給・集電板2、3が配置され、給・集電板2、3間の中心には、2枚の電極触媒層によって構成される電極部4a、4a間に、固体電解質材料によって構成されるイオン交換膜4bが配置されて、複合化した発電ユニットであるMEA4が配置されている。各電極触媒層4aの外側には、各々給・集電体5、6が配置されている。給・集電体5、6は例えば多孔質の材料からなる。なお作図と説明の都合上、図1は単セルを図示しているが、実用に供する可逆セルは、給・集電板2、3間に、数十〜数百の単セルが配置されており、これらが給・集電板2、3の外側に各々位置するエンドプレート(図示せず)によって、挟持され、締め付けられている。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 schematically shows the inside of the reversible cell 1, and FIG. 2 shows a horizontal cross section of the reversible cell 1. As shown in FIG. 2, the reversible cell 1 has the power supply / collection plates 2, 3 arranged on the outermost sides, and two electrode catalysts at the center between the supply / collection plates 2, 3. An ion exchange membrane 4b made of a solid electrolyte material is placed between the electrode parts 4a and 4a made of layers, and an MEA 4 that is a combined power generation unit is placed. On the outside of each electrode catalyst layer 4a, supply and current collectors 5 and 6 are arranged, respectively. The supply / current collectors 5 and 6 are made of, for example, a porous material. For convenience of drawing and explanation, FIG. 1 shows a single cell, but a reversible cell for practical use has several tens to several hundreds of single cells arranged between the power supply and current collector plates 2 and 3. These are clamped and clamped by end plates (not shown) located outside the power supply / collection plates 2 and 3, respectively.

そして給・集電体5と給・集電板2との間には空間S1が形成され、給・集電体6と給・集電板3との間には空間S2が形成されている。各空間S1、S2内には、各々断面が波型のセパレータ7が各々配置されている。そしてこの可逆セルは水冷方式による冷却方法を採用しており、空間S1に配置されたセパレータ7によって、空間S1には、冷却水流路11と流路12が交互に形成されている。一方、空間S2に配置されたセパレータ7によって、空間S2にも、冷却水流路13と流路14が交互に形成されている。冷却水は、冷却水流路11とヒートポンプ介装の恒温水槽(図示せず)や冷却塔(図示せず)を循環し、可逆セル1の入り口で例えば60℃を維持するように運転される。   A space S1 is formed between the supply / current collector 5 and the supply / current collector plate 2, and a space S2 is formed between the supply / current collector 6 and the supply / current collector plate 3. . In each of the spaces S1 and S2, separators 7 each having a corrugated cross section are disposed. This reversible cell employs a water-cooling method, and cooling water flow paths 11 and flow paths 12 are alternately formed in the space S1 by the separators 7 disposed in the space S1. On the other hand, the cooling water flow path 13 and the flow path 14 are alternately formed also in the space S2 by the separator 7 arranged in the space S2. The cooling water is circulated through the cooling water passage 11 and a constant temperature water tank (not shown) and a cooling tower (not shown) provided with a heat pump, and is operated to maintain, for example, 60 ° C. at the entrance of the reversible cell 1.

再び図1に戻ってさらに説明すると、流路12の両端部には、流通口12a、12bが形成され、流路14の両端部には、流通口14a、14bが形成されている。   Returning again to FIG. 1, further description will be made. Flow ports 12 a and 12 b are formed at both ends of the flow channel 12, and flow ports 14 a and 14 b are formed at both ends of the flow channel 14.

そしてイオン交換膜4bと給・集電体5との境界面には、カソード(水電解運転時)の電極部4aが形成され、イオン交換膜4bと給・集電体6との境界面には、アノード(水電解運転時)の電極部4aが形成されている。   An electrode portion 4a of the cathode (during water electrolysis operation) is formed at the boundary surface between the ion exchange membrane 4b and the supply / current collector 5, and the boundary surface between the ion exchange membrane 4b and the supply / current collector 6 is formed. The electrode part 4a of the anode (at the time of water electrolysis operation) is formed.

可逆セル1における燃料ガス等の流路構成は、図3に示したようになっている。すなわち、これらの流路は例えばステンレス鋼の配管によって構成され、流通口12aには、流路F1が接続され、流通口14aには、流路F2が接続され、流通口14bには、流路F3が接続され、流通口12bには、流路F4が接続されている。またこれら各流路F1〜F4には、各々さらに分岐した流路F5〜F8が接続されている。そして各流路F1〜F8には、各々対応する流路を開閉するバルブV1〜V8が設けられている。   The flow path configuration of fuel gas or the like in the reversible cell 1 is as shown in FIG. That is, these flow paths are constituted by, for example, stainless steel piping, the flow path F1 is connected to the flow port 12a, the flow path F2 is connected to the flow port 14a, and the flow path is connected to the flow port 14b. F3 is connected, and the flow path F4 is connected to the circulation port 12b. Further, branched channels F5 to F8 are connected to the channels F1 to F4, respectively. Each of the flow paths F1 to F8 is provided with valves V1 to V8 that open and close the corresponding flow paths.

そしてかかる構成の可逆セル1を水電解運転するときは、図3に示したように、バルブV1〜V4を開放し(他のバルブは閉鎖)、流路F3、F4から電解水を供給し、給・集電板2、3に対して外部電源から電力を供給することにより、電解水は電気分解され、純水素と純酸素とが発生する。そして純水素は流通口12aから流路F1を流れて可逆セル1から排出され、純酸素は流通口14aから流路F2を流れて可逆セル1から排出される。図3中、(G)はガス状、(L)は液体状であることを示している。なお流路F1から排出される水素ガス、流路F2から排出される酸素ガスは、実際の運転の際に使用されるHOが微量なため(数パーセントが分解されるのみである)、これらのガスは水の中の気泡として存在しているため、便宜上(G、L)として記載している。
また流路F3には必ずしも電解水を供給する必要はなく、流路F4にのみこれを供給しておけば運転は可能である。すなわち原料ガスの供給側配管は1本とし、あるいは流路F3、流路F4に各々配管して、1本のみをONしてもよい。
And when performing the water electrolysis operation of the reversible cell 1 having such a configuration, as shown in FIG. 3, the valves V1 to V4 are opened (the other valves are closed), and electrolyzed water is supplied from the flow paths F3 and F4. By supplying electric power from the external power source to the power supply / collector plates 2 and 3, the electrolyzed water is electrolyzed to generate pure hydrogen and pure oxygen. Then, pure hydrogen flows from the flow port 12a through the flow path F1 and is discharged from the reversible cell 1, and pure oxygen flows from the flow port 14a through the flow path F2 and is discharged from the reversible cell 1. In FIG. 3, (G) indicates a gaseous state, and (L) indicates a liquid state. The hydrogen gas discharged from the flow path F1 and the oxygen gas discharged from the flow path F2 have a very small amount of H 2 O used in actual operation (only a few percent are decomposed). Since these gases exist as bubbles in water, they are described as (G, L) for convenience.
Further, it is not always necessary to supply electrolytic water to the flow path F3, and operation is possible if this is supplied only to the flow path F4. That is, the supply gas supply line piping may be one, or each of the flow paths F3 and F4 may be connected to turn on only one.

