JP2010282768A - Reversible cell operating method - Google Patents

Reversible cell operating method Download PDF

Info

Publication number
JP2010282768A
JP2010282768A JP2009133590A JP2009133590A JP2010282768A JP 2010282768 A JP2010282768 A JP 2010282768A JP 2009133590 A JP2009133590 A JP 2009133590A JP 2009133590 A JP2009133590 A JP 2009133590A JP 2010282768 A JP2010282768 A JP 2010282768A
Authority
JP
Japan
Prior art keywords
cell
reversible
reversible cell
fuel cell
water electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009133590A
Other languages
Japanese (ja)
Other versions
JP5492460B2 (en
Inventor
Atsushi Kato
敦史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Daiki Ataka Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Daiki Ataka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd, Daiki Ataka Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2009133590A priority Critical patent/JP5492460B2/en
Publication of JP2010282768A publication Critical patent/JP2010282768A/en
Application granted granted Critical
Publication of JP5492460B2 publication Critical patent/JP5492460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To minimize the performance deterioration of a reversible cell with a solid polymer water electrolysis device and a fuel cell which are integrated, when operated for a long period, while eliminating the need for special control, an electrolytic current higher than a rated current, a current supply installation and the sustaining operation of a pump or the like. <P>SOLUTION: During operating the reversible cell 1 with the solid polymer water electrolysis device and the fuel cell integrated to actualize the change-over of an operation mode between the water electrolysis operation and fuel cell operation, the water electrolysis operation and fuel cell operation are alternately carried out. When the operation mode is the water electrolysis operation right before the operation of the reversible cell 1 is stopped for one hour or longer for storage, the finishing-ready fuel cell operation is carried out for a predetermined time and then the operation of the reversible cell 1 is stopped. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、固体高分子形の水電解装置と燃料電池のセルを一体化した可逆セル(以降、単に「可逆セル」と言うことがある)において、長期的な運転に伴う性能低下を最小限に抑えて高寿命化を実現するための方法に関するものである。   The present invention minimizes performance degradation associated with long-term operation in a reversible cell in which a polymer electrolyte water electrolyzer and a fuel cell are integrated (hereinafter, sometimes simply referred to as “reversible cell”). The present invention relates to a method for realizing a long service life while keeping it at a minimum.

同形状の固体高分子電解質型セルとして構成することができる水電解セルと燃料電池セルとを一体化した固体高分子形の可逆セルは、一般的には、固体電解質材料の膜(高分子膜)を両側から電極触媒層によって挟持して構成される発電ユニット(MEA:Membrane Electrode Assembly)と、その外側に接合した酸化剤極集電体及び燃料極集電体と、これら酸化剤極集電体及び燃料極集電体の各外側に配置したセパレータとによって主要部が構成されている。通常、セパレータは波板形状を有し、セパレータと酸化剤極集電体、及びセパレータと燃料極集電体とによって形成される各独立空間が、酸化剤(酸素ガス)、燃料(水素ガス)の反応ガスの流路を構成する。MEAと酸化剤極集電体及び燃料極集電体は、セル内部基材を構成している。   A solid polymer reversible cell in which a water electrolysis cell and a fuel cell that can be configured as a solid polymer electrolyte cell of the same shape are integrated is generally a membrane of a solid electrolyte material (polymer membrane). ) Are sandwiched by electrode catalyst layers from both sides, and a power generation unit (MEA: Electrode Assembly), an oxidant electrode current collector and a fuel electrode current collector joined to the outside thereof, and these oxidant electrode current collectors The main part is comprised by the separator arrange | positioned on each outer side of the body and the anode current collector. Usually, the separator has a corrugated plate shape, and each independent space formed by the separator, the oxidant electrode current collector, and the separator and the fuel electrode current collector includes an oxidant (oxygen gas) and a fuel (hydrogen gas). The reaction gas flow path is configured. The MEA, the oxidant electrode current collector, and the fuel electrode current collector form a cell internal substrate.

このような可逆セルにおいて、水電解や燃料電池の性能を低下させる内部抵抗(過電圧)には、抵抗過電圧、活性化過電圧、拡散過電圧がある。長期間運転を行うと、反応サイトやその近傍の電極部微細孔の一部に、水電解時ではガスが、燃料電池時では水が、各々滞留し、前者では局所的な乾きが、後者の場合には濡れがそれぞれ電極部に発生する。この現象が起きると反応に必要な水、ガスの反応サイトへの拡散が阻害される。また電池構成部材やシステム、燃料中に含まれる汚染物質(以降、単に「コンタミ」と言うことがある)が、膜電極接合部に蓄積していく。これらの現象により各過電圧が徐々に上昇し、結果として可逆セルの性能が低下する。   In such a reversible cell, there are a resistance overvoltage, an activation overvoltage, and a diffusion overvoltage as internal resistances (overvoltages) that degrade the performance of water electrolysis and fuel cells. When operated for a long time, gas stays in the reaction site and part of the micropores in the vicinity of the gas during water electrolysis and water stays in the fuel cell. In some cases, wetting occurs at the electrode portions. When this phenomenon occurs, diffusion of water and gas necessary for the reaction to the reaction site is hindered. In addition, contaminants contained in battery components, systems, and fuel (hereinafter sometimes simply referred to as “contamination”) accumulate in the membrane electrode junction. Due to these phenomena, each overvoltage gradually increases, and as a result, the performance of the reversible cell decreases.

反応サイトの回復についての従来技術としては、特許文献1にあるように、発電の停止状態で燃料電池運転時の酸化剤極に水素含有ガスを供給して、両極間に電源を接続し、燃料極から酸化剤極に電流を流して微細孔中の水を排除するという燃料電池を対象とした方法がある。またコンタミ問題に対する従来技術としては、特許文献2にあるように定格以上の電解電流で電解を行なって、コンタミを膜外に押し流すという水電解セルを対象とした方法がある。さらにまた、水電解運転後に水素極に水が滞留していると、セル構成部材等からのコンタミが滞留水に溶け込み、電解質膜や触媒がこの状態に曝されるとコンタミの混入が発生するが、特許文献3に記載の技術では、運転停止後もしばらく両極に水を廻すことでこの問題を解決しようとしている。   As a conventional technique for recovery of a reaction site, as disclosed in Patent Document 1, a hydrogen-containing gas is supplied to an oxidant electrode when a fuel cell is operated in a power generation stop state, and a power source is connected between the two electrodes. There is a method for a fuel cell in which an electric current is passed from the electrode to the oxidant electrode to eliminate water in the micropores. As a conventional technique for the contamination problem, as disclosed in Patent Document 2, there is a method for a water electrolysis cell in which electrolysis is performed with an electrolytic current exceeding the rating and the contamination is pushed out of the membrane. Furthermore, if water stays in the hydrogen electrode after the water electrolysis operation, contamination from the cell components or the like dissolves in the staying water, and contamination of the electrolyte membrane or catalyst occurs when the electrolyte membrane or catalyst is exposed to this state. The technique described in Patent Document 3 attempts to solve this problem by turning water to both poles for a while after the operation is stopped.

特開2003−272686号公報JP 2003-272686 A 特開平6−86939号公報Japanese Unexamined Patent Publication No. 6-86939 特開2003−293179号公報JP 2003-293179 A

しかしながら、特許文献1に記載の技術によれば、燃料電池に外部から加える電流値や供給する水素流量等複数の因子を厳密に監視する必要があり、制御も複雑になるばかりでなく、酸化剤極に水素含有ガスを供給する系統が必要になる。また特許文献2に記載の技術では、酸素極から入ってきたコンタミを、膜を介して水素極まで移動させてから排出するための駆動力として、定格以上の電解電流が必要となり、電流供給設備が過大となる。さらに特許文献3の技術では、運転を停止しているにも関わらず水を流すためのポンプを動かしておく必要があり、長期間運転しない場合等を考えると運用上無駄があるばかりか停電等の不測の事態に対応できない。   However, according to the technique described in Patent Document 1, it is necessary to strictly monitor a plurality of factors such as a current value applied to the fuel cell from the outside and a hydrogen flow rate to be supplied. A system for supplying hydrogen-containing gas to the electrode is required. Moreover, in the technique described in Patent Document 2, an electrolytic current exceeding the rating is required as a driving force for discharging the contamination that has entered from the oxygen electrode after moving it to the hydrogen electrode through the membrane. Becomes excessive. Furthermore, in the technique of Patent Document 3, it is necessary to operate a pump for flowing water even though the operation is stopped. Considering the case where the operation is not performed for a long period of time, the operation is not only wasteful but also a power failure, etc. It cannot respond to the unexpected situation.

本発明はかかる点に鑑みてなされたものであり、水電解・燃料電池の双方の運転が可能な可逆セルにおいて、格別な制御、定格以上の電解電流、電流供給設備、ポンプの持続運転等を必要とせず、長期的な運転に伴う性能低下を最小限に抑えて高寿命化を実現することを目的としている。   The present invention has been made in view of such points, and in a reversible cell capable of both water electrolysis and fuel cell operation, special control, electrolytic current exceeding the rating, current supply equipment, continuous operation of the pump, etc. It is not necessary, and the purpose is to realize a long life by minimizing the performance degradation caused by long-term operation.

前記目的を達成するため、本発明は、固体高分子形の水電解装置と燃料電池とを一体化して、水電解運転と燃料電池運転との運転モードの切り替え可能な可逆セルの運転方法であって、水電解運転と燃料電池運転とを交互に実施するとともに、当該可逆セルの運転自体を1時間以上停止する際、当該停止の前の運転モードが水電解運転である場合には、当該水電解運転の後に、終了準備燃料電池運転を所定時間実施してから可逆セルの運転を停止することを特徴としている。   In order to achieve the above object, the present invention is an operation method of a reversible cell in which a solid polymer water electrolysis device and a fuel cell are integrated and the operation mode can be switched between a water electrolysis operation and a fuel cell operation. When the water electrolysis operation and the fuel cell operation are alternately performed and when the operation of the reversible cell is stopped for one hour or more, if the operation mode before the stop is the water electrolysis operation, After the electrolysis operation, the completion preparation fuel cell operation is performed for a predetermined time, and then the operation of the reversible cell is stopped.

水電解運転を開始した直後は、本来水で満たされている電極部を構成する電極触媒層と集電体、とりわけ電極触媒層の微細孔のごく一部に、水電解で発生したガスが滞留していき、反応サイトへの水供給を阻害すると共にその部分は反応に寄与しなくなる。そのためこの現象が生じている間は性能が低下(入力電圧が上昇)していく。そしてこの過渡現象が収束し定常状態になった時点で性能が安定する。水電解の場合は、特に運転を開始した直後にこの現象がみられ、また性能が安定した後であっても局所的にごく僅かな割合で進行する可能性がある。この微細孔中に残留したガスは緻密な電極触媒層にあるため、水電解運転を停止して循環水を供給し続けても排出することは困難である。また水電解運転を停止して何もせず放置しておくと両極間でクロスリークが起こるため、ある程度のガスは触媒上で反応するが、完全に消費するには至らないばかりかクロスリークに伴う膜破損の危険性もある。特にガス抜け性の悪い電極を使用した場合には過渡現象が長時間にわたり続き、極端な場合には局所的な膜の分解や破損にまで至り、電極としての機能を完全に失ってしまうおそれがある。そのため水電解運転の連続運転時間が長くなるほど、また短時間運転であっても水電解運転の度にガスの滞留サイトが増加し、それに応じて性能が低下する。   Immediately after the start of water electrolysis operation, the gas generated by water electrolysis stays in the electrode catalyst layer and current collector that constitute the electrode part that is originally filled with water, especially in a very small part of the micropores of the electrode catalyst layer. As a result, the water supply to the reaction site is hindered and the portion does not contribute to the reaction. Therefore, the performance decreases (input voltage increases) while this phenomenon occurs. The performance is stabilized when the transient phenomenon converges and becomes a steady state. In the case of water electrolysis, this phenomenon is observed particularly immediately after the start of operation, and even after the performance has stabilized, there is a possibility that it may proceed at a very small rate locally. Since the gas remaining in the micropores is in the dense electrode catalyst layer, it is difficult to discharge even if the water electrolysis operation is stopped and the circulating water is continuously supplied. In addition, if the water electrolysis operation is stopped and left unattended, a cross leak occurs between the two electrodes, so that some gas reacts on the catalyst, but it does not completely consume but also accompanies the cross leak. There is also a risk of membrane breakage. In particular, when an electrode with poor gas release properties is used, the transient phenomenon lasts for a long time, and in extreme cases, it may lead to local decomposition and breakage of the membrane, and the function as an electrode may be completely lost. is there. Therefore, as the continuous operation time of the water electrolysis operation becomes longer, and even if the operation is performed for a short time, the number of gas retention sites increases every time the water electrolysis operation is performed, and the performance decreases accordingly.

この点本発明によれば、水電解運転と燃料電池運転とを交互に実施するようにしているので、水電解運転時に電極部微細孔に滞留したガスを、燃料電池運転によって確実に消費させることができ、前記したようなリスクを負うことなく水電解の反応サイトを確実に回復させることができ、再度水電解運転を行う時の性能を最大限まで回復させることができる。また両モードに共通する長期運転に伴う劣化原因として、コンタミの混入によりイオン交換性能が低下することで生じる性能低下があるが、これに対しても、本発明のように交互に反対モードの運転をすることでプロトンの移動方向が逆になるため、それぞれのモードで運転中に混入したコンタミをそれが入ってきた方向に向けて容易に押し流すことができる。このとき、コンタミがより端部にある方が容易に取り除くことができるため、本発明のように交互に反対モードの運転を行うことが有効である。   In this respect, according to the present invention, the water electrolysis operation and the fuel cell operation are alternately performed, so that the gas retained in the electrode micropores during the water electrolysis operation can be reliably consumed by the fuel cell operation. Therefore, the reaction site of water electrolysis can be reliably recovered without incurring the risk as described above, and the performance when performing the water electrolysis operation again can be recovered to the maximum. In addition, as a cause of deterioration associated with long-term operation common to both modes, there is a performance decrease caused by a decrease in ion exchange performance due to contamination, but also against this, operation in the opposite mode alternately as in the present invention. Since the movement direction of protons is reversed, the contamination mixed during operation in each mode can be easily swept away in the direction in which it enters. At this time, since the contamination at the end portion can be easily removed, it is effective to perform the operation in the opposite mode alternately as in the present invention.

また本発明では可逆セルの運転自体を1時間以上停止する際、当該停止の前の運転モードが水電解運転である場合には、当該水電解運転の後に、終了準備燃料電池運転を所定時間実施してから可逆セルの運転を停止するようにしている。これによって、長時間の運転停止後、可逆セルの運転を再開する際に、当該再開が、水電解運転、燃料電池運転のいずれであっても、直ちに起動させることができる。   Further, in the present invention, when the operation of the reversible cell itself is stopped for 1 hour or longer, if the operation mode before the stop is the water electrolysis operation, the end preparation fuel cell operation is performed for a predetermined time after the water electrolysis operation. Then, the operation of the reversible cell is stopped. Thereby, when resuming the operation of the reversible cell after stopping the operation for a long time, the resumption can be started immediately regardless of whether the resumption is a water electrolysis operation or a fuel cell operation.

すなわち、水電解運転を終了した状態で長時間停止(保管)すると、水電解運転を終了した状態では、セル内部基材が全て完全に濡れた状態になっているため、セル内部に残存した水(特に水素側)が保管中に性能低下を引き起こすことがあり、それが起きると性能回復が困難になる。また水電解運転で終了しセル内部基材が濡れた状態となっていると、次回起動する時の運転モードが燃料電池運転の場合には、起動前にセル内部を乾燥させる必要がある。乾燥ガスの飽和水蒸気分圧は温度の低下とともに低下する。これは温度が低いほど乾燥ガスが持ち去る(気化させる)ことのできる水分量が減少することを意味する。よって、セル温度が低いほど規定の状態までの乾燥(乾燥ガスがセル内部から一定量の水を気化させる)に時間を要する。ここで、実用上の乾燥ガス(例えば外気)中には必ずごく僅かにコンタミ成分(外気中の不純物:たとえばCa等)が含まれるため、乾燥時間が長いほど反応膜にコンタミ成分が蓄積し、それが原因で性能低下が発生する。また実用上、起動したい時にすぐに起動できないと使い勝手が非常に悪い。   That is, when the water electrolysis operation is stopped (stored) for a long time, the water electrolysis operation is completed, and all the cells inside the cell are completely wet. (Especially on the hydrogen side) can cause performance degradation during storage, which makes recovery difficult. If the cell electrolysis operation is completed and the cell internal substrate is in a wet state, when the operation mode at the next start-up is the fuel cell operation, the inside of the cell needs to be dried before the start-up. The saturated water vapor partial pressure of the drying gas decreases with decreasing temperature. This means that the lower the temperature, the smaller the amount of moisture that can be taken away (vaporized) by the dry gas. Therefore, the lower the cell temperature, the longer it takes to dry to a specified state (the dry gas vaporizes a certain amount of water from the inside of the cell). Here, since a practically dry gas (for example, outside air) always contains a very small amount of a contamination component (impurities in the outside air, such as Ca), the contamination component accumulates in the reaction film as the drying time increases. This causes performance degradation. Also, for practical use, it is very inconvenient if it cannot be started immediately when it is desired to start it.

この点、本発明では、長時間停止前の水電解運転の後に、一旦「終了準備燃料電池運転」を所定時間実施してから可逆セルの運転を停止するようにしているので、セル内部基材(特に水素側)は基本的に濡れの無い状態であり、性能低下を引き起こす残留水がセル内部に存在しないため、水電解運転で終了して保管した場合に比べて性能低下を大幅に抑制できる。なお、燃料電池運転を終了した状態で保管した際には特段の問題は生じない。
また終了準備燃料電池運転とは、通常の需要側の負荷に応じる発電の為の燃料電池運転と、呼称上区別するために便宜的に用いたものであり、運転自体の内容は、通常の燃料電池運転と同じである。ただし、所定時間、たとえば5〜10分程度の運転で足り、通常の燃料電池運転と比べて極めて短い時間で済むものである。
In this regard, in the present invention, after the water electrolysis operation before stopping for a long time, the operation of the reversible cell is stopped after the “end preparation fuel cell operation” is once performed for a predetermined time. (Especially on the hydrogen side) is basically wet-free and there is no residual water inside the cell that causes performance degradation, so performance degradation can be greatly suppressed compared to when the storage is terminated after water electrolysis. . It should be noted that there is no particular problem when the fuel cell is stored after the operation is finished.
In addition, the end preparation fuel cell operation is used for convenience in order to distinguish it from the fuel cell operation for power generation according to the load on the normal demand side. Same as battery operation. However, the operation for a predetermined time, for example, about 5 to 10 minutes is sufficient, and an extremely short time is required as compared with the normal fuel cell operation.

