JP4287927B2 - Liquid seal bush - Google Patents

Liquid seal bush Download PDF

Info

Publication number
JP4287927B2
JP4287927B2 JP29589498A JP29589498A JP4287927B2 JP 4287927 B2 JP4287927 B2 JP 4287927B2 JP 29589498 A JP29589498 A JP 29589498A JP 29589498 A JP29589498 A JP 29589498A JP 4287927 B2 JP4287927 B2 JP 4287927B2
Authority
JP
Japan
Prior art keywords
outer cylinder
liquid
liquid chamber
thin wall
core member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29589498A
Other languages
Japanese (ja)
Other versions
JP2000120760A (en
Inventor
和俊 佐鳥
修 蜷川
雅英 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamashita Rubber Co Ltd
Original Assignee
Yamashita Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamashita Rubber Co Ltd filed Critical Yamashita Rubber Co Ltd
Priority to JP29589498A priority Critical patent/JP4287927B2/en
Publication of JP2000120760A publication Critical patent/JP2000120760A/en
Application granted granted Critical
Publication of JP4287927B2 publication Critical patent/JP4287927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、自動車のエンジンマウントやデフマウントなどの駆動系及びサスペンション部等に用いられる液封ブッシュに関する。
【0002】
【従来の技術】
このような液封ブッシュは公知であり、例えば、特許第2678705号には、円筒型の外筒と、この内側へ同心配置される芯部材と、これらの外筒と芯部材の間に介装された弾性部材とを備え、弾性部材は外筒の軸線に直交する方向の断面(軸直交断面)において略H字状をなし、芯部材を挟んで、使用状態における上下方向に一対の液室を配置し、前後方向に一対の空所を配置するとともに、各液室相互をオリフィス通路で連通し、かつ弾性部材の一部で構成される液室と空所の隔壁の肉厚を、軸方向両端部に形成される弾性部材の端壁の肉厚よりも薄くしたものが示されている。なお、本願において、上下、左右及び前後とは取付状態における車体を基準とする。
【0003】
【発明が解決しようとする課題】
上記構造によれば、上下方向における中周波領域の振動入力に対して薄肉の隔壁が膜共振することにより低動バネを実現できるが、弾性部材の外縁部が外筒側へ焼き付けられて固着されているため、図9の特性曲線(丸付数字の1,以下略して丸1、丸2、・・のように表す)に示すように、中周波領域と高周波領域の境界部付近で動バネ特性の極小値Aとその反動による大きな極大値Bを有する。この極小値Aと極大値Bが生じる理由の一つは、隔壁の外周部が外筒側へ固定されているため、全体として比較的高動バネになってしまうことが上げられる。
【0004】
さらにこの例では、前後方向における振動入力に対して、隔壁を上下方向へ延ばすことによりせんだん変形が生じるようにして静バネ定数を下げているが、ある程度の圧縮変形を生じさせることが必要なこともあり、このような場合には本公知例では対応できない。
【0005】
そこで、本願発明は、直交する一方向に対して液体の共振と弾性部材にせんだん変形が生じることにより対応して中周波領域全体を低動バネにするとともに、他方向に対しては弾性部材に圧縮変形を生じさせることにより対応させることを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため本願の液封ブッシュに係る第1の発明は、円筒型の外筒と、この内側へ配設される芯部材と、これらの外筒と芯部材の間に介装された弾性部材とを備え、弾性部材の中間部外周側で芯部材を挟んだ対称位置に凹部を形成して液室とし、これら液室間を弾性部材の一部で形成された隔壁で仕切り、かつ液室相互をオリフィス通路にて連通した液封ブッシュにおいて、外筒の軸線方向と直交する軸直交方向断面内で、直交する振動入力方向の一方向に沿って前記各液室を芯部材を挟んで対称に配置し、かつ他方向に沿って前記各隔壁を芯部材を挟んで対称に配置するとともに、各隔壁は、外縁部が外筒に対して相対的にずれることを許容する密着非結合であり、かつ肉厚部に形成された肉抜き穴と、この肉抜き穴によって隔てられて対向する一対の薄肉壁部を備え、これら薄肉壁部はそれぞれ液室の壁部を構成するとともに、前記芯部材から外筒の径方向に向けて圧縮変形可能に設けられ、前記各凹部を覆う液室カバーを外筒の内周面へ圧接固定し、この液室カバーにより各隔壁の周方向を固定することを特徴とする。
【0007】
第2の発明は、上記第1の発明において、前記肉抜き穴を挟んで対向する一対の薄肉壁部は前記軸直交方向断面内で、それぞれ芯部材から外筒へ向かって直線状に延びていることを特徴とする。
【0008】
第3の発明は、上記第1の発明において、前記肉抜き穴を挟んで対向する一対の薄肉壁部は前記軸直交方向断面内で、それぞれ液室からみて外側へ湾曲していることを特徴とする。
【0009】
第4の発明は、上記第1の発明において、前記肉抜き穴を挟んで対向する一対の薄肉壁部は前記軸直交方向断面内で、一方が液室からみて外側へ湾曲し、他方が内側へ湾曲していることを特徴とする。
【0010】
第5の発明は、上記第1の発明において、前記外筒の内周面に圧接する隔壁の基部を薄肉壁部としたことを特徴とする。
【0011】
第6の発明は、上記第1の発明において、オリフィス通路を屈曲させたことを特徴とする。
【0012】
【発明の効果】
第1の発明によれば、隔壁に対向する一対の薄肉壁部を設けてばね定数を低くし、かつ外筒との接触部を非結合にしたから、全体として低動バネにできる。そのうえ、外筒の軸直交方向断面内における直交する振動入力方向の一方に中周波領域の振動入力があると、弾性部材にせんだん変形が生じるとともに、隔壁の薄肉壁部における膜共振が生じ、中周波領域全体が低動バネとなる。
【0013】
一方、他方向の振動入力があると、隔壁の対向する一対の薄肉壁部は圧縮変形を生じることにより吸収する。このとき、隔壁は、肉抜き穴により静バネ定数を低くしてあるが、圧縮変形するためこの振動に十分対応できる。その結果、直交2方向の振動入力に対して適度の弾性バランスを維持できる。
【0014】
第2の発明によれば、対向する一対の薄肉壁部をそれぞれ直線状に形成したので、図11の特性曲線▲2▼に示すように、中周波領域の極小値Cを低くできかつ高周波領域の極大値Dも下げることができるので、高周波領域まで低動バネ化できる。
【0015】
第3の発明によれば、対向する一対の薄肉壁部をそれぞれ液室から見て外側に湾曲させたので、図9の特性曲線丸3に示すように、中周波領域の極小値Eがさらに低くなり、より低動バネ化できる。
【0016】
第4の発明によれば、対向する一対の薄肉壁部のうち、一方を内側湾曲、他方を外側湾曲させたので、図9の特性曲線丸4に示すように、中周波領域の極小値Fはそれほど顕著に低動バネ化しないが、高周波領域に第2の極小値Gを形成でき、これにより高周波領域まで低動バネ化できる。
【0017】
第5の発明によれば、隔壁の基部に薄肉部を設けたので、図9の特性曲線丸5に示すように、中周波領域の極小値Hは顕著に低動バネ化する。
【0018】
第6の発明によれば、オリフィス通路を屈曲させることにより、オリフィス通路を液体が流れるとき流動抵抗が発生し、これにより液柱共振の発生周波数帯が広くなり、減衰特性を幅広く確保できる。
【0019】
【発明の実施の形態】
図1乃至図9に基づいて本願発明の一実施例を説明する。図1は本願発明の液封ブッシュの横断面(図4の1−1線方向断面)図、図2は液封ブッシュを軸方向から示す図、図3は外筒の軸直交方向から示す図、図4は液封ブッシュの縦断面(図2の4ー4線方向断面)図、図5は弾性部材の外観形状を図1のX方向から示す図、図6は隔壁部分の拡大模式図、図7乃び図8は隔壁の形状を変更した変形例の図1に対応する断面図、図9はこの液封ブッシュによる動バネ特性を示すグラフである。
【0020】
これらの図において、この液封ブッシュは、円筒状の外筒1と、その内側へ略同心状に配設される芯部材である内筒2と、これらの間に介装される弾性部材3を備える。弾性部材3はゴム又はエラストマー等適宜弾性材料で内筒2と一体に形成され、その長さ方向中間部に凹部4及び5が内筒2を挟んで対称位置に形成され、これら凹部4と5の間に残された弾性部材3の一部が隔壁6をなしている。
【0021】
隔壁6は肉厚内に外筒1又は内筒2の軸方向(以下、単に軸方向という)と平行に貫通する肉抜き穴7が形成されている。この肉抜き穴7は図1の断面において略三角形状をなし、一つの頂部を内筒2側に向けて配置され、この肉抜き穴7を囲む辺部のうち、外筒1の内周面へ当接する部分が基部8をなし、この外表面に外筒1との間でオリフィス通路を形成するためのオリフィス溝9が形成されている。
【0022】
基部8は外筒1の内周面へその周方向で略1/4円弧の長さにおいて非結合状態で密着する。但し、この密着長さは任意に設定できる。ここで、非結合状態とは、従来の焼き付け構造と異なり、単に圧接されているだけであり、大荷重により外縁部と外筒1の内面とが相対的にずれることを許容する状態をいう。
【0023】
また、肉抜き穴7を囲む他の2辺部のうち、凹部4に臨む部分が薄肉壁部10をなし、凹部5に臨む部分が薄肉壁部11をなしている。これら薄肉壁部10、11は、内筒2と外筒1を径方向へ延びて連結するとともに、薄肉壁部10、11は使用状態における実質的に前後方向へ延びている。
【0024】
凹部4、5はそれぞれ液室カバー12、13で覆われ、各液室カバー12、13の一部は凹部4、5内へ突出するストッパ突部14、15をなしている。液室カバー12と凹部4に囲まれた空間が第1液室16をなし、液室カバー13と凹部5で囲まれた空間が第2液室17をなす。
【0025】
これら第1及び第2液室16、17は容量・機能において全く同じものであり、主副の相違はない。また、これら第1及び第2液室16、17は使用状態における上下方向へ配置されている。
【0026】
液室カバー12、13の周囲は、凹部4、5の縁部をなす弾性部材に重なった状態で外筒1の内周面へ圧接固定されている。また、基部8の縁部と液室カバー12、13の縁部の接続する部分にオリフィス通路の連通口18、19が形成され、これらの連通口18、19及びオリフィス溝9を介して、第1及び第2液室16、17に充填された液体が流動するようになっている。
【0027】
図2及び図4に示すように、弾性部材3のうち、内筒2の軸方向両端部における部分は、内筒2と焼き付け等により一体化された一対をなす円形の端壁20となっている。両端壁20の各外周部近傍にはリング部材21が一部埋設されて設けられるとともに、両端壁20の各外周部は、リング部材21の外周部に形成された弾性部材3の一部をシール22として外筒1の内周面へ圧入されている。
【0028】
図5に示すように、オリフィス通路9は直線状をなしている。なお、符号23は液室カバー12の端部を乗せるための段部、24はオリフィス通路に対するシールである。また、16a、17aは各液室をなすために弾性部材3に形成された凹部である。
【0029】
模式的に示す図6に明らかなように、薄肉壁部10、11は、それぞれ肉抜き穴7を挟んで一対をなし、内筒2の径方向へ直線的に延びるとともに、一種の弾性膜として中周波領域の振動入力に対して膜共振を発生するように膜厚を設定されている。
【0030】
この薄肉壁部10、11の膜厚tは、この図に示すように薄肉壁部10,11の範囲内における最も薄い部分の肉厚であり、端壁20の最小肉厚T(図4参照)の略1/2程度以下になっている。但し、この膜厚tはTより小さくなる範囲において、必要とする共振周波数の値等に応じて任意に設定でき、好ましくは、1/3≦t/T≦1/2の範囲で設定する。この設定は肉抜き穴7の大きさを調整することにより容易である。
【0031】
次に、本実施例の作用を説明する。まず、隔壁6に薄肉壁部10、11を設けてばね定数を低くし、かつ外筒1との接触部を非結合にしたから、図9の特性曲線丸2に明らかなように全体として低動バネになっている。
【0032】
そのうえ、上下方向に中周波領域の振動入力があると、弾性部材3にせんだん変形を生じさせるとともに、隔壁6の薄肉壁部10、11における膜共振が生じ、極小値Cが低くなる。これにより中周波領域全体が低動バネとなる。
【0033】
そのうえ、高周波領域における極大値Dも下げられ、従来例との当初の差dに対して極小値Cにおける差d1は小さくなているが、極大値Dにおける差d2は遥かに大きく、その結果、この部分が明らかに低動バネとなり、全体として高周波領域まで低動バネ化している。なお、低周波領域では第1及び第2液室間における液体流動にともなうオリフィス共振により低動バネ化されている。
【0034】
一方、前後方向の振動入力があると、隔壁6の薄肉壁部10、11は圧縮変形を生じさせることにより吸収する。このとき、隔壁6は、肉抜き穴7により静バネ定数を低くしてあるが、圧縮変形を生じさせるようにして適度の弾性バランスを維持できる。
【0035】
なお、本願発明は上記構造に限定されず、種々に変形や応用が可能である。例えば、図7及び図8に示すように、薄肉壁部10、11の形状を変化させるだけで、特性を簡単に変化させることができる。図7は薄肉壁部10、11を互いに肉抜き穴7側へ湾曲させた(以下、これを液室側から見て、外側湾曲といい、逆向きを内側湾曲という)第1変形例である。このようにすると、図9の特性曲線丸3に示すように、中周波領域の極小値Eをより低動バネ化することができる。
【0036】
図8は薄肉壁部10を内側湾曲、薄肉壁部11を外側湾曲させた第2変形例であるである。但し、薄肉壁部10を外側湾曲、薄肉壁部11を内側湾曲略させることは自由である。このようにすると、図9の特性曲線丸4に示すように、中周波領域の極小値Fはそれほど顕著に低動バネ化しないが、高周波領域に第2の極小値Gを形成でき、これにより高周波領域まで低動バネ化できる。
【0037】
図10乃至図12は基部に薄肉部を設け、かつオリフィス通路を変形させた第2実施例であり、図10は図11の10−10線に沿う断面図、図11はこの例における弾性部材の外観形状を図5に対応して示す図、図12はこの例における減衰特性を示すグラフである。
【0038】
図11に示すように、この例では、基部8のほぼ全体を薄肉部としてある。このようにすると、図9の特性曲線丸5に差d3として示すように、中周波領域の極小値Hは顕著に低動バネ化する。なお、この例では薄肉壁部10、11として図7の例を組み合わせたが、図6又は図8の例を組み合わせることは自由であり、それぞれの組合せに応じてに特性が変化する。
【0039】
さらに、基部8の周方向端部には、互いに反対側から延出して互い違いになるような一対の壁25,26が設けられ、これによりオリフィス溝9をクランク状に屈曲させている。
【0040】
このように、オリフィス溝9をクランク状に屈曲させると、オリフィス通路9を液体が流れるとき流動抵抗が発生し、図12に明らかなように、本実施例の方が曲線がなだらかになり、あるレベルの減衰を得ようとして設定された所定の設計基準線に対して、従来例の周波数帯f1よりも広い周波数帯f2で達成できるから、液柱共振の発生周波数帯が広くなり、減衰特性を幅広く確保できる。なお、この構造も上記各構造と適宜組み合わせることができる。
【図面の簡単な説明】
【図1】 第1実施例に係る液封ブッシュの横断面図(図4の1−1線相当断面図)
【図2】 この液封ブッシュを軸方向から示す図
【図3】 この液封ブッシュを軸直交方向から示す図
【図4】 図2の4−4線断面図
【図5】 弾性部材の外形を図1のX方向から示す図
【図6】 薄肉壁部部分を模式的に示す図
【図7】 薄肉壁部を変形した第1変形例の図1相当図
【図8】 薄肉壁部を変形した第2変形例の図1相当図
【図9】 動バネ特性図
【図10】第2実施例の弾性部材を図11の10−10線に沿って示す断面図
【図11】この例における弾性部材の外観形状を図5に対応して示す図
【図12】第2実施例の減衰特性図
【符号の説明】
1:外筒、2:内筒、3:弾性部材、4:凹部、5:凹部、6:隔壁、7:肉抜き穴、8:基部、10:薄肉壁部、11:薄肉壁部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid seal bush used for a drive system such as an engine mount and a differential mount of an automobile, a suspension portion, and the like.
[0002]
[Prior art]
Such a liquid seal bush is known. For example, in Japanese Patent No. 2678705, a cylindrical outer cylinder, a core member concentrically arranged on the inside thereof, and an interposition between the outer cylinder and the core member are disclosed. The elastic member is substantially H-shaped in a cross section (axial orthogonal cross section) in a direction orthogonal to the axis of the outer cylinder, and a pair of liquid chambers in the up and down direction in use when sandwiching the core member A pair of cavities are arranged in the front-rear direction, the liquid chambers communicate with each other through an orifice passage, and the wall thickness of the liquid chamber constituted by a part of the elastic member and the vacant partition wall The thing formed thinner than the thickness of the end wall of the elastic member formed in the direction both ends is shown. In addition, in this application, up and down, right and left, and front and rear are based on the vehicle body in an attached state.
[0003]
[Problems to be solved by the invention]
According to the above structure, the thin septal wall against vibration input in the medium frequency region can be realized low dynamic spring by resonating membrane in the vertical direction, the outer edge portion of the elastic member is baked into the outer cylinder side fixation Therefore, as shown in the characteristic curve of FIG. 9 (represented by circled numbers 1, hereinafter abbreviated as circle 1, circle 2,...), It moves near the boundary between the middle frequency region and the high frequency region. It has a minimum value A of the spring characteristic and a large maximum value B due to its reaction. One of the reasons why the minimum value A and the maximum value B occur is that the outer peripheral portion of the partition wall is fixed to the outer cylinder side, so that the spring as a whole becomes a relatively high dynamic spring.
[0004]
Furthermore, in this example, the static spring constant is lowered by causing the bulkhead to extend in the vertical direction with respect to the vibration input in the front-back direction, but the static spring constant is required to be reduced to some extent. In such a case, this known example cannot cope with this case.
[0005]
Accordingly, the present invention is to provide fleet deformation resonance and the elastic member of the liquid to low dynamic spring across the medium frequency region corresponds by arise with respect to orthogonal direction, relative to the other direction It aims at making it respond | correspond by producing a compressive deformation in an elastic member.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a first invention relating to the liquid seal bushing of the present application includes a cylindrical outer cylinder, a core member disposed on the inside thereof, and interposed between the outer cylinder and the core member. An elastic member, and forming a recess at a symmetrical position sandwiching the core member on the outer peripheral side of the intermediate portion of the elastic member to form a liquid chamber, and partitioning between these liquid chambers by a partition formed by a part of the elastic member, In addition, in the liquid seal bush in which the liquid chambers are communicated with each other through the orifice passage, the liquid chambers are arranged in one direction along the orthogonal vibration input direction within the cross section perpendicular to the axial direction of the outer cylinder. The partition walls are arranged symmetrically with respect to each other, and the partition walls are symmetrically arranged along the other direction with the core member interposed therebetween, and the partition walls are closely contacted to allow the outer edge portion to shift relative to the outer cylinder. A hollow hole formed in the thick wall portion, and a through hole Terra is provided with a pair of thin wall portions facing, with these thin wall portion constitutes a wall portion of each fluid chamber, the compression deformable provided from the core member towards the radial direction of the outer cylinder, each A liquid chamber cover that covers the concave portion is press-fixed to the inner peripheral surface of the outer cylinder, and the circumferential direction of each partition is fixed by the liquid chamber cover .
[0007]
According to a second invention, in the first invention, the pair of thin wall portions opposed to each other with the hollow hole extending linearly from the core member toward the outer cylinder within the cross section in the axis orthogonal direction. It is characterized by being.
[0008]
According to a third aspect of the present invention, in the first aspect, the pair of thin wall portions facing each other with the lightening hole interposed therebetween are curved outward in the cross section in the direction perpendicular to the axis. And
[0009]
According to a fourth invention, in the first invention, the pair of thin wall portions opposed to each other with the hollow hole interposed therebetween are within the cross section in the direction perpendicular to the axis, and one is curved outward as viewed from the liquid chamber, and the other is the inner side It is characterized by being curved to the right.
[0010]
A fifth invention is characterized in that, in the first invention, the base portion of the partition wall pressed against the inner peripheral surface of the outer cylinder is a thin wall portion.
[0011]
A sixth invention is characterized in that, in the first invention, the orifice passage is bent.
[0012]
【The invention's effect】
According to the first aspect of the present invention, the spring constant is lowered by providing the pair of thin wall portions opposed to the partition wall, and the contact portion with the outer cylinder is not coupled. In addition, if there is a vibration input in the middle frequency region in one of the orthogonal vibration input directions in the cross section perpendicular to the axis of the outer cylinder, the elastic member is gradually deformed and a membrane resonance occurs in the thin wall portion of the partition wall, The whole middle frequency region becomes a low dynamic spring.
[0013]
On the other hand, when there is vibration input in the other direction, the pair of thin wall portions facing each other of the partition wall absorbs by causing compressive deformation. At this time, the static spring constant of the partition wall is lowered by the hollow hole, but it can sufficiently cope with this vibration because it is compressed and deformed. As a result, an appropriate elastic balance can be maintained with respect to vibration input in two orthogonal directions.
[0014]
According to the second invention, since the pair of opposing thin wall portions are formed in a straight line, the minimum value C in the intermediate frequency region can be lowered and the high frequency region can be reduced as shown by the characteristic curve (2) in FIG. Since the maximum value D can be lowered, the dynamic spring can be reduced to the high frequency region.
[0015]
According to the third invention, since the pair of opposing thin wall portions are curved outward as viewed from the liquid chamber, the minimum value E in the intermediate frequency region is further increased as shown by the characteristic curve circle 3 in FIG. It becomes low and can be made a lower dynamic spring.
[0016]
According to the fourth aspect of the invention, one of the opposing thin wall portions is curved inwardly, and the other is curved outwardly . Therefore, as shown by the characteristic curve circle 4 in FIG. Does not significantly reduce the dynamic spring, but the second minimum value G can be formed in the high frequency region, thereby reducing the dynamic spring to the high frequency region.
[0017]
According to the fifth invention, it is provided with the thin portion at the base of the partition wall, as shown in characteristic curve circle 5 in FIG. 9, the minimum value H of the middle-frequency region is remarkably low dynamic spring of.
[0018]
According to the sixth aspect of the invention, by bending the orifice passage, flow resistance is generated when the liquid flows through the orifice passage, thereby widening the generation frequency band of the liquid column resonance and securing a wide range of damping characteristics.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. 1 is a cross-sectional view (cross-sectional view taken along line 1-1 of FIG. 4) of the liquid seal bushing of the present invention, FIG. 2 is a view showing the liquid seal bush from the axial direction, and FIG. 4 is a longitudinal sectional view of the liquid seal bush (cross section taken along line 4-4 in FIG. 2), FIG. 5 is a view showing the external shape of the elastic member from the X direction in FIG. 1, and FIG. 6 is an enlarged schematic view of the partition wall portion. 7 and FIG. 8 are cross-sectional views corresponding to FIG. 1 of a modified example in which the shape of the partition wall is changed, and FIG. 9 is a graph showing dynamic spring characteristics by this liquid seal bush.
[0020]
In these drawings, the liquid seal bush includes a cylindrical outer cylinder 1, an inner cylinder 2 which is a core member disposed substantially concentrically on the inner side thereof, and an elastic member 3 interposed therebetween. Is provided. The elastic member 3 is formed integrally with the inner cylinder 2 with an appropriate elastic material such as rubber or elastomer, and concave portions 4 and 5 are formed at symmetrical positions with the inner cylinder 2 sandwiched in the middle portion in the longitudinal direction. A part of the elastic member 3 left between the two forms a partition wall 6.
[0021]
The partition wall 6 is formed with a hollow hole 7 penetrating in parallel with the axial direction of the outer cylinder 1 or the inner cylinder 2 (hereinafter simply referred to as the axial direction) in the wall thickness. The hollow hole 7 has a substantially triangular shape in the cross section of FIG. 1, and is arranged with one apex directed toward the inner cylinder 2, and the inner peripheral surface of the outer cylinder 1 among the sides surrounding the hollow hole 7. A portion that abuts the base portion 8 forms a base portion 8, and an orifice groove 9 for forming an orifice passage with the outer cylinder 1 is formed on the outer surface.
[0022]
The base portion 8 is in close contact with the inner peripheral surface of the outer cylinder 1 in a non-bonded state at a length of approximately ¼ arc in the circumferential direction. However, the contact length can be arbitrarily set. Here, the non-bonded state refers to a state in which the outer edge portion and the inner surface of the outer cylinder 1 are allowed to be relatively displaced due to a large load, unlike the conventional baking structure, which is merely pressed.
[0023]
In addition, among the other two sides surrounding the hole 7, the portion facing the recess 4 forms the thin wall portion 10, and the portion facing the recess 5 forms the thin wall portion 11. These thin wall portions 10 and 11 extend and connect the inner cylinder 2 and the outer tube 1 in the radial direction, and the thin wall portions 10 and 11 extend substantially in the front-rear direction in the use state.
[0024]
The recesses 4 and 5 are respectively covered with the liquid chamber covers 12 and 13, and a part of each of the liquid chamber covers 12 and 13 forms stopper protrusions 14 and 15 protruding into the recesses 4 and 5. A space surrounded by the liquid chamber cover 12 and the concave portion 4 forms the first liquid chamber 16, and a space surrounded by the liquid chamber cover 13 and the concave portion 5 forms the second liquid chamber 17.
[0025]
These first and second liquid chambers 16 and 17 are completely the same in capacity and function, and there is no difference between main and sub. Further, the first and second liquid chambers 16 and 17 are arranged in the vertical direction in the use state.
[0026]
The periphery of the liquid chamber covers 12 and 13 is pressure-fixed to the inner peripheral surface of the outer cylinder 1 in a state where the liquid chamber covers 12 and 13 overlap with the elastic members forming the edges of the recesses 4 and 5. In addition, orifice passage communication ports 18 and 19 are formed at portions where the edge portion of the base portion 8 and the edge portions of the liquid chamber covers 12 and 13 are connected, and the first through the communication ports 18 and 19 and the orifice groove 9 The liquid filled in the first and second liquid chambers 16 and 17 flows.
[0027]
As shown in FIG.2 and FIG.4, the part in the axial direction both ends of the inner cylinder 2 among the elastic members 3 becomes the circular end wall 20 which makes a pair integrated with the inner cylinder 2 by baking. Yes. A ring member 21 is partially embedded in the vicinity of each outer peripheral portion of the both end walls 20, and each outer peripheral portion of the both end walls 20 seals a part of the elastic member 3 formed on the outer peripheral portion of the ring member 21. 22 is press-fitted into the inner peripheral surface of the outer cylinder 1.
[0028]
As shown in FIG. 5, the orifice passage 9 is linear. Reference numeral 23 denotes a step for placing the end of the liquid chamber cover 12, and 24 denotes a seal for the orifice passage 9 . Reference numerals 16a and 17a denote concave portions formed in the elastic member 3 so as to form respective liquid chambers.
[0029]
As is apparent from FIG. 6 schematically, the thin wall portions 10 and 11 each form a pair with the hollow hole 7 interposed therebetween, linearly extend in the radial direction of the inner cylinder 2, and as a kind of elastic film The film thickness is set so as to generate film resonance with respect to vibration input in the middle frequency range.
[0030]
The film thickness t of the thin wall portions 10 and 11 is the thickness of the thinnest portion within the range of the thin wall portions 10 and 11 as shown in this figure, and the minimum thickness T of the end wall 20 (see FIG. 4). ) Or less. However, the film thickness t can be arbitrarily set in accordance with the required value of the resonance frequency in a range smaller than T, and is preferably set in the range of 1/3 ≦ t / T ≦ 1/2. This setting can be easily made by adjusting the size of the lightening hole 7.
[0031]
Next, the operation of this embodiment will be described. First, since the thin wall portions 10 and 11 are provided in the partition wall 6 to reduce the spring constant and the contact portion with the outer cylinder 1 is not coupled, the overall low as shown in the characteristic curve circle 2 in FIG. It is a dynamic spring.
[0032]
In addition, if there is a vibration input in the middle frequency range in the vertical direction, the elastic member 3 is gradually deformed, and membrane resonance occurs in the thin wall portions 10 and 11 of the partition wall 6 so that the minimum value C is lowered. As a result, the entire middle frequency region becomes a low dynamic spring.
[0033]
In addition, the maximum value D in the high frequency region is also lowered, and the difference d1 in the minimum value C is smaller than the initial difference d from the conventional example, but the difference d2 in the maximum value D is much larger, and as a result, This portion is clearly a low dynamic spring, and as a whole, it is a low dynamic spring. In the low-frequency region, a low dynamic spring is realized by orifice resonance accompanying the liquid flow between the first and second liquid chambers.
[0034]
On the other hand, if there is a vibration input in the front-rear direction, the thin wall portions 10 and 11 of the partition wall 6 are absorbed by causing compressive deformation. At this time, the partition wall 6 has a low static spring constant due to the lightening hole 7, but can maintain an appropriate elastic balance by causing compression deformation.
[0035]
In addition, this invention is not limited to the said structure, A various deformation | transformation and application are possible. For example, as shown in FIGS. 7 and 8, the characteristics can be easily changed simply by changing the shapes of the thin wall portions 10 and 11. FIG. 7 shows a first modified example in which the thin wall portions 10 and 11 are curved toward each other to the side of the thinning hole 7 (hereinafter referred to as an outer curve when viewed from the liquid chamber side, and the opposite direction is referred to as an inner curve). . In this way, as shown by the characteristic curve circle 3 in FIG. 9, the minimum value E in the intermediate frequency region can be further reduced to a dynamic spring.
[0036]
FIG. 8 shows a second modification in which the thin wall portion 10 is curved inward and the thin wall portion 11 is curved outward. However, it is free to make the thin wall portion 10 bend outward and the thin wall portion 11 be bend inward. In this way, as shown by the characteristic curve circle 4 in FIG. 9 , the minimum value F in the middle frequency region does not become so low as a dynamic spring, but the second minimum value G can be formed in the high frequency region, thereby Low dynamic springs can be achieved up to the high frequency range.
[0037]
10 to 12 show a second embodiment in which a thin wall portion is provided at the base and the orifice passage is deformed. FIG. 10 is a sectional view taken along line 10-10 in FIG. 11, and FIG. 11 is an elastic member in this example. FIG. 12 is a graph showing the attenuation characteristic in this example.
[0038]
As shown in FIG. 11, in this example, it is the thin portion substantially the entire base portion 8. In this way, the minimum value H in the intermediate frequency region is significantly lowered as shown in the characteristic curve circle 5 of FIG. 9 as the difference d3. In this example, the example of FIG. 7 is combined as the thin wall portions 10 and 11, but the example of FIG. 6 or 8 can be freely combined, and the characteristics change depending on each combination.
[0039]
Furthermore, a pair of walls 25 and 26 are provided at the circumferential end of the base 8 so as to extend from opposite sides and alternate, thereby bending the orifice groove 9 in a crank shape.
[0040]
In this way, when the orifice groove 9 is bent in a crank shape, a flow resistance is generated when the liquid flows through the orifice passage 9, and as shown in FIG. 12, the curve of this embodiment becomes gentler. With respect to a predetermined design reference line set to obtain level attenuation, it can be achieved in a frequency band f2 wider than the frequency band f1 of the conventional example. Widely secured. This structure can also be combined with each of the above structures as appropriate.
[Brief description of the drawings]
1 is a cross-sectional view of a liquid seal bush according to a first embodiment (a cross-sectional view corresponding to line 1-1 in FIG. 4).
2 is a view showing the liquid seal bush from the axial direction. FIG. 3 is a view showing the liquid seal bush from the direction orthogonal to the axis. FIG. 4 is a sectional view taken along line 4-4 in FIG. FIG. 6 is a view schematically showing the thin wall portion. FIG. 7 is a view corresponding to FIG. 1 of the first modification in which the thin wall portion is deformed. FIG. 9 is a diagram corresponding to FIG. 1 of the second modified example. FIG. 9 is a dynamic spring characteristic diagram. FIG. 10 is a sectional view showing the elastic member of the second example along line 10-10 in FIG.
11 is a view showing the external shape of an elastic member in this example corresponding to FIG.
FIG. 12 is a diagram of attenuation characteristics of the second embodiment.
1: outer cylinder, 2: inner cylinder, 3: elastic member, 4: recessed portion, 5: recessed portion, 6: partition wall, 7: hollow hole, 8: base, 10: thin wall portion, 11: thin wall portion

Claims (6)

円筒型の外筒と、この内側へ配設される芯部材と、これらの外筒と芯部材の間に介装された弾性部材とを備え、弾性部材の中間部外周側で芯部材を挟んだ対称位置に凹部を形成して液室とし、これら液室間を弾性部材の一部で形成された隔壁で仕切り、かつ液室相互をオリフィス通路にて連通した液封ブッシュにおいて、外筒の軸線方向と直交する軸直交方向断面内で、直交する振動入力方向の一方向に沿って前記各液室を芯部材を挟んで対称に配置し、かつ他方向に沿って前記各隔壁を芯部材を挟んで対称に配置するとともに、各隔壁は、外縁部が外筒に対して相対的にずれることを許容する密着非結合であり、かつ肉厚部に形成された肉抜き穴と、この肉抜き穴によって隔てられて対向する一対の薄肉壁部を備え、これら薄肉壁部はそれぞれ液室の壁部を構成するとともに、前記芯部材から外筒の径方向に向けて圧縮変形可能に設けられ
前記各凹部を覆う液室カバーを外筒の内周面へ圧接固定し、この液室カバーにより各隔壁の周方向を固定することを特徴とする液封ブッシュ。
A cylindrical outer cylinder, a core member disposed on the inside, and an elastic member interposed between the outer cylinder and the core member, and sandwiching the core member on the outer peripheral side of an intermediate portion of the elastic member In a liquid seal bushing in which a recess is formed at a symmetrical position to form a liquid chamber, the liquid chamber is partitioned by a partition formed by a part of an elastic member, and the liquid chambers are communicated with each other through an orifice passage. In the cross section perpendicular to the axial direction, the liquid chambers are arranged symmetrically along one direction of the orthogonal vibration input direction with the core member interposed therebetween, and the partition walls are arranged along the other direction. Are arranged symmetrically with respect to each other, and each partition wall is in close contact and non-bonding that allows the outer edge portion to be displaced relative to the outer cylinder, and a thinned hole formed in the thick portion, and this meat It has a pair of thin walls facing each other separated by a punch hole, and these thin walls are With constituting a wall portion of which liquid chamber, the compression deformable disposed toward the radial direction of the outer cylinder from said core member,
A liquid seal bush, wherein a liquid chamber cover that covers each of the recesses is pressed against and fixed to an inner peripheral surface of an outer cylinder, and a circumferential direction of each partition wall is fixed by the liquid chamber cover .
前記肉抜き穴を挟んで対向する一対の薄肉壁部は前記軸直交方向断面内で、それぞれ芯部材から外筒へ向かって直線状に延びていることを特徴とする請求項1の液封ブッシュ。2. The liquid seal bushing according to claim 1, wherein the pair of thin wall portions opposed to each other with the through hole interposed therebetween extend linearly from the core member toward the outer cylinder within the cross section in the direction perpendicular to the axis. . 前記肉抜き穴を挟んで対向する一対の薄肉壁部は前記軸直交方向断面内で、それぞれ液室からみて外側へ湾曲していることを特徴とする請求項1の液封ブッシュ。2. The liquid seal bush according to claim 1, wherein the pair of thin wall portions opposed to each other with the lightening hole interposed therebetween are curved outwardly as viewed from the liquid chamber within the cross section in the direction perpendicular to the axis. 前記肉抜き穴を挟んで対向する一対の薄肉壁部は前記軸直交方向断面内で、一方が液室からみて外側へ湾曲し、他方が内側へ湾曲していることを特徴とする請求項1の液封ブッシュ。2. A pair of thin wall portions facing each other with the lightening hole interposed therebetween, wherein one of the thin wall portions is curved outward as viewed from the liquid chamber, and the other is curved inward. Liquid seal bush. 前記外筒の内周面に圧接する隔壁の基部を薄肉壁部としたことを特徴とする請求項1の液封ブッシュ。2. The liquid seal bush according to claim 1, wherein a base portion of the partition wall pressed against the inner peripheral surface of the outer cylinder is a thin wall portion. オリフィス通路を屈曲させたことを特徴とする請求項1の液封ブッシュ。2. The liquid seal bush according to claim 1, wherein the orifice passage is bent.
JP29589498A 1998-10-16 1998-10-16 Liquid seal bush Expired - Fee Related JP4287927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29589498A JP4287927B2 (en) 1998-10-16 1998-10-16 Liquid seal bush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29589498A JP4287927B2 (en) 1998-10-16 1998-10-16 Liquid seal bush

Publications (2)

Publication Number Publication Date
JP2000120760A JP2000120760A (en) 2000-04-25
JP4287927B2 true JP4287927B2 (en) 2009-07-01

Family

ID=17826543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29589498A Expired - Fee Related JP4287927B2 (en) 1998-10-16 1998-10-16 Liquid seal bush

Country Status (1)

Country Link
JP (1) JP4287927B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134402A1 (en) * 2001-07-14 2003-01-23 Zf Lemfoerder Metallwaren Ag Rubber bushing bearing, especially for automotive applications, includes inner part with raised protrusions and elastomeric bearing body with kidney shaped cavities
JP4938248B2 (en) 2005-04-12 2012-05-23 株式会社ブリヂストン Vibration isolator
US8038132B2 (en) * 2005-09-01 2011-10-18 The Pullman Company Hydraulic bushing
JP2009002426A (en) * 2007-06-21 2009-01-08 Bridgestone Corp Engine mount
KR101316372B1 (en) * 2010-12-03 2013-10-08 현대자동차주식회사 Hydraulic bush

Also Published As

Publication number Publication date
JP2000120760A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
US8297602B2 (en) Vibration isolator
JPS62167949A (en) Vibration isolator
JP4287927B2 (en) Liquid seal bush
JPH01116329A (en) Vibration damper
JP3427593B2 (en) Fluid-filled cylindrical mount
JP4545343B2 (en) Liquid seal vibration isolator
JP3736155B2 (en) Fluid-filled cylindrical vibration isolator and manufacturing method thereof
JPH1130267A (en) Vibration control device
JP5907777B2 (en) Fluid filled cylindrical vibration isolator
JPH1182607A (en) Fluid sealed tubular mount
JP3059634B2 (en) Liquid ring bush
JP4368453B2 (en) Liquid seal vibration isolator
JP3140816B2 (en) Cylindrical liquid ring vibration isolator and method of manufacturing the same
JP3627397B2 (en) Fluid filled cylindrical mount
JP3300099B2 (en) Liquid-filled anti-vibration mount
JPH0349316Y2 (en)
JP3830259B2 (en) Liquid-filled engine mount
JP2530624Y2 (en) Fluid-filled cylindrical engine mount
JP3071548B2 (en) Liquid filled type vibration damping device
JP2678705B2 (en) Fluid-filled cylindrical mount
JP3508794B2 (en) Liquid-filled bush
JPH0643556Y2 (en) Fluid filled cylindrical mount
JPH1078076A (en) Fluid-charging cylindrical mount
JPH0131794Y2 (en)
JPH08233022A (en) Vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees