JP4299865B2 - Machine tool control apparatus and control method - Google Patents

Machine tool control apparatus and control method Download PDF

Info

Publication number
JP4299865B2
JP4299865B2 JP2007038435A JP2007038435A JP4299865B2 JP 4299865 B2 JP4299865 B2 JP 4299865B2 JP 2007038435 A JP2007038435 A JP 2007038435A JP 2007038435 A JP2007038435 A JP 2007038435A JP 4299865 B2 JP4299865 B2 JP 4299865B2
Authority
JP
Japan
Prior art keywords
interference
feed
control
control shaft
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007038435A
Other languages
Japanese (ja)
Other versions
JP2008186434A (en
Inventor
平輔 岩下
肇 置田
宏之 河村
澄斌 馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP2007038435A priority Critical patent/JP4299865B2/en
Priority to CN2007103008490A priority patent/CN101214622B/en
Priority to US12/003,818 priority patent/US7847502B2/en
Priority to EP08000056.5A priority patent/EP1944669B1/en
Publication of JP2008186434A publication Critical patent/JP2008186434A/en
Application granted granted Critical
Publication of JP4299865B2 publication Critical patent/JP4299865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、工作機械の制御に関する。特に本発明は、送り制御軸に沿って送られる回転制御軸を備えた工作機械の、送り制御軸及び回転制御軸を制御する制御装置及び制御方法に関する。   The present invention relates to control of a machine tool. In particular, the present invention relates to a control device and a control method for controlling a feed control axis and a rotation control axis of a machine tool including a rotation control axis that is fed along the feed control axis.

工作機械において、直線送り動作又は回転送り動作を実行する送り制御軸と、送り制御軸上に設置され、送り制御軸に沿って送られるとともに回転割出動作を実行する回転制御軸とを備えた構成が知られている。送り制御軸に担持される構造物としては、例えば直線送り台や回転送り台が挙げられ、回転制御軸に担持される構造物としては、例えば回転割出テーブルやタレット刃物台が挙げられる。   In a machine tool, a feed control shaft that performs a linear feed operation or a rotary feed operation, and a rotation control shaft that is installed on the feed control shaft and is fed along the feed control axis and performs a rotation indexing operation The configuration is known. Examples of the structure carried on the feed control shaft include a linear feed stand and a rotary feed stand, and examples of the structure carried on the rotation control shaft include a rotary indexing table and a turret tool post.

この種の工作機械では、送り制御軸と回転制御軸とが、それぞれの動作に起因する力学的影響(すなわち干渉)を相手方に及ぼすことにより、各制御軸の位置制御の安定性が悪化し、結果としてワークの加工精度が低下することが懸念される。従来、工作機械以外の技術分野では、このような機構上の相関性を有する制御軸同士の干渉を排除するための、幾つかの方策が提案されている。   In this type of machine tool, the feed control shaft and the rotation control shaft exert mechanical influences (that is, interference) caused by their operations on the other party, so that the stability of the position control of each control shaft deteriorates. As a result, there is a concern that the machining accuracy of the workpiece is lowered. Conventionally, in the technical fields other than machine tools, several measures for eliminating interference between control axes having such mechanical correlation have been proposed.

例えば、特許文献1は、露光装置に組み込まれるステージ装置において、ステージ駆動用のリニアモータの可動子が固定子に及ぼす反力により光学系が振動することを、機構的に防止する構成を開示する。このステージ装置は、可動子からの反力を相殺する力を固定子に生じさせるリアクション装置を備えている。リアクション装置は、固定子の実際の変位を検出する位置検出器の検出値に基づいて、固定子を動作制御するので、反力以外の誤差要因をも的確に排除して、固定子を所定位置に安定的に保持することができる。   For example, Patent Document 1 discloses a configuration that mechanically prevents an optical system from vibrating due to a reaction force exerted on a stator by a movable element of a linear motor for driving a stage in a stage apparatus incorporated in an exposure apparatus. . This stage device includes a reaction device that generates a force on the stator that cancels the reaction force from the mover. Since the reaction device controls the operation of the stator based on the detection value of the position detector that detects the actual displacement of the stator, it accurately eliminates error factors other than the reaction force and moves the stator to a predetermined position. Can be held stably.

また、特許文献2は、多関節ロボットにおいて、関節(すなわち制御軸)同士の干渉を、フィードバック補償によって除去する制御装置を開示する。この制御装置では、個々の制御軸に生じる干渉トルク値を演算するとともに、個々の制御軸に加わる非線形の外乱トルクを状態観測手段により推定して補正値とし、これら干渉トルク値及び補正値によりトルク指令を補正している。   Patent Document 2 discloses a control device that removes interference between joints (that is, control axes) by feedback compensation in an articulated robot. In this control device, the interference torque value generated in each control axis is calculated, and the nonlinear disturbance torque applied to each control axis is estimated by the state observation means as a correction value, and the torque is determined by the interference torque value and the correction value. The command is corrected.

また、特許文献3は、個々の制御軸に減速機等のばね要素を備えた産業用多軸ロボットにおいて、各軸に状態観測手段を配置して電動機と負荷との間のねじれ角を推定し、推定したねじれ角を用いて干渉力を計算し、この干渉力に基づいて電動機へのトルク指令を補正する制御装置を開示する。   Further, in Patent Document 3, in an industrial multi-axis robot having a spring element such as a speed reducer on each control axis, a state observation means is arranged on each axis to estimate a torsion angle between the motor and the load. A control device is disclosed that calculates an interference force using the estimated twist angle and corrects a torque command to the electric motor based on the interference force.

特開2000−243811号公報JP 2000-243811 A 特開昭63−314606号公報Japanese Unexamined Patent Publication No. Sho 63-314606 特開平9−222910号公報JP-A-9-222910

特許文献1に記載されるステージ装置では、リニアモータの可動子が固定子に及ぼす反力を相殺する目的で、本来は固定支持するべき固定子を敢えて移動制御軸(リアクション装置)に搭載しているのであって、可動子の直線送り制御軸と固定子の移動制御軸との関係は、本願発明の対象となる前述した工作機械の送り制御軸と回転制御軸との関係と若干異なるものである。また、固定子を移動制御する際の種々の誤差要因を排除するために、位置検出器により固定子の実際の変異を測定する構成を採用しているが、このような位置検出器を工作機械に装備する場合には、工作機械の設備コストが上昇することが懸念されるだけでなく、劣悪な環境下に置かれることの多い工作機械においては、位置検出器の設置場所の確保や信頼性の維持の点で課題が生じる。さらに、固定子の変位の実測値に基づいて固定子への指令値を補正する手法は、一般的な工作機械における可動部の高速かつ高精度の位置決め制御に適応することが困難である。   In the stage device described in Patent Document 1, a stator that should be originally fixed and supported is intentionally mounted on a movement control shaft (reaction device) in order to cancel the reaction force exerted on the stator by the mover of the linear motor. Therefore, the relationship between the linear feed control axis of the mover and the movement control axis of the stator is slightly different from the relationship between the feed control axis and the rotation control axis of the machine tool described above, which is the subject of the present invention. is there. In addition, in order to eliminate various error factors when controlling the movement of the stator, a configuration is adopted in which the actual variation of the stator is measured by the position detector. In addition to being concerned about the increased cost of machine tool equipment, it is necessary to secure the location and reliability of the position detector in machine tools that are often placed in poor environments. Problems arise in terms of maintenance. Furthermore, it is difficult to apply the method of correcting the command value to the stator based on the actual measurement value of the displacement of the stator to high-speed and high-precision positioning control of the movable part in a general machine tool.

また、特許文献2及び3に記載されるロボットの制御装置でも、干渉力の計算や指令値の補正に必要となる諸データとして、電動機が実際に動作している状態を現すデータ(すなわち状態量)を用いている。このような構成は、アームの動作が一般的な工作機械の可動部の動作に比べて低速であって、要求される位置精度も工作機械に比べて低いロボットの制御においては有効であるが、高速かつ高精度の位置決めを要求される工作機械の制御には、やはり適応困難である。   Also in the robot control apparatus described in Patent Documents 2 and 3, as various data necessary for calculating the interference force and correcting the command value, data representing the state in which the motor is actually operating (that is, the state quantity) ) Is used. Such a configuration is effective in controlling a robot whose arm operation is slower than the operation of a movable part of a general machine tool and the required positional accuracy is lower than that of a machine tool. It is still difficult to adapt to the control of machine tools that require high-speed and high-precision positioning.

本発明の目的は、送り制御軸に沿って送られる回転制御軸を備えた工作機械の、送り制御軸及び回転制御軸を制御する制御装置において、送り制御軸と回転制御軸との間の干渉を遅滞無く的確に排除して、各制御軸の安定した高精度の動作制御を実現でき、以ってワークの加工精度を向上させることができる制御装置を提供することにある。   It is an object of the present invention to provide an interference between a feed control axis and a rotation control axis in a control device for controlling the feed control axis and the rotation control axis of a machine tool having a rotation control axis that is fed along the feed control axis. It is an object of the present invention to provide a control device that can accurately and stably control the operation of each control axis without delay and can realize stable and highly accurate operation control of each control axis.

本発明の他の目的は、送り制御軸に沿って送られる回転制御軸を備えた工作機械の、送り制御軸及び回転制御軸を制御する制御方法において、送り制御軸と回転制御軸との間の干渉を遅滞無く的確に排除して、各制御軸の安定した高精度の動作制御を実現でき、以ってワークの加工精度を向上させることができる制御方法を提供することにある。   Another object of the present invention is to provide a control method for controlling a feed control axis and a rotation control axis of a machine tool having a rotation control axis that is fed along the feed control axis. It is an object of the present invention to provide a control method that can accurately eliminate the interference without delay and realize stable and highly accurate operation control of each control axis, thereby improving the machining accuracy of the workpiece.