前記終了準備燃料電池運転を実施する前に、可逆セルの流路内に残留した電解水をセル内部から排出し、燃料電池運転時に酸化剤極となる側の反応ガス流路にのみ空気を供給し、セル内部基材を乾燥させる乾燥工程を実施するようにしてもよい。これによって、速やかに終了準備燃料電池運転を開始することができ、その結果、可逆セル自体の停止までのトータルの時間を短縮することができる。なお発明者らの知見によれば、酸化剤極となる側の反応ガス流路にのみ空気を供給した場合、酸化剤極側の水分は酸化剤極集電体から当該空気に伝達され、当該空気によって系外に排出される。一方燃料極側の水分については、まず燃料極集電体からMEA及び酸化剤側集電体を伝達して、最終的に当該空気に伝達され、当該空気によって系外に排出される。したがって、窒素ガスなどの不活性ガスを酸化剤極側及び燃料極側の両極の反応ガス流路に供給しなくとも、セル内部基材を好適に乾燥させることができる。本発明に用いる前記空気としては、もちろん大気中の空気をそのまま用いることができるほか、通常の空調機で減湿処理を行なったものを用いてもよい。好ましくは露点温度が20℃以下のものがよい。
なお流路内に残留した電解水をセル内部から排出するにあたっては、可逆セル内部の反応ガス流路に気体を供給して、流路内に残留した電解水をセル内部から排出するようにしてもよい。
Before the completion of preparation fuel cell operation, the electrolyzed water remaining in the flow path of the reversible cell is discharged from the inside of the cell, and air is supplied only to the reaction gas flow path on the side that becomes the oxidant electrode during fuel cell operation. And you may make it implement the drying process which dries a cell internal base material. As a result, the end preparation fuel cell operation can be started promptly, and as a result, the total time until the reversible cell itself stops can be shortened. According to the knowledge of the inventors, when air is supplied only to the reaction gas channel on the side serving as the oxidant electrode, the moisture on the oxidant electrode side is transferred from the oxidant electrode current collector to the air, and It is discharged out of the system by air. On the other hand, the moisture on the fuel electrode side is first transmitted from the fuel electrode current collector to the MEA and the oxidant side current collector, finally transmitted to the air, and discharged outside the system by the air. Therefore, the cell internal substrate can be suitably dried without supplying an inert gas such as nitrogen gas to the reaction gas passages on both the oxidant electrode side and the fuel electrode side. As the air used in the present invention, air in the atmosphere can of course be used as it is, and air that has been subjected to dehumidification treatment by a normal air conditioner may be used. Preferably, the dew point temperature is 20 ° C or lower.
When discharging the electrolyzed water remaining in the flow path from the inside of the cell, supply gas to the reaction gas flow path inside the reversible cell so that the electrolyzed water remaining in the flow path is discharged from the inside of the cell. Also good.

前記乾燥工程開始の際には、可逆セルの温度を70℃以上にしておくことが好ましい。飽和水蒸気分圧は70℃付近から急速に上昇するためである。なおここでいう可逆セルの温度が70℃以上とは、可逆セル内の集電体の温度が70℃以上を意味する。但し、実際には集電体の温度を測定するのは困難であるから、水電解運転時に電解水が流入する酸素極側の流路入口温度を測定し、当該流路入口温度が70℃以上になっていればよい。集電体の温度は、当該流路入口温度よりも高くなるからである。   At the start of the drying step, the temperature of the reversible cell is preferably set to 70 ° C. or higher. This is because the saturated water vapor partial pressure rises rapidly from around 70 ° C. Here, the temperature of the reversible cell being 70 ° C. or higher means that the temperature of the current collector in the reversible cell is 70 ° C. or higher. However, since it is actually difficult to measure the temperature of the current collector, the channel inlet temperature on the oxygen electrode side where the electrolyzed water flows during water electrolysis operation is measured, and the channel inlet temperature is 70 ° C. or higher. It only has to be. This is because the temperature of the current collector is higher than the temperature of the flow path inlet.

そしてこのように乾燥工程開始の際に可逆セルの温度を70℃以上にしておくことで、乾燥工程に要する時間を飛躍的に短縮することができる。可逆セルの温度を70℃以上にするには、たとえば水電解運転の運転温度を70℃以上にすることで達成できる。ただし装置環境や負荷の状況、あるいは装置特性等からそのように水電解運転の運転温度を70℃以上にできない場合には、たとえば可逆セル停止前の水電解運転の終了前に、可逆セルに通水する冷却水の流量を減じたり、または冷却水の温度を昇温したり、あるいはその双方を実施するなどして制御したり、可逆セル停止前の水電解装置運転の終了前に、可逆セルに供給する電流密度を高めて可逆セル自体の発熱量を増加させるようにしてもよい。   Thus, by setting the temperature of the reversible cell to 70 ° C. or higher at the start of the drying process, the time required for the drying process can be dramatically shortened. The temperature of the reversible cell can be increased to 70 ° C. or higher by, for example, setting the operating temperature of the water electrolysis operation to 70 ° C. or higher. However, if the operating temperature of the water electrolysis operation cannot be increased to 70 ° C. or higher due to the device environment, load conditions, or device characteristics, for example, the water electrolysis operation is passed to the reversible cell before the end of the water electrolysis operation before the reversible cell stops. Reduce the flow rate of cooling water to flow, increase the temperature of the cooling water, or control both, etc., before resuming the operation of the water electrolyzer before stopping the reversible cell The current density supplied to the battery may be increased to increase the amount of heat generated by the reversible cell itself.

前記した終了準備燃料電池運転は、下記の条件で行なうことが好ましい。すなわち、
水素側供給ガスの可逆セル温度における飽和水蒸気量:MH2−SAT[mol/s]
酸素側供給ガスの可逆セル温度における飽和水蒸気量:MO2−SAT[mol/s]
水素側供給ガス中の水蒸気量 :MH2[mol/s]
酸素側供給ガス中の水蒸気量 :MO2[mol/s]
反応生成水量:MH2O[mol/s]としたとき、
(MH2−SAT+MO2−SAT)−(MH2+MO2+MH2O)≦0の範囲で終了準備燃料電池運転するのがよい。これによって、可逆セルの膜や集電体の過度の乾燥による劣化を抑えることができる。
なおここでいう可逆セル温度とは、具体的には可逆セルにおける冷却水の入口温度である。
The above-described completion preparation fuel cell operation is preferably performed under the following conditions. That is,
Saturated water vapor amount at reversible cell temperature of hydrogen side supply gas: MH 2 -SAT [mol / s]
Saturated water vapor amount at reversible cell temperature of oxygen side supply gas: M O2-SAT [mol / s]
Amount of water vapor in hydrogen-side supply gas: MH 2 [mol / s]
Amount of water vapor in oxygen-side supply gas: M O2 [mol / s]
When the amount of reaction product water is MH 2 O [mol / s],
It is preferable to operate the end preparation fuel cell in the range of (M H2 -SAT + M O2 -SAT ) − (M H2 + M O2 + M H2O ) ≦ 0. Thereby, deterioration due to excessive drying of the film of the reversible cell or the current collector can be suppressed.
In addition, the reversible cell temperature here is specifically the inlet temperature of the cooling water in the reversible cell.

さらに前記終了準備燃料電池運転終了後、可逆セルを停止する前に、可逆セル内を加圧し、その後可逆セル内に通ずる流路を閉鎖するようにしてもよい。これによって、温度降下に伴って外部空気が可逆セル内に侵入することを防止することができる。   Further, after the end preparation fuel cell operation is finished, before the reversible cell is stopped, the inside of the reversible cell may be pressurized, and then the flow path leading to the reversible cell may be closed. Thereby, it is possible to prevent external air from entering the reversible cell as the temperature drops.

本発明によれば、水電解・燃料電池の双方の運転が可能な可逆セルにおいて、格別な制御、定格以上の電解電流、電流供給設備、ポンプの持続運転等を必要とせず、長期的な運転に伴う性能低下を最小限に抑えて高寿命化することができ、しかも長時間の運転停止後、可逆セルの運転を再開する際に、当該再開後の運転モードが、水電解運転、燃料電池運転のいずれであっても、直ちに起動させることができる。   According to the present invention, in a reversible cell capable of both water electrolysis and fuel cell operation, long-term operation is not required without special control, electrolytic current exceeding the rating, current supply equipment, continuous operation of the pump, etc. In addition, when the reversible cell is restarted after a long-time operation stop, the operation mode after the restart is the water electrolysis operation, the fuel cell, or the like. Any of the driving can be started immediately.

実施の形態で用いた可逆セルの縦断面構成を模式的に示した説明図である。It is explanatory drawing which showed typically the longitudinal cross-section structure of the reversible cell used in embodiment. 図1の可逆セルの水平断面構成を模式的に示した説明図である。It is explanatory drawing which showed typically the horizontal cross-section structure of the reversible cell of FIG. 図1の可逆セルの系統を模式的に示した説明図である。It is explanatory drawing which showed typically the system | strain of the reversible cell of FIG. 図1の可逆セルを水電解運転の単一運転モードで繰り返し実施した際の入力電圧の変化を示すグラフである。It is a graph which shows the change of the input voltage at the time of implementing repeatedly the reversible cell of FIG. 1 in the single operation mode of water electrolysis operation. 図1の可逆セルを燃料電池運転の単一運転モードで繰り返し実施した際の出力電圧の変化を示すグラフである。It is a graph which shows the change of the output voltage at the time of implementing repeatedly the reversible cell of FIG. 1 in the single operation mode of fuel cell operation. 図1の可逆セルにおいて、水電解運転と燃料電池運転とを交互に実施した際の入力電圧と出力電圧の各変化を示すグラフである。2 is a graph illustrating changes in input voltage and output voltage when water electrolysis operation and fuel cell operation are alternately performed in the reversible cell of FIG. 1. 図1の可逆セルにおいて、水電解運転と燃料電池運転とを交互に実施した際の入力電圧と出力電圧の運転回数に基づいた各変化を示すグラフである。2 is a graph showing changes based on the number of operations of an input voltage and an output voltage when water electrolysis operation and fuel cell operation are alternately performed in the reversible cell of FIG. 1. 図1の可逆セルにおいて、保管前の運転モードと保管後水電解運転を開始した際の入力電圧を示すグラフである。In the reversible cell of FIG. 1, it is a graph which shows the input voltage at the time of starting the operation mode before storage, and the water electrolysis operation after storage.

以下本発明の実施の形態について説明する。図1は、可逆セル1の内部を模式的に示しており、図2は、この可逆セル1の水平断面を示している。なおこの可逆セル1は、発電、電解ユニットの最小単位である単セルを示している。この可逆セル1は、図2に示したように、最も外側に各々給・集電板2、3が配置されている。給・集電板2、3間の中心には、電極触媒層によって構成される2枚の電極部4a、4b間に、固体電解質材料によって構成されるイオン交換膜4cが配置されて、複合化した発電ユニットであるMEA4が構成されている。各電極部4a、4bの外側には、例えば多孔質の材料からなる集電体5、6が配置されている。本実施の形態においては、これらMEA4と集電体5、6とでセル内部基材が構成されている。電極部4aは、水電解運転時にはカソードとなり、電極部4bは、水電解運転時にはアノードとなる。   Embodiments of the present invention will be described below. FIG. 1 schematically shows the inside of the reversible cell 1, and FIG. 2 shows a horizontal cross section of the reversible cell 1. In addition, this reversible cell 1 has shown the single cell which is the minimum unit of an electric power generation and electrolysis unit. As shown in FIG. 2, the reversible cell 1 has power supply / collection plates 2 and 3 arranged on the outermost sides. An ion exchange membrane 4c made of a solid electrolyte material is arranged between the two electrode portions 4a and 4b made of an electrode catalyst layer at the center between the power supply and current collecting plates 2 and 3 to form a composite. The MEA 4 that is the generated power unit is configured. For example, current collectors 5 and 6 made of, for example, a porous material are disposed outside the electrode portions 4a and 4b. In the present embodiment, the MEA 4 and the current collectors 5 and 6 constitute a cell internal substrate. The electrode portion 4a serves as a cathode during the water electrolysis operation, and the electrode portion 4b serves as an anode during the water electrolysis operation.

集電体5と給・集電板2との間には空間Sが形成され、集電体6と給・集電板3との間には空間Sが形成されている。各空間S、S内には、各々断面が波型のセパレータ7が各々配置されている。そしてこの可逆セル1は水冷方式による冷却方法を採用しており、空間Sに配置されたセパレータ7によって、空間Sには、冷却水流路11と流路12が交互に形成されている。一方、空間Sに配置されたセパレータ7によって、空間Sにも、冷却水流路13と流路14が交互に形成されている。冷却水は、冷却水流路11とヒートポンプ介装の恒温水槽(図示せず)や冷却塔(図示せず)を循環し、可逆セル1の入り口で例えば60℃〜80℃を維持するように運転される。 A space S 1 is formed between the current collector 5 and the supply / current collection plate 2, and a space S 2 is formed between the current collector 6 and the supply / current collection plate 3. In each of the spaces S 1 and S 2 , a corrugated separator 7 is disposed. The reversible cell 1 has adopted the cooling method by water cooling, by the separator 7 disposed in the space S 1, the space S 1, the cooling water passage 11 and the passage 12 are formed alternately. On the other hand, by the separator 7 disposed in the space S 2, in the space S 2, the cooling water passage 13 and the passage 14 are formed alternately. The cooling water is circulated through the cooling water passage 11 and a constant temperature water tank (not shown) and a cooling tower (not shown) with a heat pump, and is operated so as to maintain, for example, 60 ° C. to 80 ° C. at the entrance of the reversible cell 1. Is done.

再び図1に戻ってさらに説明すると、流路12の両端部には、流通口12a、12bが形成され、流路14の両端部には、流通口14a、14bが形成されている。   Returning again to FIG. 1, further description will be made. Flow ports 12 a and 12 b are formed at both ends of the flow channel 12, and flow ports 14 a and 14 b are formed at both ends of the flow channel 14.

次にこのような構成を有する可逆セル1のガス系統、排出系統等について説明する。図3に示したように、流通口12aには、流路31が接続され、流通口14aには、流路41が接続され、流通口14bには、流路51が接続され、流通口12bには、流路61が各々接続されている。各流路31、41、51、61、ならびに後述するバイパス流路45は、たとえばステンレス鋼の配管によって構成される。   Next, the gas system, discharge system, etc. of the reversible cell 1 having such a configuration will be described. As shown in FIG. 3, the flow channel 31 is connected to the flow port 12a, the flow channel 41 is connected to the flow port 14a, the flow channel 51 is connected to the flow port 14b, and the flow port 12b. Each is connected to a flow path 61. Each flow path 31, 41, 51, 61 and a bypass flow path 45 described later are constituted by, for example, stainless steel piping.

流路31には、水電解運転時の純水貯蔵タンクとなるタンク32を介して、流路33、34が接続されている。流路33、34には、各々弁33a、34aが設けられている。   Channels 33 and 34 are connected to the channel 31 via a tank 32 that serves as a pure water storage tank during water electrolysis operation. The flow paths 33 and 34 are provided with valves 33a and 34a, respectively.

流路41には、水電解運転時の純水貯蔵タンクとなるタンク42を介して、流路43、44が接続されている。流路43、44には、各々弁43a、44aが設けられている。また流路41と流路43との間には、タンク42をバイパスするバイパス流路45が接続され、バイパス流路45には弁45aが設けられている。流路43の端部には、水電解運転から燃料電池運転への運転切替時に、パージガスでありまた酸化剤としても作用する空気を供給するブロア46が設けられている。   Flow paths 43 and 44 are connected to the flow path 41 via a tank 42 that serves as a pure water storage tank during water electrolysis operation. Valves 43a and 44a are provided in the flow paths 43 and 44, respectively. Further, a bypass channel 45 that bypasses the tank 42 is connected between the channel 41 and the channel 43, and a valve 45 a is provided in the bypass channel 45. A blower 46 is provided at the end of the flow path 43 to supply air that is purge gas and also acts as an oxidant when switching from water electrolysis operation to fuel cell operation.

流路51には、弁51aが設けられており、また流路51とタンク42との間には流路52が接続され、流路52には、ポンプ53及び弁52aが設けられている。ポンプ53は、水電解運転時にタンク42に貯蔵してある純水を可逆セル1に供給するものである。   A valve 51 a is provided in the flow path 51, a flow path 52 is connected between the flow path 51 and the tank 42, and a pump 53 and a valve 52 a are provided in the flow path 52. The pump 53 supplies pure water stored in the tank 42 to the reversible cell 1 during the water electrolysis operation.

流路61には、弁61aが設けられている。なお流路61とタンク32との間に流路(図示せず)を設け、この流路に、ポンプ、弁(いずれも図示せず)を設けてもよい。これによって、万が一水電解運転時において燃料極側の水が十分ではない場合に、これらポンプ、弁(いずれも図示せず)を用いて燃料極側にも適宜水を供給しておくことで、膜の乾燥を防止して、膜の破損を未然に防ぐことができる。   The flow path 61 is provided with a valve 61a. A flow path (not shown) may be provided between the flow path 61 and the tank 32, and a pump and a valve (both not shown) may be provided in the flow path. By this, in the event that water on the fuel electrode side is not sufficient at the time of water electrolysis operation, by appropriately supplying water to the fuel electrode side using these pumps and valves (both not shown), It is possible to prevent the membrane from being damaged and prevent the membrane from being damaged.

なお、本図では水素の供給源は明示していないが、水電解運転によって得られた水素を、高圧タンクや水素吸蔵合金に貯蔵したものや、化石燃料を改質したもの等の供給源を別途設置することができる。   Although the supply source of hydrogen is not clearly shown in this figure, supply sources such as those obtained by storing hydrogen obtained by water electrolysis operation in a high-pressure tank or hydrogen storage alloy, or those obtained by reforming fossil fuels It can be installed separately.

前記した各弁33a、34a、43a、44a、45a、51a、52a、61aは、いずれも制御装置71によって制御される。またこの制御装置71は、水電解運転時に可逆セル1に水の電気分解をするための電流を供給したり、燃料電池運転時に需要側に電力を供給する電源設備72も制御する。   Each of the above-described valves 33a, 34a, 43a, 44a, 45a, 51a, 52a, 61a is controlled by the control device 71. The control device 71 also controls a power supply facility 72 that supplies current for electrolyzing water to the reversible cell 1 during water electrolysis operation and supplies power to the demand side during fuel cell operation.

次にこのような主たる構成を有する可逆セル1の運転方法について説明する。
(燃料電池運転時)
弁33a、43a、51a、61aは開放され、弁34a、44a、45a、52aは閉鎖される。そして流路33へ燃料(水素ガス)を導入し、タンク32において加湿を行った後に流路31、流通口12aを通じて可逆セル1に導入する。また流路43へ酸化剤(酸素ガスまたは空気)を導入し、タンク42において加湿を行った後に流通口14aを通じて可逆セル1に導入する。これによって可逆セル1のセル内部基材では、発電反応が起こり、電極部4aから電源設備72を通じて電極部4bへと電子が流れ、電流が発生する。
Next, an operation method of the reversible cell 1 having such a main configuration will be described.
(During fuel cell operation)
The valves 33a, 43a, 51a, 61a are opened, and the valves 34a, 44a, 45a, 52a are closed. Then, fuel (hydrogen gas) is introduced into the flow path 33, humidified in the tank 32, and then introduced into the reversible cell 1 through the flow path 31 and the circulation port 12 a. Further, an oxidant (oxygen gas or air) is introduced into the flow path 43, humidified in the tank 42, and then introduced into the reversible cell 1 through the flow port 14 a. As a result, a power generation reaction occurs in the cell internal substrate of the reversible cell 1, and electrons flow from the electrode portion 4 a to the electrode portion 4 b through the power supply facility 72, thereby generating a current.

なお発電反応においては外部の負荷に応じた量のガスが消費され、余剰の燃料(水素ガス)は、流通口12b、流路61を介して排出され、余剰の酸化剤(酸素ガスまたは空気)は、流通口14b、流路51を介して排出される。図1における太矢印は、その場合の反応ガスの流れを示している。   In the power generation reaction, an amount of gas corresponding to the external load is consumed, and surplus fuel (hydrogen gas) is discharged through the circulation port 12b and the flow path 61, and surplus oxidant (oxygen gas or air). Is discharged through the circulation port 14 b and the flow path 51. The thick arrows in FIG. 1 indicate the flow of the reaction gas in that case.

(水電解運転時)
弁33a、43a、51a、45a、61aは閉鎖され、弁34a、44a、52aは開放される。そしてタンク42に貯蔵した純水がポンプ53で吸込まれ、流路51、流通口14bを通じて可逆セル1内部に導入される。一方、電源設備72からは、集電体5、6に与える電流が供給され(電子は集電体6→電源設備72→集電体5に流れる)、図1に示した流路14内の水は、電気分解され、供給された電流に応じた量の酸素と水素が発生する。
(During water electrolysis operation)
The valves 33a, 43a, 51a, 45a, 61a are closed and the valves 34a, 44a, 52a are opened. The pure water stored in the tank 42 is sucked by the pump 53 and introduced into the reversible cell 1 through the flow path 51 and the flow port 14b. On the other hand, a current applied to the current collectors 5 and 6 is supplied from the power supply facility 72 (electrons flow from the current collector 6 → the power supply facility 72 → the current collector 5), and the current in the flow path 14 shown in FIG. The water is electrolyzed to generate oxygen and hydrogen in amounts corresponding to the supplied current.

そしてかかる水電解運転において発生した水素は、流通口12aを介して流路31からタンク32へと流れ、タンク32において気液分離処理を行なった後、流路34を通じて外部へと排出される。一方水電解運転において発生した酸素は、流通口14aを介して流路41からタンク42へと流れ、タンク42において気液分離処理を行なった後、流路44を通じて外部へと排出される。なおこれら気液分離処理を行なった後の、純水素、純酸素は、別途設ける燃料貯蔵設備、酸化剤貯蔵設備(いずれも図示せず)に貯蔵しておくことで、次の燃料電池運転時の燃料、酸化剤として各々用いることができる。   The hydrogen generated in the water electrolysis operation flows from the flow path 31 to the tank 32 through the flow port 12a, and after performing a gas-liquid separation process in the tank 32, the hydrogen is discharged to the outside through the flow path 34. On the other hand, oxygen generated in the water electrolysis operation flows from the flow path 41 to the tank 42 via the flow port 14a, and after gas-liquid separation processing is performed in the tank 42, the oxygen is discharged to the outside through the flow path 44. The pure hydrogen and pure oxygen after these gas-liquid separation processes are stored in a separate fuel storage facility and oxidant storage facility (both not shown), so that the next fuel cell operation is possible. It can be used as a fuel and an oxidant.

なお前記した構成の可逆セル1においては、燃料電池時の酸化剤極となる電極部4bの基材を水電解の運転状態に耐えられる仕様にする必要があるが、たとえば特開2004−134134号公報や、特開2007−12315号公報に開示されているように、白金電極触媒に少量のイリジウムを混入して基材の撥水性を調整し、集電体とセパレータをPtで鍍金すればよい。   In the reversible cell 1 having the above-described configuration, it is necessary to make the base material of the electrode portion 4b, which serves as an oxidant electrode in a fuel cell, to withstand the operation state of water electrolysis, for example, Japanese Patent Application Laid-Open No. 2004-134134. As disclosed in Japanese Patent Application Laid-Open No. 2007-12315, a small amount of iridium is mixed in the platinum electrode catalyst to adjust the water repellency of the substrate, and the current collector and the separator are plated with Pt. .

前記した可逆セル1は、このようにして水電解運転と燃料電池運転との双方を任意に実施することが可能である。したがって、たとえば水電解運転→水電解運転→水電解運転というように、水電解運転のみを断続的に実施することも可能であり、逆に燃料電池運転→燃料電池運転→燃料電池運転というように、インターバルをおいて燃料電池運転のみを断続的に実施することも可能である。しかしながらそのように単一のモード運転のみを実施すると、既述したように性能の劣化が次第に顕著になる。   The reversible cell 1 described above can arbitrarily perform both the water electrolysis operation and the fuel cell operation in this way. Accordingly, for example, water electrolysis operation → water electrolysis operation → water electrolysis operation can be performed intermittently, and conversely, fuel cell operation → fuel cell operation → fuel cell operation, etc. It is also possible to carry out only the fuel cell operation intermittently at intervals. However, if only a single mode operation is performed in this manner, the performance degradation becomes increasingly noticeable as described above.

実際に発明者が検証したところ、たとえば水電解運転のみを断続的に実施した場合、図4に示したような結果が得られた。図4は水電解運転の単一モードで繰返し運転したときの性能経時変化を示し、横軸は運転時間、縦軸は水電解に必要な入力電圧(v)を示している。なお電流密度は、1.0A/cmである。これによれば、運転初期にある程度性能が低下し(すなわち入力電圧が高くなり)、その後は緩やかに低下していく。そして一度運転を停止して再度運転を再開すると、ある程度性能は回復するが初期の性能までは回復せず、運転の度に性能は徐々に低下していく。ここでガス・水抜け性のよい電極構造を採用した場合には、運転初期に性能が低下した後は殆ど性能低下が起こらず、毎回同じような経時変化を示すが長期的に見れば徐々に低下する。 When the inventor actually verified, for example, when only the water electrolysis operation was intermittently performed, a result as shown in FIG. 4 was obtained. FIG. 4 shows changes with time in performance when the water electrolysis operation is repeated in a single mode, the horizontal axis shows the operation time, and the vertical axis shows the input voltage (v) required for water electrolysis. The current density is 1.0 A / cm 2 . According to this, the performance deteriorates to some extent in the initial stage of operation (that is, the input voltage becomes high), and then gradually decreases. Then, once the operation is stopped and the operation is restarted, the performance is recovered to some extent, but the initial performance is not recovered, and the performance gradually decreases with each operation. Here, when an electrode structure with good gas / water drainage is adopted, the performance hardly deteriorates after the performance deteriorates in the initial stage of operation, and the same time-dependent change is shown every time. descend.

図6は燃料電池の単一モードで繰返し運転したときの性能経時変化を示し、横軸は運転時間、燃料電池の出力電圧(v)を示している。なお電流密度は、0.6A/cmである。この場合も、やはり運転初期にある程度性能が低下し、その後は緩やかに低下していくことがわかる。そして一度運転を停止して再度運転を再開すると、ある程度性能は回復するものの初期の性能までには回復せず、運転の度に性能は徐々に低下していく。ここでもガス・水抜け性のよい電極構造を採用した場合には、運転初期に性能が低下した後は殆ど性能低下が起こらず、毎回同じような経時変化を示すが、やはり長期的に見れば徐々に低下する。 FIG. 6 shows changes with time in performance when the fuel cell is operated repeatedly in a single mode, and the horizontal axis shows the operation time and the output voltage (v) of the fuel cell. The current density is 0.6 A / cm 2 . Also in this case, it can be seen that the performance deteriorates to some extent at the beginning of the operation, and then gradually decreases. Then, once the operation is stopped and the operation is restarted, the performance is recovered to some extent, but is not recovered to the initial performance, and the performance gradually decreases with each operation. Here again, when an electrode structure with good gas / water drainage is adopted, the performance hardly deteriorates after the performance deteriorates at the initial stage of operation, and the same time-dependent change is shown every time. Decrease gradually.

本発明に従えば、このような構成の可逆セル1を運転するにあたり、水電解運転と燃料電池運転とを交互に実施することになる。それによって、前記した図4、図5でみられたような、性能低下を抑えることができる。実際に発明者が検証したところ、図6に示した結果が得られた。   According to the present invention, when the reversible cell 1 having such a configuration is operated, the water electrolysis operation and the fuel cell operation are alternately performed. As a result, the performance degradation as seen in FIGS. 4 and 5 can be suppressed. When the inventor actually verified, the result shown in FIG. 6 was obtained.

図6は、水電解運転と燃料電池運転とを交互に実施(以降、単に「交互運転」と言うことがある。)した際の、水電解入力電圧(v)と燃料電池の出力電圧(v)を示しており、左側の縦軸に水電解入力電圧、右側の縦軸に燃料電池の出力電圧をとり、図6のグラフ中、上半分は水電解入力電圧、下半分は燃料電池の出力電圧の各経時変化を記載したものである。なお水電解運転時の電流密度は、1.0A/cm、燃料電池運転時の電流密度は、0.6A/cmである。 FIG. 6 shows the water electrolysis input voltage (v) and the output voltage (v of the fuel cell) when the water electrolysis operation and the fuel cell operation are alternately performed (hereinafter simply referred to as “alternate operation”). ), The left vertical axis represents the water electrolysis input voltage, the right vertical axis represents the fuel cell output voltage, and in the graph of FIG. 6, the upper half represents the water electrolysis input voltage and the lower half represents the fuel cell output. Each change of voltage over time is described. The current density during water electrolysis operation is 1.0 A / cm 2 , and the current density during fuel cell operation is 0.6 A / cm 2 .

またそのように水電解運転と燃料電池運転とを交互に実施する際は、電流値の低い燃料電池運転をより長く稼動させて、燃料電池運転と水電解運転のトータル負荷を等しくする運転をすることが望ましい。   In addition, when alternately performing the water electrolysis operation and the fuel cell operation in such a manner, the fuel cell operation with a low current value is operated for a longer time so that the total load of the fuel cell operation and the water electrolysis operation is made equal. It is desirable.

図6に示すように、水電解運転と燃料電池運転とを交互に行うことで、単一モード運転に見られたような運転する度に起きる性能低下は無くなり、ガス・水抜け性の悪い電極構造を採用した場合においても長期間、初期性能近傍を維持することが確認できた。   As shown in FIG. 6, by alternately performing the water electrolysis operation and the fuel cell operation, the performance degradation that occurs every time the operation is performed as seen in the single mode operation is eliminated, and the electrode with poor gas / water drainability is eliminated. Even when the structure was adopted, it was confirmed that the vicinity of the initial performance was maintained for a long time.

さらに図7は交互運転の繰り返し行ったときの性能変化をまとめた結果を示し、図のグラフ中、上側のグラフは水電解入力電圧、下側のグラフは燃料電池出力電圧を示し、運転回数を重ねていった場合の、これらの変化を示している。発明者の知見によれば、交互運転をすることで、今回の例では性能低下速度を単一モードのときよりも35%以上低減した。但し、ここに示した効果割合は一例であり、交互運転すれば、既述したように、プロトンの移動方向が逆になり、各モードで運転中に混入したコンタミをそれが入ってきた方向に向けて容易に押し流すことができから、単一モードに対する性能低下の低減効果は、運転時間が長くなり切替回数が増えるほど更なる効果が期待できる。   Further, FIG. 7 shows the results of summarizing the performance change when the alternate operation is repeated. In the graph, the upper graph shows the water electrolysis input voltage, the lower graph shows the fuel cell output voltage, and the number of operations is shown. These changes are shown when repeated. According to the inventor's knowledge, by performing the alternating operation, in this example, the performance degradation speed was reduced by 35% or more than in the single mode. However, the effect ratio shown here is an example, and as described above, if the operation is alternate, the direction of proton movement will be reversed, and the contamination mixed during operation in each mode will be in the direction in which it entered. As the operation time becomes longer and the number of times of switching increases, a further effect can be expected from the effect of reducing the performance degradation for the single mode.

また劣化原因の1つとして、電極触媒層の減肉化があるが、この対策としては、電極触媒層を厚くして耐久性を確保する方法が考えられる。そうした場合、単一モード運転ではガス・水抜け性が悪くなるため反応サイトの減少、つまり性能低下が顕著に発生する(図4、5と同様の傾向が発生)。しかしながら本発明のように交互運転を実施することで、有効な反応サイトの減少を限定的かつ一時的なものに抑え続けることができ、耐久性向上が図れる。   One of the causes of deterioration is a reduction in the thickness of the electrode catalyst layer. As a countermeasure, a method of ensuring durability by increasing the thickness of the electrode catalyst layer is conceivable. In such a case, in the single mode operation, the gas / water removal property is deteriorated, so that the reaction site is reduced, that is, the performance is significantly reduced (the same tendency as in FIGS. 4 and 5 occurs). However, by performing the alternating operation as in the present invention, it is possible to keep the reduction of effective reaction sites limited and temporary, and the durability can be improved.

このように可逆セル1を交互運転することで、水電解や燃料電池の性能を長期間にわたり維持することができる。本効果を最大限利用できる理想的な利用・運用形態は、水電解運転と燃料電池運転を1台で切替えて行う可逆セルであり、通常の運用(定期的に運転を切替)をしているだけで主要な劣化加速要因の発生を未然に防止でき、初期近傍の性能を長期間にわたり維持できる。さらに、その切替周期が短いほど効果的で、日単位までの切替が推奨されるが、周単位の切替であっても本発明は実施可能である。具体的な利用方法としては、両モード間の運転を前提としているシステムへの導入が最適である。例えば夜間の電力を用いて水電解運転により水素を製造しそれを貯蔵しておき、日中の電力需要のピーク時に貯蔵した水素で燃料電池運転を行うといった電力負荷平準化システムへの適用が提案できる。さらにまた、自然エネルギー由来の電気(たとえば太陽電池、風力発電など)により水電解を行い、自然エネルギーによる発電量が不足したときに、両運転モードのトータル負荷が同じになる範囲で、燃料電池運転に切替えて不足分を補う運用するといった方法が挙げられる。   By alternately operating the reversible cells 1 in this way, the performance of water electrolysis and fuel cells can be maintained over a long period of time. The ideal use / operation form that can maximize the use of this effect is a reversible cell that switches between water electrolysis operation and fuel cell operation with a single unit, and performs normal operation (switching operation periodically). This alone can prevent major deterioration acceleration factors and maintain the performance in the vicinity of the initial stage for a long time. Further, the shorter the switching cycle, the more effective and the switching up to the day unit is recommended. However, the present invention can be implemented even with the switching unit in the circumferential unit. As a concrete method of use, introduction to a system premised on operation between both modes is optimal. For example, it is proposed to apply to a power load leveling system in which hydrogen is produced by water electrolysis operation using nighttime electricity and stored, and fuel cell operation is performed using hydrogen stored at the peak of daytime power demand. it can. In addition, when water electrolysis is performed using electricity derived from natural energy (for example, solar cells, wind power generation, etc.) and the amount of power generated by natural energy is insufficient, fuel cell operation is performed within the range where the total load in both operation modes is the same. The method of operating to compensate for the shortage by switching to.

ところでそのようにして水電解運転と燃料電池運転とを交互に実施し、通常の切り替えインターバルよりも長い期間、たとえば1時間以上運転を停止する場合(以降、単に「保管」ということがある)、最後の運転が水電解運転である場合には、水電解運転の後に、終了準備燃料電池運転を所定時間実施してから可逆セルの運転を停止することがよい。これによって、次回どちらのモードで起動しても性能低下を生じることはない。   By the way, when the water electrolysis operation and the fuel cell operation are alternately performed in this way, and the operation is stopped for a period longer than the normal switching interval, for example, 1 hour or more (hereinafter, simply referred to as “storage”), When the last operation is a water electrolysis operation, after the water electrolysis operation, it is preferable to stop the operation of the reversible cell after performing the end preparation fuel cell operation for a predetermined time. As a result, there is no performance degradation regardless of which mode is activated next time.

その際の終了準備燃料電池運転の運転条件としては、イオン交換膜4cを適度な湿潤状態にし、コンタミをイオン交換膜4cから押し流すために高電流密度での飽和加湿運転が好ましい。発明者の知見では、電流密度0.6A/cm以上で飽和加湿運転を5〜10分実行すればこの問題を抑制でき、図8に示したように、保管後でも保管前と同等の性能を維持できることを確認した。なお同図中、WEは水電解運転、FCは燃料電池運転を表している。 In this case, as the operation condition of the end preparation fuel cell operation, a saturated humidification operation at a high current density is preferable in order to bring the ion exchange membrane 4c into a moderately wet state and flush out contaminants from the ion exchange membrane 4c. According to the inventor's knowledge, this problem can be suppressed by performing a saturated humidification operation for 5 to 10 minutes at a current density of 0.6 A / cm 2 or more, and as shown in FIG. It was confirmed that can be maintained. In the figure, WE represents a water electrolysis operation, and FC represents a fuel cell operation.

なお、終了準備燃料電池運転時に低加湿運転をするとイオン交換膜4cのさらなる乾燥や、反応生成水によるコンタミの排出効果が見込めないため、逆に劣化の加速を招く。ここでいう低加湿運転とは、燃料電池運転中に可逆セル1の水素側、酸素側に供給される反応ガスが燃料電池発電に伴い発生する生成水を完全に気化させてしまう運転状態を指し、簡易的には以下の各値を算出することで判断できる。   Note that if the low humidification operation is performed during the completion preparation fuel cell operation, further drying of the ion exchange membrane 4c and the effect of discharging contaminants from the reaction product water cannot be expected. Here, the low humidification operation refers to an operation state in which the reaction gas supplied to the hydrogen side and the oxygen side of the reversible cell 1 during the fuel cell operation completely vaporizes the generated water generated by the fuel cell power generation. For simplicity, it can be determined by calculating the following values.

水素側供給ガスのセル温度(図2中の流路11の入口温度)における飽和水蒸気量:MH2−SAT[mol/s]
酸素側供給ガスのセル温度(図2中の流路13の入口温度)における飽和水蒸気量:MO2−SAT[mol/s]
水素側供給ガス中の水蒸気量 :MH2[mol/s]
酸素側供給ガス中の水蒸気量 :MO2[mol/s]
反応生成水量:MH2O[mol/s]
としたとき、以下の不等式が成立する場合は、低加湿運転である(なお通常、流路11、13に供給される冷却水は同一の冷却水源から供給されるので、この場合、流路11の入口温度=流路13の入口温度である)。
(MH2−SAT+MO2−SAT)−(MH2+MO2+MH2O)>0
したがって、上記不等式を満たさない条件で、終了準備燃料電池運転を行なうのがよい。すなわち、
(MH2−SAT+MO2−SAT)−(MH2+MO2+MH2O)≦0を満たす範囲で、終了準備燃料電池運転を行なうことがよい。これによって、イオン交換膜4cをはじめとするMEA4や集電体5、6の過度の乾燥による劣化を抑えることができる。
Saturated water vapor amount at cell temperature of hydrogen-side supply gas (inlet temperature of flow path 11 in FIG. 2): MH 2 -SAT [mol / s]
Saturated water vapor amount at the cell temperature of the oxygen-side supply gas (inlet temperature of the flow path 13 in FIG. 2): M O2-SAT [mol / s]
Amount of water vapor in hydrogen-side supply gas: MH 2 [mol / s]
Amount of water vapor in oxygen-side supply gas: M O2 [mol / s]
Reaction product water amount: MH 2 O [mol / s]
When the following inequality is satisfied, the operation is a low humidification operation. (Normally, the cooling water supplied to the flow paths 11 and 13 is supplied from the same cooling water source. Inlet temperature = the inlet temperature of the flow path 13).
(M H2−SAT + M O2−SAT ) − (M H2 + M O2 + M H2O )> 0
Therefore, it is preferable to perform the end preparation fuel cell operation under a condition that does not satisfy the above inequality. That is,
It is preferable to perform the end preparation fuel cell operation in a range satisfying (M H2 -SAT + M O2 -SAT ) − (M H2 + M O2 + M H2O ) ≦ 0. Thereby, deterioration due to excessive drying of the MEA 4 and the current collectors 5 and 6 including the ion exchange membrane 4c can be suppressed.

ところで、そのように終了直前運転モードが水電解運転の場合には、終了準備燃料電池運転を実施するのがよいが、終了準備燃料電池運転といえども、運転内容自体は燃料電池運転と変わらないから、可逆セル1内部の基材を構成するMEA4の電極部4a、4bや集電体5、6、とりわけ集電体5、6が濡れたままでは、終了準備燃料電池運転を直ちに実施できない事態も想定できる。そこで水電解運転終了後、終了準備燃料電池運転開始前に、可逆セル1内部の反応ガス流路に気体を供給して、流路内に残留した電解水をセル内部から排出し、その後、燃料電池運転時に酸化剤極となる側の反応ガス流路にのみ空気を供給し、セル内部基材を乾燥させる乾燥工程を実施するようにしてもよい。   By the way, when the operation mode immediately before the end is the water electrolysis operation, it is preferable to perform the end preparation fuel cell operation, but the operation content itself is not different from the fuel cell operation even in the end preparation fuel cell operation. From the situation where the electrode unit 4a, 4b of the MEA 4 constituting the base material inside the reversible cell 1 and the current collectors 5 and 6, especially the current collectors 5 and 6 are still wet, the completion preparation fuel cell operation cannot be performed immediately. Can also be assumed. Therefore, after the end of the water electrolysis operation and before the start of the end preparation fuel cell operation, gas is supplied to the reaction gas flow path inside the reversible cell 1, and the electrolyzed water remaining in the flow path is discharged from the inside of the cell. You may make it implement the drying process which supplies air only to the reaction gas flow path of the side used as an oxidizer electrode at the time of battery operation, and dries a cell internal base material.

具体的には、まず水電解運転が終了すると、弁33a、43a、51a、61aのみが開放され、他の弁は全て閉鎖する。そして電源設備72の回路を遮断した状態で、可逆セル1に残留した水を排出するために、燃料(水素ガス)を流路31から流通口12aを通じて可逆セル1内に導入し、酸化剤または空気を流路41から流通口14aを通じて可逆セル1内に導入する。すなわちこれらのガスによる圧力差で流路内の水を系外に押し出すことに排出する。この時間は、数秒程度であり、またその際の流量は、例えば特開2007−115588号公報に開示された方法を採用して決定してもよい。前記した排出が完了した後は、電源設備72の回路の遮断を解除する。なおこのようなパージ操作は、必ずしも実行しなければならないというプロセスではなく、当該プロセスを省略して後述のブロア46の稼動による乾燥を行なってもよいが、当該プロセスを実行すると、水電解運転から燃料電池運転への切り替えがより円滑に行なわれる。   Specifically, when the water electrolysis operation is ended, only the valves 33a, 43a, 51a, 61a are opened, and all other valves are closed. Then, in order to discharge water remaining in the reversible cell 1 with the circuit of the power supply facility 72 cut off, fuel (hydrogen gas) is introduced into the reversible cell 1 from the flow path 31 through the flow port 12a, and an oxidant or Air is introduced into the reversible cell 1 from the flow path 41 through the circulation port 14a. That is, the water in the flow path is discharged by pushing it out of the system by the pressure difference due to these gases. This time is about several seconds, and the flow rate at that time may be determined by adopting, for example, a method disclosed in Japanese Patent Application Laid-Open No. 2007-115588. After the above discharge is completed, the circuit of the power supply facility 72 is released. Note that such a purge operation is not necessarily a process that must be performed, and the process may be omitted and drying may be performed by the operation of a blower 46 described later. Switching to fuel cell operation is performed more smoothly.

次に弁33a、43aを閉鎖し、弁45aを開放し、ブロア46を起動して可逆セル1の内部基材の乾燥を、酸化剤極側のみから行う。乾燥時間は、セル内部基材からパージガスに伝達した水分量が、あらかじめ求めておいた所定の値(=セル内部基材が燃料電池運転可能となる乾燥状態に達するまでの水分量)となる時間を制御装置71の演算部にて算出する。制御装置71の演算部(図示せず)では、あらかじめ求めておいたセル内部基材とブロア46によって供給される空気間の物質伝達率とそのときの乾燥条件から、セル内部の物質移動計算を行い、乾燥所要時間(規定の時間)を算出する。   Next, the valves 33a and 43a are closed, the valve 45a is opened, the blower 46 is activated, and the inner substrate of the reversible cell 1 is dried only from the oxidant electrode side. The drying time is the time during which the amount of water transferred from the cell internal substrate to the purge gas becomes a predetermined value (= the amount of water until the cell internal substrate reaches a dry state where the fuel cell can be operated). Is calculated by the calculation unit of the control device 71. The calculation unit (not shown) of the control device 71 calculates the mass transfer inside the cell based on the mass transfer rate between the cell internal substrate and air supplied by the blower 46 and the drying conditions at that time. And calculate the time required for drying (specified time).

そして前記乾燥所要時間の間乾燥したら、弁45aを閉鎖し、弁33a、43aを開放することで、可逆セル1に反応ガス(燃料、酸化剤)を供給し、終了準備燃料電池運転を開始する。このようなプロセスを経て終了準備燃料電池運転を実施することで、終了直前の水電解運転から終了準備燃料電池運転までの時間を保管までの時間を少なくすることが可能である。   Then, after drying for the required drying time, the valve 45a is closed and the valves 33a and 43a are opened, so that the reaction gas (fuel, oxidant) is supplied to the reversible cell 1 and the end preparation fuel cell operation is started. . By performing the end preparation fuel cell operation through such a process, it is possible to reduce the time from the water electrolysis operation just before the end to the end preparation fuel cell operation until the storage.

なお前記乾燥工程開始の際には、可逆セル1の温度を70℃以上にしておくことが好ましい。これを図1に即して言えば、本来的には、少なくとも集電体6が70℃以上になっていればよい。但し、集電体6の温度を測定するのは実際問題として困難であるから、流通口14bの温度が70℃以上になっていればよい。また可逆セル1の温度(流通口14bの温度)を70℃以上にしておくにあたっては、可逆セル1停止前の水電解運転の終了前に、可逆セル1に通水する冷却水、すなわち冷却水流路11、13を流れる水の流量を制御して実現してもよい。流量を絞れば可逆セル1の温度は上昇する。もちろん冷却水流路11、13を流れる水の温度を制御してもよい。また可逆セル1停止前の水電解運転の終了前に、可逆セル1に供給する電源設備72からの電流密度を高めて可逆セル1自体の発熱量を増加させるようにしてもよい。   At the start of the drying process, the temperature of the reversible cell 1 is preferably set to 70 ° C. or higher. Speaking of this in accordance with FIG. 1, it is essential that at least the current collector 6 is at least 70 ° C. or higher. However, since it is difficult in practice to measure the temperature of the current collector 6, it is sufficient that the temperature of the circulation port 14 b is 70 ° C. or higher. Further, when the temperature of the reversible cell 1 (the temperature of the circulation port 14b) is set to 70 ° C. or higher, the cooling water flowing through the reversible cell 1 before the end of the water electrolysis operation before the reversible cell 1 is stopped, that is, the cooling water flow You may implement | achieve by controlling the flow volume of the water which flows through the path | routes 11 and 13. FIG. If the flow rate is reduced, the temperature of the reversible cell 1 rises. Of course, the temperature of the water flowing through the cooling water passages 11 and 13 may be controlled. Further, before the end of the water electrolysis operation before the reversible cell 1 is stopped, the current density from the power supply equipment 72 supplied to the reversible cell 1 may be increased to increase the heat generation amount of the reversible cell 1 itself.

なお終了準備燃料電池運転を終えたあと、系内をブロア46やファン(図示せず)で加圧し、次いで空気系の弁33a、61a、43a、51aを閉鎖することで、系内が室温に温度降下した際の系内減圧を防止することができ、これによって、温度降下に伴って外部空気が可逆セル内に侵入することを防止することができる。   After completion of the fuel cell operation, the system is pressurized with a blower 46 or a fan (not shown), and then the air valves 33a, 61a, 43a, 51a are closed to bring the system to room temperature. Depressurization in the system when the temperature drops can be prevented, thereby preventing external air from entering the reversible cell as the temperature drops.

本発明は、固体高分子形の水電解装置と燃料電池のセルを一体化した可逆セルに有用なものである。   The present invention is useful for a reversible cell in which a solid polymer water electrolyzer and a fuel cell are integrated.

1 可逆セル
2、3 給・集電板
4 MEA
4a、4b 電極部
4c イオン交換膜
5、6 集電体
7 セパレータ
11,13 冷却水流路
12,14 流路(可逆セル内)
12a,12b,14a,14b 流通口
31、41、51、61 流路(可逆セル外)
32、42 タンク
33a、34a、43a、44a、45a、51a、52a、61a 弁
1 Reversible cell 2, 3 Supply / collection plate 4 MEA
4a, 4b Electrode portion 4c Ion exchange membrane 5, 6 Current collector 7 Separator 11, 13 Cooling water flow path 12, 14 Flow path (in reversible cell)
12a, 12b, 14a, 14b Flow port 31, 41, 51, 61 Flow path (outside reversible cell)
32, 42 Tank 33a, 34a, 43a, 44a, 45a, 51a, 52a, 61a Valve

Claims (7)

固体高分子形の水電解装置と燃料電池とを一体化して、水電解運転と燃料電池運転との運転モードの切り替え可能な可逆セルの運転方法であって、
水電解運転と燃料電池運転とを交互に実施するとともに、
当該可逆セルの運転自体を1時間以上停止する際、当該停止の前の運転モードが水電解運転である場合には、当該水電解運転の後に、終了準備燃料電池運転を所定時間実施してから可逆セルの運転を停止することを特徴とする、可逆セルの運転方法。
An operation method of a reversible cell in which a solid polymer water electrolyzer and a fuel cell are integrated, and the operation mode can be switched between a water electrolysis operation and a fuel cell operation,
While performing water electrolysis operation and fuel cell operation alternately,
When the operation of the reversible cell itself is stopped for 1 hour or longer, if the operation mode before the stop is a water electrolysis operation, after the water electrolysis operation, the end preparation fuel cell operation is performed for a predetermined time. A method for operating a reversible cell, characterized by stopping the operation of the reversible cell.
前記終了準備燃料電池運転を実施する前に、流路内に残留した電解水をセル内部から排出し、その後燃料電池運転時に酸化剤極となる側の反応ガス流路にのみ空気を供給し、セル内部基材を乾燥させる乾燥工程を実施することを特徴とする、請求項1に記載の可逆セルの運転方法。 Before carrying out the end preparation fuel cell operation, the electrolyzed water remaining in the flow path is discharged from the inside of the cell, and then air is supplied only to the reaction gas flow path on the side that becomes the oxidant electrode during the fuel cell operation, The method for operating a reversible cell according to claim 1, wherein a drying step of drying the cell internal substrate is performed. 前記排出は、可逆セル内部の反応ガス流路に気体を供給することによって行なうことを特徴とする、請求項2に記載の可逆セルの運転方法。 The method of operating a reversible cell according to claim 2, wherein the discharging is performed by supplying a gas to a reaction gas flow path inside the reversible cell. 可逆セル停止前の水電解運転の終了前に、可逆セルに通水する冷却水の少なくとも流量または温度を制御して、前記乾燥工程開始の際には、前記可逆セルの温度を70℃以上にしておくことを特徴とする、請求項2又は3に記載の可逆セルの運転方法。 Before the end of the water electrolysis operation before stopping the reversible cell, at least the flow rate or temperature of the cooling water passing through the reversible cell is controlled so that the temperature of the reversible cell is set to 70 ° C. or higher at the start of the drying process. The method of operating a reversible cell according to claim 2 or 3, characterized by comprising: 可逆セル停止前の水電解運転の終了前に、可逆セルに供給する電流密度を高めて可逆セル自体の発熱量を増加させて、前記乾燥工程開始の際には、前記可逆セルの温度を70℃以上にしておくことを特徴とする、請求項2又は3に記載の可逆セルの運転方法。 Before the end of the water electrolysis operation before stopping the reversible cell, the current density supplied to the reversible cell is increased to increase the calorific value of the reversible cell itself. At the start of the drying step, the temperature of the reversible cell is set to 70. The method of operating a reversible cell according to claim 2 or 3, wherein the temperature is set to at least ° C. 前記終了準備燃料電池運転は、下記の条件で行なうことを特徴とする、請求項1〜5のいずれかに記載の可逆セルの運転方法。
水素側供給ガスの可逆セル温度における飽和水蒸気量:MH2−SAT[mol/s]
酸素側供給ガスの可逆セル温度における飽和水蒸気量:MO2−SAT[mol/s]
水素側供給ガス中の水蒸気量 :MH2[mol/s]
酸素側供給ガス中の水蒸気量 :MO2[mol/s]
反応生成水量:MH2O[mol/s]としたとき、
(MH2−SAT+MO2−SAT)−(MH2+MO2+MH2O)≦0
The reversible cell operating method according to any one of claims 1 to 5, wherein the completion preparatory fuel cell operation is performed under the following conditions.
Saturated water vapor amount at reversible cell temperature of hydrogen side supply gas: MH 2 -SAT [mol / s]
Saturated water vapor amount at reversible cell temperature of oxygen side supply gas: M O2-SAT [mol / s]
Amount of water vapor in hydrogen-side supply gas: MH 2 [mol / s]
Amount of water vapor in oxygen-side supply gas: M O2 [mol / s]
When the amount of reaction product water is MH 2 O [mol / s],
(M H2-SAT + M O2-SAT ) − (M H2 + M O2 + M H2O ) ≦ 0
前記終了準備燃料電池運転終了後、可逆セルを停止する前に、可逆セル内を加圧し、その後可逆セル内に通ずる流路を閉鎖することを特徴とする、請求項1〜6のいずれかに記載の可逆セルの運転方法。 After the completion preparation fuel cell operation, before the reversible cell is stopped, the inside of the reversible cell is pressurized, and then the flow path leading to the reversible cell is closed. A method of operating the reversible cell as described.
JP2009133590A 2009-06-03 2009-06-03 Reversible cell operation method Active JP5492460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009133590A JP5492460B2 (en) 2009-06-03 2009-06-03 Reversible cell operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133590A JP5492460B2 (en) 2009-06-03 2009-06-03 Reversible cell operation method

Publications (2)

Publication Number Publication Date
JP2010282768A true JP2010282768A (en) 2010-12-16
JP5492460B2 JP5492460B2 (en) 2014-05-14

Family

ID=43539354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133590A Active JP5492460B2 (en) 2009-06-03 2009-06-03 Reversible cell operation method

Country Status (1)

Country Link
JP (1) JP5492460B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101202880B1 (en) 2012-07-16 2012-11-19 차원준 Fuel Cell Test Device using Membrane Electrode Assembly
JP2014125644A (en) * 2012-12-25 2014-07-07 Takasago Thermal Eng Co Ltd Charge/discharge system
JP2014165177A (en) * 2013-02-27 2014-09-08 Astrium Gmbh Redox device
JP2014165176A (en) * 2013-02-27 2014-09-08 Astrium Gmbh Redox device
JP2016204698A (en) * 2015-04-20 2016-12-08 デノラ・ペルメレック株式会社 Electrolysis system, and electrolysis method using electrolysis system
WO2023179253A1 (en) * 2022-03-21 2023-09-28 王秉泮 Alkaline water electrolysis system for hydrogen production
WO2024034317A1 (en) * 2022-08-09 2024-02-15 三菱重工業株式会社 Control device for hydrogen production apparatus, hydrogen production facility, method for controlling hydrogen production apparatus, and control program for hydrogen production apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101834A (en) * 1991-10-11 1993-04-23 Kansai Electric Power Co Inc:The Electric power storing device
JP2006127807A (en) * 2004-10-26 2006-05-18 National Institute Of Advanced Industrial & Technology Operation control method of reversible cell and operation method of fuel cell
JP2007066812A (en) * 2005-09-01 2007-03-15 Hirotsugu Tsuji Fuel cell and electric automobile equipped with the same and operation method of fuel cell
JP2007095623A (en) * 2005-09-30 2007-04-12 Mitsubishi Electric Corp Fuel cell power generation system and its operation method
JP2007115588A (en) * 2005-10-21 2007-05-10 National Institute Of Advanced Industrial & Technology Operation switching method of reversible cell stack
JP2010153218A (en) * 2008-12-25 2010-07-08 National Institute Of Advanced Industrial Science & Technology Operation switching method of reversible cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101834A (en) * 1991-10-11 1993-04-23 Kansai Electric Power Co Inc:The Electric power storing device
JP2006127807A (en) * 2004-10-26 2006-05-18 National Institute Of Advanced Industrial & Technology Operation control method of reversible cell and operation method of fuel cell
JP2007066812A (en) * 2005-09-01 2007-03-15 Hirotsugu Tsuji Fuel cell and electric automobile equipped with the same and operation method of fuel cell
JP2007095623A (en) * 2005-09-30 2007-04-12 Mitsubishi Electric Corp Fuel cell power generation system and its operation method
JP2007115588A (en) * 2005-10-21 2007-05-10 National Institute Of Advanced Industrial & Technology Operation switching method of reversible cell stack
JP2010153218A (en) * 2008-12-25 2010-07-08 National Institute Of Advanced Industrial Science & Technology Operation switching method of reversible cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101202880B1 (en) 2012-07-16 2012-11-19 차원준 Fuel Cell Test Device using Membrane Electrode Assembly
JP2014125644A (en) * 2012-12-25 2014-07-07 Takasago Thermal Eng Co Ltd Charge/discharge system
JP2014165177A (en) * 2013-02-27 2014-09-08 Astrium Gmbh Redox device
JP2014165176A (en) * 2013-02-27 2014-09-08 Astrium Gmbh Redox device
US9828681B2 (en) 2013-02-27 2017-11-28 Airbus Ds Gmbh Redox device
US9979040B2 (en) 2013-02-27 2018-05-22 Airbus Ds Gmbh Redox device
JP2016204698A (en) * 2015-04-20 2016-12-08 デノラ・ペルメレック株式会社 Electrolysis system, and electrolysis method using electrolysis system
WO2023179253A1 (en) * 2022-03-21 2023-09-28 王秉泮 Alkaline water electrolysis system for hydrogen production
WO2024034317A1 (en) * 2022-08-09 2024-02-15 三菱重工業株式会社 Control device for hydrogen production apparatus, hydrogen production facility, method for controlling hydrogen production apparatus, and control program for hydrogen production apparatus

Also Published As

Publication number Publication date
JP5492460B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
US9413020B2 (en) Method of shut-down and starting of a fuel cell
JP4350944B2 (en) Method for improving operating efficiency of fuel cell power equipment
JP5492460B2 (en) Reversible cell operation method
US9299998B2 (en) Fuel cell management method
JP4300346B2 (en) Fuel cell system
JP5596758B2 (en) Fuel cell system and control method thereof
JP5419255B2 (en) Reversible cell operation switching method
US9985304B2 (en) Method for shutting down a system containing a fuel cell stack and system comprising a fuel cell stack
JP4072707B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
JP6133365B2 (en) Operation method of fuel cell system
WO2020138338A1 (en) Fuel cell activation method and apparatus
JP5287184B2 (en) Fuel cell system
EP2375484B1 (en) Operating method of fuel cell system
JP5145630B2 (en) Fuel cell system
KR100439814B1 (en) Apparatus and method for operation of a polymer electrolyte membrane fuel cell below the freezing temperature of water
KR101782353B1 (en) Freeze startup method for a fuel cell system
JP2010086853A (en) Fuel cell system and its operation stop method
JP2011034837A (en) Method for starting fuel cell system in below freezing point
JP5452958B2 (en) Fuel cell power generation system
JP5073448B2 (en) Operation method of polymer electrolyte fuel cell
JP2021166152A (en) Fuel cell system
JP2009193855A (en) Operation method of polymer electrolyte fuel cell and fuel cell aging system
JP6315714B2 (en) Operation control method of fuel cell system
JP5489093B2 (en) Fuel cell system and operation method thereof
JP7512338B2 (en) Fuel Cell Systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5492460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350