一方この可逆セル1を燃料電池運転する際には、図4に示したように、バルブV1、V2、V7、V8を開放し(他のバルブは閉鎖)し、可逆セル1に対して、流通口12aには、加湿した燃料ガス(水素ガス)を供給し、流通口14aには、加湿した酸化剤ガス(酸素)を供給することで可逆セル1で電力が発生し、給・集電板2、3からこれを取り出して、負荷に供給することができる。なお反応の結果発生した水については、カソード側は流通口12bから流路F8を流れて可逆セル1から排出され、アノード側は流通口14bから流路F7を流れて可逆セル1から排出される。なお合流管または分岐管としての流路F3、F4、F5、F6は加湿用タンクに連通している。   On the other hand, when the reversible cell 1 is operated as a fuel cell, the valves V1, V2, V7, and V8 are opened (the other valves are closed) as shown in FIG. Electric power is generated in the reversible cell 1 by supplying humidified fuel gas (hydrogen gas) to the port 12a and supplying humidified oxidant gas (oxygen) to the flow port 14a. This can be removed from a few and supplied to the load. Regarding the water generated as a result of the reaction, the cathode side flows from the flow port 12b through the flow path F8 and is discharged from the reversible cell 1, and the anode side flows from the flow port 14b through the flow path F7 and is discharged from the reversible cell 1. . Note that the flow paths F3, F4, F5, and F6 serving as a junction pipe or a branch pipe communicate with the humidifying tank.

さらに可逆セル1内の流路12、14には、不活性ガス供給ルートが付加されている。すなわち図1に示したように、流路F5、F6には、不活性ガス供給源31からの不活性ガス、例えば窒素ガスが、バルブ32、マスフローコントローラ33を介して、供給路36を介して供給可能である。   Further, an inert gas supply route is added to the flow paths 12 and 14 in the reversible cell 1. That is, as shown in FIG. 1, an inert gas such as nitrogen gas from the inert gas supply source 31 passes through the supply path 36 via the valve 32 and the mass flow controller 33 in the flow paths F5 and F6. It can be supplied.

前記バルブ32、マスフローコントローラ33は、制御装置34によって制御される。すなわち、給・集電板2、3に交流抵抗測定器35が接続されており、この交流抵抗測定器35によって測定された給・集電板2、3の抵抗値に基づいて、制御装置34は、バルブ32、マスフローコントローラ33を制御する。なおこのバルブ32は、図3〜図5においては、バルブV5、V6に相当する。   The valve 32 and the mass flow controller 33 are controlled by a control device 34. That is, an AC resistance measuring device 35 is connected to the power supply / collection plates 2, 3, and the control device 34 is based on the resistance value of the power supply / collection plates 2, 3 measured by the AC resistance measurement device 35. Controls the valve 32 and the mass flow controller 33. The valve 32 corresponds to the valves V5 and V6 in FIGS.

可逆セル1、及びその周辺の流路、主たる機器構成は以上のようになっており、水電解運転から燃料電池運転に切り替える際には、可逆セル1の内部は完全に濡れ状態になっているので、そのままでは燃料電池運転ができないので、可逆セル1の内部を乾燥させる必要がある。   The reversible cell 1, the flow path around it, and the main equipment configuration are as described above. When switching from the water electrolysis operation to the fuel cell operation, the inside of the reversible cell 1 is completely wet. Therefore, since the fuel cell operation cannot be performed as it is, it is necessary to dry the inside of the reversible cell 1.

したがってまず、水電解運転終了後、図5に示したように、バルブV1〜V4を閉鎖し、他のバルブV5〜8を開放させ、図1に示したように、不活性ガス供給源31から不活性ガスを流路12、14内に供給する。これによって、流路12、14内の水は排水され、可逆セル1内部が乾燥される。   Therefore, first, after completion of the water electrolysis operation, as shown in FIG. 5, the valves V1 to V4 are closed and the other valves V5 to 8 are opened. As shown in FIG. An inert gas is supplied into the flow paths 12 and 14. Thereby, the water in the flow paths 12 and 14 is drained, and the inside of the reversible cell 1 is dried.

このとき可逆セル1の給・集電板2、3間の抵抗値を交流抵抗測定器35により測定し、セル内部が完全湿潤状態での抵抗値を基準として、不活性ガスを供給することにより生じる抵抗上昇値(=イオン交換膜の抵抗上昇値)から、セル内部の乾燥状況を判断する。   At this time, the resistance value between the supply / collection plates 2 and 3 of the reversible cell 1 is measured by the AC resistance measuring device 35, and the inert gas is supplied on the basis of the resistance value in a completely wet state inside the cell. From the resulting resistance increase value (= resistance increase value of the ion exchange membrane), the drying state inside the cell is judged.

そして、抵抗上昇値が規定の範囲内に入れば、図4に示したように、バルブV5、V6を閉鎖し、次いで燃料電池運転を開始するために、バルブV1、V2を開放して、加湿した反応ガス(燃料ガス、酸化剤ガス)の供給を開始する。   If the resistance increase value falls within the specified range, as shown in FIG. 4, the valves V5 and V6 are closed, and then the valves V1 and V2 are opened to humidify the fuel cell operation. The supply of the reacted gas (fuel gas, oxidant gas) is started.

発明者らが実験した具体的な抵抗上昇値の範囲については図6に示したとおりである。この図は、水電解運転終了後に不活性ガスにより可逆セル1の内部基材を乾燥させ、イオン交換膜の抵抗値をある値まで上昇させてから、不活性ガスの供給を停止し、燃料電池運転(電流密度:0.1→0.2A/cm)を開始したときの出力電圧値の安定性を確認した結果を示している。図中に示す数字(単位面積あたりの抵抗値:mΩ・cm)が乾燥により上昇させたイオン交換膜の抵抗値を示し、実線が負荷運転中の出力電圧値を示す。 The specific range of the resistance increase value that the inventors have experimented is as shown in FIG. This figure shows that after the water electrolysis operation is completed, the inner base material of the reversible cell 1 is dried with an inert gas, the resistance value of the ion exchange membrane is increased to a certain value, and then the supply of the inert gas is stopped. The result of confirming the stability of the output voltage value when the operation (current density: 0.1 → 0.2 A / cm 2 ) is started is shown. The numbers (resistance value per unit area: mΩ · cm 2 ) shown in the figure indicate the resistance value of the ion exchange membrane raised by drying, and the solid line indicates the output voltage value during load operation.

この図より、傾きが上昇、下降していないもの、すなわち抵抗上昇値が50〜1500[mΩ・cm]の範囲を安全な切替が可能であると考えられる。但し、これ以外の範囲でも切替は可能であるが、抵抗上昇値が50[mΩ・cm]未満のときは、経時変化に伴い出力電圧値が低下するため可逆セル1の内部基材の乾燥が不十分であり、また2000[mΩ・cm]以上の範囲では、切替は可能であるが、負荷運転開始直後の電圧降下が大きく、イオン交換膜を破損する可能性があるため、上記で規定した範囲内で、加湿ガスを供給することが望ましい。 From this figure, it can be considered that it is possible to safely switch the range in which the slope does not rise or fall, that is, the resistance rise value is in the range of 50 to 1500 [mΩ · cm 2 ]. However, switching is possible in other ranges, but when the resistance increase value is less than 50 [mΩ · cm 2 ], the output voltage value decreases with time, so that the internal substrate of the reversible cell 1 is dried. Can be switched in the range of 2000 [mΩ · cm 2 ] or more, but the voltage drop immediately after the start of the load operation is large and the ion exchange membrane may be damaged. It is desirable to supply humidified gas within the specified range.

これによって、水電解装置運転から燃料電池運転への運転モードの切り替えを安全、かつ確実に行うことができ、また効率の良い運転を実現することが可能である。   As a result, the operation mode can be switched from the water electrolysis apparatus operation to the fuel cell operation safely and reliably, and an efficient operation can be realized.

不活性ガスの供給による乾燥は、前記した例では、流路12、14の上方から供給し、下方から排出するようにしていたが、これを繰り返すと、次第に可逆セル1の内部、特に給・集電体5、6において、上方側のみが乾燥しやすくなって、全体としての抵抗上昇値が適切範囲内にあっても、下方側で適切な乾燥状態になっていない場合が生ずるおそれがある。その場合には、燃料電池運転の効率が低下してしまう。   In the above example, the drying by supplying the inert gas is performed by supplying from the upper side of the flow paths 12 and 14 and discharging from the lower side. However, when this is repeated, the inside of the reversible cell 1 is gradually increased. In the current collectors 5 and 6, only the upper side is easily dried, and even if the resistance increase value as a whole is within an appropriate range, there is a possibility that the lower side is not in an appropriate dry state. . In that case, the efficiency of the fuel cell operation is reduced.

これを防止するため、可逆セル1内部への不活性ガスの供給方向を、前回とは逆方向、すなわち流路12、14の下方から上方へと供給し、以後たとえば不活性ガスの供給方向を交互にしたり、あるいは適当な回数ごとに、逆方向から供給するようにすればよい。かかる場合、例えば不活性ガスの供給路として使用した流路F5のバルブV5の上流側に、流路F8と接続されるバイパス流路(図示せず)を設け、また不活性ガスの供給路として使用した流路F6のバルブV6の上流側に、流路F7と接続されるにバイパス流路(図示せず)を設け、各々バルブV5、V8を閉鎖し、バルブV6、V7を開放することで、流路12、14の下方から上方へと不活性ガスを供給することが可能である。   In order to prevent this, the supply direction of the inert gas into the reversible cell 1 is reversed from the previous time, that is, from the lower side to the upper side of the flow paths 12, 14. They may be alternately supplied or supplied from the opposite direction at an appropriate number of times. In such a case, for example, a bypass flow path (not shown) connected to the flow path F8 is provided on the upstream side of the valve V5 of the flow path F5 used as the inert gas supply path, and the inert gas supply path is also provided. By providing a bypass flow path (not shown) connected to the flow path F7 on the upstream side of the valve V6 of the used flow path F6, closing the valves V5 and V8 and opening the valves V6 and V7, respectively. It is possible to supply an inert gas from below to above the flow paths 12 and 14.

なお、イオン交換膜の抵抗値と、イオン交換膜表面の活量とは相関を有することから、図7に示したように、安全な切替運転が可能なイオン交換膜の抵抗上昇範囲をイオン交換膜表面の活量範囲に換算して、表現することも可能である。これによれば、水電解装置運転から燃料電池運転への運転モードの切り替えに好ましい活量の値は0.12〜0.83である。したがって適宜のパソコンによって、イオン交換膜の抵抗値からイオン交換膜表面の活量を算出し、それによって得られたイオン活量に基づいて乾燥状況を判断したり、不活性ガスの制御を行うようにしてもよい。   Since the resistance value of the ion exchange membrane and the activity of the surface of the ion exchange membrane have a correlation, as shown in FIG. 7, the range of resistance increase of the ion exchange membrane capable of safe switching operation is ion exchanged. It can also be expressed in terms of the activity range of the film surface. According to this, the preferable activity value for switching the operation mode from the water electrolysis apparatus operation to the fuel cell operation is 0.12 to 0.83. Therefore, the activity of the surface of the ion exchange membrane is calculated from the resistance value of the ion exchange membrane by an appropriate personal computer, and the dry state is judged based on the obtained ion activity or the inert gas is controlled. It may be.

ところで、前記した例ではイオン交換膜4bの抵抗値の上昇を乾燥の判断基準としていたが、これに代えて可逆セル1の出口ガス温度を求め、そのときの供給ガス流量と流路内の圧力とから出口ガス温度での飽和水蒸気量を求めることにより、セル内部からの蒸発水分量を求めるようにしてもよい。   In the above example, the increase in the resistance value of the ion exchange membrane 4b is used as a criterion for drying. Instead, the outlet gas temperature of the reversible cell 1 is obtained, and the supply gas flow rate and the pressure in the flow path at that time are obtained. From the above, the amount of water vapor evaporated from the inside of the cell may be obtained by obtaining the saturated water vapor amount at the outlet gas temperature.

すなわち、図8は不活性ガスによる乾燥条件(流量:mPG、可逆セル1本体温度:TPG)を変化させたときの、物質移動による蒸発水分量と可逆セル1の給・集電板2、3間の抵抗上昇値(完全湿潤時基準)を示しているが、この図より、乾燥条件によらず蒸発水分量と可逆セル1の給・集電板2、3間の抵抗上昇値には相関があることがわかる。そして可逆セル1の給・集電板2、3間の抵抗が上昇し始める蒸発水分量は、給・集電体5、6が完全湿潤時に保有する水分量と一致することにより、先に述べたように給・集電板2、3間の抵抗上昇が、イオン交換膜4bの抵抗上昇を表すことがわかる。なお図8中、PPGは流路内の圧力である。 That is, FIG. 8 shows the amount of evaporated water due to mass transfer and the supply / collector plate 2 of the reversible cell 1 when the drying conditions (flow rate: m PG , reversible cell 1 main body temperature: T PG ) with an inert gas are changed. 3 shows a resistance increase value between 3 and 3 (standard when fully wet). From this figure, regardless of the drying conditions, the amount of evaporated water and the resistance increase value between the supply and current collecting plates 2 and 3 of the reversible cell 1 are shown. Shows that there is a correlation. The amount of evaporated water that begins to increase the resistance between the supply and current collecting plates 2 and 3 of the reversible cell 1 matches the amount of water held by the supply and current collectors 5 and 6 when completely wetted, and is described above. As can be seen, the increase in resistance between the power supply and current collecting plates 2 and 3 represents the increase in resistance of the ion exchange membrane 4b. In FIG. 8, PPG is the pressure in the flow path.

したがって前記したように、イオン交換膜4bの抵抗上昇を測定することに代えて、可逆セル1の出口ガス温度、つまり図1の例では、流通口12b、14bの温度、及び流路12、14の圧力を求め、それから飽和水蒸気量を求めることにより、可逆セル1内部からの蒸発水分量を求めるようにしてもよい。   Therefore, as described above, instead of measuring the increase in resistance of the ion exchange membrane 4b, the outlet gas temperature of the reversible cell 1, that is, the temperature of the flow ports 12b and 14b and the flow paths 12 and 14 in the example of FIG. The amount of evaporated water from the inside of the reversible cell 1 may be obtained by obtaining the pressure of

蒸発水分量は、不活性ガスの供給温度とその流量、流路内のガス圧力、そのときの可逆セル1本体温度の関係から、下記に示した「管内流の助走区間における層流熱伝達の式(壁温一定)」により、流通口12b、14bのガス温度を求め、その温度における飽和水蒸気圧とガス分圧、及び不活性ガスの供給流量から飽和水蒸気量を求め、その値を蒸発水分量とすることができる。すなわち、運転切替時において、
セル内部のガス圧力 :P[Pa]
セル出口でのガス温度 :TOUT[℃]
OUTでの飽和水蒸気圧 :PH2O、TOUT[Pa]
不活性ガスの流量 :MPG[mol/s]
蒸発水分量 :MH2O[mol/s]
とすると、蒸発水分量:MH2Oは、次式で表される。
H2O={PH2O、TOUT/(P−PH2O、TOUT)}×MPG
The amount of evaporated water depends on the relationship between the supply temperature of the inert gas and its flow rate, the gas pressure in the flow path, and the temperature of the main body of the reversible cell 1 at that time. The gas temperature at the flow ports 12b and 14b is obtained from the equation (constant wall temperature), the saturated water vapor pressure and gas partial pressure at that temperature, and the amount of saturated water vapor are obtained from the inert gas supply flow rate. It can be an amount. That is, when switching operation,
Gas pressure inside the cell: P 0 [Pa]
Gas temperature at cell outlet: T OUT [° C]
Saturated water vapor pressure at T OUT : P H2O, TOUT [Pa]
Flow rate of inert gas: M PG [mol / s]
Evaporated water content: MH 2 O [mol / s]
Then, the amount of evaporated water: MH 2 O is expressed by the following equation.
M H2O = {P H2O, TOUT / (P 0 -P H2O, TOUT )} × M PG

「管内流の助走区間における層流熱伝達の式(壁温一定)」
加熱開始点からの距離:x、円管の直径:d、円管入口の流体温度:Tinとするとき、混合平均温度Tm(x+)は次式で求められる。
"Formula of laminar heat transfer in the run-up section of pipe flow (constant wall temperature)"
When the distance from the heating start point is x, the diameter of the circular tube is d, and the fluid temperature at the circular tube inlet is Tin, the mixing average temperature Tm (x +) is obtained by the following equation.

Figure 0005339473
Figure 0005339473

また以上のことから、可逆セル1内部の乾燥は次の2つステップに分けられることがわかる。1つは、給・集電体5、6乾燥ステップであり、このときは未だイオン交換膜4bの抵抗上昇は生じない。もう1つは、イオン交換膜4b乾燥ステップであり、このイオン交換膜4bが乾燥し始めることにより、イオン交換膜4bの抵抗上昇が生じる。ここで各々の乾燥における蒸発水分量に着目すると、給・集電体5、6は、完全湿潤状態での給・集電体5、6が保有する水分量を可逆セル1に組み込む前に測定しておくことで、イオン交換膜4bの抵抗が上昇し始めるまでの蒸発水分量がわかる。   From the above, it can be seen that drying inside the reversible cell 1 is divided into the following two steps. One is a drying step of the power supply / current collectors 5 and 6, and at this time, the resistance of the ion exchange membrane 4b does not increase yet. The other is an ion exchange membrane 4b drying step, and when the ion exchange membrane 4b starts to dry, the resistance of the ion exchange membrane 4b increases. Here, paying attention to the amount of evaporated water in each drying, the supply and current collectors 5 and 6 are measured before the moisture content held by the supply and current collectors 5 and 6 in a completely wet state is incorporated into the reversible cell 1. By doing so, the amount of evaporated water until the resistance of the ion exchange membrane 4b starts to increase can be known.

またイオン交換膜4bについては、蒸発水分量とイオン交換膜4bの抵抗上昇値との相関から、膜抵抗上昇を所定の値とするための蒸発水分量がわかる。この双方の蒸発水分量の和と乾燥条件(不活性ガス供給温度とその流量、流路内のガス圧力(圧力が変わるとそれに伴って水蒸気分圧が変わるため)、可逆セル1の温度)から、前記した蒸発水分量の算出方法に基づいて、水電解装置運転から燃料電池運転への切替所要時間の算出が可能になる。すなわち、可逆セル1を水電解装置運転から燃料電池運転へ切り替えるための所要時間を事前に知ることができる。
すなわち既述した蒸発水分量を求めた際の運転切替条件において、
膜抵抗を所定の値とするための蒸発水分量:M[mol]
運転切替所要時間:t[s]
とすると、運転所要時間:tは、次式で表される。
t=M/MH2O
Further, regarding the ion exchange membrane 4b, the amount of evaporated water for setting the increase in membrane resistance to a predetermined value is known from the correlation between the amount of evaporated water and the resistance increase value of the ion exchange membrane 4b. From the sum of the amount of evaporated water and the drying conditions (inert gas supply temperature and flow rate, gas pressure in the flow path (because the water vapor partial pressure changes as the pressure changes), the temperature of the reversible cell 1) Based on the method for calculating the amount of evaporated water, the time required for switching from the water electrolyzer operation to the fuel cell operation can be calculated. That is, the time required for switching the reversible cell 1 from the water electrolyzer operation to the fuel cell operation can be known in advance.
That is, in the operation switching condition when the amount of evaporated water described above is obtained,
Evaporated water content for making membrane resistance a predetermined value: M [mol]
Time required for operation switching: t [s]
Then, the operation required time: t is expressed by the following equation.
t = M / M H2O

このことを利用すれば、運転切替時の可逆セル1の本体温度と、不活性ガスの供給温度、流量、圧力を変化させることにより、切替所要時間を任意に操作することが可能となる。逆に切替所要時間を指定したとき、その時間内に切替を完了させるための切替条件を導くことも可能である。   If this is utilized, it becomes possible to arbitrarily operate the time required for switching by changing the main body temperature of the reversible cell 1 at the time of operation switching and the supply temperature, flow rate, and pressure of the inert gas. Conversely, when the required switching time is specified, it is also possible to derive a switching condition for completing the switching within that time.

発明者が実際に図1、図2、図5の可逆セル1を用いて可逆セル1の温度を、60℃、70℃、78℃の場合に、不活性ガスの流量を変化させた際に、切り替え可能な最短時間を調べたところ、図9に示したような結果が得られた。
これからもわかるように、可逆セル1の本体温度と、不活性ガスの流量を変化させることにより、切り替え可能時間を制御することが可能であり、また不活性ガスの温度を変えても同様な結果が得られることが推認できる。
When the inventor actually changes the flow rate of the inert gas when the temperature of the reversible cell 1 is 60 ° C., 70 ° C., and 78 ° C. using the reversible cell 1 of FIGS. When the shortest switchable time was examined, a result as shown in FIG. 9 was obtained.
As can be seen, it is possible to control the switchable time by changing the main body temperature of the reversible cell 1 and the flow rate of the inert gas, and the same result can be obtained by changing the temperature of the inert gas. It can be inferred that

前記した例では、可逆セル1内部の乾燥を、可逆セル1内部に不活性ガスを供給することで行っていたが、これに代えて可逆セル1を加熱または冷却して行ってもよい。   In the above-described example, the inside of the reversible cell 1 is dried by supplying an inert gas to the inside of the reversible cell 1, but instead, the reversible cell 1 may be heated or cooled.

可逆セル1を加熱、冷却するには、たとえば冷却水流路11、13内を流れる冷却水の温度を上昇、下降させればよい。冷却水の温度を上昇、例えば通常運転時より10℃〜20℃高くさせることにより(例えば60℃→70℃〜80℃)、可逆セル1全体の温度が上昇し、可逆セル1内部の水分は蒸発して、図10に示したように、流通口12a、流路F1、流通口14a、流路F2を介して可逆セル1から外部へと排出される。また冷却水の温度を下降させることにより(例えば60℃→40℃)、可逆セル1全体の温度が低下し、可逆セル1内部の水分は凝縮して、図11に示したように、流通口12b、流路F8、流通口14b、流路F7を介して可逆セル1から外部へと排出される。これによって、可逆セル1の内部を乾燥させることができる。これらの場合、いずれも水分の排出を効率よくかつ迅速に行うために、前記したような不活性ガスの供給を併用してもよい。さらには、冷却水の供給を停止し、常温の水(例えば水道水など)や空調用冷水で熱交換したものをその代わりに用いてもよい。   In order to heat and cool the reversible cell 1, for example, the temperature of the cooling water flowing in the cooling water flow paths 11 and 13 may be raised and lowered. By raising the temperature of the cooling water, for example, by raising the temperature by 10 ° C. to 20 ° C. compared to that during normal operation (for example, 60 ° C. → 70 ° C. to 80 ° C.), the temperature of the entire reversible cell 1 rises. As shown in FIG. 10, it evaporates and is discharged from the reversible cell 1 to the outside through the flow port 12a, the flow channel F1, the flow port 14a, and the flow channel F2. Further, by lowering the temperature of the cooling water (for example, 60 ° C. → 40 ° C.), the temperature of the entire reversible cell 1 is reduced, and the water inside the reversible cell 1 is condensed, as shown in FIG. 12b, the flow path F8, the circulation port 14b, and the flow path F7 are discharged | emitted from the reversible cell 1 outside. Thereby, the inside of the reversible cell 1 can be dried. In these cases, in order to efficiently and quickly discharge water, the above-described supply of inert gas may be used in combination. Furthermore, the supply of cooling water may be stopped, and heat exchanged with normal temperature water (for example, tap water) or cold water for air conditioning may be used instead.

なおその他、可逆セル1を加熱、冷却するには、他の手段、たとえば温風、冷風を可逆セル1に対して外側から供給する方式としてもよい。かかる場合、セパレータ7に適宜のフィンを設ければ好ましい。   In addition, in order to heat and cool the reversible cell 1, other means, for example, hot air or cold air may be supplied from the outside to the reversible cell 1. In such a case, it is preferable to provide an appropriate fin for the separator 7.

なお前記したような可逆セル1内部の乾燥を、加熱、冷却によって行った場合でも、乾燥状況の判断は、既述したイオン交換膜4bの抵抗上昇値や活量に基づいて行ってもよいが、乾燥の際に排出した蒸発水や凝縮水の量を測定し、これによって判断してもよい。すなわち既述したように、完全湿潤状態の給・集電体5、6が保有する水分量及びイオン交換膜の蒸発水分量は、イオン交換膜の抵抗上昇値と相関があることから、イオン交換膜の抵抗上昇値が「安全な切替が可能となる範囲」に相当する蒸発水分量の範囲を求め、可逆セル1内部から排出される水分量がその範囲であるときに、可逆セル1の本体温度を燃料電池運転に変更すればよい。かかる場合、イオン交換膜4bの抵抗上昇値と、可逆セル1内部から排出される水分量の双方を計測することにより、より確実な乾燥状況の判断が可能になる。また切り替え所要時間の算出についても、両者の値を併せて用いることにより、より精度の高い所要時間を算出することができる。   Even when the inside of the reversible cell 1 as described above is dried by heating and cooling, the determination of the drying state may be made based on the resistance increase value or activity of the ion exchange membrane 4b described above. The amount of evaporating water or condensed water discharged during drying may be measured and judged. That is, as described above, since the moisture content of the supply and current collectors 5 and 6 in the completely wet state and the evaporated moisture content of the ion exchange membrane are correlated with the resistance increase value of the ion exchange membrane, The main body of the reversible cell 1 when the range of the evaporated water amount corresponding to the range in which the resistance increase of the membrane corresponds to “a range where safe switching is possible” is obtained and the amount of water discharged from the reversible cell 1 is within that range. The temperature may be changed to fuel cell operation. In such a case, by measuring both the resistance increase value of the ion exchange membrane 4b and the amount of moisture discharged from the reversible cell 1, it is possible to more reliably determine the drying state. Further, regarding the calculation of the required switching time, it is possible to calculate the required time with higher accuracy by using both values together.

さらにまた可逆セル1内部を乾燥させる方法として、可逆セル1を水電解装置運転の運転モードを実施して行ってもよい。すなわち水電解装置運転終了後、図12に示したように、バルブV3、4を閉鎖して電解水の供給を停止し、バルブV7、8を開放して可逆セル1内部の電解水を排水する。その後再度水電解装置運転を開始し、セル内部の基材に残留した電解水を純水素/純酸素ガスに分解し排出することで、可逆セル1内部の乾燥を行う。   Furthermore, as a method of drying the inside of the reversible cell 1, the reversible cell 1 may be carried out in the operation mode of the water electrolysis apparatus operation. That is, after the operation of the water electrolysis apparatus, as shown in FIG. 12, the supply of the electrolyzed water is stopped by closing the valves V3 and 4, and the electrolyzed water inside the reversible cell 1 is drained by opening the valves V7 and 8. . Thereafter, the operation of the water electrolysis apparatus is started again, and the inside of the reversible cell 1 is dried by decomposing and discharging the electrolyzed water remaining on the base material inside the cell into pure hydrogen / pure oxygen gas.

なお既述したように、イオン交換膜4bの抵抗上昇値と、蒸発水分量とは相関を有しているが、この蒸発水分量は前記した乾燥目的として実施した水電解装置運転時に分解した水分量に相当するため、水電解装置運転によって発生した精製ガスである純水素/純酸素ガスの積算量を測定することによっても、乾燥状況を判断することができるから、それによって切替の判断が可能である。また「安全な運転が可能となる範囲」に相当する蒸発水分量を求めれば、その量を電気分解すればよいため、印加する電力を調整することで、切替所要時間を任意に選択することが可能である。もちろん交流抵抗測定器35によるイオン交換膜4bの抵抗上昇値と併用してもよい。   As described above, the resistance increase value of the ion exchange membrane 4b and the amount of evaporated water have a correlation, but this amount of evaporated water is the water decomposed during the operation of the water electrolysis apparatus performed for the purpose of drying described above. Since it corresponds to the amount of water, it is possible to determine the drying status by measuring the integrated amount of pure hydrogen / pure oxygen gas, which is a purified gas generated by water electrolyzer operation. It is. Moreover, if the amount of evaporated water corresponding to the “range in which safe operation is possible” is obtained, the amount can be electrolyzed. Therefore, it is possible to arbitrarily select the required switching time by adjusting the applied power. Is possible. Of course, you may use together with the resistance rise value of the ion exchange membrane 4b by the alternating current resistance measuring device 35. FIG.

ところで、固体高分子形の燃料電池において、運転中のセル内部で反応ガスとともに供給される水分や、反応生成水がセル外部にスムーズに排出されなくなると、セル内部基材に濡れ(フラッディング)が生じる。この現象が発生すると、反応面に反応ガスが供給されなくなり出力電圧の低下が生じ、さらにこれが進むと運転を継続することすら不可能となる。   By the way, in the polymer electrolyte fuel cell, when the water supplied with the reaction gas inside the operating cell and the reaction product water are not smoothly discharged outside the cell, the base material inside the cell gets wet (flooding). Arise. When this phenomenon occurs, the reaction gas is not supplied to the reaction surface, resulting in a decrease in the output voltage. If this further proceeds, it becomes impossible to continue the operation.

本発明は、かかるフラッディングに対処することが可能である。すなわちフラッディングは、反応ガスの高利用率運転に伴うガス流速の低下や、高電流密度域での運転に伴う反応生成水の増加により、セル内部の水分(反応ガスと共に供給される水分や反応生成水等)がセル外部にスムーズに排出されずセル内部に停滞することが原因で、前記した可逆セル1に即して説明すれば、給・集電体5、6の濡れを生じたり、流路を塞いでしまう現象である。そしてフラッディングが発生すると、その部分のセル内部基材であるイオン交換膜4b、給・集電体5、6が親水性となり、ガス透過性を失ってしまう。   The present invention can cope with such flooding. In other words, flooding is caused by a decrease in gas flow rate that accompanies a high utilization rate of reaction gas and an increase in reaction product water that accompanies operation in a high current density region. If the explanation is made according to the reversible cell 1 described above, the water / current collectors 5 and 6 may be wetted or flowed due to the fact that water etc.) is not smoothly discharged to the outside of the cell but stagnates inside the cell. It is a phenomenon that blocks the road. When flooding occurs, the ion exchange membrane 4b and the supply / current collectors 5 and 6 that are the cell inner base material at that portion become hydrophilic and lose gas permeability.

このとき、その状態のセル内部基材に対して反応ガスを供給しても、電極部15、16までガスが供給されないため、ガス透過性を失った部分は電極として有効に作用(反応)せず、見かけ上の電極面積が減少したことになり、出力電圧の低下を招き、結局水電解装置運転→燃料電池運転への切替時の際に発生する乾燥不適切状態のときと同様に、クロスリークやイオン交換膜の破損を招く可能性もある。   At this time, even if the reaction gas is supplied to the cell internal substrate in that state, the gas is not supplied to the electrode portions 15 and 16, and therefore the portion that has lost the gas permeability effectively acts (reacts) as an electrode. As a result, the apparent electrode area was reduced, leading to a decrease in output voltage, and eventually crossing in the same manner as in the case of an inappropriate drying state that occurred when switching from water electrolyzer operation to fuel cell operation. There is also a possibility of causing leakage or damage of the ion exchange membrane.

この現象に適切に対処するためには、フラッディング発生時に燃料電池運転を中止し、セル内部基材を撥水性が回復するまで一旦乾燥させることにより、給・集電体5、6のガス透過性を回復させ、電極面全てが有効に反応できる状態に戻す必要がある。しかし、同時に可逆セル1の内部基材の1つであるイオン交換膜4bについては、ある程度の湿潤状態を確保しておく必要もある。そのため、セル内部基材が燃料電池運転可能な状態かどうかを判断するための判断基準がやはり必要となる。   In order to appropriately cope with this phenomenon, the fuel cell operation is stopped when flooding occurs, and the gas permeability of the current collectors 5 and 6 is decreased by once drying the cell internal substrate until the water repellency is restored. It is necessary to restore the state in which all electrode surfaces can react effectively. However, at the same time, the ion exchange membrane 4b, which is one of the inner substrates of the reversible cell 1, needs to have a certain wet state. Therefore, a criterion for determining whether or not the cell internal substrate is in a state where the fuel cell can be operated is still necessary.

したがって、既述した水電解装置運転→燃料電池運転への運転切替時に行った不活性ガスの可逆セル1内部への供給時に採用した乾燥状況の判断手法であるイオン交換膜4bの抵抗上昇値に基づいて判断すればよい。なおこのときの基準は、フラッディング発生時を基準として抵抗上昇値を測定すればよい。   Therefore, the resistance increase value of the ion exchange membrane 4b, which is a method for determining the dry state adopted when the inert gas supplied to the inside of the reversible cell 1 when switching the operation from the water electrolyzer operation to the fuel cell operation described above, is obtained. It may be determined based on. Note that, as a reference at this time, the resistance increase value may be measured based on the occurrence of flooding.

より具体的にいえば、フラッディングが発生したら図5に示したように、バルブV1〜V4を閉鎖して反応ガス供給を停止し、不活性ガス供給源31から不活性ガスを流路12、14内に供給する。これによって、流路12、14内の水は排水され、可逆セル1内部が乾燥される。後は交流抵抗測定器35によって測定されるイオン交換膜4bの抵抗上昇値が、既述した所定の適切な範囲になったら、不活性ガスの供給を停止し、以後再び燃料電池運転を行えばよい。
なおフラッディングに対して採ったかかる手法は、上記した可逆セルの場合だけではなく、固体分子型の燃料電池についてもそのまま適用することが可能である。
More specifically, as shown in FIG. 5, when flooding occurs, the valves V <b> 1 to V <b> 4 are closed to stop the reaction gas supply, and the inert gas is supplied from the inert gas supply source 31 to the flow paths 12 and 14. Supply in. Thereby, the water in the flow paths 12 and 14 is drained, and the inside of the reversible cell 1 is dried. Thereafter, when the resistance increase value of the ion exchange membrane 4b measured by the AC resistance measuring device 35 falls within the predetermined appropriate range described above, the supply of the inert gas is stopped, and the fuel cell operation is performed again thereafter. Good.
Note that such a technique adopted for flooding can be applied to not only the above-described reversible cell but also a solid molecular fuel cell.

1 可逆セル
2、3 給・集電板
4 MEA
4a 電極触媒層
4b イオン交換膜
5、6 給・集電体
11、13 冷却水流路
12、14 流路
12a、12b、14a、14b 流通口
31 不活性ガス供給源
33 マスフローコントローラ
34 制御装置
35 交流抵抗測定器
F1〜F8 流路
V1〜V8 バルブ
1 Reversible cell 2, 3 Supply / collection plate 4 MEA
4a Electrode catalyst layer 4b Ion exchange membrane 5, 6 Supply / collector 11, 13 Cooling water flow path 12, 14 Flow path 12a, 12b, 14a, 14b Flow port 31 Inert gas supply source 33 Mass flow controller 34 Control device 35 AC Resistance measuring instrument F1-F8 flow path V1-V8 valve

Claims (4)

水電解装置運転と燃料電池運転との運転モードの切り替えが可能な固体高分子形の可逆セルにおいて、
水電解装置運転から燃料電池運転への運転モードの切り替えにあたって、
水電解装置運転における電解水の供給を停止した状態で、可逆セルを水電解装置運転を実施して、可逆セル内部を乾燥させ、
前記可逆セルの内部のイオン交換膜の抵抗上昇値又はイオン交換膜表面の活量に基づいて前記運転モードの切り替えを行うことを特徴とする、可逆セルの運転制御方法。
In a polymer electrolyte reversible cell capable of switching between the water electrolyzer operation and the fuel cell operation mode,
When switching the operation mode from water electrolyzer operation to fuel cell operation,
With the supply of electrolyzed water in the water electrolyzer operation stopped, the reversible cell is operated with the water electrolyzer, and the inside of the reversible cell is dried.
An operation control method for a reversible cell, wherein the operation mode is switched based on a resistance increase value of an ion exchange membrane inside the reversible cell or an activity on the surface of the ion exchange membrane.
水電解装置運転と燃料電池運転との運転モードの切り替えが可能な固体高分子形の可逆セルにおいて、
水電解装置運転から燃料電池運転への運転モードの切り替えにあたって、可逆セル内部に不活性ガスを供給することによって可逆セル内部を乾燥させ、
前記乾燥状況の判断は、可逆セルの出口ガス温度を求め、そのときの供給ガス流量と流路内のガス圧力とから出口ガス温度での飽和水蒸気量を求めることにより、セル内部からの蒸発水分量を求めることで行ない、
当該乾燥状況に基づいて前記運転モードの切り替えを行うことを特徴とする、可逆セルの運転制御方法。
In a polymer electrolyte reversible cell capable of switching between the water electrolyzer operation and the fuel cell operation mode,
In switching the operation mode from water electrolyzer operation to fuel cell operation, the inside of the reversible cell is dried by supplying an inert gas inside the reversible cell,
The determination of the drying condition is performed by determining the outlet gas temperature of the reversible cell and determining the amount of saturated water vapor at the outlet gas temperature from the supply gas flow rate at that time and the gas pressure in the flow path, thereby evaporating moisture from the inside of the cell. Do by asking for quantity,
An operation control method for a reversible cell, wherein the operation mode is switched based on the drying state.
水電解装置運転と燃料電池運転との運転モードの切り替えが可能な固体高分子形の可逆セルにおいて、
水電解装置運転から燃料電池運転への運転モードの切り替えにあたって、
水電解装置運転における電解水の供給を停止した状態で、可逆セルを水電解装置運転を実施して、可逆セル内部を乾燥させ、
前記乾燥状況の判断を、乾燥目的で行われる水電解装置運転の運転モードにおいて精製されるガスの積算量に基づいて行ない、
当該乾燥状況に基づいて前記運転モードの切り替えを行うことを特徴とする、可逆セルの運転制御方法。
In a polymer electrolyte reversible cell capable of switching between the water electrolyzer operation and the fuel cell operation mode,
When switching the operation mode from water electrolyzer operation to fuel cell operation,
With the supply of electrolyzed water in the water electrolyzer operation stopped, the reversible cell is operated with the water electrolyzer, and the inside of the reversible cell is dried.
The determination of the drying state is made based on the integrated amount of gas purified in the operation mode of the water electrolysis apparatus operation performed for the purpose of drying,
An operation control method for a reversible cell, wherein the operation mode is switched based on the drying state.
前記抵抗上昇値が50〜1500[mΩ・cm]のときに、水電解装置運転から燃料電池運転への運転モードの切り替えが行われることを特徴とする、請求項1に記載の可逆セルの運転制御方法。 2. The reversible cell according to claim 1, wherein when the resistance increase value is 50 to 1500 [mΩ · cm 2 ], the operation mode is switched from the water electrolysis apparatus operation to the fuel cell operation. Operation control method.
JP2011048603A 2011-03-07 2011-03-07 Reversible cell operation control method Active JP5339473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011048603A JP5339473B2 (en) 2011-03-07 2011-03-07 Reversible cell operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011048603A JP5339473B2 (en) 2011-03-07 2011-03-07 Reversible cell operation control method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004311443A Division JP4919314B2 (en) 2004-10-26 2004-10-26 Reversible cell operation control method and fuel cell operation method

Publications (2)

Publication Number Publication Date
JP2011146395A JP2011146395A (en) 2011-07-28
JP5339473B2 true JP5339473B2 (en) 2013-11-13

Family

ID=44461028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011048603A Active JP5339473B2 (en) 2011-03-07 2011-03-07 Reversible cell operation control method

Country Status (1)

Country Link
JP (1) JP5339473B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191846A (en) * 2014-03-28 2015-11-02 高砂熱学工業株式会社 Operation control method for reversible cell

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013300150A1 (en) * 2012-05-21 2014-12-04 Blacklight Power, Inc. CIHT power system
US9463415B2 (en) * 2013-05-31 2016-10-11 Sustainable Innovations, LLC Hydrogen recycling apparatus and method of operation
AU2014385284A1 (en) * 2014-03-03 2016-09-15 Brilliant Light Power, Inc. Photovoltaic power generation systems and methods regarding same
EP2924149A1 (en) * 2014-03-24 2015-09-30 Siemens Aktiengesellschaft Uninterruptible power supply for an electrolysis system
SG11201806172VA (en) * 2016-01-19 2018-08-30 Brilliant Light Power Inc Thermophotovoltaic electrical power generator
JP6845436B2 (en) 2016-11-01 2021-03-17 国立研究開発法人宇宙航空研究開発機構 Cell for water electrolysis / fuel cell power generation and cell laminate in which a plurality of these are laminated
JP6845114B2 (en) 2017-09-20 2021-03-17 株式会社東芝 Carbon dioxide electrolyzer and carbon dioxide electrolysis method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3485243B2 (en) * 1997-03-25 2004-01-13 松下電器産業株式会社 Polymer electrolyte fuel cell
JP2001057222A (en) * 1999-08-18 2001-02-27 Shinko Pantec Co Ltd Energy storage device and its operation method
JP2001313055A (en) * 2000-04-28 2001-11-09 Equos Research Co Ltd Fuel cell device
JP3879517B2 (en) * 2002-01-17 2007-02-14 日産自動車株式会社 Fuel cell operating method and polymer electrolyte fuel cell
US6709777B2 (en) * 2002-03-20 2004-03-23 Utc Fuel Cells, Llc Performance recovery process for PEM fuel cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191846A (en) * 2014-03-28 2015-11-02 高砂熱学工業株式会社 Operation control method for reversible cell

Also Published As

Publication number Publication date
JP2011146395A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
JP5339473B2 (en) Reversible cell operation control method
JP4456188B2 (en) Fuel cell stack
JP5009168B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP2006210004A (en) Fuel cell system
JP2007335409A (en) System level adjustment for increasing rh of stack entrance
JP4295847B2 (en) Polymer electrolyte fuel cell system
US20120135322A1 (en) Fuel cell system
JP5419255B2 (en) Reversible cell operation switching method
JP6325013B2 (en) Low temperature startup method for fuel cell system
JP5287184B2 (en) Fuel cell system
US20060172164A1 (en) Fuel cell and fuel cell system
JP6315715B2 (en) Method for stopping power generation in fuel cell system
JP3555160B2 (en) Fuel cell device
JP4919314B2 (en) Reversible cell operation control method and fuel cell operation method
JP2006286411A (en) Humidification apparatus for fuel cell system and fuel cell system having this
JP2000208156A (en) Solid polymer fuel cell system
JP6317971B2 (en) Reversible cell operation control method and reversible cell capable of switching operation mode between water electrolysis operation and fuel cell operation
JP5152948B2 (en) Switching operation of reversible cell stack
JP2010129482A (en) Fuel cell separator, fuel cell stack, and fuel cell system
JP2006338984A (en) Fuel cell system
JP2005100975A (en) Polymer electrolyte fuel cell system and its operating method
JP2005190865A (en) Low temperature type fuel cell system
Berning Employing dew point diagrams to optimize PEMFC operating conditions
JP2007299644A (en) Fuel cell system
JP2020035644A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130801

R150 Certificate of patent or registration of utility model

Ref document number: 5339473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250