上記目的を達成するために、請求項1に記載の発明は、送り制御軸と送り制御軸に沿って送られる回転制御軸とを備えた工作機械の、送り制御軸の送り動作及び回転制御軸の回転動作を制御する制御装置において、送り制御軸及び回転制御軸の少なくとも一方に指令される位置指令と、回転制御軸が担持する偏心荷重の位置及び質量情報とに基づいて、送り制御軸が送り動作している間に偏心荷重に加わる推力が回転制御軸に及ぼす力を算出するか、又は回転制御軸が回転動作している間に偏心荷重に加わる向心力及び接線方向力が送り制御軸に及ぼす力を算出することで、送り制御軸と回転制御軸との間に生じる干渉を推定する干渉推定部と、干渉推定部が推定した干渉に基づいて、送り制御軸及び回転制御軸の少なくとも一方に与える電流指令を補正する指令補正部と、を具備することを特徴とする制御装置を提供する。 In order to achieve the above object, the invention described in claim 1 is directed to a feed operation of a feed control axis and a rotation control axis of a machine tool including a feed control axis and a rotation control axis fed along the feed control axis. In the control device for controlling the rotation operation of the rotation control shaft, the feed control shaft is controlled based on the position command commanded to at least one of the feed control shaft and the rotation control shaft and the position and mass information of the eccentric load carried by the rotation control shaft. Calculate the force exerted on the rotation control shaft by the thrust applied to the eccentric load during the feed operation, or the centripetal force and tangential force applied to the eccentric load while the rotation control shaft is rotating on the feed control shaft. An interference estimation unit that estimates interference generated between the feed control axis and the rotation control axis by calculating the force exerted, and at least one of the feed control axis and the rotation control axis based on the interference estimated by the interference estimation unit Power to To provide a control apparatus characterized by comprising a command correcting unit for correcting the command, the.

請求項2に記載の発明は、請求項1に記載の制御装置において、干渉推定部は、位置指令に従う送り制御軸及び回転制御軸の少なくとも一方の動作制御の周期よりも、1制御周期以上先行して干渉を推定し、指令補正部は、当該動作制御の周期における電流指令を補正する、制御装置を提供する。   According to a second aspect of the present invention, in the control device according to the first aspect, the interference estimation unit is preceded by one control cycle or more than the cycle of the operation control of at least one of the feed control shaft and the rotation control shaft according to the position command. Then, the interference is estimated, and the command correction unit provides a control device that corrects the current command in the operation control cycle.

請求項3に記載の発明は、請求項1又は2に記載の制御装置において、偏心荷重変更されたときに、送り制御軸及び回転制御軸の一方を停止し他方を一定速度で回転させるテスト運転において干渉推定部が干渉を推定しない状態で送り制御軸及び回転制御軸のいずれか一方に指令される干渉相当の電流指令に基づき、変更された偏心荷重の位置及び質量を求めて、干渉推定部が干渉を推定するために用いる演算式における偏心荷重の位置及び質量の値を変更する定数変更部をさらに具備する、制御装置を提供する。 A third aspect of the present invention is the control device according to the first or second aspect, wherein when the eccentric load is changed , one of the feed control shaft and the rotation control shaft is stopped and the other is rotated at a constant speed. Interference estimation is performed by obtaining the position and mass of the changed eccentric load based on the current command equivalent to the interference commanded to one of the feed control shaft and the rotation control shaft in a state where the interference estimation unit does not estimate the interference during operation. There is provided a control device, further comprising a constant changing unit that changes the position and mass value of the eccentric load in an arithmetic expression used by the unit to estimate interference.

請求項4に記載の発明は、請求項1又は2に記載の制御装置において、送り制御軸及び回転制御軸の一方を停止し他方を一定速度で回転させるテスト運転において干渉推定部が干渉を推定しない状態で送り制御軸及び回転制御軸のいずれか一方に指令される干渉相当の電流指令に基づいて、偏心荷重の位置及び質量情報を推定する偏心情報推定部をさらに具備し、干渉推定部は、位置指令と、偏心情報推定部が推定した位置及び質量情報とに基づいて、干渉を推定する、制御装置を提供する。 According to a fourth aspect of the present invention, in the control device according to the first or second aspect , the interference estimation unit estimates interference in a test operation in which one of the feed control shaft and the rotation control shaft is stopped and the other is rotated at a constant speed. An eccentricity information estimation unit for estimating the position and mass information of the eccentric load based on a current command corresponding to interference commanded to one of the feed control axis and the rotation control axis in a state where the , and have based the position command, to the position and mass information eccentric information estimating unit has estimated, estimates the interference, to provide a control device.

請求項5に記載の発明は、送り制御軸と送り制御軸に沿って送られる回転制御軸とを備えた工作機械の、送り制御軸の送り動作及び回転制御軸の回転動作を制御する制御方法において、送り制御軸及び回転制御軸の少なくとも一方に指令される位置指令と、回転制御軸が担持する偏心荷重の位置及び質量情報とに基づいて、送り制御軸が送り動作している間に偏心荷重に加わる推力が回転制御軸に及ぼす力を算出するか、又は回転制御軸が回転動作している間に偏心荷重に加わる向心力及び接線方向力が送り制御軸に及ぼす力を算出することで、送り制御軸と回転制御軸との間に生じる干渉を推定し、推定した干渉に基づいて、送り制御軸及び回転制御軸の少なくとも一方に与える電流指令を補正すること、を特徴とする制御方法を提供する。 According to a fifth aspect of the present invention, there is provided a control method for controlling a feed operation of a feed control axis and a rotation operation of the rotation control axis of a machine tool including a feed control axis and a rotation control axis fed along the feed control axis. , While the feed control shaft is performing a feed operation based on the position command commanded to at least one of the feed control shaft and the rotation control shaft and the position and mass information of the eccentric load carried by the rotation control shaft. By calculating the force exerted on the rotation control shaft by the thrust applied to the load, or calculating the force exerted on the feed control shaft by the centripetal force and tangential force applied to the eccentric load while the rotation control shaft is rotating, A control method characterized by estimating interference generated between a feed control axis and a rotation control axis, and correcting a current command given to at least one of the feed control axis and the rotation control axis based on the estimated interference. provide

請求項6に記載の発明は、請求項5に記載の制御方法において、位置指令に従う送り制御軸及び回転制御軸の少なくとも一方の動作制御の周期よりも、1制御周期以上先行して干渉を推定し、この干渉に基づいて、動作制御の周期における電流指令を補正する、制御方法を提供する。   According to a sixth aspect of the present invention, in the control method according to the fifth aspect, the interference is estimated at least one control cycle before the operation control cycle of at least one of the feed control shaft and the rotation control shaft according to the position command. And the control method which correct | amends the electric current command in the period of operation control based on this interference is provided.

請求項7に記載の発明は、請求項5又は6に記載の制御方法において、偏心荷重変更されたときに、送り制御軸及び回転制御軸の一方を停止し他方を一定速度で回転させるテスト運転を行ない、テスト運転において干渉を推定しない状態で送り制御軸及び回転制御軸のいずれか一方に指令される干渉相当の電流指令に基づき、変更された偏心荷重の位置及び質量を求めて、干渉を推定するために用いられる演算式における偏心荷重の位置及び質量の値を変更する、制御方法を提供する。 The invention according to claim 7, in the control method according to claim 5 or 6, when the eccentric load is changed, to rotate the other when stopping one of the feed control axis and the rotary control axis at a constant speed Based on the current command equivalent to the interference commanded to one of the feed control shaft and the rotation control shaft in a state where the interference is not estimated in the test operation, find the position and mass of the changed eccentric load , Provided is a control method for changing the position and mass value of an eccentric load in an arithmetic expression used for estimating interference.

請求項8に記載の発明は、請求項5又は6に記載の制御方法において、送り制御軸及び回転制御軸の一方を停止し他方を一定速度で回転させるテスト運転を行ない、テスト運転において干渉を推定しない状態で送り制御軸及び回転制御軸のいずれか一方に指令される干渉相当の電流指令に基づいて、偏心荷重の位置及び質量情報を推定し、位置指令と、推定した位置及び質量情報とに基づいて、干渉を推定する、制御方法を提供する。 The invention according to claim 8 is the control method according to claim 5 or 6, wherein a test operation is performed in which one of the feed control shaft and the rotation control shaft is stopped and the other is rotated at a constant speed, and interference is caused in the test operation. based on the current command of the interference corresponding to the command to either the control shaft and the rotary control axis feed without this estimation, estimates the position and mass information of the eccentric load position and mass and position command and estimated and based on the information, estimate interference, to provide a control method.

請求項1に記載の発明によれば、干渉の実態を検出するための位置検出器を必要としないから、工作機械の設備コストの上昇を抑制でき、また位置検出器の設置場所や信頼性を考慮する必要が無くなる。しかも、干渉推定部が、送り制御軸及び回転制御軸の少なくとも一方に指令される位置指令並びに回転制御軸が担持する偏心荷重の位置及び質量情報といった、動作制御の開始前に取得可能な既知のデータに基づいて、干渉を推定し、指令補正部が、干渉に基づいて、各制御軸に直接に与えられる電流指令を補正する構成であるから、工作機械における高速かつ高精度の位置決め制御に、問題無く適応できる。このように、制御装置によれば、工作機械における送り制御軸と回転制御軸との間の干渉を遅滞無く的確に排除して、各制御軸の安定した高精度の動作制御を実現でき、以ってワークの加工精度を向上させることができる。   According to the first aspect of the present invention, since a position detector for detecting the actual state of interference is not required, an increase in the equipment cost of the machine tool can be suppressed, and the installation location and reliability of the position detector can be reduced. No need to consider. In addition, the interference estimation unit is known that can be acquired before the start of operation control, such as the position command commanded to at least one of the feed control axis and the rotation control axis, and the position and mass information of the eccentric load carried by the rotation control axis. Based on the data, the interference is estimated, and the command correction unit is configured to correct the current command directly given to each control axis based on the interference. Therefore, for the high-speed and high-precision positioning control in the machine tool, Adaptable without problems. Thus, according to the control device, the interference between the feed control axis and the rotation control axis in the machine tool can be accurately eliminated without delay, and stable and highly accurate operation control of each control axis can be realized. Thus, the machining accuracy of the workpiece can be improved.

請求項2に記載の発明によれば、高速かつ高精度の位置決め制御への適応が一層確実なものとなる。   According to the second aspect of the invention, the adaptation to the high-speed and high-accuracy positioning control is further ensured.

請求項3に記載の発明によれば、ワークや工具等の、荷重の大きさや配置が多様に変化する物体を担持する回転制御軸を有する工作機械に対し、そのような荷重の変化に的確に対応して、回転制御軸と送り制御軸との間の干渉を正確に排除できる。   According to the third aspect of the present invention, it is possible to accurately deal with such a change in load with respect to a machine tool having a rotation control shaft that carries an object such as a work or a tool whose magnitude or arrangement of the load changes variously. Correspondingly, interference between the rotation control axis and the feed control axis can be accurately eliminated.

請求項4に記載の発明によれば、偏心荷重の位置及び質量情報の測定作業を省略できるので、動作制御の準備作業が簡略化される利点が得られる。   According to the fourth aspect of the invention, since the work of measuring the position of the eccentric load and the mass information can be omitted, there is an advantage that the preparation work of the operation control is simplified.

請求項5〜8に記載の発明によれば、それぞれ、請求項1〜4に記載の発明と同等の作用効果が奏される。   According to the invention described in claims 5 to 8, the same effects as those of the invention described in claims 1 to 4 are obtained.

以下、添付図面を参照して、本発明の実施の形態を詳細に説明する。全図面に渡り、対応する構成要素には共通の参照符号を付す。
図面を参照すると、図1は、本発明に係る電動機の制御装置10の基本構成を機能ブロック図で示す。また、図2及び図3は、制御装置10を適用可能な2つの代表例による工作機械12、14の主要部をそれぞれに例示する。制御装置10は、直線送り動作又は回転送り動作を実行する送り制御軸16L、16Rと、送り制御軸16L、16R上に設置され、送り制御軸16L、16Rに沿って送られるとともに回転割出動作を実行する回転制御軸18とを備えた工作機械12、14の、送り制御軸16L、16Rの送り動作及び回転制御軸18の回転動作を制御するものである。なお、制御装置10は、数値制御(NC)装置等の、電動機を可動部駆動源とする工作機械の、既設の制御装置に、機能的に組み込むことができる。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Corresponding components are denoted by common reference symbols throughout the drawings.
Referring to the drawings, FIG. 1 is a functional block diagram showing the basic configuration of a motor control device 10 according to the present invention. 2 and 3 respectively illustrate main parts of machine tools 12 and 14 according to two representative examples to which the control device 10 can be applied. The control device 10 is installed on the feed control shafts 16L and 16R for executing the linear feed operation or the rotary feed operation, and the feed control shafts 16L and 16R, and is fed along the feed control shafts 16L and 16R, and the rotation indexing operation. Are controlled by the machine tools 12 and 14 having the rotation control shaft 18 for executing the operations of the feed control shafts 16L and 16R and the rotation control shaft 18. Note that the control device 10 can be functionally incorporated in an existing control device of a machine tool that uses an electric motor as a movable part drive source, such as a numerical control (NC) device.

図1に示すように、制御装置10は、送り制御軸16L、16R及び回転制御軸18(図2、図3)の少なくとも一方に指令される位置指令C1と、回転制御軸18が担持する偏心荷重20(図2、図3)の位置及び質量情報Dとに基づいて、送り制御軸16L、16Rと回転制御軸18との間に生じる干渉Pを推定する干渉推定部22と、干渉推定部22が推定した干渉Pに基づいて、送り制御軸16L、16R及び回転制御軸18の少なくとも一方に与える電流指令C2を補正する指令補正部24とを備える。なお、本願において「干渉」とは、送り制御軸16L、16Rと回転制御軸18との間で及ぼし合うそれぞれの動作に起因する力学的影響を意味し、後述するように、直線方向に作用する干渉推力Fと、回転方向に作用する干渉トルクTとの、双方を包含する。   As shown in FIG. 1, the control device 10 includes a position command C1 that is commanded to at least one of the feed control shafts 16L and 16R and the rotation control shaft 18 (FIGS. 2 and 3), and an eccentricity that the rotation control shaft 18 carries. An interference estimator 22 for estimating the interference P generated between the feed control shafts 16L, 16R and the rotation control shaft 18 based on the position of the load 20 (FIGS. 2 and 3) and the mass information D; And a command correction unit 24 that corrects a current command C2 applied to at least one of the feed control shafts 16L and 16R and the rotation control shaft 18 based on the interference P estimated by the motor 22. In the present application, the term “interference” means a mechanical influence caused by each operation exerted between the feed control shafts 16L and 16R and the rotation control shaft 18, and acts in a linear direction as will be described later. It includes both interference thrust F and interference torque T acting in the rotational direction.

図2に例示する工作機械12は、ワーク(図示せず)を載置するテーブル機構として、静止基台26と、静止基台26上に直線移動可能に設置される直線送り台28と、直線送り台28上に回転可能に設置される回転割出テーブル30とを備える。直線送り台28は、図示しないリニアモータ(電動機)を駆動源とする直線送り制御軸16Lの直線送り動作に従い、静止基台26上で図示矢印A1方向へ往復移動する。また、回転割出テーブル30は、図示しない回転モータ(電動機)を駆動源とする回転制御軸18の回転割出動作に従い、直線送り台28上で図示矢印B1方向へ往復回転する。 The machine tool 12 illustrated in FIG. 2 includes, as a table mechanism for placing a workpiece (not shown), a stationary base 26, a linear feed base 28 installed on the stationary base 26 so as to be linearly movable, and a straight line. And a rotary indexing table 30 that is rotatably installed on the feed base 28. The linear feed table 28 reciprocates on the stationary base 26 in the direction of the arrow A1 in accordance with the linear feed operation of the linear feed control shaft 16L using a linear motor (electric motor) (not shown) as a drive source. Further, the rotation index table 30 reciprocates in the direction indicated by the arrow B1 on the linear feed base 28 in accordance with the rotation index operation of the rotation control shaft 18 using a rotation motor (electric motor) (not shown) as a drive source.

他方、図3に例示する工作機械14は、ワーク(図示せず)を載置するテーブル機構として、図示しない静止基台と、静止基台上に回転移動可能に設置される回転送り台32と、回転送り台32上に回転可能に設置される回転割出テーブル34とを備える。回転送り台32は、図示しない回転モータ(電動機)を駆動源とする回転送り制御軸16Rの回転送り動作に従い、静止基台上で図示矢印A2方向へ往復移動する。また、回転割出テーブル34は、図示しない回転モータ(電動機)を駆動源とする回転制御軸18の回転割出動作に従い、回転送り台32上で図示矢印B2方向へ往復回転する。 On the other hand, the machine tool 14 illustrated in FIG. 3 includes, as a table mechanism for placing a workpiece (not shown), a stationary base (not shown), and a rotary feed base 32 that is rotatably installed on the stationary base. And a rotary indexing table 34 rotatably installed on the rotary feed base 32. The rotary feed base 32 reciprocates on the stationary base in the direction indicated by the arrow A2 in accordance with the rotary feed operation of the rotary feed control shaft 16R using a rotary motor (electric motor) (not shown) as a drive source. The rotation index table 34 reciprocally rotates in the direction of the arrow B2 on the rotation feed base 32 according to the rotation indexing operation of the rotation control shaft 18 using a rotation motor (electric motor) (not shown) as a drive source.

上記構成を有する工作機械12、14において、回転割出テーブル30、34は、その上に載置されるワークやワーク保持具の影響により、回転中心から逸脱した位置に重心(すなわち偏心荷重20)が形成される場合がある。回転制御軸18がこのような偏心荷重20を担持する場合には、直線又は回転送り台28、32と回転割出テーブル30、34との間に、干渉が生じ得る。すなわち、直線又は回転送り台28、32が加速動作すると、その推力又はトルクの反作用が、偏心荷重20を有する回転割出テーブル30、34に及ぼされて、回転割出テーブル30、34の位置が指令位置からずれる危惧がある。同様に、偏心荷重20を有する回転割出テーブル30、34が加速動作すると、そのトルクの反作用が、直線又は回転送り台28、32に及ぼされて、直線又は回転送り台28、32の位置が指令位置からずれる危惧がある。いずれの場合も、ワークの加工精度を低下させる要因となり得る。   In the machine tools 12 and 14 having the above-described configuration, the rotation index tables 30 and 34 have a center of gravity (that is, an eccentric load 20) at a position deviating from the rotation center due to the influence of the workpiece and workpiece holder placed thereon. May be formed. When the rotation control shaft 18 carries such an eccentric load 20, interference may occur between the linear or rotary feed bases 28 and 32 and the rotation index tables 30 and 34. That is, when the linear or rotary feed bases 28 and 32 are accelerated, the reaction of thrust or torque is exerted on the rotary index tables 30 and 34 having the eccentric load 20, and the positions of the rotary index tables 30 and 34 are changed. There is a risk of deviation from the command position. Similarly, when the rotary indexing tables 30 and 34 having the eccentric load 20 are accelerated, the reaction of the torque is exerted on the straight or rotary feed bases 28 and 32, and the positions of the straight or rotary feed stands 28 and 32 are changed. There is a risk of deviation from the command position. In either case, it may be a factor that reduces the machining accuracy of the workpiece.

このような問題に対処するべく、本発明に係る制御装置10は、干渉推定部22が、送り制御軸16L、16R及び回転制御軸18の少なくとも一方に指令される位置指令C1と、回転制御軸18が担持する偏心荷重20の位置及び質量情報Dとに基づいて、干渉Pを推定し、指令補正部24が、推定された干渉Pに基づいて、送り制御軸16L、16R及び回転制御軸18の少なくとも一方に与える電流指令C2を補正することで、干渉Pの影響を排除した各軸16L、16R、18の高精度の動作制御を可能にしている。したがって、干渉の実態を検出するための位置検出器を必要としないから、工作機械12、14の設備コストの上昇を抑制でき、また位置検出器の設置場所や信頼性を考慮する必要が無くなる。しかも、干渉推定部22が、位置指令C1並びに偏心荷重20の位置及び質量情報Dといった、動作制御の開始前に取得可能な既知のデータに基づいて、干渉Pを推定し、指令補正部24が、干渉Pに基づいて、各制御軸16L、16R、18に直接に与えられる電流指令C2を補正する構成であるから、工作機械12、14における直線又は回転送り台28、32及び回転割出テーブル30、34の、高速かつ高精度の位置決め制御に、問題無く適応できる。このように、制御装置10によれば、工作機械12、14における送り制御軸16L、16Rと回転制御軸18との間の干渉Pを遅滞無く的確に排除して、各制御軸16L、16R、18の安定した高精度の動作制御を実現でき、以ってワークの加工精度を向上させることができる。   In order to cope with such a problem, the control device 10 according to the present invention includes a position command C1 in which the interference estimation unit 22 is commanded to at least one of the feed control shafts 16L and 16R and the rotation control shaft 18, and a rotation control shaft. Based on the position of the eccentric load 20 carried by 18 and the mass information D, the interference P is estimated. Based on the estimated interference P, the command correction unit 24 feeds the feed control shafts 16L and 16R and the rotation control shaft 18. By correcting the current command C2 applied to at least one of the above, it is possible to perform highly accurate operation control of each of the axes 16L, 16R, and 18 excluding the influence of the interference P. Therefore, since a position detector for detecting the actual state of interference is not required, an increase in the equipment cost of the machine tools 12 and 14 can be suppressed, and there is no need to consider the installation location and reliability of the position detector. Moreover, the interference estimation unit 22 estimates the interference P based on known data that can be acquired before the start of the operation control, such as the position command C1 and the position and mass information D of the eccentric load 20, and the command correction unit 24 Since the current command C2 directly applied to the control shafts 16L, 16R, 18 is corrected based on the interference P, the linear or rotary feed bases 28, 32 and the rotary index table in the machine tools 12, 14 are used. It can be applied to 30 and 34 high-speed and high-accuracy positioning control without problems. Thus, according to the control device 10, the interference P between the feed control shafts 16L and 16R and the rotation control shaft 18 in the machine tools 12 and 14 is accurately eliminated without delay, and the control shafts 16L, 16R, 18 stable high-precision motion control can be realized, so that the machining accuracy of the workpiece can be improved.

なお、上記構成において、位置指令C1並びに偏心荷重20の位置及び質量情報Dは、例えばオペレータが手作業で制御装置10に入力したり、記憶媒体に格納した状態で制御装置10に読み込ませたりすることができる。そして制御装置10は、これら位置指令C1及び偏心荷重情報Dの入力部及び記憶部を有することができる(図示せず)。   In the above configuration, the position command C1 and the position and mass information D of the eccentric load 20 are manually input to the control device 10 by an operator or read into the control device 10 while being stored in a storage medium, for example. be able to. And the control apparatus 10 can have the input part and memory | storage part of these position command C1 and eccentric load information D (not shown).

次に、制御装置10による工作機械の各軸制御方法の実施例を、図4〜図8を参照して説明する。なお、以下の説明では、図1〜図3に示す構成要素に対応する構成要素には共通の参照符号を付し、その説明を省略する。   Next, an embodiment of each axis control method of the machine tool by the control device 10 will be described with reference to FIGS. In the following description, components corresponding to those shown in FIGS. 1 to 3 are denoted by common reference numerals, and the description thereof is omitted.

まず、図2に例示する工作機械12における送り制御軸16L及び回転制御軸18の動作制御方法を説明する。図4に示すように、制御装置10は、送り制御軸16Lに対する通常の制御ループ36として、位置制御部38が、送り制御軸16L(リニアモータ)に対して入力される位置指令C1を演算処理して速度指令C3とし、速度制御部40が速度指令C3を演算処理して電流指令(又は推力指令)C2とし、電流制御部42が電流指令C2に従う電流値を送り制御軸16Lに指令し、送り制御軸16Lに併設したエンコーダ等の位置検出器44が、送り制御軸16Lの実際の動作位置を検出して位置制御部38にフィードバックする構成を有する。同様に制御装置10は、回転制御軸18に対する通常の制御ループ46として、位置制御部48が、回転制御軸18(回転モータ)に対して入力される位置指令C1を演算処理して速度指令C3とし、速度制御部50が速度指令C3を演算処理して電流指令(又はトルク指令)C2とし、電流制御部52が電流指令C2に従う電流値を回転制御軸18に指令し、回転制御軸18に併設したエンコーダ等の位置検出器54が、回転制御軸18の実際の動作位置を検出して位置制御部48にフィードバックする構成を有する。   First, an operation control method for the feed control shaft 16L and the rotation control shaft 18 in the machine tool 12 illustrated in FIG. 2 will be described. As shown in FIG. 4, in the control device 10, as a normal control loop 36 for the feed control shaft 16 </ b> L, the position control unit 38 calculates a position command C <b> 1 input to the feed control shaft 16 </ b> L (linear motor). Speed command C3, speed control unit 40 computes speed command C3 to obtain current command (or thrust command) C2, and current control unit 42 commands feed control shaft 16L with a current value according to current command C2, A position detector 44 such as an encoder provided along with the feed control shaft 16L detects the actual operating position of the feed control shaft 16L and feeds back to the position control unit 38. Similarly, in the control device 10, as a normal control loop 46 for the rotation control shaft 18, the position control unit 48 calculates the position command C <b> 1 input to the rotation control shaft 18 (rotation motor) and performs a speed command C <b> 3. Then, the speed control unit 50 computes the speed command C3 to obtain a current command (or torque command) C2, and the current control unit 52 commands the current value according to the current command C2 to the rotation control shaft 18, and the rotation control shaft 18 A position detector 54 such as an encoder provided in the vicinity has a configuration that detects the actual operation position of the rotation control shaft 18 and feeds back to the position control unit 48.

上記した制御構成において、静止又は動作中の送り制御軸16L上で回転制御軸18が回転割出動作したときには、干渉推定部22は、回転制御軸18に指令される位置指令C1と、回転制御軸18が担持する偏心荷重20の位置及び質量情報Dとに基づいて、回転制御軸18が送り制御軸16Lに及ぼす干渉P(すなわち干渉推力F)を推定する。そして、指令補正部24は、送り制御軸16Lの制御ループ36において速度制御部40から出力された電流指令C2に、干渉推定部22が推定した干渉P(干渉推力F)を加算して、電流指令C2を補正する。その結果、電流制御部42は、指令補正部24による補正後の電流指令C2に従う電流値を、送り制御軸16Lに的確に指令する。   In the control configuration described above, when the rotation control shaft 18 performs a rotation indexing operation on the feed control shaft 16L that is stationary or operating, the interference estimation unit 22 receives the position command C1 that is commanded to the rotation control shaft 18 and the rotation control. Based on the position of the eccentric load 20 carried by the shaft 18 and the mass information D, the interference P (that is, the interference thrust F) exerted on the feed control shaft 16L by the rotation control shaft 18 is estimated. Then, the command correction unit 24 adds the interference P (interference thrust F) estimated by the interference estimation unit 22 to the current command C2 output from the speed control unit 40 in the control loop 36 of the feed control shaft 16L to obtain a current. The command C2 is corrected. As a result, the current control unit 42 accurately commands the current value according to the current command C2 corrected by the command correction unit 24 to the feed control shaft 16L.

また、上記した制御構成において、静止又は動作中の回転制御軸18に対して送り制御軸16Lが直線送り動作したときには、干渉推定部22は、送り制御軸16L及び回転制御軸18の双方に指令されるそれぞれの位置指令C1と、回転制御軸18が担持する偏心荷重20の位置及び質量情報Dとに基づいて、送り制御軸16Lが回転制御軸18に及ぼす干渉P(すなわち干渉トルクT)を推定する。そして、指令補正部24は、回転制御軸18の制御ループ46において速度制御部50から出力された電流指令C2に、干渉推定部22が推定した干渉P(干渉トルクT)を加算して、電流指令C2を補正する。その結果、電流制御部52は、指令補正部24による補正後の電流指令C2に従う電流値を、回転制御軸18に的確に指令する。   In the control configuration described above, when the feed control shaft 16L performs a linear feed operation with respect to the stationary or operating rotation control shaft 18, the interference estimation unit 22 instructs both the feed control shaft 16L and the rotation control shaft 18. Based on each position command C1 and the position and mass information D of the eccentric load 20 carried by the rotation control shaft 18, the interference P (that is, interference torque T) exerted on the rotation control shaft 18 by the feed control shaft 16L is determined. presume. Then, the command correction unit 24 adds the interference P (interference torque T) estimated by the interference estimation unit 22 to the current command C2 output from the speed control unit 50 in the control loop 46 of the rotation control shaft 18 to obtain a current. The command C2 is corrected. As a result, the current control unit 52 accurately commands the rotation control shaft 18 with a current value according to the current command C2 corrected by the command correction unit 24.

上記制御フローにおける干渉推定部22による干渉Pの推定手法を、図5及び図6を参照して説明する。図5及び図6は、送り制御軸16Lと回転制御軸18との力学的関係を、偏心荷重20を質点として模式図的に示すものである。   A method for estimating the interference P by the interference estimation unit 22 in the control flow will be described with reference to FIGS. 5 and 6 schematically show the mechanical relationship between the feed control shaft 16L and the rotation control shaft 18 with the eccentric load 20 as a mass point.

図5は、静止又は動作中の送り制御軸16L上で回転制御軸18が回転割出動作している状態(角加速度αで加速中)を示す。この回転割出動作の間、偏心荷重20には、角速度ωに応じた向心力fと、角加速度αに応じたトルクt(正確には接線方向力t/r)とが加わる(図5(a))。ここで、回転制御軸18の回転中心Oから偏心荷重20までの距離をrとし、偏心荷重20の質量をmとすると、
f=m・r・ω
t/r=m・r・α=m・r・dω/dt
である。
FIG. 5 shows a state in which the rotation control shaft 18 performs a rotation indexing operation on the feed control shaft 16L that is stationary or in operation (accelerating at an angular acceleration α). During this rotational indexing operation, the eccentric load 20 is applied with an centripetal force f corresponding to the angular velocity ω and a torque t (more precisely, tangential force t / r) corresponding to the angular acceleration α (FIG. 5 (a )). Here, when the distance from the rotation center O of the rotation control shaft 18 to the eccentric load 20 is r, and the mass of the eccentric load 20 is m,
f = m · r · ω 2
t / r = m · r · α = m · r · dω / dt
It is.

以下、これら向心力f及び接線方向力t/rが送り制御軸16Lに及ぼす力(すなわち干渉推力F)を考察する。ここで、回転制御軸18の機械座標原点Gからの偏心荷重20の回転角度をθとし、同機械座標原点Gからの送り制御軸16L(すなわち直線送り方向)の角度(位置)をθとすると、回転割出動作中に偏心荷重20に加わる向心力fと接線方向力t/rとの、送り制御軸16Lに平行な方向への合力F′(図5(b))は、
F′=m・r・ω・cos(θ−θ)+m・r・dω/dt・sin(θ−θ
となる。したがって、回転制御軸18が送り制御軸16Lに及ぼす干渉推力F(干渉P)は、F=−F′として推定される。なお、上記説明中、r及びmは偏心荷重20の位置及び質量情報Dとして取得され、θは回転制御軸18に指令される位置指令C1として取得される。また、θは、送り制御軸16Lと回転制御軸18との相対位置関係を表わす工作機械12の固有の値である。
Hereinafter, the force (that is, the interference thrust F) exerted on the feed control shaft 16L by the centripetal force f and the tangential force t / r will be considered. Here, the rotation angle of the eccentric load 20 from the machine coordinate origin G of the rotation control shaft 18 is θ, and the angle (position) of the feed control shaft 16L (that is, the linear feed direction) from the machine coordinate origin G is θ 0 . Then, the resultant force F ′ (FIG. 5B) in the direction parallel to the feed control shaft 16L of the centripetal force f applied to the eccentric load 20 and the tangential force t / r during the rotation indexing operation is
F ′ = m · r · ω 2 · cos (θ−θ 0 ) + m · r · dω / dt · sin (θ−θ 0 )
It becomes. Therefore, the interference thrust F (interference P) exerted by the rotation control shaft 18 on the feed control shaft 16L is estimated as F = −F ′. In the above description, r and m are acquired as the position and mass information D of the eccentric load 20, and θ is acquired as the position command C <b> 1 commanded to the rotation control shaft 18. Θ 0 is a unique value of the machine tool 12 that represents the relative positional relationship between the feed control shaft 16L and the rotation control shaft 18.

他方、図6は、静止又は動作中の回転制御軸18に対して送り制御軸16Lが直線送り動作している状態(加速度aで加速中)を示す。この直線送り動作の間、偏心荷重20には、加速度aに応じた下記の推力uが加わる(図6(a))。
u=m・a=m・dv/dt
そして、推力uが回転制御軸18に及ぼす力(すなわち干渉トルクT)は、
T=−u・r・sin(θ−θ)=−m・r・dv/dt・sin(θ−θ
となる。このようにして、送り制御軸16Lが回転制御軸18に及ぼす干渉トルクT(干渉P)が推定される。なお、上記説明中、r及びmは偏心荷重20の位置及び質量情報Dとして取得され、θは回転制御軸18に指令される位置指令C1として取得され、a(又はv)は送り制御軸16Lに指令される位置指令C1から取得される。また、θは、送り制御軸16Lと回転制御軸18との相対位置関係を表わす工作機械12の固有の値である。
On the other hand, FIG. 6 shows a state where the feed control shaft 16L is performing a linear feed operation with respect to the stationary or operating rotation control shaft 18 (accelerating at an acceleration a). During this linear feed operation, the following thrust u corresponding to the acceleration a is applied to the eccentric load 20 (FIG. 6A).
u = m · a = m · dv / dt
The force that the thrust u exerts on the rotation control shaft 18 (that is, the interference torque T) is
T = −u · r · sin (θ−θ 0 ) = − m · r · dv / dt · sin (θ−θ 0 )
It becomes. In this way, the interference torque T (interference P) exerted on the rotation control shaft 18 by the feed control shaft 16L is estimated. In the above description, r and m are acquired as the position and mass information D of the eccentric load 20, θ is acquired as the position command C1 commanded to the rotation control shaft 18, and a (or v) is the feed control shaft 16L. It is acquired from the position command C1 commanded to. Θ 0 is a unique value of the machine tool 12 that represents the relative positional relationship between the feed control shaft 16L and the rotation control shaft 18.

次に、図3に例示する工作機械14における送り制御軸16R及び回転制御軸18の動作制御方法を説明する。この動作制御方法は、上記した工作機械12における送り制御軸16L及び回転制御軸18の動作制御方法と同様であるから、制御フローの説明は省略し、図7及び図8を参照して、干渉推定部22による干渉Pの推定手法を説明する。図7及び図8は、送り制御軸16Rと回転制御軸18との力学的関係を、偏心荷重20を質点として模式図的に示すものである。   Next, an operation control method for the feed control shaft 16R and the rotation control shaft 18 in the machine tool 14 illustrated in FIG. 3 will be described. Since this operation control method is the same as the operation control method of the feed control shaft 16L and the rotation control shaft 18 in the machine tool 12 described above, the description of the control flow is omitted, and the interference is described with reference to FIGS. A method for estimating the interference P by the estimation unit 22 will be described. 7 and 8 schematically show the mechanical relationship between the feed control shaft 16R and the rotation control shaft 18 with the eccentric load 20 as a mass point.

図7は、静止又は動作中の送り制御軸16R上で回転制御軸18が回転割出動作している状態(角加速度αで加速中)を示す。なお、実際の送り制御軸16Rは、図示の基準軸Zから紙面に直交する方向へ距離s(図3)だけ平行に離れた位置に、回転中心軸を有するものとする。回転制御軸18の回転割出動作の間、偏心荷重20には、角速度ωに応じた向心力fと、角加速度αに応じたトルクt(正確には接線方向力t/r)とが加わる。ここで、回転制御軸18の回転中心Oから偏心荷重20までの距離をrとし、偏心荷重20の質量をmとすると、
f=m・r・ω
t/r=m・r・α=m・r・dω/dt
である。
FIG. 7 shows a state in which the rotation control shaft 18 performs a rotation indexing operation on the feed control shaft 16R that is stationary or in operation (accelerating at an angular acceleration α). The actual feed control shaft 16R has a rotation center axis at a position separated from the illustrated reference axis Z by a distance s (FIG. 3) in the direction orthogonal to the paper surface. During the rotation indexing operation of the rotation control shaft 18, the eccentric load 20 is applied with a centripetal force f corresponding to the angular velocity ω and a torque t (more precisely, tangential force t / r) corresponding to the angular acceleration α. Here, when the distance from the rotation center O of the rotation control shaft 18 to the eccentric load 20 is r, and the mass of the eccentric load 20 is m,
f = m · r · ω 2
t / r = m · r · α = m · r · dω / dt
It is.

次に、これら向心力f及び接線方向力t/rが送り制御軸16Rに及ぼす力(すなわち干渉トルクT)を考察する。ここで、回転制御軸18の機械座標原点Gからの偏心荷重20の回転角度をθとし、同機械座標原点Gからの基準軸Z(送り制御軸16Rに平行な軸)の角度(位置)をθとすると、回転割出動作中に偏心荷重20に加わる向心力fと接線方向力t/rとの、基準軸Zに直交する方向への合力Fは、
F=m・r・ω・sin(θ−θ)−m・r・dω/dt・cos(θ−θ
となる。したがって、回転制御軸18が送り制御軸16Rに及ぼす干渉トルクT(干渉P)は、T=−F・sとして推定される。なお、上記説明中、r、m及びsは偏心荷重20の位置及び質量情報Dとして取得され、θは回転制御軸18に指令される位置指令C1として取得される。また、θは、送り制御軸16Rと回転制御軸18との相対位置関係を表わす工作機械14の固有の値である。
Next, the force (namely, interference torque T) exerted on the feed control shaft 16R by the centripetal force f and the tangential force t / r will be considered. Here, the rotation angle of the eccentric load 20 from the machine coordinate origin G of the rotation control axis 18 is θ, and the angle (position) of the reference axis Z (axis parallel to the feed control axis 16R) from the machine coordinate origin G is the angle (position). Assuming θ 0 , the resultant force F in the direction orthogonal to the reference axis Z of the centripetal force f and the tangential force t / r applied to the eccentric load 20 during the rotation indexing operation is
F = m · r · ω 2 · sin (θ−θ 0 ) −m · r · dω / dt · cos (θ−θ 0 )
It becomes. Therefore, the interference torque T (interference P) exerted by the rotation control shaft 18 on the feed control shaft 16R is estimated as T = −F · s. In the above description, r, m, and s are acquired as the position and mass information D of the eccentric load 20, and θ is acquired as the position command C1 that is commanded to the rotation control shaft 18. Θ 0 is a unique value of the machine tool 14 representing the relative positional relationship between the feed control shaft 16R and the rotation control shaft 18.

他方、図8は、静止又は動作中の回転制御軸18に対して送り制御軸16Rが回転送り動作している状態(接線加速度aで加速中)を示す。この回転送り動作の間、偏心荷重20には、接線加速度aに応じた下記の推力uが加わる。
u=m・a=m・dv/dt
そして、推力uが回転制御軸18に及ぼす力(すなわち干渉トルクT)は、
T=−u・r・cos(θ−θ)=−m・r・dv/dt・cos(θ−θ
となる。このようにして、送り制御軸16Rが回転制御軸18に及ぼす干渉トルクT(干渉P)が推定される。なお、上記説明中、r及びm(並びに角変位を直線変位に変換するための距離s)は偏心荷重20の位置及び質量情報Dとして取得され、θは回転制御軸18に指令される位置指令C1として取得され、a(又はv)は送り制御軸16Rに指令される位置指令C1から取得される。また、θは、送り制御軸16Rと回転制御軸18との相対位置関係を表わす工作機械14の固有の値である。
On the other hand, FIG. 8 shows a state in which the feed control shaft 16R is rotating and feeding with respect to the stationary or operating rotation control shaft 18 (accelerating at the tangential acceleration a). During this rotational feed operation, the following thrust u corresponding to the tangential acceleration a is applied to the eccentric load 20.
u = m · a = m · dv / dt
The force that the thrust u exerts on the rotation control shaft 18 (that is, the interference torque T) is
T = −u · r · cos (θ−θ 0 ) = − m · r · dv / dt · cos (θ−θ 0 )
It becomes. Thus, the interference torque T (interference P) exerted on the rotation control shaft 18 by the feed control shaft 16R is estimated. In the above description, r and m (and distance s for converting angular displacement into linear displacement) are acquired as the position and mass information D of the eccentric load 20, and θ is a position command commanded to the rotation control shaft 18. Acquired as C1, and a (or v) is acquired from the position command C1 commanded to the feed control shaft 16R. Θ 0 is a unique value of the machine tool 14 representing the relative positional relationship between the feed control shaft 16R and the rotation control shaft 18.

上記したように、制御装置10は、干渉推定部22が動作制御の開始前に取得可能な既知のデータに基づいて干渉Pを推定し、指令補正部24が干渉Pに基づいて電流指令C2を補正する構成としたことで、工作機械12、14における高速かつ高精度の位置決め制御に適応できるものである。したがって、干渉推定部22が、位置指令C1に従う送り制御軸16L、16R及び回転制御軸18の少なくとも一方の動作制御の周期よりも、1制御周期以上先行して干渉Pを推定し、指令補正部24が、当該動作制御周期における電流指令C2を補正するように構成することで、高速かつ高精度の位置決め制御への適応が一層確実なものとなる。   As described above, the control device 10 estimates the interference P based on the known data that the interference estimation unit 22 can acquire before the start of the operation control, and the command correction unit 24 determines the current command C2 based on the interference P. By adopting the correction configuration, it can be applied to high-speed and high-accuracy positioning control in the machine tools 12 and 14. Accordingly, the interference estimation unit 22 estimates the interference P one or more control cycles before the operation control cycle of at least one of the feed control shafts 16L and 16R and the rotation control shaft 18 according to the position command C1, and the command correction unit 24 is configured to correct the current command C2 in the operation control cycle, the adaptation to high-speed and high-accuracy positioning control is further ensured.

ところで、一般に工作機械の回転制御軸は、ワークや工具等の、荷重の大きさや配置が多様に変化する物体を担持するので、制御軸同士の干渉を本発明のように計算で求めたとしても、当該計算式における質量、位置、角度等の定数項が固定されたままでは、荷重の変化に対応して高精度の補正を行なうことが困難になる。そこで、上記基本構成を有する制御装置10において、偏心荷重20の変更に対応して、干渉推定部22が干渉Pを推定するための演算定数を変更する機能を付加することが有利である。   By the way, in general, the rotation control axis of a machine tool carries an object such as a workpiece or a tool whose load size or arrangement changes in various ways, so even if the interference between the control axes is obtained by calculation as in the present invention. If constant terms such as mass, position, and angle in the calculation formula remain fixed, it becomes difficult to perform high-accuracy correction corresponding to changes in load. Therefore, in the control device 10 having the above-described basic configuration, it is advantageous to add a function for changing the operation constant for the interference estimation unit 22 to estimate the interference P in response to the change of the eccentric load 20.

図9は、そのような付加的機能を有した本発明の好適な実施形態による制御装置60の構成を、機能ブロック図で示す。制御装置60は、図1の制御装置10の基本構成に加えて、偏心荷重20の変更に対応して、干渉推定部22が干渉Pを推定するための演算定数(m、r、θ等)を変更する定数変更部62をさらに備えるものである。したがって、制御装置10の構成要素に対応する構成要素には共通の参照符号を付し、その詳細な説明を省略する。 FIG. 9 is a functional block diagram showing the configuration of the control device 60 according to a preferred embodiment of the present invention having such additional functions. In addition to the basic configuration of the control device 10 of FIG. 1, the control device 60 corresponds to a change in the eccentric load 20 and the operation constants (m, r, θ 0, etc.) for the interference estimation unit 22 to estimate the interference P ) Is further provided. Therefore, common reference numerals are assigned to components corresponding to the components of the control device 10, and detailed description thereof is omitted.

例えば、図5に示す実施例において、回転制御軸18が一定速度で回転しているときに、送り制御軸16Lに及ぼされる干渉推力Fは、F=−m・r・ω・cos(θ−θ)となり、正弦波状の曲線を描くことになる。そこで、偏心荷重20が変更されたときに、送り制御軸16Lを停止した状態で回転制御軸18を一定速度(但し送り制御軸16Lの位置偏差が過大にならない程度の低速度)で回転させるテスト運転を行なうと、制御装置60では、送り制御軸16Lに対する通常のフィードバックループ(図4参照)において、干渉推定部22が干渉を推定しない状態で、速度制御部40から、干渉推力Fを相殺するような同様に正弦波状の(つまり干渉相当の)電流指令C2が出力される。 For example, in the embodiment shown in FIG. 5, when the rotation control shaft 18 rotates at a constant speed, the interference thrust F exerted on the feed control shaft 16L is F = −m · r · ω 2 · cos (θ −θ 0 ), and a sinusoidal curve is drawn. Therefore, when the eccentric load 20 is changed, a test is performed in which the rotation control shaft 18 is rotated at a constant speed (a low speed that does not cause the positional deviation of the feed control axis 16L to be excessive) while the feed control axis 16L is stopped. When the operation is performed, the control device 60 cancels the interference thrust F from the speed control unit 40 in a state where the interference estimation unit 22 does not estimate interference in a normal feedback loop (see FIG. 4) for the feed control shaft 16L. Similarly, a sinusoidal (that is, interference equivalent) current command C2 is output.

ここで、定数変更部62は、速度制御部40から出力された干渉相当の電流指令C2(すなわち指令補正部24による補正前の電流指令C2)を観測することで、変更するべき演算定数(m、r、θ等)の値を求めることができる。つまり、電流指令C2が最大値C2maxを示すときに、cos(θ−θ)=1であるから、m・r=K・C2max/ωとなる(Kは電動機固有のトルク定数)。したがって、定数変更部62は、当該テスト運転により、電流指令C2の最大値C2max及び回転制御軸18の角速度ωに基づいて、変更された偏心荷重20の質量m及び位置rを求めることができる。また、電流指令C2が最大値C2max又は最小値0を示すときの回転制御軸18の回転角度θに基づいて、機械座標原点G(図5)からの送り制御軸16Lの角度(すなわち回転制御軸18と送り制御軸16Lとの相対位置関係)θを求めることもできる。 Here, the constant changing unit 62 observes the current command C2 corresponding to the interference output from the speed control unit 40 (that is, the current command C2 before being corrected by the command correcting unit 24), so that the calculation constant (m , R, θ 0, etc.) can be obtained. That is, since cos (θ−θ 0 ) = 1 when the current command C2 indicates the maximum value C2max, m · r = K · C2max / ω 2 (K is a torque constant specific to the motor). Therefore, the constant changing unit 62 can obtain the changed mass m and position r of the eccentric load 20 based on the maximum value C2max of the current command C2 and the angular velocity ω of the rotation control shaft 18 by the test operation. Further, based on the rotation angle θ of the rotation control shaft 18 when the current command C2 indicates the maximum value C2max or the minimum value 0, the angle of the feed control shaft 16L from the machine coordinate origin G (FIG. 5) (that is, the rotation control shaft). (Relative positional relationship between 18 and the feed control shaft 16L) θ 0 can also be obtained.

なお、上記したテスト運転において、回転制御軸18を1回転以上動作させることが困難な場合は、電流指令C2の最大値C2maxを特定できないが、この場合には、予め機械座標原点Gからの送り制御軸16Lの角度θのみを測定しておけばよい。そしてテスト運転で、電流指令C2と角度(θ−θ)との双方を観測するようにすれば、偏心荷重20の質量m及び位置rを求めることができる。 In the above test operation, when it is difficult to operate the rotation control shaft 18 for one or more revolutions, the maximum value C2max of the current command C2 cannot be specified. Only the angle θ 0 of the control shaft 16L needs to be measured. If both the current command C2 and the angle (θ−θ 0 ) are observed in the test operation, the mass m and the position r of the eccentric load 20 can be obtained.

同様に、図7に示す実施例においては、回転制御軸18が一定速度で回転しているときに、送り制御軸16Rに及ぼされる干渉トルクTは、T=−s・m・r・ω・sin(θ−θ)となる。したがって、上記手法と同様にして、定数変更部62は、偏心荷重20が変更されたときに、送り制御軸16Rを停止した状態で回転制御軸18を一定速度で回転させるテスト運転により、電流指令C2の最大値C2max、並びに回転制御軸18の角速度ω及び回転角度θに基づいて、変更された偏心荷重20の質量m及び位置r、並びに回転制御軸18と送り制御軸16Rとの相対位置関係s及びθを求めることができる。 Similarly, in the embodiment shown in FIG. 7, when the rotation control shaft 18 rotates at a constant speed, the interference torque T exerted on the feed control shaft 16R is T = −s · m · r · ω 2. Sin (θ−θ 0 ) Therefore, similarly to the above method, the constant changing unit 62 performs a current command by a test operation that rotates the rotation control shaft 18 at a constant speed while the feed control shaft 16R is stopped when the eccentric load 20 is changed. Based on the maximum value C2max of C2, the angular velocity ω and the rotation angle θ of the rotation control shaft 18, the changed mass m and position r of the eccentric load 20, and the relative positional relationship between the rotation control shaft 18 and the feed control shaft 16R. s and θ 0 can be determined.

上記構成を有する制御装置60によれば、前述した制御装置10による格別の作用効果に加えて、ワークや工具等の、荷重の大きさや配置が多様に変化する物体を担持する回転制御軸18を有する工作機械12、14に対し、そのような荷重の変化に的確に対応して、回転制御軸と送り制御軸との間の干渉を正確に排除できる利点が得られる。   According to the control device 60 having the above-described configuration, the rotation control shaft 18 that carries an object such as a workpiece or a tool whose load size or arrangement varies in addition to the special effects obtained by the control device 10 described above. For the machine tools 12 and 14 having the above, there can be obtained an advantage that the interference between the rotation control shaft and the feed control shaft can be accurately eliminated by accurately responding to such a change in load.

上記した制御装置10、60においては、最初に干渉推定部22に与えられる偏心荷重20の位置及び質量情報Dは、動作制御の開始前に取得可能な既知のデータであるとして説明した。この場合、偏心荷重20の位置r及び質量mは、通常は実測値が採用されるから、動作制御の準備作業が煩雑になる傾向がある。これに対し、上記した制御装置60の定数変更部62の機能を流用することで、最初に干渉推定部22に与えられる偏心荷重20の位置及び質量情報Dを、実測によらず、適宜推定することができる。   In the control devices 10 and 60 described above, the position of the eccentric load 20 and the mass information D that are first given to the interference estimation unit 22 are described as known data that can be acquired before the start of the motion control. In this case, as the position r and the mass m of the eccentric load 20 are usually measured values, the preparation work for the operation control tends to be complicated. On the other hand, by using the function of the constant changing unit 62 of the control device 60 described above, the position and mass information D of the eccentric load 20 initially given to the interference estimating unit 22 are estimated appropriately without being actually measured. be able to.

図10は、そのような付加的機能を有した本発明の他の好適な実施形態による制御装置70の構成を、機能ブロック図で示す。制御装置70は、図1の制御装置10の基本構成に加えて、偏心荷重20の位置及び質量情報Dを推定する偏心情報推定部72をさらに備えるものである。したがって、制御装置10の構成要素に対応する構成要素には共通の参照符号を付し、その詳細な説明を省略する。   FIG. 10 is a functional block diagram showing the configuration of the control device 70 according to another preferred embodiment of the present invention having such additional functions. The control device 70 further includes an eccentricity information estimation unit 72 that estimates the position and mass information D of the eccentric load 20 in addition to the basic configuration of the control device 10 of FIG. Therefore, common reference numerals are assigned to components corresponding to the components of the control device 10, and detailed description thereof is omitted.

偏心情報推定部72による偏心情報推定手法は、前述した制御装置60の定数変更部62による定数変更手法と、実質的に同一である。すなわち、例えば図5に示す実施例においては、偏心荷重20の位置及び質量情報Dが不明な場合に、送り制御軸16Lを停止した状態で回転制御軸18を一定速度で回転させる前述したテスト運転を行なうことで、送り制御軸16Lに対する制御装置70の通常のフィードバックループ(図4参照)において、干渉推定部22が干渉を推定しない状態で、速度制御部40から干渉相当の電流指令C2を出力させる。   The eccentric information estimation method by the eccentric information estimation unit 72 is substantially the same as the constant changing method by the constant changing unit 62 of the control device 60 described above. That is, for example, in the embodiment shown in FIG. 5, when the position of the eccentric load 20 and the mass information D are unknown, the test operation described above that rotates the rotation control shaft 18 at a constant speed while the feed control shaft 16L is stopped. In the normal feedback loop (see FIG. 4) of the control device 70 for the feed control shaft 16L, the current command C2 equivalent to interference is output from the speed control unit 40 in a state where the interference estimation unit 22 does not estimate interference. Let

ここで、偏心情報推定部72は、送り制御軸16Lに指令される干渉相当の電流指令C2(すなわち指令補正部24による補正前の電流指令C2)に基づいて、偏心荷重20の位置及び質量情報D(すなわち位置r及び質量m)を推定する。つまり、回転制御軸18が一定速度ωで回転する間に送り制御軸16Lに及ぼされる干渉推力Fの式、F=−m・r・ω・cos(θ−θ)において、電流指令C2が最大値C2maxを示すときに、cos(θ−θ)=1であるから、m・r=K・C2max/ωとなる(Kは電動機固有のトルク定数)。したがって、偏心情報推定部72は、電流指令C2の最大値C2max及び回転制御軸18の角速度ωに基づいて、偏心荷重20の質量m及び位置rを求めることができる。また、電流指令C2が最大値C2max又は最小値0を示すときの回転制御軸18の回転角度θに基づいて、機械座標原点G(図5)からの送り制御軸16Lの角度(すなわち回転制御軸18と送り制御軸16Lとの相対位置関係)θを求めることもできる。このようにして推定した偏心荷重20の位置及び質量情報D(位置r及び質量m)並びに角度θは、例えば制御装置70の記憶部(図示せず)に格納され、実際の動作制御において干渉推定部22が干渉推力Fを推定する際に用いられる。 Here, the eccentricity information estimation unit 72 is based on the current command C2 corresponding to the interference commanded to the feed control shaft 16L (that is, the current command C2 before correction by the command correction unit 24), and the position and mass information of the eccentric load 20. D (ie position r and mass m) is estimated. That is, in the equation of interference thrust F exerted on the feed control shaft 16L while the rotation control shaft 18 rotates at a constant speed ω, F = −m · r · ω 2 · cos (θ−θ 0 ), the current command C2 Since cos (θ−θ 0 ) = 1 when m indicates the maximum value C2max, m · r = K · C2max / ω 2 (K is a torque constant specific to the motor). Therefore, the eccentricity information estimation unit 72 can obtain the mass m and the position r of the eccentric load 20 based on the maximum value C2max of the current command C2 and the angular velocity ω of the rotation control shaft 18. Further, based on the rotation angle θ of the rotation control shaft 18 when the current command C2 indicates the maximum value C2max or the minimum value 0, the angle of the feed control shaft 16L from the machine coordinate origin G (FIG. 5) (that is, the rotation control shaft). (Relative positional relationship between 18 and the feed control shaft 16L) θ 0 can also be obtained. The position and mass information D (position r and mass m) and the angle θ 0 of the eccentric load 20 estimated in this way are stored in, for example, a storage unit (not shown) of the control device 70, and interfere in actual operation control. It is used when the estimation unit 22 estimates the interference thrust F.

偏心情報推定部72は、回転制御軸18を停止した状態で送り制御軸16Lを一定加速度で送り動作させるテスト運転を行なうことによっても、偏心荷重20の位置及び質量情報Dを推定することができる。このテスト運転により、制御装置70では、回転制御軸18に対する通常のフィードバックループ(図4参照)において、干渉推定部22が干渉を推定しない状態で、速度制御部50が干渉相当の電流指令C2を出力する。ここで、図6を参照して説明したように、推力uが回転制御軸18に及ぼす干渉トルクTは、T=−m・r・dv/dt・sin(θ−θ)であるから、電流指令C2が最小値0を示すときの回転制御軸18の回転角度θが、機械座標原点G(図6)からの送り制御軸16Lの角度θとなる。そして、偏心情報推定部72は、回転制御軸18を任意角度θで停止した状態で送り制御軸16Lを一定加速度dv/dtで送り動作させたときに観測される電流指令C2に基づいて、干渉トルクTの式から、偏心荷重20の質量m及び位置rを求めることができる。 The eccentric information estimation unit 72 can also estimate the position and mass information D of the eccentric load 20 by performing a test operation in which the feed control shaft 16L is fed at a constant acceleration while the rotation control shaft 18 is stopped. . With this test operation, the control device 70 causes the speed control unit 50 to output a current command C2 equivalent to interference in a state where the interference estimation unit 22 does not estimate interference in a normal feedback loop (see FIG. 4) with respect to the rotation control shaft 18. Output. Here, as described with reference to FIG. 6, the interference torque T exerted on the rotation control shaft 18 by the thrust u is T = −m · r · dv / dt · sin (θ−θ 0 ). The rotation angle θ of the rotation control shaft 18 when the current command C2 indicates the minimum value 0 becomes the angle θ 0 of the feed control shaft 16L from the machine coordinate origin G (FIG. 6). Then, the eccentricity information estimation unit 72 performs interference based on the current command C2 observed when the feed control shaft 16L is fed at a constant acceleration dv / dt while the rotation control shaft 18 is stopped at an arbitrary angle θ. From the equation of torque T, the mass m and position r of the eccentric load 20 can be obtained.

上記構成を有する制御装置70によれば、前述した制御装置10による格別の作用効果に加えて、偏心荷重20の位置及び質量情報Dの測定作業を省略できるので、動作制御の準備作業が簡略化される利点が得られる。   According to the control device 70 having the above-described configuration, the measurement work of the position of the eccentric load 20 and the mass information D can be omitted in addition to the special effects of the control device 10 described above. The benefits are obtained.

本発明に係る制御装置の基本構成を示す機能ブロック図である。It is a functional block diagram which shows the basic composition of the control apparatus which concerns on this invention. 図1の制御装置を適用可能な工作機械の主要部の一例を概略で示す斜視図である。It is a perspective view which shows roughly an example of the principal part of the machine tool which can apply the control apparatus of FIG. 図1の制御装置を適用可能な工作機械の主要部の他の例を概略で示す斜視図である。It is a perspective view which shows roughly the other example of the principal part of the machine tool which can apply the control apparatus of FIG. 図1の制御装置における制御フローを示すブロック線図である。It is a block diagram which shows the control flow in the control apparatus of FIG. 図2の工作機械に関する干渉の推定手法を説明する図で、(a)送り制御軸と回転制御軸との力学的関係を模式図的に示す図、及び(b)両軸の力学的関係を、偏心荷重を質点として幾何学的に示す図である。FIG. 3 is a diagram for explaining an interference estimation method for the machine tool in FIG. 2, (a) a diagram schematically showing a mechanical relationship between a feed control axis and a rotation control axis, and (b) a mechanical relationship between both axes. It is a figure which shows geometrically using an eccentric load as a mass point. 図2の工作機械に関する他の干渉の推定手法を説明する図で、(a)送り制御軸と回転制御軸との力学的関係を模式図的に示す図、及び(b)両軸の力学的関係を、偏心荷重を質点として幾何学的に示す図である。FIG. 3 is a diagram for explaining another interference estimation method related to the machine tool of FIG. 2, (a) a diagram schematically showing a mechanical relationship between a feed control axis and a rotation control axis, and (b) a dynamics of both axes. It is a figure which shows a relationship geometrically by making an eccentric load into a mass point. 図3の工作機械に関する干渉の推定手法を説明する図である。It is a figure explaining the estimation method of the interference regarding the machine tool of FIG. 図3の工作機械に関する他の干渉の推定手法を説明する図である。It is a figure explaining the estimation method of the other interference regarding the machine tool of FIG. 本発明の一実施形態による制御装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the control apparatus by one Embodiment of this invention. 本発明の他の実施形態による制御装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the control apparatus by other embodiment of this invention.

符号の説明Explanation of symbols

10、60、70 制御装置
12、14 工作機械
16L、16R 送り制御軸
18 回転制御軸
20 偏心荷重
22 干渉推定部
24 指令補正部
62 定数変更部
72 偏心情報推定部
10, 60, 70 Control device 12, 14 Machine tool 16L, 16R Feed control shaft 18 Rotation control shaft 20 Eccentric load 22 Interference estimation unit 24 Command correction unit 62 Constant change unit 72 Eccentric information estimation unit

Claims (8)

送り制御軸と該送り制御軸に沿って送られる回転制御軸とを備えた工作機械の、該送り制御軸の送り動作及び該回転制御軸の回転動作を制御する制御装置において、
前記送り制御軸及び前記回転制御軸の少なくとも一方に指令される位置指令と、前記回転制御軸が担持する偏心荷重の位置及び質量情報とに基づいて、該送り制御軸が送り動作している間に該偏心荷重に加わる推力が該回転制御軸に及ぼす力を算出するか、又は該回転制御軸が回転動作している間に該偏心荷重に加わる向心力及び接線方向力が該送り制御軸に及ぼす力を算出することで、該送り制御軸と該回転制御軸との間に生じる干渉を推定する干渉推定部と、
前記干渉推定部が推定した前記干渉に基づいて、前記送り制御軸及び前記回転制御軸の少なくとも一方に与える電流指令を補正する指令補正部と、
を具備することを特徴とする制御装置。
In a control device for controlling a feed operation of the feed control axis and a rotation operation of the rotation control axis of a machine tool including a feed control axis and a rotation control axis fed along the feed control axis.
While the feed control shaft performs a feed operation based on the position command commanded to at least one of the feed control shaft and the rotation control shaft and the position and mass information of the eccentric load carried by the rotation control shaft . The force exerted on the rotation control shaft by the thrust applied to the eccentric load is calculated, or the centripetal force and tangential force applied to the eccentric load while the rotation control shaft is rotating are exerted on the feed control shaft. An interference estimator for estimating interference generated between the feed control axis and the rotation control axis by calculating a force ;
A command correction unit that corrects a current command to be applied to at least one of the feed control axis and the rotation control axis based on the interference estimated by the interference estimation unit;
A control device comprising:
前記干渉推定部は、前記位置指令に従う前記送り制御軸及び前記回転制御軸の少なくとも一方の動作制御の周期よりも、1制御周期以上先行して前記干渉を推定し、前記指令補正部は、該動作制御の該周期における前記電流指令を補正する、請求項1に記載の制御装置。   The interference estimation unit estimates the interference at least one control cycle before the operation control cycle of at least one of the feed control axis and the rotation control axis according to the position command, and the command correction unit The control device according to claim 1, wherein the current command in the cycle of the operation control is corrected. 前記偏心荷重が変更されたときに、前記送り制御軸及び前記回転制御軸の一方を停止し他方を一定速度で回転させるテスト運転において前記干渉推定部が前記干渉を推定しない状態で前記送り制御軸及び前記回転制御軸のいずれか一方に指令される干渉相当の電流指令に基づき、変更された前記偏心荷重の位置及び質量を求めて、前記干渉推定部が前記干渉を推定するために用いる演算式における前記偏心荷重の位置及び質量の値を変更する定数変更部をさらに具備する、請求項1又は2に記載の制御装置。   When the eccentric load is changed, in the test operation in which one of the feed control shaft and the rotation control shaft is stopped and the other is rotated at a constant speed, the feed control shaft is not estimated by the interference estimation unit. And an arithmetic expression used by the interference estimation unit to estimate the interference by obtaining the position and mass of the changed eccentric load based on a current command corresponding to the interference commanded to one of the rotation control shafts. The control device according to claim 1, further comprising a constant changing unit that changes a position and a mass value of the eccentric load in. 前記送り制御軸及び前記回転制御軸の一方を停止し他方を一定速度で回転させるテスト運転において前記干渉推定部が前記干渉を推定しない状態で前記送り制御軸及び前記回転制御軸のいずれか一方に指令される干渉相当の電流指令に基づいて、前記偏心荷重の前記位置及び質量情報を推定する偏心情報推定部をさらに具備し、前記干渉推定部は、前記位置指令と、該偏心情報推定部が推定した該位置及び質量情報とに基づいて、前記干渉を推定する、請求項1又は2に記載の制御装置。   In a test operation in which one of the feed control shaft and the rotation control shaft is stopped and the other is rotated at a constant speed, the interference estimation unit does not estimate the interference to either the feed control shaft or the rotation control shaft. An eccentricity information estimation unit that estimates the position and mass information of the eccentric load based on a current command corresponding to the commanded interference is further provided, and the interference estimation unit includes the position command and the eccentricity information estimation unit. The control device according to claim 1, wherein the interference is estimated based on the estimated position and mass information. 送り制御軸と該送り制御軸に沿って送られる回転制御軸とを備えた工作機械の、該送り制御軸の送り動作及び該回転制御軸の回転動作を制御する制御方法において、
前記送り制御軸及び前記回転制御軸の少なくとも一方に指令される位置指令と、前記回転制御軸が担持する偏心荷重の位置及び質量情報とに基づいて、該送り制御軸が送り動作している間に該偏心荷重に加わる推力が該回転制御軸に及ぼす力を算出するか、又は該回転制御軸が回転動作している間に該偏心荷重に加わる向心力及び接線方向力が該送り制御軸に及ぼす力を算出することで、該送り制御軸と該回転制御軸との間に生じる干渉を推定し、
推定した前記干渉に基づいて、前記送り制御軸及び前記回転制御軸の少なくとも一方に与える電流指令を補正すること、
を特徴とする制御方法。
In a control method for controlling a feed operation of the feed control axis and a rotation operation of the rotation control axis of a machine tool including a feed control axis and a rotation control axis fed along the feed control axis.
While the feed control shaft performs a feed operation based on the position command commanded to at least one of the feed control shaft and the rotation control shaft and the position and mass information of the eccentric load carried by the rotation control shaft . The force exerted on the rotation control shaft by the thrust applied to the eccentric load is calculated, or the centripetal force and tangential force applied to the eccentric load while the rotation control shaft is rotating are exerted on the feed control shaft. By calculating the force, the interference generated between the feed control axis and the rotation control axis is estimated,
Correcting a current command applied to at least one of the feed control axis and the rotation control axis based on the estimated interference;
A control method characterized by the above.
前記位置指令に従う前記送り制御軸及び前記回転制御軸の少なくとも一方の動作制御の周期よりも、1制御周期以上先行して前記干渉を推定し、該干渉に基づいて、該動作制御の該周期における前記電流指令を補正する、請求項5に記載の制御方法。   The interference is estimated at least one control period before the operation control period of at least one of the feed control axis and the rotation control axis according to the position command, and based on the interference, in the period of the operation control The control method according to claim 5, wherein the current command is corrected. 前記偏心荷重が変更されたときに、前記送り制御軸及び前記回転制御軸の一方を停止し他方を一定速度で回転させるテスト運転を行ない、該テスト運転において前記干渉を推定しない状態で前記送り制御軸及び前記回転制御軸のいずれか一方に指令される干渉相当の電流指令に基づき、変更された前記偏心荷重の位置及び質量を求めて、前記干渉を推定するために用いられる演算式における前記偏心荷重の位置及び質量の値を変更する、請求項5又は6に記載の制御方法。   When the eccentric load is changed, a test operation is performed in which one of the feed control shaft and the rotation control shaft is stopped and the other is rotated at a constant speed, and the feed control is performed without estimating the interference in the test operation. The eccentricity in the arithmetic expression used for estimating the interference by obtaining the position and mass of the changed eccentric load based on a current command equivalent to the interference commanded to one of the shaft and the rotation control shaft The control method according to claim 5 or 6, wherein the load position and the mass value are changed. 前記送り制御軸及び前記回転制御軸の一方を停止し他方を一定速度で回転させるテスト運転を行ない、該テスト運転において前記干渉を推定しない状態で前記送り制御軸及び前記回転制御軸のいずれか一方に指令される干渉相当の電流指令に基づいて、前記偏心荷重の前記位置及び質量情報を推定し、前記位置指令と、推定した該位置及び質量情報とに基づいて、前記干渉を推定する、請求項5又は6に記載の制御方法。   A test operation is performed in which one of the feed control axis and the rotation control axis is stopped and the other is rotated at a constant speed, and either the feed control axis or the rotation control axis is not estimated in the test operation. The position and mass information of the eccentric load is estimated based on a current command equivalent to the interference commanded to, and the interference is estimated based on the position command and the estimated position and mass information. Item 7. The control method according to Item 5 or 6.
JP2007038435A 2007-01-04 2007-02-19 Machine tool control apparatus and control method Active JP4299865B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007038435A JP4299865B2 (en) 2007-01-04 2007-02-19 Machine tool control apparatus and control method
CN2007103008490A CN101214622B (en) 2007-01-04 2007-12-29 Device and method for controlling machine tool
US12/003,818 US7847502B2 (en) 2007-01-04 2008-01-02 Device and method for controlling machine tool
EP08000056.5A EP1944669B1 (en) 2007-01-04 2008-01-03 Device and method for controlling machine tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007000132 2007-01-04
JP2007038435A JP4299865B2 (en) 2007-01-04 2007-02-19 Machine tool control apparatus and control method

Publications (2)

Publication Number Publication Date
JP2008186434A JP2008186434A (en) 2008-08-14
JP4299865B2 true JP4299865B2 (en) 2009-07-22

Family

ID=39621161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007038435A Active JP4299865B2 (en) 2007-01-04 2007-02-19 Machine tool control apparatus and control method

Country Status (2)

Country Link
JP (1) JP4299865B2 (en)
CN (1) CN101214622B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101758371B1 (en) 2010-08-18 2017-07-26 두산공작기계 주식회사 Method for Controlling Rotation Speed and Feedrate of Spindle of Machine Tool

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012006783T5 (en) * 2012-08-06 2015-04-30 Mitsubishi Electric Corporation Torque control device
CN103231277B (en) * 2013-04-17 2015-06-03 苏州新代数控设备有限公司 Mechanical sensing and controlling system of computerized numerical control (CNC) lathe for accelerating thread cutting circular machining
JP5670525B1 (en) 2013-08-21 2015-02-18 ファナック株式会社 Machine tool controller
JP6159196B2 (en) * 2013-08-26 2017-07-05 オークマ株式会社 Position controller for identifying low-frequency disturbances
JP5752229B2 (en) * 2013-12-27 2015-07-22 ファナック株式会社 Tool center of gravity position estimation device and machine tool
JP6487397B2 (en) * 2016-09-07 2019-03-20 ファナック株式会社 Machine tool control device, control method, and computer program
JP7068225B2 (en) * 2019-04-08 2022-05-16 ファナック株式会社 Machine tool control device with spindle and feed shaft

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071016A (en) * 2003-08-22 2005-03-17 Fanuc Ltd Numerical control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101758371B1 (en) 2010-08-18 2017-07-26 두산공작기계 주식회사 Method for Controlling Rotation Speed and Feedrate of Spindle of Machine Tool

Also Published As

Publication number Publication date
JP2008186434A (en) 2008-08-14
CN101214622B (en) 2010-06-16
CN101214622A (en) 2008-07-09

Similar Documents

Publication Publication Date Title
JP4299865B2 (en) Machine tool control apparatus and control method
US7847502B2 (en) Device and method for controlling machine tool
US10247301B2 (en) Servo control system with position compensation function for driven member
JP5897891B2 (en) Machine Tools
US8152422B2 (en) Control method for a machine tool with numerical control
WO2011099599A1 (en) Machine tool thermal displacement correction method and thermal displacement correction device
JPWO2014167636A1 (en) Numerical controller
US9152142B2 (en) Servo controller for correcting position error when moving member reverses
JP5851436B2 (en) Processing apparatus and processing method
WO2017047048A1 (en) Device and method for positioning processing tool
JPH0833763B2 (en) Numerical control unit
KR100450455B1 (en) Servo control method
JP3811088B2 (en) Servo control method
JP2012206188A (en) High-precision processing apparatus
CN109324568A (en) Position control
JP7134031B2 (en) Numerical control method and numerical control device
JP4448219B2 (en) Dynamic deflection correction method in motion controller and motion controller
JP2009104316A (en) The position control method for rotating structure
JP4503148B2 (en) Compensator for feeding mechanism of numerically controlled machine tool and numerically controlled machine tool
JP3363663B2 (en) Movable stage device
JP5334932B2 (en) Parameter setting method and parameter setting device
JP4870647B2 (en) Position control method for rotating structure
JP2007179364A (en) Apparatus for correcting amount of displacement of main shaft
JP5587040B2 (en) Positioning device
JP2000005977A (en) Controller for machine tool

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080522

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R150 Certificate of patent or registration of utility model

Ref document number: 4299865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5