JP4292068B2 - Scanning electron microscope - Google Patents

Scanning electron microscope Download PDF

Info

Publication number
JP4292068B2
JP4292068B2 JP2003413782A JP2003413782A JP4292068B2 JP 4292068 B2 JP4292068 B2 JP 4292068B2 JP 2003413782 A JP2003413782 A JP 2003413782A JP 2003413782 A JP2003413782 A JP 2003413782A JP 4292068 B2 JP4292068 B2 JP 4292068B2
Authority
JP
Japan
Prior art keywords
auxiliary electrode
sample
detector
secondary electrons
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003413782A
Other languages
Japanese (ja)
Other versions
JP2005174766A (en
Inventor
純一 片根
祐博 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2003413782A priority Critical patent/JP4292068B2/en
Priority to US11/006,556 priority patent/US7154089B2/en
Publication of JP2005174766A publication Critical patent/JP2005174766A/en
Application granted granted Critical
Publication of JP4292068B2 publication Critical patent/JP4292068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2448Secondary particle detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2449Detector devices with moving charges in electric or magnetic fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、走査電子顕微鏡に関し、特にその2次電子検出系の構成と制御に関するものである。   The present invention relates to a scanning electron microscope, and more particularly to the configuration and control of the secondary electron detection system.

走査電子顕微鏡は、試料に1次電子線を走査して照射し、試料から発生する2次電子を2次電子検出器で走査に同期して検出することにより試料像を形成する装置である。通常、1次電子線が照射された試料からは数eV〜数十eVという非常に小さいエネルギーを持った2次電子が発生し、発生した2次電子は2次電子検出器から印加される約10kVの横方向の正電界に導かれて2次電子検出器に取り込まれる。この基本的なプロセスに加えて近年は、試料近傍に数百ボルトの正電圧を印加したバイアス電極を設け、2次電子を検出器側へ軌道修正させて収量増加を図っている。バイアス電極は“2次電子コレクタ電極”や“補助電極”などと呼ばれる板状や網状のものであり、形状や印加電圧などを変えて最適値を探し出し、2次電子収量増加を図っている。これら正電界を利用して2次電子収量増加を目的とする電極はこれまでいくつも提案されており、“負電荷の2次電子は正電界で軌道修正させる”というのが一般的であった(特開平6−103951号公報など)。一方、特開平9−147782号公報には、−100V〜−500Vの負電圧を印加したリング状の電極を試料上部(2次電子検出器とは逆の方向にU字型)に配置して、検出器方向に2次電子を誘導する方法が記載されている。   A scanning electron microscope is an apparatus that forms a sample image by scanning and irradiating a sample with a primary electron beam, and detecting secondary electrons generated from the sample in synchronization with scanning by a secondary electron detector. Usually, secondary electrons having very small energy of several eV to several tens eV are generated from the sample irradiated with the primary electron beam, and the generated secondary electrons are applied from the secondary electron detector. It is guided to a 10 kV lateral positive electric field and taken into the secondary electron detector. In addition to this basic process, in recent years, a bias electrode to which a positive voltage of several hundred volts is applied in the vicinity of a sample is provided to correct the trajectory of secondary electrons to the detector side to increase the yield. The bias electrode is a plate-like or net-like one called “secondary electron collector electrode” or “auxiliary electrode”, and seeks an optimum value by changing the shape or applied voltage to increase the secondary electron yield. A number of electrodes that aim to increase the yield of secondary electrons using these positive electric fields have been proposed so far, and it was common to "orbitally correct secondary electrons with negative charges". (Japanese Patent Laid-Open No. 6-103951). On the other hand, in Japanese Patent Laid-Open No. 9-147782, a ring-shaped electrode to which a negative voltage of −100 V to −500 V is applied is arranged on the upper part of the sample (U-shaped in the direction opposite to the secondary electron detector). A method for guiding secondary electrons in the direction of the detector is described.

特開平6−103951号公報JP-A-6-103951 特開平9−147782号公報Japanese Patent Laid-Open No. 9-147782

1次電子線照射によって試料から発生する2次電子は、通常、垂直方向に0〜90度、水平方向に0〜360度の範囲で様々な方向に放出される。特開平9−147782号公報では、2次電子検出器の方向に開いたU字形の負電圧印加電極を配置し、上記のように様々な方向性を持った2次電子を2次電子検出器の方向に誘導している。しかし、シミュレーションによって2次電子軌道を解析すると、2次電子は対物レンズ下部又は下部構造物に衝突して吸収されるだけでなく、試料ステージやその他対物レンズ近傍に設置される様々な検出器(アース電位)にも衝突してしまい、結果的に2次電子検出器に到達するのは発生した2次電子のうちのごく一部であることがわかった。この傾向は高分解能の観察をしようとするとき、つまり対物レンズが試料に近接しているときに著しく、結果として像質の悪い画像しか得られていなかった。   Secondary electrons generated from the sample by primary electron beam irradiation are usually emitted in various directions in the range of 0 to 90 degrees in the vertical direction and 0 to 360 degrees in the horizontal direction. In JP-A-9-147782, a U-shaped negative voltage application electrode opened in the direction of the secondary electron detector is disposed, and secondary electrons having various directions as described above are arranged as secondary electron detectors. It is guiding in the direction of. However, when the secondary electron trajectory is analyzed by simulation, the secondary electrons not only collide with and are absorbed by the lower part of the objective lens or the lower structure, but also various detectors installed near the sample stage and other objective lenses ( It was found that only a part of the generated secondary electrons reached the secondary electron detector as a result. This tendency is remarkable when high-resolution observation is performed, that is, when the objective lens is close to the sample, and as a result, only an image with poor image quality is obtained.

本発明は、試料から放出された2次電子の軌道(特に光軸近傍を通る2次電子)を積極的に軌道修正して2次電子検出器による2次電子の検出効率を向上させることを目的とする。   The present invention positively corrects the trajectory of secondary electrons emitted from the sample (especially secondary electrons passing near the optical axis) to improve the detection efficiency of secondary electrons by the secondary electron detector. Objective.

本発明では、試料から光軸に近い方向に放出された2次電子を積極的に2次電子検出器側に軌道修正するとともに、アース電位の部品に対して回避軌道に乗せながら2次電子検出器まで導く。そのために、対物レンズ下部(下磁極)あるいは対物レンズ下部構造物の1次電子線の照射口に近い部位に第1補助電極を配置して1V〜30Vの負電位を印加し、横方向の電位を強くすることで試料から発生した2次電子をできるだけ2次電子検出器側に軌道修正させる。   In the present invention, the secondary electrons emitted from the sample in the direction close to the optical axis are positively corrected to the secondary electron detector side, and the secondary electrons are detected while being placed on the avoidance trajectory with respect to the ground potential component. Guide to the vessel. For this purpose, the first auxiliary electrode is disposed near the objective lens lower part (lower magnetic pole) or the primary electron beam irradiation port of the objective lens lower structure, and a negative potential of 1 to 30 V is applied to the lateral potential. By strengthening, the trajectory of the secondary electrons generated from the sample is corrected to the secondary electron detector side as much as possible.

すなわち、本発明は、試料を保持する試料ステージと、収束した1次電子線を試料に照射する対物レンズと、電子線照射によって試料から発生した2次電子を検出する2次電子検出器とを含む走査電子顕微鏡において、対物レンズ下部の1次電子線照射口近くに負電位の第1補助電極を設置したものである。第1補助電極は外周方向へ向かう横方向電界を形成し、この電界により、試料から発生した2次電子の軌道を外周方向に偏向し、横方向に配置した2次電子検出器に入射する2次電子を増加させるように作用する。   That is, the present invention includes a sample stage that holds a sample, an objective lens that irradiates the sample with a converged primary electron beam, and a secondary electron detector that detects secondary electrons generated from the sample by electron beam irradiation. In the scanning electron microscope, the first auxiliary electrode having a negative potential is provided near the primary electron beam irradiation port below the objective lens. The first auxiliary electrode forms a lateral electric field directed in the outer circumferential direction, and this electric field deflects the trajectory of the secondary electrons generated from the sample in the outer circumferential direction and enters the secondary electron detector arranged in the lateral direction 2. It works to increase secondary electrons.

第1補助電極の少なくとも2次電子検出器側に、正電位の第2補助電極を設置するのが好ましい。第2補助電極は、第1補助電極の負電界により試料側に押し返された2次電子を2次電子検出器方向へ偏向し、横方向に配置した2次電子検出器に入射する2次電子を増加させるように作用する。   It is preferable to install a second auxiliary electrode having a positive potential on at least the secondary electron detector side of the first auxiliary electrode. The second auxiliary electrode deflects secondary electrons pushed back to the sample side by the negative electric field of the first auxiliary electrode toward the secondary electron detector, and enters the secondary electron detector arranged in the lateral direction. Acts to increase electrons.

第1補助電極はリング状又は2次検出器に向いた側が開放したU字状の形状を有し、第2補助電極は第1補助電極より径の大きいリング状又は2次電子検出器に向いた側が閉じたU字状の形状とすることができる。第1補助電極の電位は−5〜−20V程度が好ましく、第2補助電極の電位は+5〜+20V程度が好ましい。   The first auxiliary electrode has a ring shape or a U-shape that is open on the side facing the secondary detector, and the second auxiliary electrode is suitable for a ring shape or a secondary electron detector having a larger diameter than the first auxiliary electrode. It can be made into a U-shaped shape with the closed side closed. The potential of the first auxiliary electrode is preferably about −5 to −20V, and the potential of the second auxiliary electrode is preferably about +5 to + 20V.

2次電子検出器と試料との間に正電位の第3補助電極を設置するのが更に好ましい。具体的には、2次電子検出器を表面に約10kVの正電圧を印加したシンチレータ(電子−光変換素子)と、変換された光を検出する光電子増倍管で構成し、シンチレータ表面電極と試料との間に板状の第3の補助電極を配置して正電位を印加する。これにより、2次電子の軌道をシンチレータの方向に偏向・誘導し、2次電子検出器に入射する2次電子を増加させることができる。   More preferably, a third auxiliary electrode having a positive potential is provided between the secondary electron detector and the sample. Specifically, the secondary electron detector is composed of a scintillator (electron-to-light conversion element) in which a positive voltage of about 10 kV is applied to the surface and a photomultiplier tube for detecting the converted light, and the scintillator surface electrode A plate-like third auxiliary electrode is placed between the sample and a positive potential is applied. Thereby, the secondary electron trajectory is deflected and guided in the direction of the scintillator, and the secondary electrons incident on the secondary electron detector can be increased.

本発明は、また、試料を保持する試料ステージと、収束した1次電子線を試料に照射する対物レンズと、電子線照射によって試料から発生された2次電子を検出する2次電子検出器とを含む走査電子顕微鏡において、対物レンズ下部に1次電子線通過穴を有する環状の反射電子検出器を備え、反射電子検出器は1次電子線通過穴の近くに負電位の第1補助電極を有し、外周側に正電位の第2補助電極を有する。第1補助電極の電位は−5〜−20V程度が好ましく、第2補助電極の電位は+5〜+20V程度が好ましい。   The present invention also provides a sample stage for holding a sample, an objective lens for irradiating the sample with a converged primary electron beam, a secondary electron detector for detecting secondary electrons generated from the sample by electron beam irradiation, and The scanning electron microscope includes an annular backscattered electron detector having a primary electron beam passage hole below the objective lens, and the backscattered electron detector has a first auxiliary electrode having a negative potential near the primary electron beam passage hole. A second auxiliary electrode having a positive potential on the outer peripheral side. The potential of the first auxiliary electrode is preferably about −5 to −20V, and the potential of the second auxiliary electrode is preferably about +5 to + 20V.

本発明によると、試料から発生した2次電子を効率良く2次電子検出装置に取り込むことができ高像質の画像を得ることが出来る。   According to the present invention, secondary electrons generated from a sample can be efficiently taken into a secondary electron detector, and an image with high image quality can be obtained.

以下、図面を参照して本発明の実施の形態を説明する。理解を容易にするため、以下の図において、同じ構成部分には同じ符号を付して説明する。   Embodiments of the present invention will be described below with reference to the drawings. In order to facilitate understanding, the same components are denoted by the same reference numerals in the following drawings.

図1は従来の走査電子顕微鏡の概略図であり、1次電子線照射によって試料から発生した2次電子の軌道を説明する図である。試料2は、真空排気された試料室18内で試料ステージ20に保持されている。対物レンズ1の下面より照射される1次電子線3が試料2の表面で走査されると、試料2の情報をもった2次電子4,6が発生する。2次電子4は光軸に対して小さな角度で放出された2次電子であり、2次電子6は光軸に対して大きな角度をもって放出された2次電子である。この2次電子を、ある方向に取り付けられた2次電子検出器(シンチレータ近傍に約10kVの正電界を形成)5に取り込むことで試料画像を形成する。しかし、2次電子検出器5に到達するまでには2次電子軌道を変えてしまう障害物(アース電位)となる構成部品が存在し、2次電子検出の効率を妨げる原因となっている。これは、負電荷を持った2次電子は、2次電子検出器のように正電位で引き込むことが可能であるが、それと同時に2次電子を引き込む軌道近傍にアース電位があると正電位の等電位面を押し曲げ、2次電子軌道そのものを変えてしまうことで生じる。この2次電子検出の効率を妨げる原因となるアース電位の構成部品としては、EDX、WDX、EBSPなどの分析機器19や、試料微動ステージ20、試料2と対向する対物レンズ1の下面などがある。   FIG. 1 is a schematic diagram of a conventional scanning electron microscope, and is a diagram for explaining the trajectory of secondary electrons generated from a sample by irradiation with a primary electron beam. The sample 2 is held on the sample stage 20 in the sample chamber 18 evacuated. When the primary electron beam 3 irradiated from the lower surface of the objective lens 1 is scanned on the surface of the sample 2, secondary electrons 4 and 6 having information on the sample 2 are generated. The secondary electrons 4 are secondary electrons emitted at a small angle with respect to the optical axis, and the secondary electrons 6 are secondary electrons emitted at a large angle with respect to the optical axis. A sample image is formed by taking the secondary electrons into a secondary electron detector (a positive electric field of about 10 kV is formed in the vicinity of the scintillator) 5 attached in a certain direction. However, there are components that become obstacles (ground potential) that change the secondary electron trajectory before reaching the secondary electron detector 5, which hinders the efficiency of secondary electron detection. This is because secondary electrons with a negative charge can be drawn at a positive potential like a secondary electron detector, but at the same time, if there is a ground potential near the orbit where secondary electrons are drawn, This occurs by bending the equipotential surface and changing the secondary electron trajectory itself. Examples of components having a ground potential that hinder the efficiency of secondary electron detection include an analytical instrument 19 such as EDX, WDX, and EBSP, a sample fine movement stage 20, and the lower surface of the objective lens 1 facing the sample 2. .

図2に一般的な走査電子顕微鏡における2次電子のエネルギー分布を示し、図3に試料から発生する2次電子の発生方向を示す。図2に示すように、試料より発生する2次電子は数eV〜数10eV程度のエネルギーを持っている。反射電子は、1次電子線とほぼ同じエネルギーを有する。また、通常、1次電子が照射された試料からは、光軸に対して垂直方向には図3(a)に示すように±90度方向、水平方向には図3(b)に示すように360度と、様々な方向に数eV〜数十eVの2次電子7が放射される。   FIG. 2 shows the energy distribution of secondary electrons in a general scanning electron microscope, and FIG. 3 shows the direction of generation of secondary electrons generated from the sample. As shown in FIG. 2, the secondary electrons generated from the sample have energy of several eV to several tens eV. The reflected electrons have almost the same energy as the primary electron beam. Usually, from the sample irradiated with primary electrons, the direction perpendicular to the optical axis is ± 90 degrees as shown in FIG. 3A, and the horizontal direction is shown in FIG. 3B. The secondary electrons 7 of several eV to several tens eV are emitted in various directions at 360 degrees.

図4に、シミュレーションによる2次電子軌道を示す。図4(a)は、シミュレーションの前提となる対物レンズ1、試料2、2次電子検出器5の配置図である。試料2と2次電子検出器5の間には、300Vの正電圧を印加したバイアス電極12を設けた。2次電子検出器5には、2次電子を引き込むために10kVの正電圧を印加する。図4(b)は、試料からの2次電子の発生方向として図3に示すような発生方向を想定し、試料より数eV〜数10eV程度の2次電子が発生したと想定した時の2次電子軌道のシミュレーション結果である。   FIG. 4 shows a secondary electron orbit by simulation. FIG. 4A is a layout diagram of the objective lens 1, the sample 2, and the secondary electron detector 5 that are the premise of the simulation. A bias electrode 12 to which a positive voltage of 300 V was applied was provided between the sample 2 and the secondary electron detector 5. A positive voltage of 10 kV is applied to the secondary electron detector 5 in order to draw secondary electrons. FIG. 4B assumes the generation direction as shown in FIG. 3 as the generation direction of secondary electrons from the sample, and 2 when assuming that secondary electrons of about several eV to several tens eV are generated from the sample. It is a simulation result of the next electron orbit.

図4(b)から、試料から発生する数eV〜数10eVのエネルギー幅を持った2次電子のうち、数eV程度の比較的低エネルギー側の2次電子は2次電子検出器が発生する正電界によってある程度引き込まれているが、数10eV程度の高エネルギー側の2次電子には対物レンズに衝突してしまうもの、2次電子検出器が発生する引き込み電界の影響を受けないものがあり、検出効率低下の原因となっていることが分かる。更に、光軸近傍の2次電子については2次電子検出器側に引き込みにくいことも視覚的にわかる。本発明は、この現状装置における問題点に着目し、その改善を図るものである。   4B, among secondary electrons having an energy width of several eV to several tens eV generated from the sample, secondary electrons on the relatively low energy side of about several eV are generated by the secondary electron detector. Although it is drawn to some extent by the positive electric field, some secondary electrons on the high energy side of about several tens of eV collide with the objective lens, and some are not affected by the drawn electric field generated by the secondary electron detector. It can be seen that this causes a decrease in detection efficiency. Further, it can be visually seen that secondary electrons in the vicinity of the optical axis are difficult to be drawn to the secondary electron detector side. The present invention pays attention to the problems in the present apparatus and aims to improve it.

図5は、本発明による走査電子顕微鏡の概略図である。対物レンズ1の下面より照射される1次電子線3が試料2の表面で走査されると、試料情報をもった2次電子4,6が発生する。この2次電子4,6を、2次電子検出器(シンチレータ近傍に約10kVの正電界を形成)に取り込むことで画像を形成する。本発明では、光軸近傍の方向に放射された2次電子4を積極的に軌道修正するために、対物レンズ1の下部構造物の1次電子線3の照射口に近い部位に第1補助電極13を設置する。第1補助電極13の形状は、光軸を取り囲むリング状又は2次電子検出器5に対向する側が開放したU字状の形状が良い。第1補助電極13にはマイナス数ボルトからマイナス数十ボルト(約−5〜−20V)の負電圧を印加し、対物レンズ下磁極等アース電位の物体に2次電子が衝突しないように軌道修正する。   FIG. 5 is a schematic view of a scanning electron microscope according to the present invention. When the primary electron beam 3 irradiated from the lower surface of the objective lens 1 is scanned on the surface of the sample 2, secondary electrons 4 and 6 having sample information are generated. The secondary electrons 4 and 6 are taken into a secondary electron detector (a positive electric field of about 10 kV is formed in the vicinity of the scintillator) to form an image. In the present invention, in order to positively correct the trajectory of the secondary electrons 4 radiated in the direction near the optical axis, the first auxiliary is located near the irradiation port of the primary electron beam 3 of the lower structure of the objective lens 1. The electrode 13 is installed. The shape of the first auxiliary electrode 13 is preferably a ring shape that surrounds the optical axis or a U-shape that is open on the side facing the secondary electron detector 5. A negative voltage of minus several volts to minus several tens of volts (about -5 to -20V) is applied to the first auxiliary electrode 13, and the trajectory is corrected so that secondary electrons do not collide with an object having a ground potential such as the lower magnetic pole of the objective lens. To do.

リング状又は2次電子検出器5に対向した側が開放したU字状の形状が良い理由は、図3に示したように、試料から発生する2次電子はあらゆる方向に発生しているからである。U字状の場合、U字の開放部が2次電子検出器の方向に向くように設置すれば、あらゆる方向に発生する2次電子に対して方向性をもたせることが可能となり、リング状よりも効果的である。また、第1補助電極13に印加する電圧に関して言えば、負電荷の2次電子のエネルギー以上の負電圧を印加すると試料からの2次電子の発生そのものを抑制してしまうことになる。図2に示した2次電子のエネルギー分布から分かるように、2次電子のエネルギー幅は約5〜20eV程度であることから、これ以上の負電圧を印加する必要性はない。また、一般的な走査電子顕微鏡では試料と対物レンズ下面との距離(ワーキングディスタンス)を任意に変更可能であるため、ワーキングディスタンスを変更しても2次電子に与える負電界が同じになるように第1補助電極13に印加する負電圧は約−5〜−20Vの範囲で任意に変更できるようにする。   The reason why the ring-shaped or U-shaped shape with the open side facing the secondary electron detector 5 is good is that the secondary electrons generated from the sample are generated in all directions as shown in FIG. is there. In the case of a U-shape, if the U-shaped open part is installed so as to face the direction of the secondary electron detector, it becomes possible to give directionality to secondary electrons generated in all directions. Is also effective. Further, regarding the voltage applied to the first auxiliary electrode 13, if a negative voltage equal to or higher than the energy of the negatively charged secondary electrons is applied, generation of secondary electrons from the sample itself is suppressed. As can be seen from the energy distribution of the secondary electrons shown in FIG. 2, the energy width of the secondary electrons is about 5 to 20 eV, so there is no need to apply a negative voltage beyond this. Further, in a general scanning electron microscope, the distance (working distance) between the sample and the lower surface of the objective lens can be arbitrarily changed, so that the negative electric field applied to the secondary electrons is the same even if the working distance is changed. The negative voltage applied to the first auxiliary electrode 13 can be arbitrarily changed in the range of about −5 to −20V.

更に好ましくは、第1補助電極13の2次電子検出器側に第2補助電極14を設置して、数ボルト(約+5〜+20V)の正電位を印加できるようにする。この第2補助電極14は、第1補助電極13で試料側に押し返された2次電子の軌道を再び引き上げて2次電子をできるだけ2次電子検出器側に導く役目を果たす。第2補助電極14の形状は、第1補助電極と同じようにリング状又はU字状とすればよい。U字状とする場合には、U字の閉じた側が2次電子検出器の方を向くようにして設置する。   More preferably, the second auxiliary electrode 14 is disposed on the secondary electron detector side of the first auxiliary electrode 13 so that a positive potential of several volts (about +5 to +20 V) can be applied. The second auxiliary electrode 14 serves to guide the secondary electrons as much as possible to the secondary electron detector side by pulling up the secondary electron trajectory pushed back to the sample side by the first auxiliary electrode 13 again. The shape of the second auxiliary electrode 14 may be a ring shape or a U-shape like the first auxiliary electrode. When it is U-shaped, it is installed with the closed side of the U-shape facing the secondary electron detector.

第2補助電極14に数ボルト(約+5〜+20V)の正電位を印加する理由は、第1補助電極13による印加電圧はマイナス数ボルト(約−5〜−20V)であり、第1補助電極13による印加電圧以上の逆バイアスを第2補助電極14で印加する必要はないからである。例えば、第1補助電極13に−Vaボルトの負電圧を印加して、第2補助電極14に+Vb(Vb>Va)の正電圧を印加すると、2次電子は第2補助電極14による電界の影響を強く受け、強いては第2補助電極自身に2次電子が引き込まれて(衝突)しまい、結果的に2次電子検出器5の方向に引き込むことが出来なくなるからである。また、一般的な走査電子顕微鏡ではワーキングディスタンスが任意に変更可能であるため、第1補助電極13と同様、第2補助電極が2次電子に与える正電界がいつも同じになるように第2補助電極の印加電圧は、約+5〜+20Vの範囲で任意に変更できるようにする。   The reason why a positive potential of several volts (about +5 to +20 V) is applied to the second auxiliary electrode 14 is that the voltage applied by the first auxiliary electrode 13 is minus several volts (about −5 to −20 V). This is because it is not necessary to apply a reverse bias equal to or higher than the voltage applied by the second auxiliary electrode 14. For example, when a negative voltage of −Va volts is applied to the first auxiliary electrode 13 and a positive voltage of + Vb (Vb> Va) is applied to the second auxiliary electrode 14, the secondary electrons are caused by the electric field generated by the second auxiliary electrode 14. This is because the secondary electrons are strongly influenced, and secondary electrons are drawn (collision) into the second auxiliary electrode itself, and as a result, cannot be drawn in the direction of the secondary electron detector 5. Also, since the working distance can be arbitrarily changed in a general scanning electron microscope, the second auxiliary electrode is always the same as the first auxiliary electrode 13 so that the positive electric field applied to the secondary electrons by the second auxiliary electrode is the same. The applied voltage of the electrode can be arbitrarily changed in the range of about +5 to + 20V.

第1補助電極13と第2補助電極14により軌道修正された2次電子を2次電子検出器5に導くため、2次電子検出器5の電極の前面に2次電子検出器5の電極と絶縁した状態で試料側に向った構造の第3補助電極を配置し、数十ボルト〜数百ボルトの正電位を印加する。この第3補助電極は、従来の走査電子顕微鏡に設置されていたバイアス電極と同じものである。従来の走査電子顕微鏡には第3補助電極だけが設置されていたため、前記のように2次電子の検出効率をそれほど上げることができなかった。しかし、本発明による第1補助電極、第2補助電極と第3補助電極とを組み合わせることによって、2次電子検出効率を向上することができる。   In order to guide the secondary electrons whose trajectory has been corrected by the first auxiliary electrode 13 and the second auxiliary electrode 14 to the secondary electron detector 5, the electrode of the secondary electron detector 5 is disposed in front of the electrode of the secondary electron detector 5. A third auxiliary electrode having a structure facing the sample side in an insulated state is arranged, and a positive potential of several tens to several hundreds of volts is applied. This third auxiliary electrode is the same as the bias electrode installed in the conventional scanning electron microscope. Since the conventional scanning electron microscope is provided with only the third auxiliary electrode, the secondary electron detection efficiency cannot be increased as described above. However, secondary electron detection efficiency can be improved by combining the first auxiliary electrode, the second auxiliary electrode, and the third auxiliary electrode according to the present invention.

第3補助電極12を設置することにより、対物レンズ1下部と2次電子検出器5の間の空間へ放出された2次電子の軌道を修正することが可能となる。これは、試料台周辺や試料微動ステージ20、その他試料近傍に置かれる各検出器(EDX/WDX/EBSP)19など対物レンズ下磁極近傍の障害物(アース電位)を避けて、2次電子を2次電子検出器5の方向に誘導する役目を果たす。第1補助電極13及び第2補助電極14と同様、ワーキングディスタンスが変更されたとしても、2次電子に与える電界がいつも同じになるよう第3補助電極への印加電圧は任意に変更できるようにする。   By installing the third auxiliary electrode 12, it is possible to correct the trajectory of secondary electrons emitted to the space between the lower part of the objective lens 1 and the secondary electron detector 5. This avoids obstacles (ground potential) near the lower magnetic pole of the objective lens, such as the detector (EDX / WDX / EBSP) 19 around the sample stage, sample fine movement stage 20, and other samples. It plays the role of guiding in the direction of the secondary electron detector 5. As with the first auxiliary electrode 13 and the second auxiliary electrode 14, even if the working distance is changed, the voltage applied to the third auxiliary electrode can be arbitrarily changed so that the electric field applied to the secondary electrons is always the same. To do.

図6は、第1補助電極13、第2補助電極14及び第3補助電極12を設置した時の2次電子軌道のシミュレーション結果を示す図である。図4(b)と図6とを比較すると、図6に丸で囲んで示したA部において2次電子の軌道線が増していることが分かる。また、図6に丸で囲んで示したB部に注目すると、本発明の場合、2次電子が対物レンズ1の下面に衝突することなく2次電子検出器方向に導かれているのが分かる。補助電極を設置することによる効果は、第1補助電極13のみを設置した時より第1補助電極13と第2補助電極14を同時に設置した時の方が効果があり、第1補助電極13、第2補助電極14及び第3補助電極12を同時に設置すると更に効果が増す。   FIG. 6 is a diagram showing a simulation result of the secondary electron trajectory when the first auxiliary electrode 13, the second auxiliary electrode 14, and the third auxiliary electrode 12 are installed. Comparing FIG. 4B and FIG. 6, it can be seen that the orbit lines of the secondary electrons are increased in the portion A shown by being circled in FIG. Further, when attention is paid to the portion B surrounded by a circle in FIG. 6, in the case of the present invention, it can be seen that the secondary electrons are guided toward the secondary electron detector without colliding with the lower surface of the objective lens 1. . The effect of installing the auxiliary electrode is more effective when the first auxiliary electrode 13 and the second auxiliary electrode 14 are installed at the same time than when only the first auxiliary electrode 13 is installed. If the second auxiliary electrode 14 and the third auxiliary electrode 12 are installed simultaneously, the effect is further increased.

本発明では、単に正電界を利用して2次電子を2次電子検出器方向へ導くのではなく、負電荷を有する2次電子と負電位に印加された電極の間で起こる斥力と正電界による引力を適度にコントロールして2次電子収率の増加を図るものである。これによって従来よりも2次電子の収量よりも増加させることが可能となり、照射する1次電子線を可能な限り絞った状態での観察が可能となる。2次電子の検出効率を上げることにより、レンズ条件をより高分解能条件に設定した観察が可能になり、観察分解能向上や像質向上などに寄与する。   In the present invention, the repulsive force and the positive electric field generated between the negatively charged secondary electron and the electrode applied to the negative potential are not simply guided to the secondary electron detector direction using the positive electric field. The secondary electron yield is increased by moderately controlling the attractive force due to. As a result, it is possible to increase the yield of secondary electrons as compared to the conventional case, and it is possible to observe the primary electron beam to be irradiated as narrowed as possible. By increasing the detection efficiency of secondary electrons, observation with the lens condition set to a higher resolution condition becomes possible, which contributes to improvement in observation resolution and image quality.

図7は、半導体反射電子検出器を使用する走査電子顕微鏡の構成を示す模式図である。対物レンズ下面より照射される1次電子線3が試料表面で走査されると、2次電子6と共に試料の組成情報をもった反射電子22が発生する。図2に示すように、反射電子は2次電子に比べてエネルギーが高く、1次電子線のエネルギーと同等のエネルギーをもっている。半導体反射電子検出器15は、反射電子像観察を目的とした検出器として対物レンズ下磁極のすぐ下に設置される。問題となるのは半導体反射電子検出器15もアース電位であり、2次電子軌道に対して悪影響を及ぼすことである。試料によっては、半導体反射電子検出器15での反射電子像観察と同時に(反射電子検出器を設置しながら)、2次電子検出器5を用いて2次電子像の観察も行いたい場合もある。この場合、何も対策をしないと、2次電子軌道は半導体反射電子検出器15によるアース電位の影響を受けて結果的に2次電子検出効率が低下する。そこで、本発明では、半導体検出器15に、前記した第1補助電極13を、あるいは第1補助電極13と第2補助電極14を組込む。   FIG. 7 is a schematic diagram showing the configuration of a scanning electron microscope using a semiconductor backscattered electron detector. When the primary electron beam 3 irradiated from the lower surface of the objective lens is scanned on the sample surface, reflected electrons 22 having the composition information of the sample are generated together with the secondary electrons 6. As shown in FIG. 2, the reflected electrons have a higher energy than the secondary electrons and have an energy equivalent to that of the primary electron beam. The semiconductor backscattered electron detector 15 is installed immediately below the lower magnetic pole of the objective lens as a detector for the purpose of observing a backscattered electron image. The problem is that the semiconductor backscattered electron detector 15 is also at ground potential, which adversely affects the secondary electron trajectory. Depending on the sample, it may be desired to observe the secondary electron image using the secondary electron detector 5 at the same time as the reflected electron image observation with the semiconductor backscattered electron detector 15 (while installing the backscattered electron detector). . In this case, if no countermeasure is taken, the secondary electron trajectory is affected by the ground potential by the semiconductor backscattered electron detector 15 and consequently the secondary electron detection efficiency is lowered. Therefore, in the present invention, the first auxiliary electrode 13 or the first auxiliary electrode 13 and the second auxiliary electrode 14 are incorporated into the semiconductor detector 15.

図8は本発明による半導体反射電子検出器の構造例を示す図であり、図8(a)は断面図、図8(b)は下面図である。この半導体検出器15は、半導体検出素子ベース17上に、4分割半導体検出素子16を形成したものである。中央には、1次電子線を通過させる穴を有する。本発明では、半導体検出器15の半導体素子部に予め電界を発生することのできる導線又は電極を組み込んでおく。内径側には第1補助電極13となる電極を設置し、外径側に第2補助電極14となる電極を組込む。この構造の半導体検出器15を用いることで、2次電子検出器5による2次電子収量を損なうことなく同時に反射電子を半導体検出器で取り込むことが可能となり、上記の2次電子・反射電子同時観察の場合の問題を解決することが出来る。なお、反射電子は試料に照射される1次電子線のエネルギーとほぼ同じエネルギーを有し、通常の加速電圧は0.5kV〜30kVであるため、反射電子の検出に際して負電位の第1補助電極13が与える影響はほとんど無い。   8A and 8B are diagrams showing a structure example of the semiconductor backscattered electron detector according to the present invention. FIG. 8A is a cross-sectional view and FIG. 8B is a bottom view. This semiconductor detector 15 is obtained by forming a four-divided semiconductor detection element 16 on a semiconductor detection element base 17. In the center, there is a hole through which the primary electron beam passes. In the present invention, a conducting wire or an electrode capable of generating an electric field is previously incorporated in the semiconductor element portion of the semiconductor detector 15. An electrode to be the first auxiliary electrode 13 is installed on the inner diameter side, and an electrode to be the second auxiliary electrode 14 is incorporated on the outer diameter side. By using the semiconductor detector 15 having this structure, it becomes possible to simultaneously capture reflected electrons with the semiconductor detector without impairing the yield of secondary electrons by the secondary electron detector 5. The problem of observation can be solved. The reflected electrons have substantially the same energy as that of the primary electron beam applied to the sample, and the normal acceleration voltage is 0.5 kV to 30 kV. Therefore, the first auxiliary electrode having a negative potential is used for detecting the reflected electrons. 13 has almost no effect.

図9は、本発明による走査電子顕微鏡を低真空2次電子検出に応用した例を示す図である。低真空2次電子検出のメカニズム(ガス増幅型検出方式)は、試料室内真空度を1〜約3000Paという低真空状態において、試料から放射される2次電子(通常低真空状態での2次電子観察は困難である)を正電界で引き上げ、加速させて残留ガス分子と雪崩現象的な衝突を繰り返すことで、2次電子情報を持ったプラスイオンを増幅させる。その後、プラスイオンは試料より試料電流(吸収電流)としてアンプに取り込まれて低真空2次電子像を形成する。   FIG. 9 is a diagram showing an example in which the scanning electron microscope according to the present invention is applied to low vacuum secondary electron detection. The mechanism of low-vacuum secondary electron detection (gas amplification type detection method) is that secondary electrons emitted from a sample (normally secondary electrons in a low-vacuum state) when the degree of vacuum in the sample chamber is 1 to about 3000 Pa. It is difficult to observe) by pulling up with a positive electric field and accelerating it, and amplifying positive ions with secondary electron information by repeating collisions with residual gas molecules like an avalanche phenomenon. Thereafter, the positive ions are taken from the sample into the amplifier as a sample current (absorption current) to form a low vacuum secondary electron image.

本発明の走査電子顕微鏡によると、この低真空2次電子検出に使用する正電圧を第1補助電極13及び第2補助電極14から印加することができる。すなわち、第1補助電極13と第2補助電極14の印加電圧を制御して両電極とも正電位にすることで、試料室圧力1Pa以上に保持して試料に電子線を照射し、発生するイオンを検出して画像を形成するガス増幅型検出方式のための電界印加用電極に兼用できる。この場合、それら補助電極は試料室の真空状態によって負又は正の電圧に制御を変更できるようにしておくと好都合である。第1補助電極13及び第2補助電極14を備える半導体検出器を装着すると、半導体検出器による反射電子の組成像、立体像等とガス増幅型2次電子像を同時に観察することもできる。   According to the scanning electron microscope of the present invention, a positive voltage used for detecting the low vacuum secondary electrons can be applied from the first auxiliary electrode 13 and the second auxiliary electrode 14. That is, by controlling the voltage applied to the first auxiliary electrode 13 and the second auxiliary electrode 14 so that both electrodes are set to a positive potential, the sample chamber pressure is maintained at 1 Pa or higher and the sample is irradiated with an electron beam to generate ions. It can also be used as an electrode for applying an electric field for a gas amplification type detection system that detects an image and forms an image. In this case, it is advantageous that these auxiliary electrodes can be controlled to be negative or positive depending on the vacuum state of the sample chamber. When a semiconductor detector including the first auxiliary electrode 13 and the second auxiliary electrode 14 is attached, a composition image, a stereoscopic image, and the like of reflected electrons and a gas-amplified secondary electron image by the semiconductor detector can be observed simultaneously.

一般的な走査電子顕微鏡の構成を示す図。The figure which shows the structure of a general scanning electron microscope. 試料から発生する2次電子のエネルギー分布図。The energy distribution map of the secondary electron generated from a sample. 試料から発生する2次電子の発生方向を示す図。The figure which shows the generation direction of the secondary electron which generate | occur | produces from a sample. 一般的な走査電子顕微鏡における2次電子検出器の位置と2次電子軌道を示す図。The figure which shows the position and secondary electron orbit of the secondary electron detector in a common scanning electron microscope. 本発明による走査電子顕微鏡の構成例を示す図。The figure which shows the structural example of the scanning electron microscope by this invention. 本発明の走査電子顕微鏡と一般的な走査電子顕微鏡の2次電子軌道の違いを示す図。The figure which shows the difference of the secondary electron orbit of the scanning electron microscope of this invention, and a general scanning electron microscope. 本発明による走査電子顕微鏡の他の構成例を示す図。The figure which shows the other structural example of the scanning electron microscope by this invention. 本発明による半導体反射電子検出器の構造例を示す図。The figure which shows the structural example of the semiconductor backscattered electron detector by this invention. 本発明による走査電子顕微鏡を低真空2次電子検出に応用した例を示す図。The figure which shows the example which applied the scanning electron microscope by this invention to the low vacuum secondary electron detection.

符号の説明Explanation of symbols

1:対物レンズ、2:試料、3:1次電子線、4:2次電子の軌道、5:2次電子検出器、6:2次電子の軌道、12:第3補助電極、13:第1補助電極、14:第2補助電極、15:半導体検出器、16:半導体検出素子、17:半導体検出素子ベース、18:試料室、19:検出器(EDX/WDX/EBSP)、20:ステージ、22:反射電子   1: objective lens, 2: sample, 3: primary electron beam, 4: orbit of secondary electron, 5: secondary electron detector, 6: orbit of secondary electron, 12: third auxiliary electrode, 13: first 1 auxiliary electrode, 14: second auxiliary electrode, 15: semiconductor detector, 16: semiconductor detection element, 17: semiconductor detection element base, 18: sample chamber, 19: detector (EDX / WDX / EBSP), 20: stage , 22: Reflected electrons

Claims (7)

試料を保持する試料ステージと、
収束した1次電子線を試料に照射する対物レンズと、
電子線照射によって試料から発生した2次電子を検出する2次電子検出器とを含む走査電子顕微鏡において、
前記対物レンズ下部に配置され、負電圧が印加される第1補助電極と、
前記第1補助電極によって試料側に押し戻された2次電子を再び引き上げる電界を形成するように正電圧が印加されると共に、前記第1補助電極と前記2次電子検出器との間であって、前記1次電子線の光軸からの距離が前記第1補助電極より遠く、前記2次電子検出器よりも近い位置に配置された第2補助電極とを備え、
前記2次電子検出器は、前記第1補助電極によって試料側に押し戻され、前記第2補助電極によって再び引き上げられる2次電子の軌道上に配置されていることを特徴とする走査電子顕微鏡。
A sample stage for holding the sample;
An objective lens for irradiating the sample with the converged primary electron beam;
In a scanning electron microscope including a secondary electron detector for detecting secondary electrons generated from a sample by electron beam irradiation,
A first auxiliary electrode disposed under the objective lens and applied with a negative voltage;
A positive voltage is applied so as to form an electric field that pulls up the secondary electrons pushed back to the sample side by the first auxiliary electrode, and between the first auxiliary electrode and the secondary electron detector. A distance from the optical axis of the primary electron beam farther than the first auxiliary electrode, and a second auxiliary electrode disposed at a position closer to the secondary electron detector,
The scanning electron microscope, wherein the secondary electron detector is arranged on a trajectory of secondary electrons pushed back to the sample side by the first auxiliary electrode and pulled up again by the second auxiliary electrode.
請求項1記載の走査電子顕微鏡において、前記第1補助電極はリング状又は前記2次検出器に向いた側が開放したU字状の形状を有し、前記第2補助電極は前記第1補助電極より径の大きいリング状又は前記2次電子検出器に向いた側が閉じたU字状の形状を有することを特徴とする走査電子顕微鏡。   2. The scanning electron microscope according to claim 1, wherein the first auxiliary electrode has a ring shape or a U-shape that is open on a side facing the secondary detector, and the second auxiliary electrode is the first auxiliary electrode. A scanning electron microscope having a ring shape with a larger diameter or a U-shaped shape with a side facing the secondary electron detector closed. 請求項1又は2記載の走査電子顕微鏡において、前記第1補助電極の電位は−5〜−20Vであり、前記第2補助電極の電位は+5〜+20Vであることを特徴とする走査電子顕微鏡。   3. The scanning electron microscope according to claim 1, wherein the potential of the first auxiliary electrode is −5 to −20V, and the potential of the second auxiliary electrode is +5 to + 20V. 請求項1〜3のいずれか1項記載の走査電子顕微鏡において、前記2次電子検出器と試料との間に正電位の第3補助電極を設置したことを特徴とする走査電子顕微鏡。   The scanning electron microscope according to any one of claims 1 to 3, wherein a third auxiliary electrode having a positive potential is provided between the secondary electron detector and the sample. 試料を保持する試料ステージと、
収束した1次電子線を試料に照射する対物レンズと、
電子線照射によって試料から発生された2次電子を検出する2次電子検出器とを含む走査電子顕微鏡において、
前記対物レンズ下部に1次電子線通過穴を有する環状の反射電子検出器を備え、
前記反射電子検出器は、前記1次電子線通過穴の周囲に配置され、負電圧が印加される第1補助電極と、前記1次電子線の光軸からの距離が前記第1補助電極より遠く、前記2次電子検出器よりも近い位置に配置され、前記第1補助電極によって試料側に押し戻された2次電子を再び引き上げる電界を形成するように正電圧が印加される第2補助電極とを備え、
前記2次電子検出器は、前記第1補助電極によって試料側に押し戻され、前記第2補助電極によって再び引き上げられる2次電子の軌道上に配置されていることを特徴とする走査電子顕微鏡。
A sample stage for holding the sample;
An objective lens for irradiating the sample with the converged primary electron beam;
In a scanning electron microscope including a secondary electron detector for detecting secondary electrons generated from a sample by electron beam irradiation,
An annular backscattered electron detector having a primary electron beam passage hole under the objective lens;
The backscattered electron detector is disposed around the primary electron beam passage hole, and a distance from a first auxiliary electrode to which a negative voltage is applied to the optical axis of the primary electron beam is greater than that of the first auxiliary electrode. A second auxiliary electrode disposed at a position far from the secondary electron detector and to which a positive voltage is applied so as to form an electric field that pulls up the secondary electrons pushed back to the sample side by the first auxiliary electrode again And
The scanning electron microscope, wherein the secondary electron detector is arranged on a trajectory of secondary electrons pushed back to the sample side by the first auxiliary electrode and pulled up again by the second auxiliary electrode.
請求項5記載の走査電子顕微鏡において、前記第1補助電極の電位は−5〜−20Vであり、前記第2補助電極の電位は+5〜+20Vであることを特徴とする走査電子顕微鏡。   6. The scanning electron microscope according to claim 5, wherein the potential of the first auxiliary electrode is −5 to −20V, and the potential of the second auxiliary electrode is +5 to + 20V. 請求項1〜6のいずれか1項記載の走査電子顕微鏡において、前記第1補助電極の電位を正電位に切換えて印加可能であることを特徴とする走査電子顕微鏡。   7. The scanning electron microscope according to claim 1, wherein the potential of the first auxiliary electrode can be switched to a positive potential and applied.
JP2003413782A 2003-12-11 2003-12-11 Scanning electron microscope Expired - Fee Related JP4292068B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003413782A JP4292068B2 (en) 2003-12-11 2003-12-11 Scanning electron microscope
US11/006,556 US7154089B2 (en) 2003-12-11 2004-12-08 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413782A JP4292068B2 (en) 2003-12-11 2003-12-11 Scanning electron microscope

Publications (2)

Publication Number Publication Date
JP2005174766A JP2005174766A (en) 2005-06-30
JP4292068B2 true JP4292068B2 (en) 2009-07-08

Family

ID=34650516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413782A Expired - Fee Related JP4292068B2 (en) 2003-12-11 2003-12-11 Scanning electron microscope

Country Status (2)

Country Link
US (1) US7154089B2 (en)
JP (1) JP4292068B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636897B2 (en) * 2005-02-18 2011-02-23 株式会社日立ハイテクサイエンスシステムズ Scanning electron microscope
KR101152123B1 (en) * 2005-07-18 2012-06-15 삼성전자주식회사 Liquid crystal display and driving method thereof
US8890066B1 (en) * 2005-08-26 2014-11-18 Kla-Tencor Corporation Sharp scattering angle trap for electron beam apparatus
US7514682B2 (en) * 2005-09-30 2009-04-07 Applied Materials, Inc. Electron anti-fogging baffle used as a detector
JP4906409B2 (en) * 2006-06-22 2012-03-28 株式会社アドバンテスト Electron beam size measuring apparatus and electron beam size measuring method
JP5075375B2 (en) * 2006-08-11 2012-11-21 株式会社日立ハイテクノロジーズ Scanning electron microscope
GB2442027B (en) * 2006-09-23 2009-08-26 Zeiss Carl Smt Ltd Charged particle beam instrument and method of detecting charged particles
JP5289912B2 (en) * 2008-12-01 2013-09-11 日本電子株式会社 Scanning electron microscope, emission electron detection value estimation method, SEM image simulation method, and program thereof
WO2012016198A2 (en) * 2010-07-30 2012-02-02 Pulsetor, Llc Electron detector including an intimately-coupled scintillator-photomultiplier combination, and electron microscope and x-ray detector employing same
EP2739958B1 (en) 2011-08-05 2016-01-20 Pulsetor, LLC Electron detector including one or more intimately-coupled scintillator-photomultiplier combinations, and electron microscope employing same
EP2682978B1 (en) * 2012-07-05 2016-10-19 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Contamination reduction electrode for particle detector
WO2022064628A1 (en) 2020-09-25 2022-03-31 株式会社日立ハイテク Electron microscope

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897545A (en) * 1987-05-21 1990-01-30 Electroscan Corporation Electron detector for use in a gaseous environment
JPH06103951A (en) 1992-09-17 1994-04-15 Hitachi Ltd Secondary electron detector
JPH09147782A (en) 1995-11-28 1997-06-06 Shimadzu Corp Electron beam microanalyzer
JP4236742B2 (en) * 1998-10-29 2009-03-11 株式会社日立製作所 Scanning electron microscope

Also Published As

Publication number Publication date
US7154089B2 (en) 2006-12-26
JP2005174766A (en) 2005-06-30
US20050127294A1 (en) 2005-06-16

Similar Documents

Publication Publication Date Title
US11562881B2 (en) Charged particle beam system
US10777382B2 (en) Low voltage scanning electron microscope and method for specimen observation
JP4636897B2 (en) Scanning electron microscope
JP4977509B2 (en) Scanning electron microscope
US8785879B1 (en) Electron beam wafer inspection system and method of operation thereof
CN207425790U (en) A kind of low energy scanning electron microscope system
JP6736756B2 (en) Charged particle beam device
JP4292068B2 (en) Scanning electron microscope
US11189457B2 (en) Scanning electron microscope
WO2000031769A9 (en) Detector configuration for efficient secondary electron collection in microcolumns
US6710340B2 (en) Scanning electron microscope and method of detecting electrons therein
JP3432091B2 (en) Scanning electron microscope
JPH0935679A (en) Scanning electron microscope
JP2002075264A (en) Rough-vacuum scanning electron microscope
US9245709B1 (en) Charged particle beam specimen inspection system and method for operation thereof
JP2007250222A (en) Scanning electron microscope
JPH08264149A (en) Secondary electron detecting apparatus for scanning electron microscope
JPH0864163A (en) Charged particle beam device
JP4128487B2 (en) Charged particle beam equipment
JPH07240168A (en) Scanning electron microscope
JPH03283249A (en) Secondary electron detector
JPH1186770A (en) Scanning electron microscope
JP3753048B2 (en) Secondary electron detector
JPH0236207Y2 (en)
JP2000011939A (en) Charged particle beam apparatus and inspection method for semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees