JP4299580B2 - Light emitting element and light emitting device - Google Patents

Light emitting element and light emitting device Download PDF

Info

Publication number
JP4299580B2
JP4299580B2 JP2003138646A JP2003138646A JP4299580B2 JP 4299580 B2 JP4299580 B2 JP 4299580B2 JP 2003138646 A JP2003138646 A JP 2003138646A JP 2003138646 A JP2003138646 A JP 2003138646A JP 4299580 B2 JP4299580 B2 JP 4299580B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting device
light
film
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003138646A
Other languages
Japanese (ja)
Other versions
JP2004342885A (en
Inventor
健司 笠原
善伸 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003138646A priority Critical patent/JP4299580B2/en
Publication of JP2004342885A publication Critical patent/JP2004342885A/en
Application granted granted Critical
Publication of JP4299580B2 publication Critical patent/JP4299580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Description

【0001】
【特許文献1】
特開2000−216442号公報
【特許文献2】
特開2001−230448号公報
【特許文献3】
特開2002−94121号公報
【0002】
【発明の属する技術分野】
本発明は、基板上に形成された半導体膜を用いた発光素子、およびその発光素子を用いた発光装置に関するものである。
【0003】
【従来の技術】
近年、窒化ガリウム系材料を用いた発光素子は、青色、緑色、または白色発光装置の光源として組み込まれ、製品化されている。この種の発光素子は、窒化ガリウム系化合物半導体を用いた半導体膜、アノード電極及びカソード電極から構成される発光機能部分(以下、本明細書においては「半導体発光素子」と称する)をサファイア基板等の絶縁性の基板上に形成したもので、絶縁基板上に半導体発光素子を形成したLEDチップ(以下、本明細書においては「発光素子」と称する)を適宜のケースに組み込んで発光装置を製作している。
【0004】
以上のように構成されている発光装置を実際に使用する場合、従来より、アノード電極とカソード電極との間の高絶縁性のため、静電気により両電極間に高電圧が印加された場合内部の発光素子が破壊(静電破壊、ESD)されるという問題が生じている。
【0005】
この問題を解決するため、従来においては、発光装置(LEDランプ)の外部の電気回路基板上に、抵抗、コンデンサ、バリスタ等の電子部品を組み込み、発光装置内部の半導体発光素子の静電破壊を防止するようにした構成、又は、発光装置内部において半導体発光素子と並列にダイオードを接続した構成(例えば、特許文献1、特許文献2参照)、あるいは発光装置内部において抵抗を接続した構成(例えば、特許文献3参照)等が提案されている。
【0006】
【発明が解決しようとする課題】
しかし、発光装置の外部に電子部品を実装する構成によると、回路基板上に実装すべき部品点数が増加し、その占有スペースのために回路基板の寸法が大きくなり、また、部品の実装のための工程数が増加するので、装置のコストの増大と寸法の大型化を招くという問題点を有している。また、発光装置内に静電破壊を防止するための部品を組み込む構成によると、極小寸法の抵抗やコンデンサ等を装置内部に実装することとなるので工程が複雑となり、コストの増大を招くという問題点を有している。なお、いずれの場合にも、発光素子に対して個別電子部品を取り付ける構成であるから、製造コストがこの取り付けのために上昇せざるを得ないものである。
【0007】
本発明の目的は、従来技術における上述の問題点を解決することができる静電破壊耐性の大きな発光素子および発光装置を提供することにある。
【0008】
本発明の目的は、付加的な部品を付けることによる占有スペースの増加や実装工程を増加させることがなく、静電気による素子の破壊を防止することができるようにした発光素子およびその発光素子を使用した発光装置を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明では、化合物半導体膜を用いて構成される半導体発光素子が基板上に形成されて成る発光素子において、該半導体発光素子上にその膜状アノード電極又は膜状カソード電極を利用した薄膜コンデンサを設け、薄膜コンデンサと半導体発光素子とが電気的に並列に接続されるように構成したものである。薄膜コンデンサが半導体発光素子と電気的に並列に接続されているため、静電気を原因とする異常な高電圧パルスが半導体発光素子に印加されても、半導体発光素子の静電破壊を防止するとが可能となる。この薄膜コンデンサは半導体発光素子と密着するようにして同一基板上に形成されるので、小型化、低コスト化を図ることができる。
【0012】
請求項1の発明によれば、単結晶性の基板上に、N型半導体層と、前記N型半導体層上に形成された活性層と、前記活性層上に形成されたP型半導体層と、前記P型半導体層上に形成された膜状のアノード電極とを備えて成る半導体発光素子が形成されて成る発光素子において、
前記アノード電極上に絶縁膜と透明導電膜とが積層されて成る薄膜コンデンサを具え、前記透明導電膜が前記N型半導体層と接続されていることを特徴とする発光素子が提案される。
【0013】
請求項2の発明によれば、請求項1の発明において、前記絶縁膜が、チタン酸バリウム、チタン酸ストロンチウム、SBT、BST、PZT、Ta2 5 、Hf2 5 、Al2 3 、SiO2 、Si3 4 、Y2 3 、Gd2 3 、TiO2 、ZrO2 、La2 3 から選ばれた単層膜または積層膜である発光素子が提案される。
【0014】
請求項3の発明によれば、請求項1の発明において、前記絶縁膜の比誘電率が20以上である発光素子が提案される。
【0015】
請求項4の発明によれば、請求項1の発明において、前記絶縁膜が、立方晶ペロブスカイト構造をもつ誘電体材料である発光素子が提案される。
【0016】
請求項5の発明によれば、請求項1の発明において、前記透明導電膜が、ITO、ATO、FTO、AZO、In2 3 、SnO2 、ZnO、CdO、TiO2 、TiN、ZrN、HfN、Au、Ag、Pt,Cu、Pd、Al、Crから選ばれた単層膜または積層膜である発光素子が提案される。
【0017】
請求項6の発明によれば、請求項1の発明において、前記アノード電極が、Au、Ni、Pt、Ru、Ti、Pd、Mo、Rhのいずれか一つの元素を主成分とする合金材料若しくは化合物材料である発光素子が提案される。
【0018】
請求項7の発明によれば、請求項1の発明において、前記半導体発光素子が、前記基板の基板面に対して側壁テーパー角度が60°以下のメサ形状となっている発光素子が提案される。
【0019】
請求項8の発明によれば、請求項1の発明において、前記薄膜コンデンサの静電容量が50pF以上であり、かつ、前記薄膜コンデンサの直流印加電圧4Vにおけるリーク電流が1×10-5A以下である発光素子が提案される。
【0020】
請求項9の発明によれば、請求項1の発明において、前記基板が、サファイア基板であり、前記半導体発光素子が3族窒化物半導体から構成されている発光素子が提案される。
【0021】
請求項10の発明によれば、請求項1乃至9のうちのいずれか1つの発光素子を光源として組み込んだ発光装置が提案される。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態の一例について図面を参照して説明する。
【0023】
図1は本発明による発光素子の実施の形態の一例を示す断面図である。発光素子1は、単結晶性の基板2上に半導体発光素子を形成したもので、半導体発光素子は、例えば有機金属熱分解法(MOCVD法)の如き適宜の気相成長法を用いて所要の化合物半導体単結晶薄膜層を積層形成することにより製作でき、その他の必要な絶縁膜、電極膜等は公知の適宜の手段を用いて形成することができる。
【0024】
基板2上には、N型半導体層3、活性層4、P型半導体層5の各層がこの順序で形成されている。これら3つの層を含んで成る半導体発光素子Kはメサ形状にエッチング加工されている。ここでは、N型半導体層3の一部がより薄い厚みの電極形成用部分3Aとなっており、電極形成用部分3Aに隣接する側壁部分は側壁テーパー角度θを有するテーパー面3Bとなっている。ここで、側壁テーパー角度θは、基板2の基板面2Aに対する図示の角度である。テーパー面3BはN型半導体層3のみならず、その上に形成されている活性層4、P型半導体層5にも及んでいる。
【0025】
P型半導体層5の上にはP型半導体層5を外部回路と電気的に接続するためのアノード電極6が形成されている。アノード電極6はP型半導体層5上に薄膜状に形成されている。一方、N型半導体層3の電極形成用部分3A上には、N型半導体層3を外部回路と電気的に接続するためのカソード電極7が形成されている。カソード電極7もまた電極形成用部分3A上に薄膜状に形成されている。
【0026】
基板2上に以上のように構成された半導体発光素子Kは、アノード電極6とカソード電極7との間に電圧を所要の極性にて印加することにより、N型半導体層3から活性層4に電子が注入され、P型半導体層5から活性層4には正孔が注入され、活性層4においてこれらの電子と正孔とが再結合することで発光する。
【0027】
アノード電極6の上には、アノード電極6を一方の電極とする薄膜コンデンサ8が形成されている。この薄膜コンデンサ8は、アノード電極6上に形成されて、絶縁膜9の上にさらに透明な導電膜10を形成し、導電膜10とアノード電極6とによって絶縁膜9を挟んだ形態の極く薄いコンデンサとしたもので、導電膜10が薄膜コンデンサ8の他方の電極となっている。
【0028】
薄膜コンデンサ8は、静電気の作用でアノード電極6とカソード電極7との間に高電圧が印加されても、これにより半導体発光素子が静電破壊されることを有効に防止する目的で設けられたものである。
【0029】
この薄膜コンデンサ8を半導体発光素子と電気的に並列に接続するため、導電膜10がテーパー面3B上に沿ってカソード電極7まで延設されており、導電膜10の端部10Aがカソード電極7と電気的に接続された状態となっている。なお、本実施の形態では、絶縁膜9はテーパー面3Bにまで延びるように形成されており、アノード電極6の端部6Aとテーパー面3Bとを覆っている。これにより導電膜10は、活性層4、P型半導体層5及びアノード電極6と電気的に所要の絶縁状態に保たれている。
【0030】
このように、アノード電極6、絶縁膜9及び導電膜10を積層形成することにより形成された薄膜コンデンサ8がアノード電極6とカソード電極7とに電気的に接続され、薄膜コンデンサ8と半導体発光素子Kとが並列に接続されているので、静電気によりアノード電極とカソード電極との間に高電圧が発生するのを有効に抑えることができ、半導体発光素子Kの静電破壊を有効に防止することができる。
【0031】
薄膜コンデンサ8は半導体製造プロセスを利用して半導体発光素子Kと密着して一体になるよう基板2上に上述の如く形成されるので、薄膜コンデンサ8のための占有スペースは極めて僅かであり、個別部品等の実装工程は不要である。このため、小型化が可能で付加部品の実装工程が不要となり、小型で低コストの発光素子を実現できる。
【0032】
基板2上に形成する半導体発光素子Kは3族窒化物半導体による結晶性半導体膜を用いて構成することができる。この場合には、基板2としてはサファイア基板、SiC基板、Si基板が好適である。また、N型半導体層3はSiをドーピングしたGaN、活性層4はGaNとInGaNの量子井戸構造、P型導電層5はMgをドーピングしたGaNを用いて構成することができる。勿論、本発明はこの構成に限定されるものではなく、例えば基板2をGaAs基板またはInP基板とし、結晶性半導体膜がInAlGaPAs系の半導体発光素子をこの基板上に形成した場合にも適用することができる。
【0033】
また、本発明においては、P型導電層をP型クラッド層/低濃度ドープP型層/高濃度ドープP型層(コンタクト層)の構成(例えば、特開2001−148507号公報に示されている構成)とすることもできる。この場合、低濃度ドープP型層がLED素子の直列抵抗を増加させるため、LEDの作動電圧は若干高くなるが静電気による破壊防止対策を2重に施すことになりより静電気耐性に優れたLED素子となり得る。
【0034】
アノード電極6とカソード電極7の各材料は、各導電型の半導体膜とオーミック性接合となるものを選択すればよい。半導体膜が3族窒化物半導体の場合、アノード電極をAuNiとし、カソード電極をTiAlとすることで良好なオーミック接合が得られる。アノード電極は、このほか、Au、Ni、Pt、Ru、Ti、Pd、Mo、Rhのいずれか一つの元素を主成分とする合金材料若しくは化合物材料を用いて形成することができる。
【0035】
絶縁膜9の材料としては、発光波長における吸収が少ないこと、静電容量を極力大きくとれるように誘電率が高いこと、半導体発光素子動作時のリーク電流が極力少ないこと、という条件の両立可能なものを選択する。例えば、チタン酸バリウム、チタン酸ストロンチウム、SBT、BST、PZT、Ta2 5 、Hf2 5 、Al2 3 、SiO2 、Si3 4 、Y2 3 、Gd2 3 、TiO2 、ZrO2 、La2 3 などが絶縁膜9の材料として好適である。ここで、絶縁膜9をこれらの材料から選ばれた単層膜または積層膜とすることができる。さらに、絶縁膜9は、立方晶ペロブスカイト構造をもつ誘電体材料とするのが好ましい。
【0036】
透明な導電膜10の材料としては、ITO、ATO、FTO、AZO、In2 3 、SnO2 、ZnO、CdO、TiO2 、TiN、ZrN、HfN、Au、Ag、Pt, Cu、Pd、Al、Crなどが好適である。ここで、透明な導電膜10をこれらの材料から選ばれた単層膜または積層膜とすることができる。
【0037】
図2は、図1に示した本発明の実施の形態の変形例を示す断面図である。図2の各部のうち図1の各部に対応する部分にはそれらと同一の符号が付されている。図2に示した発光素子20は、薄膜コンデンサ8の他方の電極を構成する透明の導電膜10’がテーパー面3Bに沿って電極形成用部分3Aにまで延設されており、その端部10’AがN型半導体層3を外部回路と接続するために使用されるカソード電極を兼ねている点でのみ図1に示した発光素子1と異なっている。
【0038】
この構成によれば、図1におけるカソード電極7と透明な導電膜10とを別々に形成する必要がなく、透明な導電膜10’の形成のみで済むので、製造工程をより簡単化することができる。
【0039】
図3は、本発明の別の実施の形態を示す断面図である。図3の各部のうち図1の各部に対応する部分にはそれらと同一の符号が付されている。図3に示す発光素子30は、図1の薄膜コンデンサ8の場合と同様にしてカソード電極7の上に薄膜コンデンサ31が形成されている。すなわち、薄膜コンデンサ31は、カソード電極7上に形成された絶縁膜32の上にさらに透明な導電膜33を形成し、導電膜33とカソード電極7とによって絶縁膜32を挟んだ形態の極く薄い薄膜コンデンサとされたもので、カソード電極7がその一方の電極となっており、導電膜33がその他方の電極となっている。
【0040】
絶縁膜32はテーパー面3Bに沿ってN型半導体層3の上方の上端部3Baにまで延設されている。一方、透明な導電膜33も、テーパー面3Bに沿うようにして絶縁膜32上をテーパー面3Bに沿って延設され、上端部3BaからさらにP型半導体層5上にまで延びている。そして、P型半導体層5上に形成された導電膜33の端部33Aが、P型半導体層5を外部回路と電気的に接続するためのアノード電極として働く構成となっている。
【0041】
発光素子30によれば、P型半導体層5の上に透明な導電膜33のみが形成されるので、図1及び図2に示す構成の場合に比べて外部発光効率を改善することができる。また、アノード電極を別工程で形成する必要がないので、工程数の簡素化を図ることができ、コストの低減に役立つ。さらに、薄膜コンデンサ31をテーパー面3Bの麓部に設けるので、発光素子30全体の厚みを薄くすることができる。
【0042】
なお、上記いずれの実施の形態の場合にも、テーパー面3Bの麓部と頂上部との高低差は1μm以上の高さになる場合もある。このような高低差がある段差部に、蒸着法、スパッタ法、CVD法などで絶縁膜または透明導電膜を形成する場合、それらが薄膜であると、側壁テーパー角度θが60°以上では段差を被覆しきれない場合がありうる。その場合には、麓部において透明の導電膜の断線や、透明な導電膜と半導体層との間の短絡などの不具合が起こり得る。したがって、テーパー面3Bのテーパー角度θは60°以下にすることが望ましい。
【0043】
さらに、薄膜コンデンサ8、31のコンデンサ容量が小さすぎると、静電破壊防止という効果を充分に発揮することができない。一方、薄膜コンデンサ8、31の漏洩(リーク)電流が大きすぎると発光素子の消費電力が大きくなるため望ましくない。そのため、静電容量は50pF以上であり、かつ、直流印加電圧4Vにおける漏洩電流が1×10-5A以下であることが望ましい。
【0044】
次に、上述の如くして構成される薄膜コンデンサの容量の確保と絶縁膜の絶縁破壊との関係について説明する。よく知られているように誘電体コンデンサの静電容量Cは、
C=ε’ε0 (S/t)
ε’:比誘電率
ε0 :真空の誘電率(8.85E−12F/m)
S:コンデンサ面積
t:誘電体膜厚(電極間距離)
と表される。例えば、GaN系青色LEDの1チップあたりの発光部分面積(アノード電極面積とほぼ等しい)は、200μm×200μm程度である。今、面積200μm×200μmのコンデンサで、コンデンサの設計容量600pFを形成したいとする。コンデンサ面積を増加させれば単純に静電容量は増加するが、コンデンサ占有面積も増加するため望ましくないのでその面積は上記条件とする。
【0045】
図4は誘電体の比誘電率とコンデンサが600pFとなる膜厚との間の関係を示すグラフである。図5は誘電体膜厚と電界強度との間の関係を示すグラフで、直流電圧4V時の電界強度が示されている。図4に示すグラフは、コンデンサの容量を600pF以上にするためには、比誘電率が高い程誘電体膜厚を厚くでき、比誘電率が低い程誘電体膜厚を薄くする必要があることを示している。また、図5に示すグラフは、LEDの動作電圧4Vがコンデンサの電極間に印加された場合、誘電体膜が厚い程電界強度が弱く、誘電体膜が薄い程電界強度が強くなることを示している。これらのグラフにより、誘電率が高ければ高いほど、設計容量とするための誘電体膜厚を厚くすることができ、LED動作時の膜厚にかかる電界強度を小さくすることができることが判る。
【0046】
一方、比誘電率は20以下の場合、600pFにするためには膜厚を118Å以下にする必要がある。このような薄膜では電界強度が3.4MV/cm以上となる。このような電界強度を長時間かけるとほとんどの絶縁膜は、絶縁破壊をおこす。また、膜厚の制御性も薄膜になればなるほど困難になる。したがって、この場合には、絶縁層の比誘電率を20より大きくすることが好ましい。
【0047】
図6は、図1に示した発光素子1を用いて構成された発光装置の実施の形態の一例を示す断面図である。発光装置40は第1リードフレーム41の内端に一体形成された台座部42上に図1に示した発光素子1が固定されている。第1リードフレーム41に対して第2リードフレーム43が略平行となるように設けられており、発光素子1のカソード電極7が第1接続導体44によって台座部42に電気的に接続され、そのアノード電極6が第2接続導体45になって第2リードフレーム43に電気的に接続されている。そして、第1リードフレーム41及び第2リードフレーム43の内端部は透明な熱硬化性樹脂46によって封されている。
【0048】
したがって、第1リードフレーム41と第2リードフレーム43との間に電圧を印加することにより発光素子1において発光が得られ、発光素子1からの光は透明な熱硬化性樹脂46を通って外部に放出される。静電破壊防止用のコンデンサは発光素子1内に薄膜コンデンサとして予め上述の如くして組み込まれているので、外付部品を付加する必要がなく組立工程が複雑化することはない。また、発光素子1は薄膜コンデンサを半導体発光素子と並列に接続した構成であるから、第1リードフレーム41と第2リードフレーム43との間に印加する駆動電圧を高くする必要はなく、低電圧駆動が可能であり、消費電力も少なくて済む。
【0049】
【実施例】
以下に本発明の一実施例を説明するが、本発明はこれによって限定されるものではない。
【0050】
図1に示す構造の発光素子を次のように作製した。基板2としてサファイア基板を用い、サファイア基板上に、MOCVD法によりSiドープGaNをN型半導体層3として、GaN\InGaN多重量子井戸を活性層4として、MgドープGaNをP型半導体層5として形成し、青色発光ダイオード素子を形成した。この青色発光ダイオード素子の上にスピンコート法で成膜したチタン酸バリウム膜を誘電体とする薄膜コンデンサを形成し、青色発光ダイオード素子と薄膜コンデンサとが電気的に並列接続されるようにした。薄膜コンデンサの容量は260pFであった。
【0051】
図7は、発光素子の静電気放電に対する耐性を試験するための回路図である。ここでVoは可変直流電源、Rp、Rは抵抗器、Cはコンデンサ、Swは切替スイッチである。試験は次のようにして行った。静電気帯電した装置または治具などから、発光素子1に静電気放電するマシンモデル(R=0Ω、C=200pF)条件とした。図7中の可変直流電源Voの電圧をある値に設定し、切替スイッチSwを実線で示されるように切り替えて抵抗器Rpを介してコンデンサCに充電した後、切替スイッチSwを点線で示されるように切り替えて、発光素子1に対して放電する。これを3回繰り返した後、青色発光ダイオード素子の電圧−電流特性を評価した。青色発光ダイオード素子の電圧−電流特性が変化することで素子が破壊されたか否かの判別が可能である。
【0052】
従来構造の青色発光ダイオード素子では、60Vで試験した素子の50%が破壊した。一方、260pFの薄膜コンデンサが青色発光ダイオード素子に並列に接続された実施例の場合、50%の素子が破壊したのは150Vであった。つまり、静電破壊に至る耐圧が90V改善されていることが確認された。
【0053】
【発明の効果】
本発明によれば、静電気による半導体発光素子の破壊防止が可能であり、かつ、付加的な部品を付けることによる占有スペースの増加や実装工程を増加させることなく、発光素子およびその発光素子を光源として組み込んだ発光装置を提供することができる。
【図面の簡単な説明】
【図1】本発明による発光素子の実施の形態の一例を示す断面図。
【図2】図1に示した実施の形態の変形例を示す断面図。
【図3】本発明による発光素子の他の実施の形態を示す断面図。
【図4】誘電体の比誘電率とコンデンサが600pFとなる膜厚との間の関係を示すグラフ。
【図5】誘電体膜厚と電界強度との間の関係を示すグラフ。
【図6】本発明による発光装置の実施の形態の一例を示す断面図。
【図7】発光素子の静電気放電に対する耐性を試験するための回路図。
【符号の説明】
1、20、30 発光素子
2 基板
3 N型半導体層
3A 電極形成用部分
3B テーパー面
4 活性層
5 P型半導体層
6 アノード電極
7 カソード電極
8 薄膜コンデンサ
9、32 絶縁膜
10、33 導電膜
θ 側壁テーパー角度
K 半導体発光素子
[0001]
[Patent Document 1]
JP 2000-216442 A [Patent Document 2]
JP 2001-230448 A [Patent Document 3]
JP 2002-94121 A
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting element using a semiconductor film formed on a substrate and a light emitting device using the light emitting element.
[0003]
[Prior art]
In recent years, light-emitting elements using gallium nitride-based materials have been incorporated and commercialized as light sources for blue, green, or white light-emitting devices. This type of light-emitting element has a light-emitting functional part (hereinafter referred to as “semiconductor light-emitting element” in this specification) composed of a semiconductor film using a gallium nitride-based compound semiconductor, an anode electrode, and a cathode electrode. LED chips (hereinafter referred to as “light emitting elements” in the present specification) in which a semiconductor light emitting element is formed on an insulating substrate are assembled in an appropriate case to manufacture a light emitting device. is doing.
[0004]
When the light-emitting device configured as described above is actually used, since the high insulation between the anode electrode and the cathode electrode has been conventionally applied, when a high voltage is applied between both electrodes due to static electricity, There is a problem that the light emitting element is destroyed (electrostatic breakdown, ESD).
[0005]
In order to solve this problem, conventionally, electronic components such as resistors, capacitors, and varistors are incorporated on an electric circuit board outside the light emitting device (LED lamp) to cause electrostatic breakdown of the semiconductor light emitting element inside the light emitting device. A configuration in which a diode is connected in parallel with the semiconductor light emitting element in the light emitting device (for example, see Patent Document 1 and Patent Document 2), or a configuration in which a resistor is connected in the light emitting device (for example, Patent Document 3) has been proposed.
[0006]
[Problems to be solved by the invention]
However, according to the configuration in which the electronic components are mounted outside the light emitting device, the number of components to be mounted on the circuit board increases, the size of the circuit board increases due to the occupied space, and the mounting of the components As the number of processes increases, there is a problem that the cost of the apparatus is increased and the size is increased. In addition, according to the configuration in which components for preventing electrostatic breakdown are incorporated in the light emitting device, a very small size resistor, capacitor, etc. are mounted inside the device, so that the process becomes complicated and the cost increases. Has a point. In any case, since the individual electronic components are attached to the light emitting element, the manufacturing cost is inevitably increased due to the attachment.
[0007]
An object of the present invention is to provide a light-emitting element and a light-emitting device having a high resistance to electrostatic breakdown that can solve the above-mentioned problems in the prior art.
[0008]
An object of the present invention is to use a light emitting element capable of preventing destruction of the element due to static electricity without increasing an occupied space and mounting process by adding additional components, and using the light emitting element An object of the present invention is to provide a light emitting device.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, in a light-emitting element in which a semiconductor light-emitting element formed using a compound semiconductor film is formed on a substrate, the film-like anode electrode or film-like cathode is formed on the semiconductor light-emitting element. A thin film capacitor using electrodes is provided, and the thin film capacitor and the semiconductor light emitting element are electrically connected in parallel. Since the thin film capacitor is electrically connected in parallel with the semiconductor light emitting device, it is possible to prevent electrostatic breakdown of the semiconductor light emitting device even if an abnormal high voltage pulse caused by static electricity is applied to the semiconductor light emitting device. It becomes. Since this thin film capacitor is formed on the same substrate so as to be in close contact with the semiconductor light emitting element, it is possible to reduce the size and cost.
[0012]
According to the invention of claim 1 , an N-type semiconductor layer, an active layer formed on the N-type semiconductor layer, a P-type semiconductor layer formed on the active layer, on a single crystalline substrate, In a light emitting device formed by forming a semiconductor light emitting device comprising a film-like anode electrode formed on the P-type semiconductor layer,
Comprising a thin film capacitor comprising said on the anode electrode and the insulating film and the transparent conductive film is laminated, the transparent conductive film light emitting element characterized in that it is connected to the N-type semiconductor layer is proposed.
[0013]
According to the invention of claim 2, in the invention of claim 1 , the insulating film is made of barium titanate, strontium titanate, SBT, BST, PZT, Ta 2 O 5 , Hf 2 O 5 , Al 2 O 3 , A light-emitting element that is a single layer film or a laminated film selected from SiO 2 , Si 3 N 4 , Y 2 O 3 , Gd 2 O 3 , TiO 2 , ZrO 2 , and La 2 O 3 is proposed.
[0014]
According to the invention of claim 3, in the invention of claim 1 , a light emitting device is proposed in which the dielectric film has a relative dielectric constant of 20 or more.
[0015]
According to the invention of claim 4, in the invention of claim 1 , a light emitting device is proposed in which the insulating film is a dielectric material having a cubic perovskite structure.
[0016]
According to the invention of claim 5, in the invention of claim 1, wherein the transparent conductive film, ITO, ATO, FTO, AZO , In 2 O 3, SnO 2, ZnO, CdO, TiO 2, TiN, ZrN, HfN A light-emitting element that is a single layer film or a laminated film selected from Au, Ag, Pt, Cu, Pd, Al, and Cr is proposed.
[0017]
According to the invention of claim 6, in the invention of claim 1 , the anode electrode is an alloy material mainly containing any one element of Au, Ni, Pt, Ru, Ti, Pd, Mo, Rh, or A light-emitting element that is a compound material is proposed.
[0018]
According to the invention of claim 7, in the invention of claim 1 , a light-emitting element is proposed in which the semiconductor light-emitting element has a mesa shape with a side wall taper angle of 60 ° or less with respect to the substrate surface of the substrate. .
[0019]
According to the invention of claim 8, in the invention of claim 1 , the capacitance of the thin film capacitor is 50 pF or more, and the leakage current at a DC applied voltage of 4 V of the thin film capacitor is 1 × 10 −5 A or less. A light emitting device is proposed.
[0020]
According to a ninth aspect of the present invention, there is proposed a light emitting device according to the first aspect , wherein the substrate is a sapphire substrate, and the semiconductor light emitting device is made of a group III nitride semiconductor.
[0021]
According to the invention of claim 10 , a light emitting device is proposed in which any one of the light emitting elements of claims 1 to 9 is incorporated as a light source.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 is a sectional view showing an example of an embodiment of a light emitting device according to the present invention. The light-emitting element 1 is obtained by forming a semiconductor light-emitting element on a single crystal substrate 2. The semiconductor light-emitting element is obtained by using an appropriate vapor phase growth method such as a metal organic thermal decomposition method (MOCVD method). It can be manufactured by laminating compound semiconductor single crystal thin film layers, and other necessary insulating films, electrode films, etc. can be formed by using known appropriate means.
[0024]
On the substrate 2, the N-type semiconductor layer 3, the active layer 4, and the P-type semiconductor layer 5 are formed in this order. The semiconductor light emitting device K including these three layers is etched into a mesa shape. Here, a part of the N-type semiconductor layer 3 is a thinner electrode forming portion 3A, and a side wall portion adjacent to the electrode forming portion 3A is a tapered surface 3B having a side wall taper angle θ. . Here, the side wall taper angle θ is the illustrated angle with respect to the substrate surface 2 </ b> A of the substrate 2. The tapered surface 3B extends not only to the N-type semiconductor layer 3, but also to the active layer 4 and the P-type semiconductor layer 5 formed thereon.
[0025]
An anode electrode 6 for electrically connecting the P-type semiconductor layer 5 to an external circuit is formed on the P-type semiconductor layer 5. The anode electrode 6 is formed in a thin film shape on the P-type semiconductor layer 5. On the other hand, a cathode electrode 7 for electrically connecting the N-type semiconductor layer 3 to an external circuit is formed on the electrode forming portion 3A of the N-type semiconductor layer 3. The cathode electrode 7 is also formed in a thin film shape on the electrode forming portion 3A.
[0026]
The semiconductor light emitting device K configured as described above on the substrate 2 applies a voltage between the anode electrode 6 and the cathode electrode 7 with a required polarity, so that the N-type semiconductor layer 3 changes to the active layer 4. Electrons are injected, holes are injected from the P-type semiconductor layer 5 into the active layer 4, and light is emitted by recombination of these electrons and holes in the active layer 4.
[0027]
A thin film capacitor 8 having the anode electrode 6 as one electrode is formed on the anode electrode 6. The thin film capacitor 8 is formed on the anode electrode 6, and a transparent conductive film 10 is further formed on the insulating film 9, and the insulating film 9 is sandwiched between the conductive film 10 and the anode electrode 6. A thin capacitor is used, and the conductive film 10 is the other electrode of the thin film capacitor 8.
[0028]
The thin film capacitor 8 is provided for the purpose of effectively preventing the semiconductor light emitting element from being electrostatically damaged even when a high voltage is applied between the anode electrode 6 and the cathode electrode 7 due to the action of static electricity. Is.
[0029]
In order to connect the thin film capacitor 8 electrically in parallel with the semiconductor light emitting device, the conductive film 10 is extended to the cathode electrode 7 along the tapered surface 3B, and the end portion 10A of the conductive film 10 is the cathode electrode 7. Are in an electrically connected state. In the present embodiment, the insulating film 9 is formed so as to extend to the tapered surface 3B, and covers the end 6A of the anode electrode 6 and the tapered surface 3B. As a result, the conductive film 10 is electrically maintained in a required insulating state from the active layer 4, the P-type semiconductor layer 5, and the anode electrode 6.
[0030]
Thus, the thin film capacitor 8 formed by laminating the anode electrode 6, the insulating film 9, and the conductive film 10 is electrically connected to the anode electrode 6 and the cathode electrode 7, and the thin film capacitor 8 and the semiconductor light emitting element are connected. Since K is connected in parallel, generation of a high voltage between the anode electrode and the cathode electrode due to static electricity can be effectively suppressed, and electrostatic breakdown of the semiconductor light emitting element K can be effectively prevented. Can do.
[0031]
Since the thin film capacitor 8 is formed on the substrate 2 as described above so as to be in close contact with the semiconductor light emitting element K using a semiconductor manufacturing process, the space for the thin film capacitor 8 is very small, There is no need for a component mounting process. For this reason, it is possible to reduce the size and eliminate the need for a mounting process of additional components, thereby realizing a small-sized and low-cost light-emitting element.
[0032]
The semiconductor light emitting element K formed on the substrate 2 can be configured using a crystalline semiconductor film made of a group 3 nitride semiconductor. In this case, the substrate 2 is preferably a sapphire substrate, a SiC substrate, or a Si substrate. The N-type semiconductor layer 3 can be formed using Si-doped GaN, the active layer 4 can be formed using GaN and InGaN quantum well structures, and the P-type conductive layer 5 can be formed using Mg-doped GaN. Of course, the present invention is not limited to this configuration. For example, the present invention can be applied to a case where the substrate 2 is a GaAs substrate or an InP substrate and a semiconductor light emitting device having a crystalline semiconductor film of InAlGaPAs is formed on this substrate. Can do.
[0033]
In the present invention, the P-type conductive layer is composed of P-type cladding layer / low-concentration doped P-type layer / high-concentration doped P-type layer (contact layer) (for example, disclosed in JP-A-2001-148507). It is also possible to adopt a configuration. In this case, since the lightly doped P-type layer increases the series resistance of the LED element, the LED operating voltage is slightly higher, but a countermeasure for preventing damage due to static electricity is applied twice, and the LED element is more excellent in electrostatic resistance. Can be.
[0034]
The materials for the anode electrode 6 and the cathode electrode 7 may be selected from materials that form ohmic junctions with the respective conductive semiconductor films. When the semiconductor film is a group III nitride semiconductor, a good ohmic junction can be obtained by making the anode electrode AuNi and the cathode electrode TiAl. In addition, the anode electrode can be formed by using an alloy material or a compound material whose main component is any one element of Au, Ni, Pt, Ru, Ti, Pd, Mo, and Rh.
[0035]
The material of the insulating film 9 can satisfy the following conditions: low absorption at the emission wavelength, high dielectric constant so that the capacitance can be maximized, and minimal leakage current when operating the semiconductor light emitting device. Choose one. For example, barium titanate, strontium titanate, SBT, BST, PZT, Ta 2 O 5 , Hf 2 O 5 , Al 2 O 3 , SiO 2 , Si 3 N 4 , Y 2 O 3 , Gd 2 O 3 , TiO 2 , ZrO 2 , La 2 O 3 and the like are suitable as the material of the insulating film 9. Here, the insulating film 9 can be a single layer film or a laminated film selected from these materials. Furthermore, the insulating film 9 is preferably a dielectric material having a cubic perovskite structure.
[0036]
The material of the transparent conductive film 10 includes ITO, ATO, FTO, AZO, In 2 O 3 , SnO 2 , ZnO, CdO, TiO 2 , TiN, ZrN, HfN, Au, Ag, Pt, Cu, Pd, Al , Cr and the like are preferable. Here, the transparent conductive film 10 can be a single layer film or a laminated film selected from these materials.
[0037]
FIG. 2 is a sectional view showing a modification of the embodiment of the present invention shown in FIG. 2 corresponding to those in FIG. 1 are denoted by the same reference numerals. In the light emitting element 20 shown in FIG. 2, a transparent conductive film 10 ′ constituting the other electrode of the thin film capacitor 8 is extended to the electrode forming portion 3A along the tapered surface 3B. 'A differs from the light emitting device 1 shown in FIG. 1 only in that A also serves as a cathode electrode used to connect the N-type semiconductor layer 3 to an external circuit.
[0038]
According to this configuration, it is not necessary to separately form the cathode electrode 7 and the transparent conductive film 10 in FIG. 1, and it is only necessary to form the transparent conductive film 10 ′, so that the manufacturing process can be further simplified. it can.
[0039]
FIG. 3 is a cross-sectional view showing another embodiment of the present invention. 3 corresponding to those in FIG. 1 are denoted by the same reference numerals. In the light emitting element 30 shown in FIG. 3, a thin film capacitor 31 is formed on the cathode electrode 7 in the same manner as the thin film capacitor 8 of FIG. That is, the thin film capacitor 31 has a configuration in which a transparent conductive film 33 is further formed on the insulating film 32 formed on the cathode electrode 7 and the insulating film 32 is sandwiched between the conductive film 33 and the cathode electrode 7. The cathode electrode 7 is one of the electrodes, and the conductive film 33 is the other electrode.
[0040]
The insulating film 32 extends to the upper end 3Ba above the N-type semiconductor layer 3 along the tapered surface 3B. On the other hand, the transparent conductive film 33 also extends along the tapered surface 3B along the tapered surface 3B along the tapered surface 3B, and further extends from the upper end portion 3Ba to the P-type semiconductor layer 5. The end portion 33A of the conductive film 33 formed on the P-type semiconductor layer 5 is configured to function as an anode electrode for electrically connecting the P-type semiconductor layer 5 to an external circuit.
[0041]
According to the light emitting element 30, since only the transparent conductive film 33 is formed on the P-type semiconductor layer 5, the external light emission efficiency can be improved as compared with the configuration shown in FIGS. In addition, since it is not necessary to form the anode electrode in a separate process, the number of processes can be simplified, which helps to reduce costs. Furthermore, since the thin film capacitor 31 is provided on the flange portion of the tapered surface 3B, the entire thickness of the light emitting element 30 can be reduced.
[0042]
In any of the above embodiments, the height difference between the ridge and the top of the tapered surface 3B may be 1 μm or more. In the case where an insulating film or a transparent conductive film is formed on the step portion having such a height difference by vapor deposition, sputtering, CVD, etc., if they are thin films, the step is not formed when the side wall taper angle θ is 60 ° or more. There may be cases where the coating cannot be completed. In that case, problems such as disconnection of the transparent conductive film and a short circuit between the transparent conductive film and the semiconductor layer may occur in the collar portion. Therefore, the taper angle θ of the taper surface 3B is desirably 60 ° or less.
[0043]
Furthermore, if the capacitor capacity of the thin film capacitors 8 and 31 is too small, the effect of preventing electrostatic breakdown cannot be sufficiently exhibited. On the other hand, if the leakage current of the thin film capacitors 8 and 31 is too large, the power consumption of the light emitting element is increased, which is not desirable. Therefore, it is desirable that the capacitance is 50 pF or more and the leakage current at a DC applied voltage of 4 V is 1 × 10 −5 A or less.
[0044]
Next, the relationship between securing the capacity of the thin film capacitor configured as described above and the dielectric breakdown of the insulating film will be described. As is well known, the capacitance C of a dielectric capacitor is
C = ε′ε 0 (S / t)
ε ′: relative dielectric constant ε 0 : vacuum dielectric constant (8.85E-12F / m)
S: capacitor area t: dielectric film thickness (distance between electrodes)
It is expressed. For example, the light emission partial area per chip of the GaN-based blue LED (approximately equal to the anode electrode area) is about 200 μm × 200 μm. Assume that a capacitor having a design capacity of 600 pF is formed with a capacitor having an area of 200 μm × 200 μm. Increasing the capacitor area simply increases the capacitance, but the capacitor occupation area also increases, which is not desirable.
[0045]
FIG. 4 is a graph showing the relationship between the dielectric constant of the dielectric and the film thickness at which the capacitor is 600 pF. FIG. 5 is a graph showing the relationship between the dielectric film thickness and the electric field strength, and shows the electric field strength at a DC voltage of 4V. The graph shown in FIG. 4 shows that in order to increase the capacitance of the capacitor to 600 pF or more, the dielectric film thickness can be increased as the relative dielectric constant is increased, and the dielectric film thickness must be decreased as the relative dielectric constant is decreased. Is shown. Further, the graph shown in FIG. 5 shows that when the operating voltage 4V of the LED is applied between the electrodes of the capacitor, the thicker the dielectric film, the weaker the electric field strength, and the thinner the dielectric film, the stronger the electric field strength. ing. From these graphs, it can be seen that the higher the dielectric constant, the thicker the dielectric film thickness for achieving the design capacity, and the smaller the electric field strength applied to the film thickness during LED operation.
[0046]
On the other hand, when the relative dielectric constant is 20 or less, the film thickness must be 118 mm or less in order to obtain 600 pF. Such a thin film has an electric field strength of 3.4 MV / cm or more. When such an electric field strength is applied for a long time, most insulating films cause dielectric breakdown. Also, the controllability of the film thickness becomes more difficult as the film becomes thinner. Therefore, in this case, it is preferable that the dielectric constant of the insulating layer is greater than 20.
[0047]
FIG. 6 is a cross-sectional view illustrating an example of an embodiment of a light emitting device configured using the light emitting element 1 illustrated in FIG. 1. In the light emitting device 40, the light emitting element 1 shown in FIG. 1 is fixed on a pedestal portion 42 formed integrally with the inner end of the first lead frame 41. The second lead frame 43 is provided so as to be substantially parallel to the first lead frame 41, and the cathode electrode 7 of the light emitting element 1 is electrically connected to the pedestal portion 42 by the first connection conductor 44. The anode electrode 6 serves as the second connection conductor 45 and is electrically connected to the second lead frame 43. The inner ends of the first lead frame 41 and the second lead frame 43 are sealed with a transparent thermosetting resin 46.
[0048]
Therefore, light emission is obtained in the light emitting element 1 by applying a voltage between the first lead frame 41 and the second lead frame 43, and the light from the light emitting element 1 passes through the transparent thermosetting resin 46 to the outside. To be released. Since the capacitor for preventing electrostatic breakdown is previously incorporated as a thin film capacitor in the light emitting element 1, it is not necessary to add external parts and the assembly process is not complicated. Further, since the light-emitting element 1 has a configuration in which a thin film capacitor is connected in parallel with the semiconductor light-emitting element, it is not necessary to increase the drive voltage applied between the first lead frame 41 and the second lead frame 43. It can be driven and consumes less power.
[0049]
【Example】
One embodiment of the present invention will be described below, but the present invention is not limited thereto.
[0050]
A light-emitting element having the structure shown in FIG. 1 was manufactured as follows. A sapphire substrate is used as the substrate 2, and an Si-doped GaN is formed as an N-type semiconductor layer 3, an GaN / InGaN multiple quantum well as an active layer 4, and an Mg-doped GaN as a P-type semiconductor layer 5 on the sapphire substrate by MOCVD. A blue light emitting diode element was formed. A thin film capacitor using a barium titanate film formed by spin coating as a dielectric was formed on the blue light emitting diode element, and the blue light emitting diode element and the thin film capacitor were electrically connected in parallel. The capacitance of the thin film capacitor was 260 pF.
[0051]
FIG. 7 is a circuit diagram for testing the resistance of the light emitting element to electrostatic discharge. Here, Vo is a variable DC power supply, Rp and R are resistors, C is a capacitor, and Sw is a changeover switch. The test was conducted as follows. The machine model (R = 0Ω, C = 200 pF) was used for electrostatic discharge to the light emitting element 1 from an electrostatically charged device or jig. The voltage of the variable DC power supply Vo in FIG. 7 is set to a certain value, the changeover switch Sw is switched as indicated by a solid line, and the capacitor C is charged via the resistor Rp, and then the changeover switch Sw is indicated by a dotted line. Then, the light emitting element 1 is discharged. After repeating this three times, the voltage-current characteristics of the blue light emitting diode element were evaluated. It is possible to determine whether or not the element is destroyed by changing the voltage-current characteristic of the blue light emitting diode element.
[0052]
In a blue light emitting diode element having a conventional structure, 50% of the elements tested at 60 V were destroyed. On the other hand, in the example in which a 260 pF thin film capacitor was connected in parallel to the blue light emitting diode element, 50% of the elements were destroyed at 150V. That is, it was confirmed that the breakdown voltage leading to electrostatic breakdown was improved by 90V.
[0053]
【The invention's effect】
According to the present invention, it is possible to prevent destruction of a semiconductor light emitting element due to static electricity, and the light emitting element and the light emitting element can be used as a light source without increasing an occupied space by adding an additional part or increasing a mounting process. The light emitting device incorporated as can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an example of an embodiment of a light-emitting element according to the present invention.
FIG. 2 is a cross-sectional view showing a modification of the embodiment shown in FIG.
FIG. 3 is a cross-sectional view showing another embodiment of a light emitting device according to the present invention.
FIG. 4 is a graph showing the relationship between the relative dielectric constant of a dielectric and the film thickness at which the capacitor is 600 pF.
FIG. 5 is a graph showing the relationship between dielectric film thickness and electric field strength.
FIG. 6 is a cross-sectional view illustrating an example of an embodiment of a light-emitting device according to the present invention.
FIG. 7 is a circuit diagram for testing the resistance of the light emitting element to electrostatic discharge.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 20, 30 Light emitting element 2 Substrate 3 N type semiconductor layer 3A Electrode formation part 3B Tapered surface 4 Active layer 5 P type semiconductor layer 6 Anode electrode 7 Cathode electrode 8 Thin film capacitor 9, 32 Insulating film 10, 33 Conductive film θ Side wall taper angle K Semiconductor light emitting device

Claims (10)

単結晶性の基板上に、N型半導体層と、前記N型半導体層上に形成された活性層と、前記活性層上に形成されたP型半導体層と、前記P型半導体層上に形成された膜状のアノード電極とを備えて成る半導体発光素子が形成されて成る発光素子において、On a single crystalline substrate, an N-type semiconductor layer, an active layer formed on the N-type semiconductor layer, a P-type semiconductor layer formed on the active layer, and formed on the P-type semiconductor layer In a light emitting device formed by forming a semiconductor light emitting device comprising a film-like anode electrode formed,
前記アノード電極上に絶縁膜と透明導電膜とが積層されて成る薄膜コンデンサを具え、前記透明導電膜が前記N型半導体層と接続されていることを特徴とする発光素子。A light emitting device comprising a thin film capacitor in which an insulating film and a transparent conductive film are laminated on the anode electrode, wherein the transparent conductive film is connected to the N-type semiconductor layer.
前記絶縁膜が、チタン酸バリウム、チタン酸ストロンチウム、SBT、BST、PZT、TaThe insulating film is made of barium titanate, strontium titanate, SBT, BST, PZT, Ta 2 2 O 5 Five 、Hf, Hf 2 2 O 5 Five 、Al, Al 2 2 O 3 Three 、SiO, SiO 2 2 、Si, Si 3 Three N 4 Four 、Y, Y 2 2 O 3 Three 、Gd, Gd 2 2 O 3 Three 、TiOTiO 2 2 、ZrO, ZrO 2 2 、La, La 2 2 O 3 Three から選ばれた単層膜または積層膜である請求項1記載の発光素子。The light emitting device according to claim 1, wherein the light emitting device is a single layer film or a laminated film selected from the group consisting of: 前記絶縁膜の比誘電率が20以上である請求項1記載の発光素子。The light emitting device according to claim 1, wherein the insulating film has a relative dielectric constant of 20 or more. 前記絶縁膜が、立方晶ペロブスカイト構造をもつ誘電体材料である請求項1記載の発光素子。The light emitting device according to claim 1, wherein the insulating film is a dielectric material having a cubic perovskite structure. 前記透明導電膜が、ITO、ATO、FTO、AZO、InThe transparent conductive film is made of ITO, ATO, FTO, AZO, In 2 2 O 3 Three 、SnO, SnO 2 2 、ZnO、CdO、TiOZnO, CdO, TiO 2 2 、TiN、ZrN、HfN、Au、Ag、Pt,Cu、Pd、Al、Crから選ばれた単層膜または積層膜である請求項1記載の発光素子。The light emitting device according to claim 1, which is a single layer film or a laminated film selected from TiN, ZrN, HfN, Au, Ag, Pt, Cu, Pd, Al, and Cr. 前記アノード電極が、Au、Ni、Pt、Ru、Ti、Pd、Mo、Rhのいずれか一つの元素を主成分とする合金材料若しくは化合物材料である請求項1記載の発光素子。The light-emitting element according to claim 1, wherein the anode electrode is an alloy material or a compound material mainly containing any one element of Au, Ni, Pt, Ru, Ti, Pd, Mo, and Rh. 前記半導体発光素子が、前記基板の基板面に対して側壁テーパー角度が60°以下のメサ形状となっている請求項1記載の発光素子。The light-emitting element according to claim 1, wherein the semiconductor light-emitting element has a mesa shape with a side wall taper angle of 60 ° or less with respect to the substrate surface of the substrate. 前記薄膜コンデンサの静電容量が50pF以上であり、かつ、前記薄膜コンデンサの直流印加電圧4Vにおけるリーク電流が1×10The capacitance of the thin film capacitor is 50 pF or more, and the leakage current of the thin film capacitor at a DC applied voltage of 4 V is 1 × 10 -5-Five A以下である請求項1記載の発光素子。The light emitting device according to claim 1, which is A or less. 前記基板が、サファイア基板であり、前記半導体発光素子が3族窒化物半導体から構成されている請求項1記載の発光素子。The light-emitting element according to claim 1, wherein the substrate is a sapphire substrate, and the semiconductor light-emitting element is made of a group III nitride semiconductor. 請求項1乃至9のうちのいずれか1つの発光素子を光源として組み込んだ発光装置。A light-emitting device in which any one of the light-emitting elements according to claim 1 is incorporated as a light source.
JP2003138646A 2003-05-16 2003-05-16 Light emitting element and light emitting device Expired - Fee Related JP4299580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138646A JP4299580B2 (en) 2003-05-16 2003-05-16 Light emitting element and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138646A JP4299580B2 (en) 2003-05-16 2003-05-16 Light emitting element and light emitting device

Publications (2)

Publication Number Publication Date
JP2004342885A JP2004342885A (en) 2004-12-02
JP4299580B2 true JP4299580B2 (en) 2009-07-22

Family

ID=33527954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138646A Expired - Fee Related JP4299580B2 (en) 2003-05-16 2003-05-16 Light emitting element and light emitting device

Country Status (1)

Country Link
JP (1) JP4299580B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448351B1 (en) * 2004-06-10 2004-09-14 에피밸리 주식회사 Ⅲ-nitride semiconductor light emitting device
KR100631898B1 (en) 2005-01-19 2006-10-11 삼성전기주식회사 Gallium nitride based light emitting device having ESD protection capability and method for manufacturing same
KR101109688B1 (en) 2005-04-18 2012-06-05 엘지전자 주식회사 Light-emitting diode union capacitor for preventing electrostatic discharge
KR101166923B1 (en) 2005-05-24 2012-07-19 엘지이노텍 주식회사 Light emitting device equipped with dielectric layer
KR100649642B1 (en) 2005-05-31 2006-11-27 삼성전기주식회사 Compound semiconductor light emitting device having an esd protecting element and method for manufacturing the same
US7994514B2 (en) * 2006-04-21 2011-08-09 Koninklijke Philips Electronics N.V. Semiconductor light emitting device with integrated electronic components
US20080129198A1 (en) * 2006-12-01 2008-06-05 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Light-emitting diode device
KR101239857B1 (en) 2007-03-07 2013-03-06 서울옵토디바이스주식회사 Semiconductor light emitting device and method for manufacturing thereof
KR100946758B1 (en) * 2007-11-09 2010-03-11 (주)더리즈 Light emitting diode and manufacturing method thereof
KR101428053B1 (en) 2007-12-13 2014-08-08 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
KR100999688B1 (en) 2008-10-27 2010-12-08 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
JP4971295B2 (en) * 2008-12-15 2012-07-11 株式会社沖データ Display device
JP4971296B2 (en) * 2008-12-15 2012-07-11 株式会社沖データ Display device
KR101096751B1 (en) 2009-12-03 2011-12-21 우리엘에스티 주식회사 Light emitting device
KR101704022B1 (en) * 2010-02-12 2017-02-07 엘지이노텍 주식회사 Light emitting device, method for fabricating the same and light emitting device package
TWI450415B (en) * 2010-03-23 2014-08-21 Lg Innotek Co Ltd Light emitting device, light emitting device package and lighting system
KR101039937B1 (en) * 2010-04-28 2011-06-09 엘지이노텍 주식회사 Light emitting device, method for fabricating the same, light emitting device package and lighting system
US20140131759A1 (en) * 2011-07-29 2014-05-15 Samsung Electronics Co., Ltd. Semiconductor light-emitting element
CN104094437A (en) * 2012-02-02 2014-10-08 皇家飞利浦有限公司 Light apparatus for generating light
JP6006525B2 (en) * 2012-05-15 2016-10-12 スタンレー電気株式会社 Semiconductor light emitting device and lamp using the same
JP5832956B2 (en) 2012-05-25 2015-12-16 株式会社東芝 Semiconductor light emitting device
KR101954204B1 (en) * 2012-08-28 2019-06-12 엘지이노텍 주식회사 Light emitting device
KR101381986B1 (en) * 2012-12-17 2014-04-07 서울바이오시스 주식회사 Light emitting diode having capacitor
KR102224901B1 (en) * 2014-12-08 2021-03-09 엘지디스플레이 주식회사 Light emitting diode, light emitting diode package and backlight unit
CN109216518B (en) * 2017-06-30 2020-06-12 苏州新纳晶光电有限公司 Preparation method and application of antistatic LED chip
CN209105317U (en) * 2019-01-14 2019-07-12 深圳Tcl新技术有限公司 Backlight lamp bar, display screen and television set
CN112457004B (en) * 2020-12-05 2022-02-08 四川亚美电陶科技有限公司 SBT-based piezoelectric ceramic capable of being used for vibration measurement below 500 ℃ and preparation method and application thereof

Also Published As

Publication number Publication date
JP2004342885A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP4299580B2 (en) Light emitting element and light emitting device
US5977565A (en) Semiconductor light emitting diode having a capacitor
US7884377B2 (en) Light emitting device, method of manufacturing the same and monolithic light emitting diode array
US7173288B2 (en) Nitride semiconductor light emitting device having electrostatic discharge (ESD) protection capacity
KR100434242B1 (en) Semiconductor light emitting element
US6969873B2 (en) Nitride gallium compound semiconductor light emission device
JP4353232B2 (en) Light emitting element
KR100386543B1 (en) Semiconductor light emitting device
KR100986407B1 (en) Light emitting device and method for fabricating the same
US20050167680A1 (en) Light-emitting diode structure with electrostatic discharge protection
KR100986556B1 (en) Light emitting device and method for fabricating the same
TW200805715A (en) High-efficiency, overvoltage-protected, light-emitting semiconductor device
CN1652346A (en) Light-emitting semiconductor element and composite semiconductor device of protection element
US8450765B2 (en) Light emitting diode chip and method for manufacturing the same
KR101239857B1 (en) Semiconductor light emitting device and method for manufacturing thereof
JP2005183911A (en) Nitride semiconductor light-emitting element and method of manufacturing the same
WO2007015612A1 (en) Nitride light emitting device and manufacturing method thereof
US8071991B2 (en) Light-emitting diode and light-emitting diode lamp
KR100609968B1 (en) Light emitting diode with the function of electrostatic discharge protection and fabricating method thereof
US20140353709A1 (en) Light emitting diode
KR100649642B1 (en) Compound semiconductor light emitting device having an esd protecting element and method for manufacturing the same
JP3348843B2 (en) Light emitting diode and dot matrix display using the same
KR100946758B1 (en) Light emitting diode and manufacturing method thereof
KR102085897B1 (en) Light emitting device and light emitting device package
CN114256398B (en) Light emitting diode and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R150 Certificate of patent or registration of utility model

Ref document number: 4299580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees