JP5734213B2 - High precision machining method and high precision machining apparatus - Google Patents

High precision machining method and high precision machining apparatus Download PDF

Info

Publication number
JP5734213B2
JP5734213B2 JP2012010575A JP2012010575A JP5734213B2 JP 5734213 B2 JP5734213 B2 JP 5734213B2 JP 2012010575 A JP2012010575 A JP 2012010575A JP 2012010575 A JP2012010575 A JP 2012010575A JP 5734213 B2 JP5734213 B2 JP 5734213B2
Authority
JP
Japan
Prior art keywords
machining
tool
workpiece
ideal
load value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012010575A
Other languages
Japanese (ja)
Other versions
JP2013146838A (en
Inventor
秋山 喬
喬 秋山
中筋 智明
智明 中筋
朴木 継雄
継雄 朴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012010575A priority Critical patent/JP5734213B2/en
Publication of JP2013146838A publication Critical patent/JP2013146838A/en
Application granted granted Critical
Publication of JP5734213B2 publication Critical patent/JP5734213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Milling Processes (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

この発明は、短時間で高精度な直角度、真直度、円筒度、平面度等の形状精度を得る高精度加工を行うための高精度加工方法および高精度加工装置に係り、特に切削抵抗もしくは研削抵抗などの加工負荷に起因する工具の撓み等の補正に関するものである。   The present invention relates to a high-precision machining method and a high-precision machining apparatus for performing high-precision machining for obtaining shape accuracy such as straightness, straightness, cylindricity, and flatness with high accuracy in a short time, and in particular, cutting resistance or The present invention relates to correction of tool deflection caused by a processing load such as grinding resistance.

従来の高精度加工装置は、加工時間を短縮するため加工速度を上げると、加工負荷が増大し、その影響で工具に撓みが発生する。そのため高精度な形状精度が必要なワークに対しては、加工速度を下げて加工を行っていたため、加工時間が長くなるという問題点があった。そこで従来の高精度加工装置では、スピンドル主軸のモータ電流、もしくはスピンドル主軸の動力から工具の撓み量を推定し、工具の撓み量に応じてスピンドル主軸をワークに対して傾けることで、短時間で高精度な形状精度を得ている(例えば、特許文献1参照)。   In the conventional high-precision machining apparatus, when the machining speed is increased in order to shorten the machining time, the machining load increases, and the tool is bent due to the influence. For this reason, there has been a problem that the processing time is increased for workpieces that require high shape accuracy because the processing speed is reduced. Therefore, in a conventional high-precision machining device, the amount of bending of the tool is estimated from the motor current of the spindle main shaft or the power of the spindle main shaft, and the spindle main shaft is tilted with respect to the workpiece according to the amount of bending of the tool. Highly accurate shape accuracy is obtained (see, for example, Patent Document 1).

特開2000−280112号公報JP 2000-280112 A

従来の高精度加工装置は、加工位置が変化することによって生ずる加工負荷の大きさと、スピンドル主軸をワークに対して傾けることで変化する加工負荷の大きさとを分離できず、工具の撓み量の推定精度が悪いという問題点があった。   The conventional high-precision machining device cannot estimate the amount of machining load caused by changing the machining position and the amount of machining load that changes when the spindle spindle is tilted with respect to the workpiece. There was a problem that accuracy was bad.

この発明は上記のような課題を解決するためになされたものであり、加工状態による加工負荷の大きさだけの測定を行い、高精度な形状精度を得ることができる高精度加工方法および高精度加工装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and a high-precision machining method and high-precision that can measure only the magnitude of the machining load depending on the machining state and obtain high-precision shape accuracy. An object is to provide a processing apparatus.

この発明の高精度加工方法は、
固定保持または回転させながら保持されるワークを、
前記ワークの対向する位置で工具スピンドルに保持されて回転する工具にて前記ワークとの相対角度を旋回用モータで調整しながら加工を行う高精度加工方法において、
1パス目の加工においては、前記ワークと前記工具との相対角度を一定に保った状態にて行い、前記1パス目の加工中における加工場所ごとの測定加工負荷値としての前記工具スピンドルの消費電流値を取得する第1工程と、
前記ワークの加工形状の図面スペックを満たす理想的な加工における理想加工負荷値としての前記工具スピンドルの消費電流値と前記1パス目の加工にて取得した前記測定加工負荷値を比較し、前記理想加工負荷値と前記1パス目の前記測定加工負荷値との負荷比率を算出し、当該算出した前記負荷比率から前記1パス目の加工時の前記工具の撓み量を推定し、前記工具の撓み量を相殺するために加工場所ごとの前記ワークと前記工具との理想相対角度を決定する第2工程と、
2パス目の加工においては、前記ワークおよび前記工具にて前記理想相対角度を用いて加工を行う第3工程とを備えたものである。
また、この発明の高精度加工方法は、
固定保持または回転させながら保持されるワークを、
前記ワークの対向する位置で工具スピンドルに保持されて回転する工具にて前記ワークとの相対角度を旋回用モータで調整しながら加工を行う高精度加工方法において、
1パス目の加工においては、前記ワークと前記工具との相対角度を一定に保った状態にて行い、前記1パス目の加工中における加工場所ごとの測定加工負荷値としての前記旋回用モータの消費電流値を取得する第1工程と、
前記ワークの加工形状の図面スペックを満たす理想的な加工における理想加工負荷値としての前記旋回用モータの消費電流値と前記1パス目の加工にて取得した前記測定加工負荷値を比較し、前記理想加工負荷値と前記1パス目の前記測定加工負荷値との負荷比率を算出し、当該算出した前記負荷比率から前記1パス目の加工時の前記工具の撓み量を推定し、前記工具の撓み量を相殺するために加工場所ごとの前記ワークと前記工具との理想相対角度を決定する第2工程と、
2パス目の加工においては、前記ワークおよび前記工具にて前記理想相対角度を用いて加工を行う第3工程とを備えた高精度加工方法。
The high-precision machining method of the present invention is
A workpiece that is held while being fixed or rotated,
In a high-precision machining method in which machining is performed while adjusting a relative angle with the workpiece by a rotating motor held by a tool spindle at a position opposite to the workpiece, and rotating.
The first pass machining is performed with the relative angle between the workpiece and the tool kept constant, and consumption of the tool spindle as a measured machining load value for each machining location during the first pass machining. A first step of acquiring a current value ;
The consumption current value of the tool spindle as an ideal machining load value in an ideal machining that satisfies the drawing specifications of the machining shape of the workpiece is compared with the measured machining load value acquired in the first pass machining, and the ideal A load ratio between the machining load value and the measured machining load value of the first pass is calculated, and an amount of deflection of the tool during machining of the first pass is estimated from the calculated load ratio, and the deflection of the tool is calculated. A second step of determining an ideal relative angle between the workpiece and the tool for each machining location in order to offset the amount;
The second pass machining includes a third step of machining the workpiece and the tool using the ideal relative angle.
In addition, the high-precision machining method of the present invention is
A workpiece that is held while being fixed or rotated,
In a high-precision machining method in which machining is performed while adjusting a relative angle with the workpiece by a rotating motor held by a tool spindle at a position opposite to the workpiece, and rotating.
In the first pass machining, the relative angle between the workpiece and the tool is kept constant, and the turning motor is used as a measured machining load value for each machining location during the first pass machining. A first step of obtaining a current consumption value;
Compare the current consumption value of the turning motor as an ideal machining load value in ideal machining that satisfies the drawing specifications of the machining shape of the workpiece and the measured machining load value acquired in the first pass machining, A load ratio between the ideal machining load value and the measured machining load value of the first pass is calculated, and a deflection amount of the tool during the first pass machining is estimated from the calculated load ratio, and the tool A second step of determining an ideal relative angle between the workpiece and the tool for each machining location in order to offset the amount of deflection;
In the second pass machining, a high-precision machining method comprising a third step of machining using the ideal relative angle with the workpiece and the tool.

また、この発明の高精度加工装置は、
ワークを固定保持または回転させながら保持する保持部と、
前記ワークを加工する工具と、
前記工具を前記ワークの対向する位置で保持して回転する工具スピンドルと、
前記工具の前記ワークに対する相対角度を調整する旋回用モータとを備えた高精度加工装置において、
前記加工において前記工具スピンドルと前記旋回用モータとの制御を行う制御部を備え、
前記制御部は、前記ワークと前記工具との相対角度を一定に保った状態にて加工を制御し、この加工中における加工場所ごとの測定加工負荷値としての前記工具スピンドルの消費電流値を取得し、前記ワークの加工形状の図面スペックを満たす理想的な加工における理想加工負荷値としての前記工具スピンドルの消費電流値と前記測定加工負荷値とを比較し、前記理想加工負荷値と前記測定加工負荷値との負荷比率から前記工具の撓み量を推定し、前記工具の撓み量を相殺するために加工場所ごとの前記ワークと前記工具との理想相対角度を決定し、前記ワークおよび前記工具の加工を前記理想相対角度となるように制御するものである。
また、この発明の高精度加工装置は、
ワークを固定保持または回転させながら保持する保持部と、
前記ワークを加工する工具と、
前記工具を前記ワークの対向する位置で保持して回転する工具スピンドルと、
前記工具の前記ワークに対する相対角度を調整する旋回用モータとを備えた高精度加工装置において、
前記加工において前記工具スピンドルと前記旋回用モータとの制御を行う制御部を備え、
前記制御部は、前記ワークと前記工具との相対角度を一定に保った状態にて加工を制御し、この加工中における加工場所ごとの測定加工負荷値としての前記旋回用モータの消費電流値を取得し、前記ワークの加工形状の図面スペックを満たす理想的な加工における理想加工負荷値としての前記旋回用モータの消費電流値と前記測定加工負荷値とを比較し、前記理想加工負荷値と前記測定加工負荷値との負荷比率から前記工具の撓み量を推定し、前記工具の撓み量を相殺するために加工場所ごとの前記ワークと前記工具との理想相対角度を決定し、前記ワークおよび前記工具の加工を前記理想相対角度となるように制御するものである。
Moreover, the high-precision machining apparatus of the present invention is
A holding unit that holds the workpiece while holding or rotating the workpiece; and
A tool for machining the workpiece;
A tool spindle that rotates while holding the tool at an opposite position of the workpiece;
In a high-precision machining apparatus comprising a turning motor that adjusts a relative angle of the tool to the workpiece,
A control unit for controlling the tool spindle and the turning motor in the machining;
The control unit controls machining in a state where a relative angle between the workpiece and the tool is kept constant, and obtains a current consumption value of the tool spindle as a measured machining load value for each machining location during the machining. Then, the current consumption value of the tool spindle as an ideal machining load value in ideal machining that satisfies the drawing specifications of the machining shape of the workpiece is compared with the measured machining load value, and the ideal machining load value and the measured machining are compared. An amount of deflection of the tool is estimated from a load ratio with a load value, an ideal relative angle between the workpiece and the tool at each machining location is determined to offset the amount of deflection of the tool, and the workpiece and the tool The machining is controlled so as to be the ideal relative angle.
Moreover, the high-precision machining apparatus of the present invention is
A holding unit that holds the workpiece while holding or rotating the workpiece; and
A tool for machining the workpiece;
A tool spindle that rotates while holding the tool at an opposite position of the workpiece;
In a high-precision machining apparatus comprising a turning motor that adjusts a relative angle of the tool to the workpiece,
A control unit for controlling the tool spindle and the turning motor in the machining;
The control unit controls machining in a state where the relative angle between the workpiece and the tool is kept constant, and determines the current consumption value of the turning motor as a measured machining load value for each machining location during the machining. Obtain and compare the current consumption value of the turning motor as an ideal machining load value in an ideal machining that satisfies the drawing specifications of the machining shape of the workpiece and the measured machining load value, and the ideal machining load value and the The amount of deflection of the tool is estimated from the load ratio with the measured machining load value, and an ideal relative angle between the workpiece and the tool for each machining location is determined in order to offset the amount of deflection of the tool, and the workpiece and the The machining of the tool is controlled to be the ideal relative angle.

この発明の高精度加工方法は、上記のように行われているので、
加工状態による測定加工負荷値の大きさだけの測定を行い、高精度な形状精度を得ることができる。
Since the high-precision machining method of the present invention is performed as described above,
By measuring only the magnitude of the measured machining load value according to the machining state, it is possible to obtain highly accurate shape accuracy.

また、この発明の高精度加工装置は、上記のように構成されているので、
加工状態による測定加工負荷値の大きさだけの測定を行い、高精度な形状精度を得ることができる。
Moreover, since the high precision processing apparatus of this invention is comprised as mentioned above,
By measuring only the magnitude of the measured machining load value according to the machining state, it is possible to obtain highly accurate shape accuracy.

この発明の実施の形態1の高精度加工方法を示すフローチャートである。It is a flowchart which shows the high precision processing method of Embodiment 1 of this invention. 図1に示した高精度加工方法を実施する高精度加工装置の構成を示す斜視図である。It is a perspective view which shows the structure of the high precision processing apparatus which implements the high precision processing method shown in FIG. 図2に示した高精度加工装置の構成を示す上面図である。It is a top view which shows the structure of the high precision processing apparatus shown in FIG. 図2に示した高精度加工装置の構成を示す側面図である。It is a side view which shows the structure of the high precision processing apparatus shown in FIG. 図2における高精度加工装置の加工負荷の影響を受けて撓んだ工具の状態を示す図である。It is a figure which shows the state of the tool which bent under the influence of the processing load of the high precision processing apparatus in FIG. 図2における高精度加工装置の工具の旋回量と変位センサの変位量との関係を示す図である。It is a figure which shows the relationship between the turning amount of the tool of the high precision processing apparatus in FIG. 2, and the displacement amount of a displacement sensor. 図2における高精度加工装置の工具の撓み量に応じて工具スピンドルを旋回させた時の図である。It is a figure when the tool spindle is turned according to the amount of bending of the tool of the high precision processing device in FIG. この発明の実施の形態2における高精度加工装置の構成を示す上面図である。It is a top view which shows the structure of the high precision processing apparatus in Embodiment 2 of this invention. この発明の実施の形態3における高精度加工装置の構成を示す上面図である。It is a top view which shows the structure of the high precision processing apparatus in Embodiment 3 of this invention.

実施の形態1.
以下、本願発明の実施の形態について説明する。図1はこの発明の実施の形態1における高精度加工方法を示すフローチャート、図2は図1に示した高精度加工方法を実施するための高精度加工装置の構成を示した斜視図、図3は図2に示した高精度加工装置の構成を示す上面図、図4は図2に示した高精度加工装置の構成を示す側面図である。図において、被加工物としてのワーク1と、このワーク1を固定するとともにC軸方向に回転させる保持部としてのワークスピンドル2と、ワーク1を加工するための工具4と、インバータ18により工具4を回転させる工具スピンドル3と、工具スピンドル3のホルダとしてのスピンドルホルダ8とを備える。
Embodiment 1 FIG.
Embodiments of the present invention will be described below. 1 is a flowchart showing a high-precision machining method according to Embodiment 1 of the present invention, FIG. 2 is a perspective view showing the configuration of a high-precision machining apparatus for carrying out the high-precision machining method shown in FIG. FIG. 4 is a top view showing the configuration of the high-precision machining apparatus shown in FIG. 2, and FIG. 4 is a side view showing the configuration of the high-precision machining apparatus shown in FIG. In the figure, a workpiece 1 as a workpiece, a workpiece spindle 2 as a holding portion for fixing the workpiece 1 and rotating in the C-axis direction, a tool 4 for machining the workpiece 1, and a tool 4 by an inverter 18. A tool spindle 3 for rotating the tool spindle 3 and a spindle holder 8 as a holder for the tool spindle 3 are provided.

そして、ワーク1と工具4との相対的な位置関係をX軸方向、Y軸方向、Z軸方向に相対的に駆動するXYZ調整部としてのXYZテーブル100を有し、このXYZテーブル100を駆動することによりワーク1を任意の形状に加工することができる。そして、XYZテーブル100のX軸方向のテーブル上に旋回ガイド9を介して載置された旋回ベース7を有し、この旋回ガイド9は、加工点を通るY軸方向の軸を中心とする円弧の形状を有している。そして、旋回ベース7上にスピンドルホルダ8が載置されている。そして、旋回ベース7、スピンドルホルダ8、工具スピンドル3、工具4は旋回ガイド9に沿ってB軸方向にボールネジ6を介して旋回させる旋回用モータ5と、旋回ベース7の旋回量を測定する変位センサ10とを備えている。   And it has the XYZ table 100 as an XYZ adjustment part which drives the relative positional relationship of the workpiece | work 1 and the tool 4 to a X-axis direction, a Y-axis direction, and a Z-axis direction relatively, and drives this XYZ table 100 By doing so, the workpiece 1 can be processed into an arbitrary shape. And it has the turning base 7 mounted on the table of the X-axis direction of the XYZ table 100 via the turning guide 9, and this turning guide 9 is circular arc centering on the axis | shaft of the Y-axis direction which passes along a process point. It has the shape of A spindle holder 8 is placed on the turning base 7. Then, the turning base 7, the spindle holder 8, the tool spindle 3, and the tool 4 turn along the turning guide 9 in the B-axis direction via the ball screw 6, and the displacement for measuring the turning amount of the turning base 7. Sensor 10.

さらに、ワーク1の工具4の加工において、旋回用モータ5のモータドライバ11の制御を行う制御部16を備える。そして、制御部16は、ワーク1と工具4との相対角度を一定に保った状態にて加工を制御し、この加工中における加工場所ごとの測定加工負荷値としての工具スピンドル3の消費電流値を測定する電流計17から消費電流値を入力する電流計用信号変換器15と、加工における理想的な理想加工負荷値としての工具スピンドル3の消費電流値のデータを格納するとともに、上記測定加工負荷値を格納するデータセンタ部13と、データセンタ部13に格納された理想加工負荷値と測定加工負荷値とを比較し、理想加工負荷値と測定加工負荷値との負荷比率から工具4の撓み量を推定し、工具4の撓み量を相殺するために加工場所ごとのワーク1と工具4との理想相対角度を演算する演算部14と、変位センサ10からの信号を変換する変位センサ用信号変換器12とを備える。尚、制御部16は、図示にて接続関係は省略しているものの、ワーク1の加工における、インバータ18の制御、および、XYZテーブル100の制御を行うものである。   Further, a control unit 16 that controls the motor driver 11 of the turning motor 5 in processing the tool 4 of the workpiece 1 is provided. And the control part 16 controls a process in the state which kept the relative angle of the workpiece | work 1 and the tool 4 constant, and the consumption current value of the tool spindle 3 as a measured process load value for every process location in this process The ammeter signal converter 15 for inputting the consumption current value from the ammeter 17 for measuring the current, and the data of the consumption current value of the tool spindle 3 as an ideal ideal machining load value in machining are stored, and the measurement machining described above The data center unit 13 for storing the load value, the ideal machining load value stored in the data center unit 13 and the measured machining load value are compared, and the load ratio of the ideal machining load value and the measured machining load value is used to determine the tool 4 Displacement that estimates the amount of deflection and calculates the ideal relative angle between the workpiece 1 and the tool 4 for each machining location in order to cancel the amount of deflection of the tool 4 and the signal from the displacement sensor 10 And a capacitors for signal converter 12. The control unit 16 performs control of the inverter 18 and control of the XYZ table 100 in the machining of the workpiece 1 although the connection relationship is omitted in the drawing.

次に、図5を用いて工具4の撓み量Yと、加工負荷値Fとの関係について説明する。尚、図5は加工負荷値Fの影響を受けて撓んだ工具4の状態を示す図である。そして加工中、工具4上の加工点には加工負荷値Fが加わっているものとする。
そして、
工具長をL、
工具先端から加工点までの距離をL1、
LとL1との差をL2、
工具4の縦弾性係数をE、
断面2次モーメントをIとすると、
工具4の撓み量Yは、
片持ち梁における撓みの式から
Y=(F×L2/(3×E×I))×(1+(3×L1)/(2×L2))・・・式(1)
で表すことができる。
ここでL1、L2は加工条件により、
Eは工具4の材質により、
Iは工具4の断面形状により、それぞれ予め決まっている数値である。
これより、工具4の撓み量Yは加工負荷値Fに比例することが分かる。
Next, the relationship between the deflection amount Y of the tool 4 and the machining load value F will be described with reference to FIG. FIG. 5 is a diagram showing a state of the tool 4 bent under the influence of the machining load value F. It is assumed that a machining load value F is applied to the machining point on the tool 4 during machining.
And
Tool length is L,
The distance from the tool tip to the machining point is L1,
The difference between L and L1 is L2,
The longitudinal elastic modulus of the tool 4 is E,
If the moment of inertia of the cross section is I,
The amount of deflection Y of the tool 4 is
Y = (F × L2 3 / (3 × E × I)) × (1+ (3 × L1) / (2 × L2)) (Equation (1))
Can be expressed as
Here, L1 and L2 depend on the processing conditions.
E depends on the material of the tool 4,
I is a numerical value determined in advance depending on the cross-sectional shape of the tool 4.
From this, it can be seen that the deflection amount Y of the tool 4 is proportional to the machining load value F.

ここで、加工負荷値Fが変動する要因として、ワーク1とワークスピンドル2との芯ズレに起因するワーク1の振れや、工具4と工具スピンドル3との芯ズレに起因する工具4の振れ、加工前のワーク1の形状精度や加工による工具4の状態の変化が挙げられる。このような要因で加工負荷値Fが変動すれば、工具4の撓み量Yも変動する。その結果、ワーク1の直角度が悪化する。さらにワーク1の加工場所ごとに加工負荷値Fが変動することで、加工中の工具4の撓み量Yが変動する。その結果、加工場所ごとにワーク1の直角度が変化し、ワーク1の加工面にうねりが生じる。   Here, as factors that cause the machining load value F to fluctuate, the deflection of the workpiece 1 due to the misalignment between the workpiece 1 and the workpiece spindle 2, the deflection of the tool 4 due to the misalignment between the tool 4 and the tool spindle 3, The shape accuracy of the workpiece 1 before machining and the change in the state of the tool 4 due to machining can be mentioned. If the machining load value F varies due to such factors, the deflection amount Y of the tool 4 also varies. As a result, the perpendicularity of the workpiece 1 is deteriorated. Further, the machining load value F varies for each machining location of the workpiece 1, whereby the deflection amount Y of the tool 4 during machining varies. As a result, the perpendicularity of the workpiece 1 changes for each machining location, and the machining surface of the workpiece 1 is wavy.

本実施の形態1においては、変化する加工負荷値Fに応じて工具スピンドル3の旋回量(ワーク1と工具4との相対角度)を調整して加工する高精度加工方法について説明する。まず、図5に示すように、加工の1パス目を工具スピンドル3の旋回量を一定に保ち工具3とワーク1との相対角度が一定に保った状態で加工を行う。この時、スピンドル3の中心軸が高精度加工装置のZ軸方向に平行であっても、平行でなくても良い。そしてこの時、測定加工負荷値として工具スピンドル3の消費電流値を、電流計17を用いて測定する(図1のステップS1)。そして、予め定めたサンプリングタイムごとに消費電流値を測定し、当該消費電流値を測定した時のワーク1の加工場所と合わせてデータセンタ部13に記憶する。   In the first embodiment, a high-accuracy machining method for machining by adjusting the turning amount of the tool spindle 3 (relative angle between the workpiece 1 and the tool 4) according to the machining load value F that changes will be described. First, as shown in FIG. 5, in the first pass of machining, machining is performed in a state where the turning amount of the tool spindle 3 is kept constant and the relative angle between the tool 3 and the workpiece 1 is kept constant. At this time, the center axis of the spindle 3 may or may not be parallel to the Z-axis direction of the high-precision processing apparatus. At this time, the current consumption value of the tool spindle 3 is measured using the ammeter 17 as the measured machining load value (step S1 in FIG. 1). Then, the current consumption value is measured at each predetermined sampling time, and stored in the data center unit 13 together with the machining location of the workpiece 1 when the current consumption value is measured.

そして、データセンタ部13には予め加工におけるワーク1の加工形状の図面スペックを満たす理想的な理想加工負荷値で加工した場合の、工具スピンドル3の消費電流値と、この時のワーク1の直角度、すなわち工具4の撓み量Yとが保存されている。1パス目の加工終了後、データセンタ部13に保存している理想加工負荷値で加工した場合の工具スピンドル3の消費電流値(理想加工負荷値に対応)と、1パス目の加工中に測定した消費電流値(測定加工負荷値に対応)とを演算部14にて比較する。すなわち、理想的な理想加工負荷値での加工と比較して消費電流値が多ければ、測定加工負荷値が大きいことを意味し、逆に消費電流値が少なければ、測定加工負荷値Fが小さいことを意味する。このように消費電流値を比較することで、負荷比率を算出する(図1のステップS2)。   In the data center unit 13, the current consumption value of the tool spindle 3 when machining is performed in advance with an ideal ideal machining load value that satisfies the drawing specifications of the machining shape of the workpiece 1 in machining, and the workpiece 1 at this time The angle, that is, the deflection amount Y of the tool 4 is stored. After the completion of the first pass machining, the current consumption value of the tool spindle 3 (corresponding to the ideal machining load value) when machining with the ideal machining load value stored in the data center unit 13 and during the first pass machining. The operation unit 14 compares the measured current consumption value (corresponding to the measured machining load value). That is, if the current consumption value is large compared to machining with an ideal ideal machining load value, it means that the measured machining load value is large. Conversely, if the current consumption value is small, the measured machining load value F is small. Means that. Thus, the load ratio is calculated by comparing the current consumption values (step S2 in FIG. 1).

次に、上記式(1)より工具4の撓み量Yは加工負荷値Fに比例するので、理想的な加工負荷値Fで加工した場合の工具スピンドル3の消費電流値に対する、上記ステップS2で算出した負荷比率から、工具4の撓み量Yを演算部14にて推定する(図1のステップS3)。そして、2パス目の加工においては、1パス目の加工における工具4の撓み量を相殺するように、工具スピンドル3を旋回させ工具4とワーク1ながら加工する。ここで工具4の旋回量について説明する。この工具4の旋回量は、旋回ベース7の旋回量を取得する変位センサ10の変位量を用いて制御している。   Next, since the deflection amount Y of the tool 4 is proportional to the machining load value F according to the above equation (1), in step S2 with respect to the current consumption value of the tool spindle 3 when machining with the ideal machining load value F, From the calculated load ratio, the bending amount Y of the tool 4 is estimated by the calculation unit 14 (step S3 in FIG. 1). In the second pass machining, the tool spindle 3 is turned so as to offset the amount of bending of the tool 4 in the first pass machining while machining with the tool 4 and the workpiece 1. Here, the turning amount of the tool 4 will be described. The turning amount of the tool 4 is controlled using the displacement amount of the displacement sensor 10 that acquires the turning amount of the turning base 7.

ここで図6に基づいて、工具4の旋回量と変位センサ10の変位量との関係を示す。旋回中心から工具4の先端までの距離と、旋回中心から変位センサ10の位置までの距離の比が1:5の場合、ステップS3で推定した工具4の撓み量Yと同じだけ工具4の先端を動かすためには、変位センサ10の変位量が(5×撓み量Y)になるように動かせば良い。このように、1パス目で測定した全ての消費電流値に対して、工具スピンドル3の旋回量の目標値となる変位センサ10の変位量すなわち、ワーク1と工具4との理想相対角度を演算部14にて決定する(図1のステップS4)。   Here, based on FIG. 6, the relationship between the turning amount of the tool 4 and the displacement amount of the displacement sensor 10 is shown. When the ratio of the distance from the turning center to the tip of the tool 4 and the distance from the turning center to the position of the displacement sensor 10 is 1: 5, the tip of the tool 4 is as much as the deflection amount Y of the tool 4 estimated in step S3. Is moved so that the displacement amount of the displacement sensor 10 becomes (5 × deflection amount Y). As described above, the displacement amount of the displacement sensor 10 that is the target value of the turning amount of the tool spindle 3, that is, the ideal relative angle between the workpiece 1 and the tool 4 is calculated for all the current consumption values measured in the first pass. Determined by the unit 14 (step S4 in FIG. 1).

そして、1パス目で消費電流値を測定したワーク1の加工場所ごとに、工具スピンドル3の旋回量の目標値(理想相対角度に対応)が得られる。図7に、2パス目の加工の様子を示す。加工の2パス目において、1パス目で消費電流値(測定加工負荷値)を測定したワーク1の加工場所ごとに、ステップS4で決定した旋回量だけ工具スピンドル3を旋回させながら工具4を旋回させ、工具4とワーク1とを理想相対角度となるように設定して、この関係にて工具4にてワーク1を加工することで、加工負荷値Fが変動しても、常に高精度な加工形状精度を得ることができる(図1のステップS5)。そして、当該ワーク1の加工は、2パス目の加工で終了する(図1のステップS6)。   Then, a target value (corresponding to an ideal relative angle) of the turning amount of the tool spindle 3 is obtained for each machining location of the work 1 whose current consumption value is measured in the first pass. FIG. 7 shows how the second pass is processed. In the second pass of machining, the tool 4 is turned while turning the tool spindle 3 by the turning amount determined in step S4 for each machining location of the workpiece 1 whose current consumption value (measured machining load value) is measured in the first pass. By setting the tool 4 and the workpiece 1 to have an ideal relative angle, and machining the workpiece 1 with the tool 4 in this relationship, even if the machining load value F fluctuates, the accuracy is always high. Processing shape accuracy can be obtained (step S5 in FIG. 1). And the process of the said workpiece | work 1 is complete | finished by the process of the 2nd pass (step S6 of FIG. 1).

上記のように構成された実施の形態1の高精度加工方法および高精度加工装置によれば、測定加工負荷値の大きさを測定する工程と、測定加工負荷値の大きさに応じてワークと工具との理想相対角度を変化させる工程とを分離したので、加工状態による測定加工負荷値の大きさだけの測定が可能となり、高精度な形状精度を得ることができる。   According to the high precision machining method and high precision machining apparatus of the first embodiment configured as described above, the step of measuring the magnitude of the measured machining load value, and the workpiece according to the magnitude of the measured machining load value Since the step of changing the ideal relative angle with the tool is separated, it is possible to measure only the magnitude of the measured machining load value depending on the machining state, and high-precision shape accuracy can be obtained.

また、測定加工負荷値を、工具スピンドルの消費電流値として直接測定するので、測定精度が向上する。   Moreover, since the measured machining load value is directly measured as the current consumption value of the tool spindle, the measurement accuracy is improved.

実施の形態2.
上記実施の形態1においては、ワーク1を回転させて加工する構成および方法について示したが、これに限られることはなく、例えば、図8に示すようにワーク1が回転しないような保持部20によってワーク1が固定保持される高精度加工装置においても、上記実施の形態1と同様に行うことができ、同様の効果を奏することが可能である。
Embodiment 2. FIG.
In the first embodiment, the configuration and the method for processing by rotating the workpiece 1 have been described. However, the present invention is not limited to this. For example, as shown in FIG. 8, the holding unit 20 that prevents the workpiece 1 from rotating. Even in the high-precision machining apparatus in which the workpiece 1 is fixed and held by this, it can be performed in the same manner as in the first embodiment, and the same effect can be obtained.

実施の形態3.
上記各実施の形態1においては、測定加工負荷値の測定方法として、工具スピンドルの消費電流値から測定する方法を示したが、これに限られることはなく、例えば、図9に示すように、測定加工負荷値の測定方法として、旋回用モータ5の消費電流値を測定する方法を用いることも考えられる。よって、旋回用モータ5の消費電流値を、電流計17を用いて測定することで、測定器としての電流計17を制御部16周辺に配置することが可能となり、インバータやドライブユニットなどノイズの発生源となり得る機器が多く存在する加工機近傍への測定器の設置が不要となる。
Embodiment 3 FIG.
In each of the above-described first embodiments, the method of measuring from the current consumption value of the tool spindle has been shown as a method of measuring the measured machining load value. However, the present invention is not limited to this. For example, as shown in FIG. As a method for measuring the measured machining load value, it is conceivable to use a method for measuring the current consumption value of the turning motor 5. Therefore, by measuring the current consumption value of the turning motor 5 using the ammeter 17, the ammeter 17 as a measuring instrument can be arranged around the control unit 16, and noise such as inverters and drive units is generated. It is not necessary to install a measuring instrument near the processing machine where there are many devices that can be sources.

尚、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

1 ワーク、2 ワークスピンドル、3 工具スピンドル、4 工具、
5 旋回用モータ、16 制御部、17 電流計、20 保持部、
100 XYZテーブル。
1 work, 2 work spindles, 3 tool spindles, 4 tools,
5 Rotating motor, 16 control unit, 17 ammeter, 20 holding unit,
100 XYZ table.

Claims (5)

固定保持または回転させながら保持されるワークを、
前記ワークの対向する位置で工具スピンドルに保持されて回転する工具にて前記ワークとの相対角度を旋回用モータで調整しながら加工を行う高精度加工方法において、
1パス目の加工においては、前記ワークと前記工具との相対角度を一定に保った状態にて行い、前記1パス目の加工中における加工場所ごとの測定加工負荷値としての前記工具スピンドルの消費電流値を取得する第1工程と、
前記ワークの加工形状の図面スペックを満たす理想的な加工における理想加工負荷値としての前記工具スピンドルの消費電流値と前記1パス目の加工にて取得した前記測定加工負荷値を比較し、前記理想加工負荷値と前記1パス目の前記測定加工負荷値との負荷比率を算出し、当該算出した前記負荷比率から前記1パス目の加工時の前記工具の撓み量を推定し、前記工具の撓み量を相殺するために加工場所ごとの前記ワークと前記工具との理想相対角度を決定する第2工程と、
2パス目の加工においては、前記ワークおよび前記工具にて前記理想相対角度を用いて加工を行う第3工程とを備えた高精度加工方法。
A workpiece that is held while being fixed or rotated,
In a high-precision machining method in which machining is performed while adjusting a relative angle with the workpiece by a rotating motor held by a tool spindle at a position opposite to the workpiece, and rotating.
The first pass machining is performed with the relative angle between the workpiece and the tool kept constant, and consumption of the tool spindle as a measured machining load value for each machining location during the first pass machining. A first step of acquiring a current value ;
The consumption current value of the tool spindle as an ideal machining load value in an ideal machining that satisfies the drawing specifications of the machining shape of the workpiece is compared with the measured machining load value acquired in the first pass machining, and the ideal A load ratio between the machining load value and the measured machining load value of the first pass is calculated, and an amount of deflection of the tool during machining of the first pass is estimated from the calculated load ratio, and the deflection of the tool is calculated. A second step of determining an ideal relative angle between the workpiece and the tool for each machining location in order to offset the amount;
In the second pass machining, a high-precision machining method comprising a third step of machining using the ideal relative angle with the workpiece and the tool.
固定保持または回転させながら保持されるワークを、A workpiece that is held while being fixed or rotated,
前記ワークの対向する位置で工具スピンドルに保持されて回転する工具にて前記ワークとの相対角度を旋回用モータで調整しながら加工を行う高精度加工方法において、In a high-precision machining method in which machining is performed while adjusting a relative angle with the workpiece by a rotating motor held by a tool spindle at a position opposite to the workpiece, and rotating.
1パス目の加工においては、前記ワークと前記工具との相対角度を一定に保った状態にて行い、前記1パス目の加工中における加工場所ごとの測定加工負荷値としての前記旋回用モータの消費電流値を取得する第1工程と、  In the first pass machining, the relative angle between the workpiece and the tool is kept constant, and the turning motor is used as a measured machining load value for each machining location during the first pass machining. A first step of obtaining a current consumption value;
前記ワークの加工形状の図面スペックを満たす理想的な加工における理想加工負荷値としての前記旋回用モータの消費電流値と前記1パス目の加工にて取得した前記測定加工負荷値を比較し、前記理想加工負荷値と前記1パス目の前記測定加工負荷値との負荷比率を算出し、当該算出した前記負荷比率から前記1パス目の加工時の前記工具の撓み量を推定し、前記工具の撓み量を相殺するために加工場所ごとの前記ワークと前記工具との理想相対角度を決定する第2工程と、  Compare the current consumption value of the turning motor as an ideal machining load value in ideal machining that satisfies the drawing specifications of the machining shape of the workpiece and the measured machining load value acquired in the first pass machining, A load ratio between the ideal machining load value and the measured machining load value of the first pass is calculated, and a deflection amount of the tool during the first pass machining is estimated from the calculated load ratio, and the tool A second step of determining an ideal relative angle between the workpiece and the tool for each machining location in order to offset the amount of deflection;
2パス目の加工においては、前記ワークおよび前記工具にて前記理想相対角度を用いて加工を行う第3工程とを備えた高精度加工方法。  In the second pass machining, a high-precision machining method comprising a third step of machining using the ideal relative angle with the workpiece and the tool.
ワークを固定保持または回転させながら保持する保持部と、
前記ワークを加工する工具と、
前記工具を前記ワークの対向する位置で保持して回転する工具スピンドルと、
前記工具の前記ワークに対する相対角度を調整する旋回用モータとを備えた高精度加工装置において、
前記加工において前記工具スピンドルと前記旋回用モータとの制御を行う制御部を備え、
前記制御部は、前記ワークと前記工具との相対角度を一定に保った状態にて加工を制御し、この加工中における加工場所ごとの測定加工負荷値としての前記工具スピンドルの消費電流値を取得し、前記ワークの加工形状の図面スペックを満たす理想的な加工における理想加工負荷値としての前記工具スピンドルの消費電流値と前記測定加工負荷値とを比較し、前記理想加工負荷値と前記測定加工負荷値との負荷比率から前記工具の撓み量を推定し、前記工具の撓み量を相殺するために加工場所ごとの前記ワークと前記工具との理想相対角度を決定し、前記ワークおよび前記工具の加工を前記理想相対角度となるように制御する高精度加工装置。
A holding unit that holds the workpiece while holding or rotating the workpiece; and
A tool for machining the workpiece;
A tool spindle that rotates while holding the tool at an opposite position of the workpiece;
In a high-precision machining apparatus comprising a turning motor that adjusts a relative angle of the tool to the workpiece,
A control unit for controlling the tool spindle and the turning motor in the machining;
The control unit controls machining in a state where a relative angle between the workpiece and the tool is kept constant, and obtains a current consumption value of the tool spindle as a measured machining load value for each machining location during the machining. Then, the current consumption value of the tool spindle as an ideal machining load value in ideal machining that satisfies the drawing specifications of the machining shape of the workpiece is compared with the measured machining load value, and the ideal machining load value and the measured machining are compared. An amount of deflection of the tool is estimated from a load ratio with a load value, an ideal relative angle between the workpiece and the tool is determined for each machining location in order to cancel the amount of deflection of the tool, and the workpiece and the tool A high-accuracy machining apparatus that controls machining so that the ideal relative angle is achieved.
ワークを固定保持または回転させながら保持する保持部と、A holding unit that holds the workpiece while holding or rotating the workpiece; and
前記ワークを加工する工具と、A tool for machining the workpiece;
前記工具を前記ワークの対向する位置で保持して回転する工具スピンドルと、A tool spindle that rotates while holding the tool at an opposite position of the workpiece;
前記工具の前記ワークに対する相対角度を調整する旋回用モータとを備えた高精度加工装置において、In a high-precision machining apparatus comprising a turning motor that adjusts a relative angle of the tool to the workpiece,
前記加工において前記工具スピンドルと前記旋回用モータとの制御を行う制御部を備え、  A control unit for controlling the tool spindle and the turning motor in the machining;
前記制御部は、前記ワークと前記工具との相対角度を一定に保った状態にて加工を制御し、この加工中における加工場所ごとの測定加工負荷値としての前記旋回用モータの消費電流値を取得し、前記ワークの加工形状の図面スペックを満たす理想的な加工における理想加工負荷値としての前記旋回用モータの消費電流値と前記測定加工負荷値とを比較し、前記理想加工負荷値と前記測定加工負荷値との負荷比率から前記工具の撓み量を推定し、前記工具の撓み量を相殺するために加工場所ごとの前記ワークと前記工具との理想相対角度を決定し、前記ワークおよび前記工具の加工を前記理想相対角度となるように制御する高精度加工装置。  The control unit controls machining in a state where the relative angle between the workpiece and the tool is kept constant, and determines the current consumption value of the turning motor as a measured machining load value for each machining location during the machining. Obtain and compare the current consumption value of the turning motor as an ideal machining load value in an ideal machining that satisfies the drawing specifications of the machining shape of the workpiece and the measured machining load value, and the ideal machining load value and the The amount of deflection of the tool is estimated from the load ratio with the measured machining load value, and an ideal relative angle between the workpiece and the tool for each machining location is determined in order to offset the amount of deflection of the tool, and the workpiece and the A high-accuracy machining device that controls the machining of a tool so that the ideal relative angle is achieved.
前記ワークと前記工具との相対位置を調整するXYZ調整部を備え、
前記制御部は、前記加工において前記XYZ調整部を制御する請求項3または請求項4に記載の高精度加工装置。
An XYZ adjustment unit for adjusting a relative position between the workpiece and the tool;
The high-precision machining apparatus according to claim 3, wherein the control unit controls the XYZ adjustment unit in the machining.
JP2012010575A 2012-01-23 2012-01-23 High precision machining method and high precision machining apparatus Active JP5734213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012010575A JP5734213B2 (en) 2012-01-23 2012-01-23 High precision machining method and high precision machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012010575A JP5734213B2 (en) 2012-01-23 2012-01-23 High precision machining method and high precision machining apparatus

Publications (2)

Publication Number Publication Date
JP2013146838A JP2013146838A (en) 2013-08-01
JP5734213B2 true JP5734213B2 (en) 2015-06-17

Family

ID=49044886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012010575A Active JP5734213B2 (en) 2012-01-23 2012-01-23 High precision machining method and high precision machining apparatus

Country Status (1)

Country Link
JP (1) JP5734213B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106994530A (en) * 2017-04-20 2017-08-01 榆林学院 A kind of machining process for avoiding magnesium alloy magnesium chips from burning

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106399799B (en) * 2016-11-28 2018-01-12 郝家怡 Mathematics high-precision measuring tool processing unit (plant)
EP3933524A1 (en) * 2020-07-02 2022-01-05 Kistler Holding AG Method and device to ascertain a quality of a product obtained by subtractive manufacturing
CN113076843B (en) * 2021-03-26 2022-09-20 重庆交通大学 Bridge deck load estimation method based on image detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106994530A (en) * 2017-04-20 2017-08-01 榆林学院 A kind of machining process for avoiding magnesium alloy magnesium chips from burning
CN106994530B (en) * 2017-04-20 2020-02-21 榆林学院 Mechanical processing method for avoiding magnesium alloy magnesium chips from burning

Also Published As

Publication number Publication date
JP2013146838A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5515639B2 (en) Machine Tools
JP4840144B2 (en) Positioning device and positioning method
JP4291382B2 (en) Machine tool with automatic correction function of mounting error by contact detection
JP5851436B2 (en) Processing apparatus and processing method
JP6599832B2 (en) Machine tool and work plane machining method
US20140297022A1 (en) Numerically-controlled machine tool and spindle error compensating method thereof
CN112008496B (en) Position measuring method and position measuring system for machine tool object
JP5385330B2 (en) High precision processing equipment
JP2010105059A (en) Grinding machine and grinding method
JP5734213B2 (en) High precision machining method and high precision machining apparatus
CN112828682B (en) Error measurement method for machine tool and machine tool
JP2007175804A (en) Control device of machine tool
JP5381013B2 (en) Thread groove detection device, thread groove detection method, and machine tool
JP2006015477A (en) Multi-head grinding machine and grinding method using multi-head grinding machine
JP5581825B2 (en) Machine tool reference position detection apparatus and reference position detection method
JP5693662B2 (en) Automatic centering method of displacement measuring instrument and machine tool having displacement measuring function
JP2010194623A (en) Thread grinding machine and thread groove grinding method
KR20150041328A (en) Automatic conversion device of themal deformation compensation parameter automatic conversion for machine tool and method thereof
JP6615285B1 (en) Tool runout adjustment method and machine tool
JP4940904B2 (en) Bulk quantity measuring device
JP6623061B2 (en) Machine tool and control method of machine tool
JP2008279542A (en) Grinder, and grinding method for workpiece having imperfect circular or eccentric shape
JP2001269843A (en) Measuring method for center position of rotating tool
JP2010201581A (en) Workpiece attitude control device of machine tool
JP2016016483A (en) Warpage measuring method of workpiece, rigidity measuring method of workpiece and machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150414

R150 Certificate of patent or registration of utility model

Ref document number: 5734213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250