JP2012206188A - High-precision processing apparatus - Google Patents

High-precision processing apparatus Download PDF

Info

Publication number
JP2012206188A
JP2012206188A JP2011072128A JP2011072128A JP2012206188A JP 2012206188 A JP2012206188 A JP 2012206188A JP 2011072128 A JP2011072128 A JP 2011072128A JP 2011072128 A JP2011072128 A JP 2011072128A JP 2012206188 A JP2012206188 A JP 2012206188A
Authority
JP
Japan
Prior art keywords
tool
drive motor
turning
machining
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011072128A
Other languages
Japanese (ja)
Other versions
JP5385330B2 (en
Inventor
Takashi Akiyama
喬 秋山
Tomoaki Nakasuji
智明 中筋
Tsugio Honoki
継雄 朴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011072128A priority Critical patent/JP5385330B2/en
Publication of JP2012206188A publication Critical patent/JP2012206188A/en
Application granted granted Critical
Publication of JP5385330B2 publication Critical patent/JP5385330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Milling Processes (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-precision processing apparatus that can perform high-precision processing by preventing a tool from being bent due to processing loads such as cutting resistance and grinding resistance to.SOLUTION: The high-precision processing apparatus includes a tool 4 having a columnar processing surface and rotating the processing surface by a rotary shaft 24, and performs processing by bringing the columnar processing surface of the tool 4 into contact with a workpiece 1 while rotating the columnar processing surface. The high-precision processing apparatus includes: a circling drive motor 5 for allowing the rotary shaft 24 of the tool 4 to circle in a horizontal direction relative to the workpiece 1; a torque sensor 17 for acquiring both output values of the circling drive motor 5 during processing and non-processing; a calculating part 14 for calculating the bending amount of the tool 4 relative to the rotary shaft 24 based on the output values of the circling drive motor 5 during processing and non-processing to determine the circling amount of a circling for balancing the bending amount; and a control part 16 for controlling the circling drive motor 5 so that the rotary shaft 24 of the tool 4 is situated by the circling amount of the circling.

Description

この発明は、短時間で高精度な直角度、真直度、円筒度、平面度等の形状精度を得る高精度加工装置に関するものであり、特に、切削抵抗もしくは研削抵抗などの加工負荷に起因する工具の撓みを精度良く補正し加工精度を向上するものである。   The present invention relates to a high-precision machining apparatus that obtains high-precision straightness, straightness, cylindricity, flatness, and other shape accuracy in a short time, and is particularly caused by machining loads such as cutting resistance or grinding resistance. It is intended to improve the machining accuracy by accurately correcting the deflection of the tool.

従来の高精度加工装置は、駆動モータからの発熱、テーブルの摺動面からの摩擦熱、加工点から発生する切削熱などにより熱変形が生じ、寸法精度が悪化するという問題点があった。また、工具が誤って主軸軸心に対して斜めにチャッキングされたり、工具のチャック部分と切れ歯部分の外径に偏心があったり、工具が偏心してチャッキングされたりした場合、工具が回転したときの切れ歯部分の外径の包絡線は、工具の外径と振れ量の和となり、加工される溝幅は工具の振れ量に相当する加工誤差が生じるという問題点があった。   The conventional high-precision processing apparatus has a problem in that dimensional accuracy deteriorates due to thermal deformation caused by heat generated from the drive motor, frictional heat from the sliding surface of the table, cutting heat generated from the processing point, and the like. In addition, if the tool is accidentally chucked diagonally with respect to the spindle axis, the outer diameter of the chuck and cutting teeth of the tool is eccentric, or the tool is eccentrically chucked, the tool rotates. In this case, the envelope of the outer diameter of the cutting edge portion is the sum of the outer diameter of the tool and the amount of runout, and the groove width to be machined has a problem that a machining error corresponding to the amount of runout of the tool occurs.

そこで従来の高精度加工装置では、回転中の工具の位置を加工機に設置された測定器により測定し、ワークを基準とした相対位置の変化を得ることで熱変位による誤差をも含んだ見かけ上の工具の外径を算出し、この見かけ上の工具の外径をNC制御部に入力することで、NC制御部内の工具座標をインラインで補正し、高精度な寸法精度を得ているものである(例えば、特許文献1参照)。   Therefore, in the conventional high-precision processing equipment, the position of the rotating tool is measured by a measuring instrument installed on the processing machine, and the change in relative position with respect to the workpiece is obtained to include an error due to thermal displacement. By calculating the outer diameter of the upper tool and inputting the apparent outer diameter of the tool to the NC control unit, the tool coordinates in the NC control unit are corrected in-line, and high dimensional accuracy is obtained. (For example, see Patent Document 1).

また、加工時間を短縮するため加工速度を上げると、加工負荷が増大し、その影響で工具に撓みが発生する。そのため高精度な形状精度が必要なワークに対しては、加工速度を下げて加工していたため、加工時間が長くなるという問題点があった。そこで従来の高精度加工装置は、スピンドル主軸のモータ電流、もしくはスピンドル主軸の動力から工具の撓み量を推定し、工具の撓み量に応じてスピンドル主軸をワークに対して傾けることで、短時間で高精度な形状精度を得ているものである(例えば、特許文献2参照)。   Further, when the machining speed is increased in order to shorten the machining time, the machining load increases, and the tool is bent due to the influence. For this reason, workpieces that require high shape accuracy have been processed at a lower processing speed, which has a problem that the processing time becomes longer. Therefore, the conventional high-precision machining device estimates the amount of tool deflection from the spindle spindle motor current or spindle spindle power, and tilts the spindle spindle relative to the workpiece in accordance with the tool deflection amount. High shape accuracy is obtained (see, for example, Patent Document 2).

特許第4172450号公報Japanese Patent No. 4172450 特許第3753886号公報Japanese Patent No. 375886

従来の前者の高精度加工装置の加工方法にあっては、ワークの寸法精度を改善するためのものであり、ワークの直角度や円筒度、平面度などの形状精度を改善できないといった問題点があった。また、後者の高精度加工装置にあっては、工具の撓み量をスピンドル主軸のモータ電流、もしくはスピンドル主軸の動力から推定する。このスピンドル主軸のモータ電流、もしくはスピンドル主軸の動力は、加工負荷のうち工具の接線方向に働く主分力に応じて変化する。工具の径方向に働き、工具の撓みの原因である背分力を直接測定しているため工具の撓み量の推定精度が悪く、加工負荷の変動に対応できないといった問題点があった。   The conventional processing method of the former high-precision processing apparatus is for improving the dimensional accuracy of the workpiece, and there is a problem that the shape accuracy such as the perpendicularity, cylindricity, and flatness of the workpiece cannot be improved. there were. In the latter high-precision machining apparatus, the amount of tool deflection is estimated from the motor current of the spindle spindle or the power of the spindle spindle. The motor current of the spindle main shaft or the power of the spindle main shaft changes according to the main component force acting in the tangential direction of the tool in the machining load. There is a problem that the accuracy of estimating the amount of bending of the tool is poor because it works in the radial direction of the tool and directly measures the back component force that causes the bending of the tool, and it cannot cope with the fluctuation of the machining load.

この発明は前記のような課題を解決するためになされたものであり、工具の撓みを精度良く測定し、加工精度を向上することができる高精度加工装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high-precision machining apparatus that can accurately measure the deflection of a tool and improve machining accuracy.

この発明は、
円柱形状の加工面を有し前記加工面を回転軸にて回転する工具を備え、ワークに前記工具の円柱形状の加工面を回転させながら当接させて加工を行う高精度加工装置において、
前記ワークに対して前記工具の回転軸を水平方向に旋回する旋回駆動モータと、
前記旋回駆動モータの非加工時の出力値および加工時の出力値を取得するセンサと、
前記旋回駆動モータの非加工時の出力値と前記加工時の出力値とから前記工具の回転軸に対する撓み量を算出して、前記撓み量を解消するための前記旋回の旋回量を決定する演算部と、
前記工具の回転軸が前記旋回の旋回量となるように前記旋回駆動モータを制御する制御部とを備えたものである。
This invention
In a high-precision machining apparatus that has a cylindrical machining surface and includes a tool that rotates the machining surface with a rotation axis, and performs machining by contacting the workpiece while rotating the cylindrical machining surface of the tool.
A turning drive motor for turning the rotation axis of the tool horizontally with respect to the workpiece;
A sensor for obtaining an output value at the time of non-machining and an output value at the time of machining of the turning drive motor;
An operation for calculating a turning amount of the turning for eliminating the bending amount by calculating a bending amount with respect to the rotation axis of the tool from an output value at the time of non-machining of the turning drive motor and an output value at the time of machining. And
And a control unit that controls the turning drive motor so that the rotation axis of the tool becomes the turning amount of the turning.

この発明の高精度加工装置は、
円柱形状の加工面を有し前記加工面を回転軸にて回転する工具を備え、ワークに前記工具の円柱形状の加工面を回転させながら当接させて加工を行う高精度加工装置において、
前記ワークに対して前記工具の回転軸を水平方向に旋回する旋回駆動モータと、
前記旋回駆動モータの非加工時の出力値および加工時の出力値を取得するセンサと、
前記旋回駆動モータの非加工時の出力値と前記加工時の出力値とから前記工具の回転軸に対する撓み量を算出して、前記撓み量を解消するための前記旋回の旋回量を決定する演算部と、
前記工具の回転軸が前記旋回の旋回量となるように前記旋回駆動モータを制御する制御部とを備えたので、
切削抵抗もしくは研削抵抗などの加工負荷に起因する工具の撓みを、背分力に対する反力を測定して解消しているので、高精度加工を行うことができる。
The high-precision machining apparatus of the present invention is
In a high-precision machining apparatus that has a cylindrical machining surface and includes a tool that rotates the machining surface with a rotation axis, and performs machining by contacting the workpiece while rotating the cylindrical machining surface of the tool.
A turning drive motor for turning the rotation axis of the tool horizontally with respect to the workpiece;
A sensor for obtaining an output value at the time of non-machining and an output value at the time of machining of the turning drive motor;
An operation for calculating a turning amount of the turning for eliminating the bending amount by calculating a bending amount with respect to the rotation axis of the tool from an output value at the time of non-machining of the turning drive motor and an output value at the time of machining. And
A control unit that controls the turning drive motor so that the rotation axis of the tool becomes the turning amount of the turning,
Since the bending of the tool due to the machining load such as cutting resistance or grinding resistance is eliminated by measuring the reaction force against the back component force, high-precision machining can be performed.

この発明の実施の形態1の高精度加工装置の構成を示す斜視図である。It is a perspective view which shows the structure of the high precision processing apparatus of Embodiment 1 of this invention. 図1に示した高精度加工装置の構成を示す上面図である。It is a top view which shows the structure of the high precision processing apparatus shown in FIG. 図1に示した高精度加工装置の構成を示す側面図である。It is a side view which shows the structure of the high precision processing apparatus shown in FIG. 図1に示した高精度加工装置の工具の先端の旋回量と変位センサの変位量との関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between the turning amount of the front-end | tip of the tool of the high precision processing apparatus shown in FIG. 1, and the displacement amount of a displacement sensor. 図1に示した高精度加工装置の工具とワークとの加工負荷の関係を説明するための工具の回転軸方向から見た模式図である。It is the schematic diagram seen from the rotating shaft direction of the tool for demonstrating the relationship of the processing load of the tool and workpiece | work of the high precision processing apparatus shown in FIG. 図1に示した高精度加工装置における加工負荷の関係を説明するための上方から見た模式図である。It is the schematic diagram seen from upper direction for demonstrating the relationship of the processing load in the high precision processing apparatus shown in FIG. 高精度加工装置の背分力の影響を受けて撓んだ工具の状態を示す図である。It is a figure which shows the state of the tool bent by the influence of the back component force of a high precision processing apparatus. この発明の実施の形態1における高精度加工装置の工具の撓み量に応じて工具を旋回させた状態を示す図である。It is a figure which shows the state which turned the tool according to the deflection amount of the tool of the high precision processing apparatus in Embodiment 1 of this invention. 図1に示した高精度加工装置の背分力と背分力に対する反力との関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between the back component force and the reaction force with respect to a back component force of the high precision processing apparatus shown in FIG. この発明の実施の形態2の高精度加工装置の構成を示す上面図である。It is a top view which shows the structure of the high precision processing apparatus of Embodiment 2 of this invention.

実施の形態1.
以下、本願発明の実施の形態について説明する。図1はこの発明の実施の形態1における高精度加工装置の構成を斜視図、図2は図1に示した高精度加工装置の構成を示す上面図、図3は図1に示した高精度加工装置の構成を示す側面図、図4は図1に示した高精度加工装置の工具の先端の旋回量と変位センサの変位量との関係を説明するための模式図、図5は図1に示した高精度加工装置の工具とワークとの加工負荷の関係を説明するための工具の回転軸方向から見た模式図、図6は図1に示した高精度加工装置における加工負荷の関係を説明するための上方から見た模式図、図7は高精度加工装置の背分力の影響を受けて撓んだ工具の状態を示す図、図8はこの発明の実施の形態1における高精度加工装置の工具の撓み量に応じて工具を旋回させた状態を示す図、図9は図1に示した高精度加工装置の背分力と背分力に対する反力との関係を説明するための模式図である。
Embodiment 1 FIG.
Embodiments of the present invention will be described below. 1 is a perspective view of the configuration of a high-precision machining apparatus according to Embodiment 1 of the present invention, FIG. 2 is a top view showing the configuration of the high-precision machining apparatus shown in FIG. 1, and FIG. 3 is the high-precision machining apparatus shown in FIG. FIG. 4 is a side view showing the configuration of the machining apparatus, FIG. 4 is a schematic diagram for explaining the relationship between the turning amount of the tool tip of the high-precision machining apparatus shown in FIG. 1 and the displacement amount of the displacement sensor, and FIG. FIG. 6 is a schematic view seen from the direction of the rotation axis of the tool for explaining the relationship between the machining load of the tool and workpiece of the high-precision machining apparatus shown in FIG. 6, and FIG. 7 is a schematic diagram viewed from above, FIG. 7 is a diagram showing the state of the tool bent under the influence of the back component force of the high-precision machining apparatus, and FIG. 8 is a diagram showing the high level in Embodiment 1 of the present invention. The figure which shows the state which turned the tool according to the deflection amount of the tool of a precision processing apparatus, FIG. 9 is the height shown in FIG. It is a schematic view for explaining the relationship between the reaction force against the back component force and back component force in degrees machining apparatus.

図において、高精度加工装置は短時間で高精度な直角度、真直度、円筒度、平面度等の形状の加工を行うものであり、ワーク1を加工する工具4と、ワーク1と工具4との相対距離を変更するために、ワーク1の厚み方向であるZ軸に相対的に移動可能なZ軸テーブル20と、Z軸に直行し工具4の送り方向であるX軸に相対的に移動可能なX軸テーブル21と、Z軸およびX軸にそれぞれ直行するY軸に相対的に移動可能なY軸テーブル22と、ワーク1に対して工具4の回転軸24を水平方向に旋回する旋回駆動モータ5と、
旋回駆動モータ5により駆動するボールネジ6と、旋回駆動モータ5の非加工時の出力値および加工時の出力値を旋回駆動モータ5の出力値として出力トルクを検出するセンサとしてのトルクセンサ17と、Y軸テーブル22に載置され、ワーク1を保持して中心軸23にて回転するワークスピンドル2と、ワーク1と対向する位置で工具4を保持して回転軸24にて回転する工具スピンドル3とを備える。
In the drawing, a high-precision machining apparatus performs high-precision straightness, straightness, cylindricity, flatness, and other shapes in a short time, and includes a tool 4 for machining a workpiece 1, a workpiece 1 and a tool 4. In order to change the relative distance between the Z axis table 20 that is movable relative to the Z axis that is the thickness direction of the workpiece 1 and the X axis that is orthogonal to the Z axis and that is the feed direction of the tool 4 A movable X-axis table 21, a Y-axis table 22 movable relative to a Y-axis orthogonal to the Z-axis and the X-axis, respectively, and a rotating shaft 24 of the tool 4 with respect to the workpiece 1 are turned in the horizontal direction. A turning drive motor 5;
A ball screw 6 driven by the turning drive motor 5, a torque sensor 17 as a sensor for detecting an output torque using the output value when the turning drive motor 5 is not processed and the output value when processed as an output value of the turning drive motor 5, A work spindle 2 mounted on the Y-axis table 22 and holding the work 1 and rotating on the central axis 23, and a tool spindle 3 holding the tool 4 at a position facing the work 1 and rotating on the rotary shaft 24. With.

さらに、工具スピンドル3を保持するスピンドルホルダ8と、スピンドルホルダ8が載置されている旋回ベース7と、旋回ベース7の下面に形成されている旋回ガイド9と、X軸テーブル21に載置され旋回ガイド9を上面に設置する下部ベース25と、下部ベース25と旋回ベース7との相対的な変位量を検出する変位センサ10と、旋回駆動モータ5を駆動制御するためのモータドライバ11と、トルクセンサ17の信号を変換する第1変換器15と、変位センサ10の信号を変換する第2変換器12と、旋回駆動モータ5の非加工時の出力トルクの値を格納するデータセンタ13と、データセンタ13に格納された出力トルクの値と加工時の出力トルクの値とから工具4の回転軸24に対する撓み量を算出して、撓み量を解消するための工具4の回転軸24の旋回の旋回量を決定する演算部14と、工具4の回転軸24が旋回の旋回量となるようにモータドライバ11を制御して旋回駆動モータ5を駆動する制御部16とを備える。   Further, a spindle holder 8 for holding the tool spindle 3, a turning base 7 on which the spindle holder 8 is placed, a turning guide 9 formed on the lower surface of the turning base 7, and an X-axis table 21. A lower base 25 for installing the turning guide 9 on the upper surface, a displacement sensor 10 for detecting a relative displacement amount between the lower base 25 and the turning base 7, a motor driver 11 for driving and controlling the turning drive motor 5, A first converter 15 that converts the signal of the torque sensor 17; a second converter 12 that converts the signal of the displacement sensor 10; and a data center 13 that stores the value of the output torque of the turning drive motor 5 when not processed. In order to eliminate the deflection amount, the deflection amount of the tool 4 with respect to the rotary shaft 24 is calculated from the output torque value stored in the data center 13 and the output torque value at the time of machining. A calculation unit 14 that determines a turning amount of the turning of the rotating shaft 24 of the tool 4 and a control unit that drives the turning drive motor 5 by controlling the motor driver 11 so that the rotating shaft 24 of the tool 4 has a turning amount of turning. 16.

工具4は、円柱形状の加工面を有し、加工面が回転軸24にて工具スピンドル3を介して回転する。そして、ワーク1に工具4の円柱形状の加工面を回転させながら当接させて加工が行われる。そして旋回駆動モータ5の駆動により、加工点Aと工具4の回転軸24とを含む平面内において、加工点Aを中心に旋回を行うために、旋回ガイド9は、加工点Aを通るY軸方向の軸を中心とする円弧形状にて形成されている。よって、旋回駆動モータ5を駆動することで、ボールネジ6を介して旋回ベース7、スピンドルホルダ8、工具スピンドル3、工具4が旋回ガイド9に沿って旋回する。そして、ワーク1に対して工具4を、X軸テーブル21、Y軸テーブル22およびZ軸テーブル20を用いて、X軸方向、Y軸方向、Z軸方向に相対的に駆動することで、ワーク1を任意の形状に加工できる。   The tool 4 has a cylindrical machining surface, and the machining surface rotates on the rotation shaft 24 via the tool spindle 3. Then, machining is performed by contacting the workpiece 1 while rotating the cylindrical machining surface of the tool 4. Then, in order to make a turning around the machining point A in a plane including the machining point A and the rotating shaft 24 of the tool 4 by the drive of the turning drive motor 5, the turning guide 9 has a Y axis passing through the machining point A. It is formed in an arc shape centered on the direction axis. Therefore, by driving the turning drive motor 5, the turning base 7, the spindle holder 8, the tool spindle 3, and the tool 4 are turned along the turning guide 9 through the ball screw 6. The tool 4 is driven relative to the workpiece 1 in the X-axis direction, the Y-axis direction, and the Z-axis direction using the X-axis table 21, the Y-axis table 22, and the Z-axis table 20, thereby 1 can be processed into an arbitrary shape.

上記のように構成された実施の形態1の高精度加工装置の動作について説明する。まず、工具4の先端の旋回量h3について図4に基づいて説明する。工具4の先端の旋回量h3は、変位センサ10により測定した旋回ベース7の変位量、すなわち変位センサ10の変位量を、第2変換器12を介して取得して求めることができる。
すなわち、旋回中心点Bから工具4の先端までの距離h1と、旋回中心点Bから変位センサ10の位置までの距離h2の比が例えば1:5の場合、工具4の先端の旋回量h3は変位センサ10の変位量h4の1/5となり、検出することができる。尚、旋回ベース7の旋回量を検出する例を示したが、スピンドルホルダ8の旋回量から算出することもできる。
The operation of the high precision machining apparatus of the first embodiment configured as described above will be described. First, the turning amount h3 at the tip of the tool 4 will be described with reference to FIG. The turning amount h3 of the tip of the tool 4 can be obtained by obtaining the displacement amount of the turning base 7 measured by the displacement sensor 10, that is, the displacement amount of the displacement sensor 10 through the second converter 12.
That is, when the ratio of the distance h1 from the turning center point B to the tip of the tool 4 and the distance h2 from the turning center point B to the position of the displacement sensor 10 is, for example, 1: 5, the turning amount h3 at the tip of the tool 4 is It becomes 1/5 of the displacement amount h4 of the displacement sensor 10 and can be detected. In addition, although the example which detects the turning amount of the turning base 7 was shown, it can also be calculated from the turning amount of the spindle holder 8.

次に、加工負荷Fについて図5、図6に基づいて説明する。工具4のワーク1に対する加工負荷Fは、主分力Fcと背分力Ftとに分解できる。主分力Fcは工具4の加工点Aにおける接線方向の力であり、工具スピンドル3を回転するために必要な動力の大きさを決める要素である。また、背分力Ftは工具4の加工点Aにおける径軸方向の力、すなわち工具4をワーク1に押し付けている力であり、工具4が撓む要素である。   Next, the machining load F will be described with reference to FIGS. The machining load F on the workpiece 1 of the tool 4 can be decomposed into a main component force Fc and a back component force Ft. The main component force Fc is a tangential force at the machining point A of the tool 4 and is an element that determines the magnitude of the power required to rotate the tool spindle 3. Further, the back component force Ft is a force in the radial direction at the processing point A of the tool 4, that is, a force pressing the tool 4 against the workpiece 1, and is an element by which the tool 4 bends.

次に、工具4の回転軸24に対する撓み量Yと背分力Ftとの関係について図7を用いて説明する。尚、図7から明らかなように、撓み量Yとは、工具4の回転軸24に対する撓み量と同一である。工具4上の加工点Aに先に示した背分力Ftが加わっている場合、工具4の工具長をL、工具4の先端から加工点Aまでの距離をL1、LとL1との差をL2、工具4の縦弾性係数をE、断面2次モーメントをIとすると、工具4の撓み量Yは、片持ち梁における撓みの式から、以下に示す式(1)が成り立つ。
Y=(Ft×L2/(3×E×I))×(1+(3×L1)/(2×L2))
そして、L1、L2は加工条件により、Eは工具4の材質により、Iは工具4の断面形状により、それぞれ予め決まっている数値である。そのため、背分力Ftが分かれば、工具4の撓み量Yが推定できる。
Next, the relationship between the deflection amount Y of the tool 4 with respect to the rotating shaft 24 and the back component force Ft will be described with reference to FIG. As is clear from FIG. 7, the deflection amount Y is the same as the deflection amount of the tool 4 with respect to the rotating shaft 24. When the back component force Ft shown above is applied to the machining point A on the tool 4, the tool length of the tool 4 is L, the distance from the tip of the tool 4 to the machining point A is L1, and the difference between L1 and L1 Is L2, the longitudinal elastic modulus of the tool 4 is E, and the moment of inertia of the cross section is I, the bending amount Y of the tool 4 is expressed by the following equation (1) from the bending equation of the cantilever.
Y = (Ft × L2 3 / (3 × E × I)) × (1+ (3 × L1) / (2 × L2))
L1 and L2 are numerical values determined in advance according to machining conditions, E is determined according to the material of the tool 4, and I is determined according to the cross-sectional shape of the tool 4, respectively. Therefore, if the back component force Ft is known, the deflection amount Y of the tool 4 can be estimated.

加工負荷Fが変動する要因として、ワーク1とワークスピンドル2との芯ズレに起因するワーク1の振れや、工具4と工具スピンドル3との芯ズレに起因する工具4の振れ、加工前のワーク1の形状精度や加工による工具4の状態の変化が挙げられる。このような要因で加工負荷Fが変動すれば、それに応じて上記に示した背分力Ftも変動し、工具4の撓み量も変動する。つまり、背分力Ftの影響で工具4が撓み、その結果、ワーク1の直角度が図7に示すように悪化する。また、ワーク1を加工する箇所ごとに背分力Ftが変動するため、工具4の撓み量が変動する。その結果、加工する箇所ごとにワーク1の直角度が変化するので、ワーク1の加工面に図7に示すようなうねりが生じる。   Factors that cause the machining load F to fluctuate include runout of the workpiece 1 caused by misalignment between the workpiece 1 and the workpiece spindle 2, runout of the tool 4 caused by misalignment between the tool 4 and the tool spindle 3, and the workpiece before machining. The shape accuracy of 1 and the change of the state of the tool 4 due to processing can be mentioned. If the machining load F fluctuates due to such factors, the back component force Ft shown above fluctuates accordingly, and the amount of deflection of the tool 4 also fluctuates. That is, the tool 4 bends due to the influence of the back component force Ft, and as a result, the perpendicularity of the workpiece 1 deteriorates as shown in FIG. Moreover, since the back component force Ft fluctuates for every part which processes the workpiece | work 1, the deflection amount of the tool 4 fluctuates. As a result, since the perpendicularity of the workpiece 1 changes for each part to be machined, the swell as shown in FIG.

このことを解消するために、本願実施の形態1においては、図8に示すように、工具4をワーク1に押し付ける方向に加工点Aを中心に工具スピンドル3を旋回させる。このときの工具スピンドル3の旋回量は、工具4の撓み量Yが解消するためのもので、工具4の先端が移動する量である。よって、工具4の撓み量Yを加工中に検出し、この撓み量Yに応じて工具スピンドル3の旋回量を調整する。   In order to solve this problem, in Embodiment 1 of the present application, as shown in FIG. 8, the tool spindle 3 is turned around the processing point A in the direction in which the tool 4 is pressed against the workpiece 1. The turning amount of the tool spindle 3 at this time is for eliminating the bending amount Y of the tool 4 and is the amount by which the tip of the tool 4 moves. Therefore, the deflection amount Y of the tool 4 is detected during machining, and the turning amount of the tool spindle 3 is adjusted according to the deflection amount Y.

しかし、加工中に工具4の撓み量Yを直接測定することは、加工負荷による振動や、切削水、研削水による影響、さらにワーク1が通常の測定時と比較して高速に回転していることなどから、困難である。そこで先に示した背分力Ftを測定して検出する。加工中の背分力Ftは、旋回ベース7やボールネジ6を介して旋回駆動モータ5に伝わる。すなわち加工中の旋回駆動モータ5は、工具スピンドル3をその場に保持するための駆動力と、背分力Ftに対する反力Ft’とを加えた大きさの駆動力を出力している。   However, the direct measurement of the deflection amount Y of the tool 4 during machining means that vibration due to machining load, the influence of cutting water and grinding water, and the work 1 rotates at a higher speed than during normal measurement. This is difficult. Therefore, the above-described back component force Ft is measured and detected. The back component force Ft during processing is transmitted to the turning drive motor 5 via the turning base 7 and the ball screw 6. In other words, the turning drive motor 5 during processing outputs a drive force having a magnitude obtained by adding a drive force for holding the tool spindle 3 in place and a reaction force Ft ′ against the back component force Ft.

そこでまず、工具スピンドル3をその場に保持するための駆動力としての、非加工時の旋回駆動モータ5の出力トルクを、トルクセンサ17を用いて測定し、第1変換器15を介してデータセンタ13に蓄積する。次に、加工中の旋回駆動モータ5の出力トルクをトルクセンサ17で測定する。
次に、非加工時の出力トルクと加工時の出力トルクとの差を演算部14にて算出した結果が、背分力Ftに対する反力Ft’に相当する。この演算を加工中に繰り返すことで、加工している場所に応じて背分力Ftに対する反力Ft’を得ることができる。
Therefore, first, the output torque of the turning drive motor 5 at the time of non-machining as a driving force for holding the tool spindle 3 in place is measured using the torque sensor 17, and the data is transmitted via the first converter 15. Accumulate in the center 13. Next, the output torque of the turning drive motor 5 being processed is measured by the torque sensor 17.
Next, the result of calculating the difference between the output torque during non-machining and the output torque during machining by the calculation unit 14 corresponds to the reaction force Ft ′ with respect to the back component force Ft. By repeating this calculation during machining, a reaction force Ft ′ with respect to the back component force Ft can be obtained in accordance with the machining location.

次に、背分力Ftと背分力Ftに対する反力Ft’との関係について、図9に基づいて説明する。旋回中心点Bから加工点Aまでの距離h5と、旋回駆動モータ5までの距離h6との比が例えば1:5の場合、背分力Ftに対する反力Ft’の1/5が背分力Ftに相当する。ここで推定した背分力Ftを上記式(1)に代入することで、工具4の撓み量Yを算出できる。そして、加工している箇所ごとに背分力Ftに対する反力Ft’を検出し、工具4の撓み量Yも加工している箇所ごとに算出できる。   Next, the relationship between the back component force Ft and the reaction force Ft 'with respect to the back component force Ft will be described with reference to FIG. When the ratio of the distance h5 from the turning center point B to the machining point A and the distance h6 to the turning drive motor 5 is, for example, 1: 5, 1/5 of the reaction force Ft ′ to the back force Ft is the back force. Corresponds to Ft. The deflection amount Y of the tool 4 can be calculated by substituting the estimated back component force Ft into the above equation (1). Then, the reaction force Ft ′ with respect to the back component force Ft is detected for each processed part, and the deflection amount Y of the tool 4 can be calculated for each processed part.

そして、先に示したように、旋回中心点Bから工具4の先端までの距離h1と変位センサ10までの距離h2の比を1:5とすると、変位センサ10の変位量が撓み量Yの5倍になるよう旋回駆動モータ5を駆動する。この旋回駆動モータ5の駆動量を加工箇所ごとに調整することで、直角度が良好で加工することができ、加工面のうねりが抑えられたワーク1を得ることができる。
尚、本実施の形態1においては、旋回ベース7の変位量を監視するセンサとして変位センサ10を用いる例を示したが、これに限られることはなく、旋回駆動モータ5にエンコーダを設置し、このエンコーダを用いるようにしても同様に行うことができる。
As described above, when the ratio of the distance h1 from the turning center point B to the tip of the tool 4 and the distance h2 to the displacement sensor 10 is 1: 5, the displacement amount of the displacement sensor 10 is the deflection amount Y. The turning drive motor 5 is driven so as to be 5 times. By adjusting the drive amount of the turning drive motor 5 for each machining location, it is possible to obtain a workpiece 1 that can be machined with a good squareness and in which the waviness of the machining surface is suppressed.
In the first embodiment, the example in which the displacement sensor 10 is used as a sensor for monitoring the displacement amount of the turning base 7 is shown. However, the present invention is not limited to this, and an encoder is installed in the turning drive motor 5. Even if this encoder is used, the same operation can be performed.

上記実施の形態1によれば、工具の撓みの原因である背分力に対する反力を測定し、加工中に加工負荷が変動しても、この変動に応じて工具の旋回の旋回量を調整することが可能となり、高精度な形状精度が得られる。また、駆動モータの出力値を出力トルクにより測定しているので、測定精度が向上する。   According to the first embodiment, the reaction force against the back component force that causes the bending of the tool is measured, and even if the machining load fluctuates during machining, the turning amount of the tool turning is adjusted according to this fluctuation. It becomes possible to obtain a highly accurate shape accuracy. Further, since the output value of the drive motor is measured by the output torque, the measurement accuracy is improved.

実施の形態2.
上記実施の形態1では旋回駆動モータ5の出力値として、出力トルクを用いる例を示しが、これに限られることはなく、図10に示すように、旋回駆動モータ5へのモータドライバ11からの出力電力を旋回駆動モータ5の出力値として測定するセンサとしての電力計18を設置し、この電力計18を用いて出力電力を検出して上記実施の形態1と同様に行うことが可能であり、上記実施の形態1と同様の効果を奏することができる。さらにこの場合、電圧と電流との位相が一致していなくても有効電力を測定できるので、高い測定精度が得られる。また、電力計と旋回駆動モータとを近接して設置する必要がないことから旋回駆動モータ周辺の小型化が可能になる。
Embodiment 2. FIG.
In the first embodiment, an example in which the output torque is used as the output value of the turning drive motor 5 is shown. However, the present invention is not limited to this, and as shown in FIG. It is possible to install the wattmeter 18 as a sensor for measuring the output power as the output value of the turning drive motor 5 and detect the output power using the wattmeter 18 to perform the same as in the first embodiment. The same effects as those of the first embodiment can be obtained. Furthermore, in this case, since the active power can be measured even if the phase of the voltage and the current does not match, high measurement accuracy can be obtained. Further, since it is not necessary to install the power meter and the turning drive motor close to each other, it is possible to reduce the size of the periphery of the turning drive motor.

実施の形態3.
上記実施の形態2では旋回駆動モータ5へのモータドライバ11からの出力電力を計測する例を示したが、これに限られることはなく、旋回駆動モータ5へのモータドライバ11からの出力電流を旋回駆動モータ5の出力値として、上記実施の形態2の電力計18と同一の箇所に電力計18に換えてセンサとしての電流計を設置して出力電流を計測して、上記各実施の形態と同様に行うことが可能であり、上記各実施の形態と同様の効果を奏することができる。さらにこの場合、出力電流を測定するための電流計が安価であり、コストを低減することができる。また、電流計と旋回駆動モータとを近接して設置する必要がないことから旋回駆動モータ周辺の小型化が可能になる。また、電力計と比較して小型であることから制御部の周辺も小型化が可能になる。
Embodiment 3 FIG.
In the second embodiment, an example in which the output power from the motor driver 11 to the swing drive motor 5 is measured has been described. However, the present invention is not limited to this, and the output current from the motor driver 11 to the swing drive motor 5 is measured. As an output value of the swing drive motor 5, an ammeter as a sensor is installed instead of the wattmeter 18 at the same location as the wattmeter 18 of the second embodiment, and an output current is measured. And the same effects as those of the above-described embodiments can be obtained. Further, in this case, an ammeter for measuring the output current is inexpensive and the cost can be reduced. In addition, since it is not necessary to install the ammeter and the swing drive motor close to each other, it is possible to reduce the size of the periphery of the swing drive motor. Moreover, since it is small compared with a wattmeter, the periphery of a control part can also be reduced in size.

尚、上記各実施の形態では、ワークスピンドル2にてワーク1を回転して加工を行う例を示したが、これに限られることはなく、ワークが回転しないような加工においても上記各実施の形態と同様に行うことができ、同様の効果を奏することができる。   In each of the above-described embodiments, an example is shown in which the workpiece 1 is rotated by the workpiece spindle 2 to perform machining. However, the present invention is not limited to this. This can be performed in the same manner as the embodiment, and the same effect can be obtained.

また、上記各実施の形態においては、Z軸テーブル20、X軸テーブル21、Y軸テーブル22などを備える例を示したがこれに限られることはなく、他の移動手段であっても、上記実施の形態と同様に行うことが可能であり、同様の効果を奏することができる。   In each of the above embodiments, an example including the Z-axis table 20, the X-axis table 21, the Y-axis table 22, and the like has been described. However, the present invention is not limited to this. This can be performed in the same manner as in the embodiment, and the same effect can be obtained.

1 ワーク、2 ワークスピンドル、3 工具スピンドル、4 工具、
5 旋回駆動モータ、11 モータドライバ、14 演算部、16 制御部、
17 トルクセンサ、18 電力計、20 Z軸テーブル、21 X軸テーブル、
22 Y軸テーブル、24 回転軸、A 加工点、B 旋回中心点。
1 work, 2 work spindles, 3 tool spindles, 4 tools,
5 slewing drive motor, 11 motor driver, 14 calculation unit, 16 control unit,
17 Torque sensor, 18 Wattmeter, 20 Z-axis table, 21 X-axis table,
22 Y-axis table, 24 rotation axis, A machining point, B turning center point.

Claims (6)

円柱形状の加工面を有し前記加工面を回転軸にて回転する工具を備え、ワークに前記工具の円柱形状の加工面を回転させながら当接させて加工を行う高精度加工装置において、
前記ワークに対して前記工具の回転軸を水平方向に旋回する旋回駆動モータと、
前記旋回駆動モータの非加工時の出力値および加工時の出力値を取得するセンサと、
前記旋回駆動モータの非加工時の出力値と前記加工時の出力値とから前記工具の回転軸に対する撓み量を算出して、前記撓み量を解消するための前記旋回の旋回量を決定する演算部と、
前記工具の回転軸が前記旋回の旋回量と成るように前記旋回駆動モータを制御する制御部とを備えたことを特徴とする高精度加工装置。
In a high-precision machining apparatus that has a cylindrical machining surface and includes a tool that rotates the machining surface with a rotation axis, and performs machining by contacting the workpiece while rotating the cylindrical machining surface of the tool.
A turning drive motor for turning the rotation axis of the tool horizontally with respect to the workpiece;
A sensor for obtaining an output value at the time of non-machining and an output value at the time of machining of the turning drive motor;
An operation for calculating a turning amount of the turning for eliminating the bending amount by calculating a bending amount with respect to the rotation axis of the tool from an output value at the time of non-machining of the turning drive motor and an output value at the time of machining. And
A high-precision machining apparatus, comprising: a control unit that controls the turning drive motor so that a rotation axis of the tool becomes a turning amount of the turning.
前記旋回駆動モータの出力値は、前記旋回駆動モータの出力トルクから得ることを特徴とする請求項1に記載の高精度加工装置。 The high-precision machining apparatus according to claim 1, wherein an output value of the turning drive motor is obtained from an output torque of the turning drive motor. 前記旋回駆動モータの出力値は、前記旋回駆動モータへのモータドライバからの出力電力から得ることを特徴とする請求項1に記載の高精度加工装置。 The high precision machining apparatus according to claim 1, wherein the output value of the turning drive motor is obtained from output power from a motor driver to the turning drive motor. 前記旋回駆動モータの出力値は、前記旋回駆動モータへのモータドライバからの出力電流から得ることを特徴とする請求項1に記載の高精度加工装置。 The high precision machining apparatus according to claim 1, wherein the output value of the turning drive motor is obtained from an output current from a motor driver to the turning drive motor. 前記ワークを保持して回転するワークスピンドルと、
前記ワークと対向する位置で前記工具を保持して前記回転軸にて回転する工具スピンドルとを備え、
前記ワークと前記工具との相対距離を変更するために、前記ワークの厚み方向であるZ軸と、前記Z軸に直行し前記工具の送り方向であるX軸と、前記Z軸および前記X軸にそれぞれ直行するY軸とを有し、
前記旋回駆動モータは、加工点と前記工具の回転軸とを含む平面内において、前記加工点を中心に前記旋回を行うことを特徴とする請求項1ないし請求項4のいずれか1項に記載の高精度加工装置。
A work spindle that holds and rotates the work;
A tool spindle that holds the tool at a position facing the workpiece and rotates on the rotating shaft;
In order to change the relative distance between the workpiece and the tool, the Z-axis which is the thickness direction of the workpiece, the X-axis which is orthogonal to the Z-axis and which is the feed direction of the tool, the Z-axis and the X-axis Each having a Y axis perpendicular to
The said turning drive motor performs the said turning centering | focusing on the said processing point in the plane containing a processing point and the rotating shaft of the said tool, It is any one of Claim 1 thru | or 4 characterized by the above-mentioned. High precision processing equipment.
前記ワークを保持する保持部と、
前記ワークと対向する位置で前記工具を保持して前記回転軸にて回転する工具スピンドルとを備え、
前記ワークと前記工具との相対距離を変更するために、前記ワークの厚み方向であるZ軸と、前記Z軸に直行し前記工具の送り方向であるX軸と、前記Z軸および前記X軸にそれぞれ直行するY軸とを有し、
前記旋回駆動モータは、加工点と前記工具の回転軸とを含む平面内において、前記加工点を中心に前記旋回を行うこと特徴とする請求項1ないし請求項4のいずれか1項に記載の高精度加工装置。
A holding unit for holding the workpiece;
A tool spindle that holds the tool at a position facing the workpiece and rotates on the rotating shaft;
In order to change the relative distance between the workpiece and the tool, the Z-axis which is the thickness direction of the workpiece, the X-axis which is orthogonal to the Z-axis and which is the feed direction of the tool, the Z-axis and the X-axis Each having a Y axis perpendicular to
The said turning drive motor performs the said turning centering | focusing on the said process point in the plane containing a process point and the rotating shaft of the said tool. High precision processing equipment.
JP2011072128A 2011-03-29 2011-03-29 High precision processing equipment Active JP5385330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011072128A JP5385330B2 (en) 2011-03-29 2011-03-29 High precision processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011072128A JP5385330B2 (en) 2011-03-29 2011-03-29 High precision processing equipment

Publications (2)

Publication Number Publication Date
JP2012206188A true JP2012206188A (en) 2012-10-25
JP5385330B2 JP5385330B2 (en) 2014-01-08

Family

ID=47186428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011072128A Active JP5385330B2 (en) 2011-03-29 2011-03-29 High precision processing equipment

Country Status (1)

Country Link
JP (1) JP5385330B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101672929B1 (en) * 2016-02-01 2016-11-17 주식회사 수림정밀 Apparatus for Manufacturing Part
JP2017056533A (en) * 2015-09-18 2017-03-23 シチズン時計株式会社 Cutting device and control method thereof
CN111390559A (en) * 2020-04-30 2020-07-10 江苏富技腾机电科技有限公司 Wire twisting machine
WO2021014749A1 (en) * 2019-07-24 2021-01-28 株式会社日立製作所 Nc program generation system and nc program generation method
KR102267728B1 (en) * 2021-04-06 2021-06-22 (주)태영정공 Wheel roller polishing device
JP2021099590A (en) * 2019-12-20 2021-07-01 日立Geニュークリア・エナジー株式会社 Machined surface shape predicting device and its method
CN113458865A (en) * 2021-07-06 2021-10-01 苏州共腾精密机械有限公司 Centering method for machine tool spindle and tool turret

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217247A (en) * 1982-06-04 1983-12-17 Okuma Mach Works Ltd Supervisory method of abnormal phenomenon at cutting
JPS63191559A (en) * 1987-02-04 1988-08-09 Mazda Motor Corp Swivel device for grinding machine
JPH01299302A (en) * 1988-05-26 1989-12-04 Amada Co Ltd Control valve and cut controlling device of cutter utilizing the control valve
JPH08132334A (en) * 1994-11-02 1996-05-28 Kubota Corp Cutting tool breakage detection method in machining center

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217247A (en) * 1982-06-04 1983-12-17 Okuma Mach Works Ltd Supervisory method of abnormal phenomenon at cutting
JPS63191559A (en) * 1987-02-04 1988-08-09 Mazda Motor Corp Swivel device for grinding machine
JPH01299302A (en) * 1988-05-26 1989-12-04 Amada Co Ltd Control valve and cut controlling device of cutter utilizing the control valve
JPH08132334A (en) * 1994-11-02 1996-05-28 Kubota Corp Cutting tool breakage detection method in machining center

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017056533A (en) * 2015-09-18 2017-03-23 シチズン時計株式会社 Cutting device and control method thereof
KR101672929B1 (en) * 2016-02-01 2016-11-17 주식회사 수림정밀 Apparatus for Manufacturing Part
WO2021014749A1 (en) * 2019-07-24 2021-01-28 株式会社日立製作所 Nc program generation system and nc program generation method
JP2021022014A (en) * 2019-07-24 2021-02-18 株式会社日立製作所 NC program generation system and NC program generation method
CN113874799A (en) * 2019-07-24 2021-12-31 株式会社日立制作所 NC program creation system and NC program creation method
CN113874799B (en) * 2019-07-24 2024-04-02 株式会社日立制作所 NC program generation system and NC program generation method
US12030148B2 (en) 2019-07-24 2024-07-09 Hitachi, Ltd. NC program generation system and NC program generation method
JP2021099590A (en) * 2019-12-20 2021-07-01 日立Geニュークリア・エナジー株式会社 Machined surface shape predicting device and its method
JP7362468B2 (en) 2019-12-20 2023-10-17 日立Geニュークリア・エナジー株式会社 Machined surface shape prediction device and method
CN111390559A (en) * 2020-04-30 2020-07-10 江苏富技腾机电科技有限公司 Wire twisting machine
KR102267728B1 (en) * 2021-04-06 2021-06-22 (주)태영정공 Wheel roller polishing device
CN113458865A (en) * 2021-07-06 2021-10-01 苏州共腾精密机械有限公司 Centering method for machine tool spindle and tool turret

Also Published As

Publication number Publication date
JP5385330B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5385330B2 (en) High precision processing equipment
CN104368886B (en) The processing method of cutting element and wire electric discharge machine
CN109465502B (en) Method and apparatus for shaving teeth
JP4276270B2 (en) Machine tool with workpiece reference position setting function by contact detection
JP5851436B2 (en) Processing apparatus and processing method
WO2011052442A1 (en) Machine tool
JP5655576B2 (en) Work centering device and centering method
JP2014191607A (en) Numerical control machine tool, and correction method of main shaft error in numerical control machine tool
JP2007175804A (en) Control device of machine tool
JP2009192254A (en) Drill shape measuring apparatus
KR20130122760A (en) Centering method for optical elements
JP6638736B2 (en) Machine tool and cutting method
JP5581825B2 (en) Machine tool reference position detection apparatus and reference position detection method
JP2007257606A (en) Method for correcting tool alignment error
JP2011206862A (en) Method of positioning rotary tool in multishaft processing machine
JP5734213B2 (en) High precision machining method and high precision machining apparatus
JP4940904B2 (en) Bulk quantity measuring device
JP2015039732A (en) Machine tool and work machining portion measuring method using machine tool
CN110966963A (en) Inertia friction welding coaxiality precision detection device and detection method thereof
JP2009251621A (en) Reference position correction device for machine tool
CN108205290A (en) Workpiece leveling device based on laser displacement sensor
JPH10309653A (en) Method for detecting displacement of cutting edge position, machine tool provided with cutting edge position displacement detecting function, and tool holder for machine tool
JP2008279542A (en) Grinder, and grinding method for workpiece having imperfect circular or eccentric shape
JP2001269843A (en) Measuring method for center position of rotating tool
CN111506015A (en) Method for determining the shape of a machine tool surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131003

R150 Certificate of patent or registration of utility model

Ref document number: 5385330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250