JP4545343B2 - Liquid seal vibration isolator - Google Patents

Liquid seal vibration isolator Download PDF

Info

Publication number
JP4545343B2
JP4545343B2 JP2001111869A JP2001111869A JP4545343B2 JP 4545343 B2 JP4545343 B2 JP 4545343B2 JP 2001111869 A JP2001111869 A JP 2001111869A JP 2001111869 A JP2001111869 A JP 2001111869A JP 4545343 B2 JP4545343 B2 JP 4545343B2
Authority
JP
Japan
Prior art keywords
elastic
partition wall
liquid chamber
main body
body member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001111869A
Other languages
Japanese (ja)
Other versions
JP2002310221A (en
Inventor
和俊 佐鳥
徹 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamashita Rubber Co Ltd
Original Assignee
Yamashita Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001111869A priority Critical patent/JP4545343B2/en
Application filed by Yamashita Rubber Co Ltd filed Critical Yamashita Rubber Co Ltd
Priority to EP07022052A priority patent/EP1887250B1/en
Priority to EP01119863A priority patent/EP1249634B1/en
Priority to ES01119863T priority patent/ES2295092T3/en
Priority to DE60132168T priority patent/DE60132168T2/en
Priority to EP07022051A priority patent/EP1890052A1/en
Priority to US09/930,296 priority patent/US6820867B2/en
Publication of JP2002310221A publication Critical patent/JP2002310221A/en
Application granted granted Critical
Publication of JP4545343B2 publication Critical patent/JP4545343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はエンジンマウント等に使用する液封防振装置であって、円筒型ブッシュ単体及び円筒型ブッシュと円錐型マウントを組合せ一体化したものに関する。
【0002】
【先行技術】
振動発生側へ取付けられる第1の取付部材と、振動受け側へ取付けられる第2の取付部材と、これら第1の取付部材と第2の取付部材を連結する略円錐状をなす弾性体本体部材とを備え、弾性本体部材の内側にこの弾性本体部材を弾性壁部の一部とする液室を設け、この液室を仕切り部材により主液室と、副液室に区画し、両液室を第1のオリフィス通路で連絡した円錐型マウントは公知である。
【0003】
また、円筒状の内外筒間を弾性部材で連結するとともに、周方向へ弾性部材によって区画された複数の液室を設け、この液室間をオリフィス通路で結んだ円筒ブッシュも公知である。
【0004】
さらに、本願出願人は、円筒型ブッシュと円錐型マウントを一体化した液封防振装置を出願済みである(特願2000−284387号)。図10及び図11はこれを示すものであり、図10は平面図、図11はその11−11線断面図である。なお、以下の説明において、図10の図示状態における左右方向(車体取付時前後方向)、上下方向(車体取付時左右方向)及び図11の状態における上下方向(車体取付時も同様)を、それぞれX軸方向、Y軸方向、Z軸方向とする。以下、この液封防振装置の構造を概説する。
【0005】
図11に示すように、このエンジンマウントは円錐型マウント部1と円筒型ブッシュ部2を一体的に形成したものであり、円錐型マウント部1は、エンジン側へ取付けられる第1の取付部材3と、その周囲を間隔を持って囲む剛性のある円筒状外枠として構成された第2の取付部材5と、これら第1の取付部材3と第2の取付部材5間を連結する略円錐状の弾性本体部材7を有する。第1の取付部材3には略L字断面をなすストッパー4の一端が取付けられている。第2の取付部材5には車体側へ取付けられる車体側ブラケット6が溶接されている。
【0006】
弾性本体部材7に図の下向きに開放された略円錐型の空間を形成し、この下方開口部側へ仕切り部材8及びダイアフラム9が取付け、内部を仕切り部材8で区画された主液室10と副液室11とし、これら両液室間を仕切り部材8に形成された第1のオリフィス通路15で常時連通して車両の一般走行時における大振幅低周波領域の振動を吸収するダンピングオリフィスとする。
【0007】
円筒型ブッシュ部2は、弾性本体部材7の外周にその外壁を弾性壁の一部とする側部液室20が周方向へ180°間隔で一対形成し、その側方へ向く開口部を液室カバー22で密閉するとともに、液室カバー22は第2の取付部材5との間に周方向へ延びて対向する側部液室20間を常時連通する第2のオリフィス通路24が形成され、第1のオリフィス通路15と同様のダンピングオリフィスとする。
【0008】
対向する側部液室20間には、図11の上方へ向かって開放された凹部であるすぐり部25を設け、薄肉部26、弾性仕切壁27及び側面壁28で囲む。薄肉部26はすぐり部25の底部をなすとともに弾性本体部材7の一部を特別薄肉部化したものであり、中周波領域の振動入力によって膜共振を発生する。弾性仕切壁27は側部液室20との間を仕切り、図10に明らかなようにそれぞれ放射方向へ形成され、薄肉部26と同様の膜共振特性を有する。
【0009】
【発明が解決しようとする課題】
ところで、円筒型ブッシュ部2は構成する弾性部材によってゴムバネとして作用し、この例では前後・左右方向にそれぞれ固有のバネ値を有することになる。
しかし、すぐり部25を設けると、このすぐり部25を設けた方向、すなわちこの例では左右方向におけるバネ値が小さくなってしまうので、乗り心地を向上させるためには左右方向のバネ値を大きくさせることが必要である。このためには弾性仕切壁27を厚くして剛性を高くすることも考えられるが、弾性仕切壁27は前後方向の振動入力に対して弾性変形することにより側部液室20の容積を可変にしなければならないので、無制限に剛性を上げることはできず、左右方向の振動に対してのみ剛性が高くなるような膜構造をなすことが求められる。そこで、本願発明はこのような要請の実現を目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するため本願の液封防振装置に係る第1の発明は、振動発生側又は振動受け側のいずれか側へ取付けられる第1の取付部材と、いずれか他方側へ取付けられて前記第1の取付部材の周囲を略円筒状に囲む第2の取付部材と、これら第1及び第2の取付部材を連結する略円錐状をなす弾性本体部材とを備え、この弾性本体部材を弾性壁の一部とする液室を設けて仕切り部材により内部を主液室と副液室に区画し、これら主液室と副液室間を第1のオリフィス通路で連絡した円錐型マウント部を設けるとともに、
前記弾性本体部材の外周部にこの弾性本体部材を弾性壁の一部として共用する複数の側部液室を周方向へ所定間隔で設け、これら各側部液室間を第2のオリフィス通路で連絡した円筒型ブッシュ部を備え、この円筒型ブッシュ部と前記円錐型マウント部を一体化するとともに、
前記弾性仕切壁を前記第1又は第2の取付部材側へ圧接することにより、前記第1又は第2の取付部材間で圧縮して、前記第1及び第2の取付部材を連結する方向並びにこれと略直交する方向におけるバネ比を調節することを特徴とする。
【0012】
の発明は、上記第1の発明において、前記弾性仕切壁が圧接される座部に弾性仕切壁の圧接端部を嵌合する突部を設け、この突部と弾性仕切壁の間に所定の間隙を設けたことを特徴とする。
【0013】
【発明の効果】
第1の発明によれば、液封防振装置は、円筒型ブッシュ部の弾性仕切壁を第1又は第2の取付部材側へ圧接したので、前記第1又は第2の取付部材間で圧縮して、前記第1及び第2の取付部材を連結する方向(以下、Y軸方向という)におけるバネ値を高める。その結果、バネ値が低くなりがちなY軸方向のバネを強くして、これと直交する方向をX軸方向としたとき、直交する2軸方向のバネ比を容易にコントロールできる。
【0014】
また、上記円筒型ブッシュ部を円錐型マウント部と一体化したので、円錐型マウント部の主たる振動の入力方向を前記XY軸と直交するZ軸とすれば、直交3軸方向におけるバネ比を容易にコントロールできる。
【0015】
の発明によれば、弾性仕切壁の圧接部と座部に設けた突部の間に間隙を設けたので、弾性仕切壁が弾性変形するとき、小振動に対しては弾性変形量を大きくできるようなバネ値に設定し、大振動のとき弾性仕切壁が突部へ当接すると、さらなる弾性変形を規制してバネ値を大きくすることにより、バネ値を非線形的に変化できるようになる。
【0016】
【発明の実施の形態】
以下、図面に基づいて車両のエンジンマウントに構成された一実施例を説明する。図1はこのエンジンマウントをZ軸方向の車体取付時上方となる側から示す平面図、図2は全体の90°違い断面図(図1の2−2線断面図)、図3は図の3−3線断面図、図4は第1の取付部と弾性部材が一体化された内挿体の斜視図、図5はこの内挿体の平面図、図6はその6−6線断面図、図7は図の7−7線断面図、図8は図7のA部拡大図、図9は図8と同様部における変形例を示す図である。なお、前記した先行例である図10及び図11と共通する部分には共通符号を用いる。
【0017】
これらの図において、このエンジンマウントは円錐型マウント部1と円筒型ブッシュ部2を一体的に形成したものであり、円錐型マウント部1は、エンジン側へ取付けられる第1の取付部材3と、その周囲を間隔を持って囲む剛性のある円筒状外枠として構成された第2の取付部材5と、これら第1の取付部材3と第2の取付部材5間を連結する略円錐状の弾性本体部材7を有する。
【0018】
第1の取付部材3は、その軸心方向が円錐型マウント部1における主たる振動の入力方向であるZ軸方向と一致し、弾性本体部材7中に埋設されている部分は円柱状をなし、上部に設けられた段部より下方が細径化されZ軸方向に添って長く延びている。第1の取付部材3の弾性本体部材7から突出する部分は扁平部をなして図示省略のストッパー(図10,11参照)と連結している。
【0019】
弾性本体部材7によって形成される略円錐型の空間は液室をなし、図2の下方へ開放され、この開放部へ仕切り部材8及びダイアフラム9が取付けられ、弾性本体部材7の内壁と仕切り部材8の間に弾性本体部材7を弾性壁の一部とする主液室10とし、仕切り部材8とダイアフラム9の間を副液室11とし、仕切り部材8により液室内を主液室10と副液室11に区画している。
【0020】
弾性本体部材7は、主液室10を覆う弾性璧であって、比較的薄肉に形成されたものであり、その膜特性が中周波領域の振動入力によって膜共振を発生するように設定されている。仕切り部材8は、適宜樹脂からなる円筒部12とこれより小径でかつその内側へ副液室11から嵌合する押さえプレート13とで構成され、円筒部12の外周に第1のオリフィス通路15が形成され、主液室10と副液室11を常時連通してダンピングオリフィスとして機能する。
【0021】
円筒部12の上部形成された上壁30に貫通穴31を設け、この上壁30と押さえプレート13の間に弾性膜32を、周囲が固定されかつ主液室10の液圧に応じて弾性変形可能に設け、これにより主液室10の内圧を吸収するようになっている。
【0022】
円筒型ブッシュ部2は、弾性本体部材7の外周にその外壁を弾性壁の一部とする側部液室20が複数(本実施例では前後一対)形成されている。この側部液室20は側方へ開放された図示断面が略三角形の空間をなすとともに、弾性本体部材7と一体に形成されて略水平方向へ広がる端部壁21及び側方開口部へ嵌合される樹脂製の液室カバー22とで密閉される。
【0023】
図3に示すように、液室カバー22は第2の取付部材5の内周面へ略1/2円周の幅で円弧状に密接される。液室カバー22の第2の取付部材5と接触する面(以下、外表面という)に周方向へ延びる溝23が設けられて第2の取付部材5側へ開放され、第2の取付部材5との間に第2のオリフィス通路24が形成されている。
【0024】
第2のオリフィス通路24は、第2の取付部材5の内面に沿って周方向へ形成され、一対をなす両方の側部液室20、20間を前側の側部液室20に開口する入り口33と、後ろ側の側部液室20へ開口する出口34を通して常時連絡し、第1のオリフィス通路15と同様のダンピングオリフィスとして機能する。
【0025】
対向する一対の側部液室20,20間は弾性仕切壁27で仕切られる。弾性仕切壁27は中心部に対して180°間隔でY軸上を反対側へ延び、先端部は液室カバー22へ一体に形成された座部35へ圧縮されて押し当てられている。液室カバー22は座部35で前後へ分断され、それぞれの接続端部に切り欠き部36が形成されており、この切り欠き部36内へ弾性仕切壁27の先端部が嵌合して固定される。
【0026】
弾性仕切壁27は、図10及び図11の場合と異なり、すぐり部が形成されず上方部は端部壁21へ連続し、下方部は弾性本体部材7へ連続している。この弾性仕切壁27は弾性本体部材7と同様の膜共振特性を有する薄肉の弾性壁として形成されている。
【0027】
弾性本体部材7の先端には断面コ字状をなすリング37が埋設一体化されている。このリング37は下面のみが露出して仕切り部材8を構成する筒状部12の外周に形成されている段部38上へ当接して位置決めし、第2の取付部材5の内面及び液室カバー22の下端部には弾性本体部7の先端が密着してシールする。
また、端部壁21の外周部にもリング39が埋設一体化され、第2の取付部材5の上端を内側へ折り曲げたカシメ部40で固定されている。
【0028】
第2の取付部材5のうち仕切り部材8よりも下方部分は小径部をなし、この小径部41とその上方部分の境界部に形成された段部42へ仕切り部材8の外周縁部に設けられたリング37を乗せている。上下のリング37,39間に液室カバー22を挟んで上部のカシメ部40により固定している。小径部41側はリング37の下に円筒部12及び押さえプレート13を重ね、さらに押さえプレート13の下端部にダイアフラム9の外周に形成された肥大部を重ねて、カシメ部43を形成することにより一体化されている。
【0029】
円筒型ブッシュ部2を構成する弾性本体部材7、端部壁21、弾性仕切壁27は、全て同じ単一の弾性部材で連続一体に構成される。また、これらの弾性材料を円錐型マウント部1と共通にするから、ダイアフラム9を除く円錐型マウント部1の弾性材料部分と円筒型ブッシュ部2の弾性材料部分が一体に形成される単一の内挿体45(図4)となり、このエンジンマウント組立時に単品として扱うことができる。
【0030】
図4〜9は内挿体45を示し、端部壁21は単一の円板状に形成され、図6に示すように、周囲へ液室カバー22を取付けてから図の上方より第2の取付部材5の内部へ入れ、さらに図示を省略してあるが仕切壁8及びダイアフラム9を下方から入れて第2の取付部材5の上下端部をカシメることにより一体化される。
【0031】
このとき、図8に示すように、弾性仕切壁27は実線で示す組立位置よりも外方へ突出する仮想線位置となるように長く形成され、第2の取付部材5へ圧入することにより実線の状態に中心方向へ圧縮される。したがって、図8に示す寸法dが締め代となり、この締め代分だけ弾性仕切壁27がY軸方向へ圧縮されて硬くなり、左右方向(Y軸方向)のバネ値が高くなる。
【0032】
このバネ値は、締め代の設定により任意に調節でき、液封防振装置全体としての前後方向(X軸方向)及び上下方向(Z軸方向)の各バネ比との関係で決定する。本実施例の場合は一例として、各バネ比を、
上下:前後:左右=1.0:1.0〜1.3:1.0〜3.0
となるように設定してある。ただし、このバネ比は搭載する車両により自由に設定できる。ただし左右のバネ比は、1.5〜2.5の範囲に調整することが望ましい。
【0033】
左右方向のバネ値は車両の左右振動により主として弾性仕切壁27が左右方向へ弾性変形するときのものであり、同様に前後方向のバネ値は主として弾性仕切壁27が前後方向へ弾性変形するときのものであり、上下方向のバネ値は弾性本体部7が上下方向へ弾性変形するときのものである。
【0034】
次に、本実施例の作用を説明する。図7及び8に示すように、弾性仕切壁27にすぐり部を設けず中実状とし、かつ端部壁21を全体が単一の円板状をなすように形成するとともに、組立時に弾性仕切壁27を中心方向へ圧縮するので、左右方向のバネ値を高くすることができる。
【0035】
そのうえ、締め代を設けてこれを調節することにより、左右方向のバネ値を任意に設定できる。したがって、上下:前後:左右の各方向におけるバネ比を理想的なものになるよう自由にコントロールできる。しかも、弾性仕切壁27の先端を座部へ圧接することにより、液室カバー22と弾性仕切壁27の接合部におけるシール性を高めることができる。
【0036】
図9は弾性仕切壁27の先端部に対する固定構造の変形例であり、この例では、座部から突出して弾性仕切壁27の先端を嵌合する突出部46を設けるとともに、この突出部46の内面47を、弾性仕切壁27の間に形成される空間が外方へ向かって次第に狭くなるようなテーパー角αをなすようテーパー状としてある。
【0037】
このようにすると、弾性仕切壁27が前後方向へ弾性変形するとき、小振動に対しては弾性変形量を大きくできるようなバネ値に設定し、大振動のとき弾性仕切壁27が内面へ当接すると、さらなる弾性変形を規制してバネ値を大きくすることにより、バネ値を非線形的に変化できるようになっている。なお、内面のテーパー角度や内方への張り出し量を調整することにより大振動時のバネ値を任意に設定できる。
【0038】
なお、本願発明は上記の各実施例に限定されるものではなく、発明の原理内において種々に変形や応用が可能である。例えば、円錐マウント部1を伴わない、円筒ブッシュ部2のみを有する液封防振装置においても有効であり、この場合には、前記各実施例のような使用状態において、前後及び左右方向の2方向のバネ比をコントロールできる。
【0039】
また、円筒型ブッシュ部2の配置を任意にでき、例えば、弾性仕切壁27の図7における断面方向を、車体の前後又は上下へ向けて配置することもでき、この場合には当然ながらバネ比は前記と異なったものになる。
【0040】
さらに、座部は第1の取付部3側に設け、弾性仕切壁27を第1の取付部3側へ圧接させることもできる。また、弾性仕切壁27を弾性本体部7と別体に形成して第1の取付部3及び第2の取付部5へそれぞれ圧接させることもできる。
【図面の簡単な説明】
【図1】実施例に係るエンジンマウントの平面図
【図2】図1の2−2線断面図
【図3】図2の3−3線断面図
【図4】内挿体の斜視図
【図5】内挿体の平面図
【図6】図5の6−6線断面図
【図7】図6の7−7線断面図
【図8】図7の要部拡大図
【図9】別実施例に係る図8と同様部位を示す図
【図10】先行例に係る図1と同様図
【図11】図10の11−11線断面図
【符号の説明】
1:円錐型マウント部、2:円筒型ブッシュ部、3:第1の取付部材、5:第2の取付部材,7:弾性本体部材、8:仕切り部材、10:主液室、11:副液室、15:第1のオリフィス通路、20:側部液室、21:端部壁、22:液室カバー、24:第2のオリフィス通路、35:座部、45:内挿体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid seal vibration isolator used for an engine mount or the like, and relates to a cylindrical bush unit and a combination of a cylindrical bush and a conical mount.
[0002]
[Prior art]
A first attachment member attached to the vibration generating side, a second attachment member attached to the vibration receiving side, and a substantially conical elastic body member connecting the first attachment member and the second attachment member A liquid chamber having the elastic main body member as a part of the elastic wall portion is provided inside the elastic main body member, and the liquid chamber is partitioned into a main liquid chamber and a sub liquid chamber by a partition member, and both liquid chambers are provided. Conical mounts are known which are connected by a first orifice passage.
[0003]
A cylindrical bush is also known in which cylindrical inner and outer cylinders are connected by an elastic member, a plurality of liquid chambers partitioned by an elastic member in the circumferential direction are provided, and the liquid chambers are connected by an orifice passage.
[0004]
Further, the applicant of the present application has applied for a liquid seal vibration isolator in which a cylindrical bush and a conical mount are integrated (Japanese Patent Application No. 2000-284387). 10 and 11 show this, FIG. 10 is a plan view, and FIG. 11 is a sectional view taken along line 11-11. In the following description, the left-right direction in the illustrated state of FIG. 10 (front-rear direction when mounted on the vehicle body), the up-down direction (left-right direction when mounted on the vehicle body), and the up-down direction in FIG. The X-axis direction, Y-axis direction, and Z-axis direction are assumed. The structure of this liquid seal vibration isolator will be outlined below.
[0005]
As shown in FIG. 11, this engine mount is formed by integrally forming a conical mount portion 1 and a cylindrical bush portion 2, and the conical mount portion 1 is a first attachment member 3 attached to the engine side. A second mounting member 5 configured as a rigid cylindrical outer frame surrounding the periphery of the first mounting member 3 and the second mounting member 5 with a space therebetween, and a substantially conical shape that connects between the first mounting member 3 and the second mounting member 5. The elastic main body member 7 is provided. One end of a stopper 4 having a substantially L-shaped cross section is attached to the first attachment member 3. A vehicle body side bracket 6 attached to the vehicle body side is welded to the second attachment member 5.
[0006]
A substantially conical space opened downward in the figure in the elastic main body member 7 is formed, a partition member 8 and a diaphragm 9 are attached to the lower opening side, and a main liquid chamber 10 partitioned inside by the partition member 8 and The auxiliary liquid chamber 11 is used as a damping orifice that constantly communicates between the two liquid chambers via a first orifice passage 15 formed in the partition member 8 and absorbs vibrations in a large-amplitude low-frequency region during general traveling of the vehicle. .
[0007]
The cylindrical bush portion 2 has a pair of side liquid chambers 20 whose outer walls are part of the elastic wall on the outer periphery of the elastic main body member 7 at intervals of 180 ° in the circumferential direction. The chamber cover 22 is hermetically sealed, and the liquid chamber cover 22 is formed with a second orifice passage 24 extending in the circumferential direction between the second mounting member 5 and always communicating between the opposing side liquid chambers 20. The damping orifice is the same as that of the first orifice passage 15.
[0008]
Between the opposing side liquid chambers 20, there is provided a straight part 25 which is a concave part opened upward in FIG. 11 and is surrounded by a thin part 26, an elastic partition wall 27 and a side wall 28. The thin portion 26 forms a bottom portion of the straight portion 25 and a part of the elastic main body member 7 is made into a special thin portion, and generates membrane resonance by vibration input in the middle frequency region. The elastic partition walls 27 partition the side liquid chambers 20 and are formed in the radial directions as shown in FIG. 10 and have the same membrane resonance characteristics as the thin portion 26.
[0009]
[Problems to be solved by the invention]
By the way, the cylindrical bush part 2 acts as a rubber spring by the elastic member which comprises, In this example, it has a spring value intrinsic | native in the front-back direction and the left-right direction, respectively.
However, when the straight portion 25 is provided, the spring value in the direction in which the straight portion 25 is provided, that is, in this example, the spring value in the left-right direction is decreased. Therefore, in order to improve riding comfort, the spring value in the left-right direction is increased. It is necessary. For this purpose, it is conceivable to increase the rigidity by increasing the thickness of the elastic partition wall 27. However, the elastic partition wall 27 is elastically deformed with respect to the vibration input in the front-rear direction, thereby making the volume of the side liquid chamber 20 variable. Therefore, it is not possible to increase the rigidity without limitation, and it is required to form a film structure that increases the rigidity only against vibration in the left-right direction. Therefore, the present invention aims to realize such a demand.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the first invention related to the liquid seal vibration isolator of the present application is the first attachment member attached to either the vibration generating side or the vibration receiving side, and attached to either one side. A second mounting member that surrounds the first mounting member in a substantially cylindrical shape; and a substantially conical elastic body member that couples the first and second mounting members. A conical mount portion in which a liquid chamber is provided as a part of an elastic wall, the interior is divided into a main liquid chamber and a sub liquid chamber by a partition member, and the main liquid chamber and the sub liquid chamber are communicated by a first orifice passage. And providing
A plurality of side liquid chambers that share the elastic main body member as a part of the elastic wall are provided at predetermined intervals in the circumferential direction on the outer peripheral portion of the elastic main body member, and a space between the side liquid chambers is a second orifice passage. Provided with a cylindrical bush portion in communication , and this cylindrical bush portion and the conical mount portion are integrated,
A direction in which the first and second mounting members are coupled by compressing the first or second mounting member by pressing the elastic partition wall toward the first or second mounting member; and The spring ratio in a direction substantially orthogonal to this is adjusted.
[0012]
According to a second aspect of the present invention, in the first aspect of the present invention, a protrusion that fits the pressure contact end portion of the elastic partition wall is provided on the seat portion to which the elastic partition wall is press-contacted, and the protrusion and the elastic partition wall are provided between A predetermined gap is provided.
[0013]
【The invention's effect】
According to the first invention, the liquid seal vibration isolator is compressed between the first or second mounting members because the elastic partition wall of the cylindrical bush portion is pressed against the first or second mounting member. And the spring value in the direction (henceforth a Y-axis direction) which connects the said 1st and 2nd attachment member is raised. As a result, when the spring in the Y-axis direction, which tends to have a low spring value, is strengthened and the direction orthogonal to this is defined as the X-axis direction, the spring ratio in the two orthogonal axes can be easily controlled.
[0014]
In addition, since the cylindrical bush portion is integrated with the conical mount portion, if the main vibration input direction of the conical mount portion is the Z axis orthogonal to the XY axis, the spring ratio in the three orthogonal directions is easy. Can be controlled.
[0015]
According to the second invention, since the gap is provided between the pressing portion of the elastic partition wall and the protrusion provided on the seat portion, when the elastic partition wall is elastically deformed, the amount of elastic deformation is reduced with respect to small vibrations. Set the spring value so that it can be increased, and if the elastic partition wall comes into contact with the protrusion during large vibration, the spring value can be changed nonlinearly by restricting further elastic deformation and increasing the spring value. Become.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment configured as an engine mount of a vehicle will be described with reference to the drawings. Figure 1 is a plan view showing the engine mount from the vehicle body mounting during the above side of the Z-axis direction, FIG. 2 is the total 90 ° difference sectional view (sectional view taken along line 2-2 in FIG. 1), 3 2 FIG. 4 is a perspective view of an insertion body in which the first mounting portion and the elastic member are integrated, FIG. 5 is a plan view of the insertion body, and FIG. 7 is a cross-sectional view taken along line 7-7 in FIG. 6 , FIG. 8 is an enlarged view of a portion A in FIG. 7, and FIG. 9 is a view showing a modification of the same portion as FIG. In addition, a common code | symbol is used for the part which is common in FIG.10 and FIG.11.
[0017]
In these drawings, the engine mount is formed by integrally forming a conical mount portion 1 and a cylindrical bush portion 2, and the conical mount portion 1 includes a first mounting member 3 attached to the engine side, A second mounting member 5 configured as a rigid cylindrical outer frame that surrounds the periphery with a space therebetween, and a substantially conical elasticity that connects between the first mounting member 3 and the second mounting member 5. A main body member 7 is provided.
[0018]
The first mounting member 3 has an axial direction that coincides with the Z-axis direction, which is the main vibration input direction in the conical mount portion 1, and a portion embedded in the elastic body member 7 has a cylindrical shape, The lower part is made thinner than the step part provided in the upper part, and it extends long along the Z-axis direction. A portion of the first mounting member 3 protruding from the elastic main body member 7 forms a flat portion and is connected to a stopper (not shown) (see FIGS. 10 and 11).
[0019]
The substantially conical space formed by the elastic main body member 7 forms a liquid chamber and is opened downward in FIG. 2, and the partition member 8 and the diaphragm 9 are attached to the open portion, and the inner wall and the partition member of the elastic main body member 7 are attached. 8, the elastic main body member 7 is a main liquid chamber 10 having a part of the elastic wall, the partition member 8 and the diaphragm 9 are sub liquid chambers 11, and the partition member 8 divides the liquid chamber into the main liquid chamber 10 and the sub liquid chamber 11. The liquid chamber 11 is partitioned.
[0020]
The elastic main body member 7 is an elastic wall that covers the main liquid chamber 10 and is formed to be relatively thin, and its film characteristics are set so as to generate a film resonance by vibration input in the middle frequency range. Yes. The partition member 8 includes a cylindrical portion 12 made of resin as appropriate, and a pressing plate 13 having a smaller diameter and fitting from the auxiliary liquid chamber 11 to the inside thereof. A first orifice passage 15 is formed on the outer periphery of the cylindrical portion 12. The main liquid chamber 10 and the sub liquid chamber 11 are always in communication and function as a damping orifice.
[0021]
The through hole 31 in the wall 30 on which is formed on the upper portion of the cylindrical portion 12 is provided, the elastic membrane 32 between the upper wall 30 and the pressing plate 13, in response to the hydraulic pressure of the surrounding fixed and the main liquid chamber 10 It is provided so as to be elastically deformable, thereby absorbing the internal pressure of the main liquid chamber 10.
[0022]
The cylindrical bush 2 has a plurality of side liquid chambers 20 (a pair of front and rear in this embodiment) whose outer wall is a part of the elastic wall on the outer periphery of the elastic main body member 7. The side liquid chamber 20 is open to the side and forms a substantially triangular space. The side liquid chamber 20 is integrally formed with the elastic body member 7 and is fitted into the end wall 21 and the side opening that extend in the substantially horizontal direction. The resin liquid chamber cover 22 to be joined is sealed.
[0023]
As shown in FIG. 3, the liquid chamber cover 22 is brought into close contact with the inner peripheral surface of the second mounting member 5 in an arc shape with a width of about ½ circumference. A groove 23 extending in the circumferential direction is provided on a surface (hereinafter referred to as an outer surface) of the liquid chamber cover 22 that is in contact with the second mounting member 5 and is opened to the second mounting member 5 side. A second orifice passage 24 is formed between the two.
[0024]
The second orifice passage 24 is formed in the circumferential direction along the inner surface of the second mounting member 5, and is an entrance that opens between the pair of side liquid chambers 20, 20 into the front side liquid chamber 20. 33 and the outlet 34 which opens to the side liquid chamber 20 on the rear side, is always in communication, and functions as a damping orifice similar to the first orifice passage 15.
[0025]
A pair of side liquid chambers 20, 20 facing each other is partitioned by an elastic partition wall 27. The elastic partition wall 27 extends to the opposite side on the Y axis at an interval of 180 ° with respect to the center portion, and the tip end portion is compressed and pressed to a seat portion 35 formed integrally with the liquid chamber cover 22. The liquid chamber cover 22 is divided into front and rear portions by a seat portion 35, and a notch portion 36 is formed at each connection end portion, and the tip end portion of the elastic partition wall 27 is fitted and fixed in the notch portion 36. Is done.
[0026]
Unlike the case of FIGS. 10 and 11, the elastic partition wall 27 is not formed with a straight portion, the upper portion is continuous with the end wall 21, and the lower portion is continuous with the elastic main body member 7. The elastic partition wall 27 is formed as a thin elastic wall having the same membrane resonance characteristics as the elastic main body member 7.
[0027]
A ring 37 having a U-shaped cross section is embedded and integrated at the tip of the elastic main body member 7. The ring 37 is positioned by abutting on the step portion 38 formed on the outer periphery of the cylindrical portion 12 constituting the partition member 8 with only the lower surface exposed, and the inner surface of the second mounting member 5 and the liquid chamber cover. The tip of the elastic main body 7 is in close contact with the lower end of the 22 and is sealed.
Further, a ring 39 is embedded and integrated in the outer peripheral portion of the end wall 21 and is fixed by a caulking portion 40 in which the upper end of the second mounting member 5 is bent inward.
[0028]
A portion of the second mounting member 5 below the partition member 8 forms a small diameter portion, and is provided on the outer peripheral edge portion of the partition member 8 to a step portion 42 formed at a boundary portion between the small diameter portion 41 and the upper portion thereof. A ring 37 is placed. The liquid chamber cover 22 is sandwiched between the upper and lower rings 37 and 39 and fixed by an upper caulking portion 40 . On the small diameter portion 41 side, the cylindrical portion 12 and the pressing plate 13 are stacked under the ring 37, and the enlarged portion formed on the outer periphery of the diaphragm 9 is stacked on the lower end portion of the pressing plate 13 to form the crimping portion 43. It is integrated.
[0029]
The elastic main body member 7, the end wall 21, and the elastic partition wall 27 constituting the cylindrical bush portion 2 are all continuously and integrally formed of the same single elastic member. Further, since these elastic materials are shared with the conical mount portion 1, the elastic material portion of the conical mount portion 1 excluding the diaphragm 9 and the elastic material portion of the cylindrical bush portion 2 are integrally formed. It becomes the insertion body 45 (FIG. 4), and can be handled as a single item when the engine mount is assembled.
[0030]
4 to 9 show the insert 45, and the end wall 21 is formed in a single disk shape, and as shown in FIG. Although not shown, the partition wall 8 and the diaphragm 9 are inserted from below and the upper and lower ends of the second mounting member 5 are crimped to be integrated.
[0031]
At this time, as shown in FIG. 8, the elastic partition wall 27 is formed long so as to be an imaginary line position protruding outward from the assembly position indicated by the solid line, and is pressed into the second mounting member 5 to be a solid line. Compressed toward the center in this state. Therefore, the dimension d shown in FIG. 8 is a tightening allowance, and the elastic partition wall 27 is compressed in the Y-axis direction and hardened by this tightening allowance, and the spring value in the left-right direction (Y-axis direction) is increased.
[0032]
This spring value can be arbitrarily adjusted by setting the tightening allowance, and is determined in relation to the respective spring ratios in the front-rear direction (X-axis direction) and the vertical direction (Z-axis direction) of the liquid seal vibration isolator as a whole. In the case of this embodiment, as an example, each spring ratio is
Up and down: Front and back: Left and right = 1.0: 1.0 to 1.3: 1.0 to 3.0
It is set to become. However, this spring ratio can be freely set depending on the vehicle to be mounted. However, it is desirable to adjust the left and right spring ratios in the range of 1.5 to 2.5.
[0033]
The spring value in the left-right direction is mainly when the elastic partition wall 27 is elastically deformed in the left-right direction due to left-right vibration of the vehicle. Similarly, the spring value in the front-rear direction is mainly when the elastic partition wall 27 is elastically deformed in the front-rear direction. The spring value in the vertical direction is that when the elastic body 7 is elastically deformed in the vertical direction.
[0034]
Next, the operation of this embodiment will be described. As shown in FIGS. 7 and 8, the elastic partition wall 27 is not provided with a straight portion but is made solid, and the end wall 21 is formed so as to form a single disk as a whole, and the elastic partition wall is assembled at the time of assembly. Since 27 is compressed in the center direction, the spring value in the left-right direction can be increased.
[0035]
In addition, the spring value in the left-right direction can be arbitrarily set by adjusting the tightening allowance. Therefore, it is possible to freely control the spring ratio in each direction of up / down: front / rear: left / right. Moreover, the sealing performance at the joint between the liquid chamber cover 22 and the elastic partition wall 27 can be enhanced by pressing the tip of the elastic partition wall 27 to the seat.
[0036]
FIG. 9 shows a modification of the fixing structure for the tip of the elastic partition wall 27. In this example, a protrusion 46 is provided that protrudes from the seat and engages the tip of the elastic partition wall 27. The inner surface 47 is tapered so that the space formed between the elastic partition walls 27 forms a taper angle α such that the space gradually decreases outward.
[0037]
In this way, when the elastic partition wall 27 is elastically deformed in the front-rear direction, the spring value is set so that the amount of elastic deformation can be increased for small vibrations. When in contact, the spring value can be changed nonlinearly by restricting further elastic deformation and increasing the spring value. In addition, the spring value at the time of a large vibration can be arbitrarily set by adjusting the taper angle of the inner surface and the amount of inward protrusion.
[0038]
The present invention is not limited to the above-described embodiments, and various modifications and applications can be made within the principle of the invention. For example, it is also effective in a liquid seal vibration isolator having only the cylindrical bush portion 2 without the conical mount portion 1. In this case, in the state of use as in the above embodiments, the front and rear and left and right directions 2 The spring ratio of the direction can be controlled.
[0039]
Further, the cylindrical bush portion 2 can be arranged arbitrarily. For example, the cross-sectional direction of the elastic partition wall 27 in FIG. 7 can be arranged in the front-rear direction or the vertical direction of the vehicle body. Is different from the above.
[0040]
Furthermore, the seat portion can be provided on the first attachment portion 3 side, and the elastic partition wall 27 can be pressed against the first attachment portion 3 side. Further, the elastic partition wall 27 can be formed separately from the elastic main body portion 7 and can be brought into pressure contact with the first attachment portion 3 and the second attachment portion 5 respectively.
[Brief description of the drawings]
1 is a plan view of an engine mount according to an embodiment. FIG. 2 is a cross-sectional view taken along line 2-2 in FIG. 1. FIG. 3 is a cross-sectional view taken along line 3-3 in FIG. 5 is a plan view of the insert body. FIG. 6 is a cross-sectional view taken along line 6-6 in FIG. 5. FIG. 7 is a cross-sectional view taken along line 7-7 in FIG. FIG. 10 is a diagram showing the same part as FIG. 8 according to another embodiment. FIG. 10 is a diagram similar to FIG. 1 according to the preceding example. FIG. 11 is a sectional view taken along line 11-11 in FIG.
1: Conical mount portion, 2: Cylindrical bush portion, 3: First mounting member, 5: Second mounting member, 7: Elastic body member, 8: Partition member, 10: Main liquid chamber, 11: Sub Liquid chamber, 15: first orifice passage, 20: side liquid chamber, 21: end wall, 22: liquid chamber cover, 24: second orifice passage, 35: seat, 45: insert

Claims (4)

振動発生側又は振動受け側のいずれか側へ取付けられる第1の取付部材と、いずれか他方側へ取付けられて前記第1の取付部材の周囲を略円筒状に囲む第2の取付部材と、これら第1及び第2の取付部材を連結する略円錐状をなす弾性本体部材とを備え、この弾性本体部材を弾性壁の一部とする液室を設けて仕切り部材により内部を主液室と副液室に区画し、これら主液室と副液室間を第1のオリフィス通路で連絡した円錐型マウント部を設けるとともに、前記弾性本体部材の外周部にこの弾性本体部材を弾性壁の一部として共用する複数の側部液室を周方向へ所定間隔で設け、これら各側部液室間を第2のオリフィス通路で連絡することにより円筒型ブッシュ部を設け、この円筒型ブッシュ部と前記円錐型マウント部を一体化するとともに、前記複数の側部液室間を区画してこれら第1及び第2の取付部材を連結する弾性仕切壁を設け、この弾性仕切壁を前記第1又は第2の取付部材側へ圧接することにより、前記第1又は第2の取付部材間で圧縮して、前記第1及び第2の取付部材を連結する方向並びにこれと略直交する方向におけるバネ比を調節し、前記弾性仕切壁は前記弾性本体部材の外周部に連続していることを特徴とする液封防振装置。A first attachment member attached to either the vibration generating side or the vibration receiving side; a second attachment member attached to either one of the sides and surrounding the first attachment member in a substantially cylindrical shape ; A substantially conical elastic main body member for connecting the first and second mounting members, a liquid chamber having the elastic main body member as a part of an elastic wall, and a partition member configured to form a main liquid chamber. A conical mount portion is provided which is divided into sub liquid chambers and communicates between the main liquid chamber and the sub liquid chambers through a first orifice passage, and the elastic main body member is attached to the outer peripheral portion of the elastic main body member. A plurality of side liquid chambers shared as a part are provided at predetermined intervals in the circumferential direction, and a cylindrical bush part is provided by connecting each of these side liquid chambers by a second orifice passage. While integrating the conical mount part By providing an elastic partition wall that divides the plurality of side liquid chambers and connects the first and second mounting members, and presses the elastic partition wall toward the first or second mounting member side. , Compressing between the first or second mounting members to adjust the spring ratio in the direction connecting the first and second mounting members and the direction substantially orthogonal thereto , and the elastic partition wall is the elastic A liquid seal vibration isolator which is continuous with an outer peripheral portion of a main body member . 前記請求項1に記載の液封防振装置において、前記弾性仕切壁が圧接される座部に弾性仕切壁の圧接端部を嵌合する突部を設け、この突部と弾性仕切壁の間に所定の間隙を設けたことを特徴とする液封防振装置。2. The liquid seal vibration isolator according to claim 1 , wherein a protrusion for fitting the pressure contact end portion of the elastic partition wall is provided on a seat portion to which the elastic partition wall is pressed, and the protrusion and the elastic partition wall are provided between the protrusion and the elastic partition wall. A liquid seal vibration isolator characterized in that a predetermined gap is provided on the surface. 前記円錐型マウント部の主たる振動の入力方向をZ軸方向、これと直交しかつ互いに直交する2軸方向をXY軸方向、前記円筒型ブッシュ部のZ軸方向方向と直交する断面にて、前記第1及び第2の取付部材を連結する方向をY軸方向としたとき、
前記側部液室は前記弾性本体部材とこれに対面する端部壁で囲まれ、前記弾性仕切壁は前記弾性本体部材の外周部と前記端部壁に連続してZ軸方向へ延びていることを特徴とする請求項1に記載した液封防振装置。
The input direction of the main vibration of the conical mount part is the Z-axis direction, the two axis directions orthogonal to each other and the two axis directions orthogonal to each other are the XY axis direction, and the cross section orthogonal to the Z-axis direction direction of the cylindrical bush part When the direction connecting the first and second mounting members is the Y-axis direction,
The side liquid chamber is surrounded by the elastic main body member and an end wall facing the elastic main body member, and the elastic partition wall extends in the Z-axis direction continuously to the outer peripheral portion of the elastic main body member and the end wall. The liquid seal vibration isolator according to claim 1 .
前記側部液室は開放部を液室カバーで閉じられるとともに、この液室カバーは半円弧円状をなして一対で設けられ、両液室カバーの合わせ部にて前記弾性仕切壁を嵌合して圧縮することを特徴とする請求項1に記載した液封防振装置。The side liquid chamber is closed at the opening by a liquid chamber cover, and the liquid chamber cover is provided in a pair of semicircular circles, and the elastic partition wall is fitted at the mating portion of both liquid chamber covers 2. The liquid seal vibration isolator according to claim 1, wherein the liquid seal vibration isolator is compressed.
JP2001111869A 2001-04-10 2001-04-10 Liquid seal vibration isolator Expired - Fee Related JP4545343B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001111869A JP4545343B2 (en) 2001-04-10 2001-04-10 Liquid seal vibration isolator
EP01119863A EP1249634B1 (en) 2001-04-10 2001-08-16 Fluid-sealed anti-vibration device
ES01119863T ES2295092T3 (en) 2001-04-10 2001-08-16 WATERPROOF ANTIVIBRATION DEVICE.
DE60132168T DE60132168T2 (en) 2001-04-10 2001-08-16 Fluid-containing and vibration-damping device
EP07022052A EP1887250B1 (en) 2001-04-10 2001-08-16 Fluid-sealed anti-vibration device
EP07022051A EP1890052A1 (en) 2001-04-10 2001-08-16 Fluid-sealed anti-vibration device
US09/930,296 US6820867B2 (en) 2001-04-10 2001-08-16 Fluid-sealed anti-vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111869A JP4545343B2 (en) 2001-04-10 2001-04-10 Liquid seal vibration isolator

Publications (2)

Publication Number Publication Date
JP2002310221A JP2002310221A (en) 2002-10-23
JP4545343B2 true JP4545343B2 (en) 2010-09-15

Family

ID=18963385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111869A Expired - Fee Related JP4545343B2 (en) 2001-04-10 2001-04-10 Liquid seal vibration isolator

Country Status (1)

Country Link
JP (1) JP4545343B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4217686B2 (en) * 2004-09-29 2009-02-04 株式会社ブリヂストン Vibration isolator
CN100449167C (en) * 2004-09-29 2009-01-07 株式会社普利司通 Vibration damper
JP4676293B2 (en) * 2005-09-26 2011-04-27 山下ゴム株式会社 Vibration isolator
JP5280923B2 (en) * 2009-04-07 2013-09-04 株式会社ブリヂストン Vibration isolator
US9951841B2 (en) * 2013-11-25 2018-04-24 Lord Corporation Damping fluid devices, systems and methods

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712139A (en) * 1980-06-23 1982-01-22 Bridgestone Corp Vibration-proof rubber
JPS63185938U (en) * 1987-05-25 1988-11-29
JPH01106651U (en) * 1988-01-11 1989-07-18
US5172893A (en) * 1990-03-16 1992-12-22 Hutchison Hydraulic antivibratory sleeves
EP0556076A1 (en) * 1992-02-10 1993-08-18 Automobiles Peugeot Hydroelastic support
JPH09158974A (en) * 1995-12-05 1997-06-17 Honda Motor Co Ltd Liquid-sealed vibro-isolating mount device
JPH09158976A (en) * 1995-12-05 1997-06-17 Honda Motor Co Ltd Liquid-sealed vibro-isolating mount device
JPH1038016A (en) * 1996-07-24 1998-02-13 Toyoda Gosei Co Ltd Liquid seal type vibration-control device
JP2000320603A (en) * 1999-05-14 2000-11-24 Yamashita Rubber Co Ltd Liquid-sealed vibration control device
JP2000320604A (en) * 1999-05-14 2000-11-24 Yamashita Rubber Co Ltd Liquid-sealed vibration control device
JP2001020993A (en) * 1999-07-02 2001-01-23 Yamashita Rubber Co Ltd Liquid-sealed vibration isolator
JP2002089613A (en) * 2000-09-19 2002-03-27 Yamashita Rubber Co Ltd Liquid-filled vibration control equipment

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712139A (en) * 1980-06-23 1982-01-22 Bridgestone Corp Vibration-proof rubber
JPS63185938U (en) * 1987-05-25 1988-11-29
JPH01106651U (en) * 1988-01-11 1989-07-18
US5172893A (en) * 1990-03-16 1992-12-22 Hutchison Hydraulic antivibratory sleeves
EP0556076A1 (en) * 1992-02-10 1993-08-18 Automobiles Peugeot Hydroelastic support
JPH09158974A (en) * 1995-12-05 1997-06-17 Honda Motor Co Ltd Liquid-sealed vibro-isolating mount device
JPH09158976A (en) * 1995-12-05 1997-06-17 Honda Motor Co Ltd Liquid-sealed vibro-isolating mount device
JPH1038016A (en) * 1996-07-24 1998-02-13 Toyoda Gosei Co Ltd Liquid seal type vibration-control device
JP2000320603A (en) * 1999-05-14 2000-11-24 Yamashita Rubber Co Ltd Liquid-sealed vibration control device
JP2000320604A (en) * 1999-05-14 2000-11-24 Yamashita Rubber Co Ltd Liquid-sealed vibration control device
JP2001020993A (en) * 1999-07-02 2001-01-23 Yamashita Rubber Co Ltd Liquid-sealed vibration isolator
JP2002089613A (en) * 2000-09-19 2002-03-27 Yamashita Rubber Co Ltd Liquid-filled vibration control equipment

Also Published As

Publication number Publication date
JP2002310221A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP2799953B2 (en) Liquid ring vibration isolator
US6820867B2 (en) Fluid-sealed anti-vibration device
JP4447183B2 (en) Liquid seal vibration isolator
JP4545343B2 (en) Liquid seal vibration isolator
JP4544783B2 (en) Liquid seal vibration isolator
EP0503654A2 (en) Vibration isolation apparatus
JP3563309B2 (en) Liquid filled type vibration damping device
JP4400809B2 (en) Liquid seal vibration isolator
JP3039102B2 (en) Fluid-filled mounting device
JP3858141B2 (en) Liquid-filled vibration isolator
JP4358423B2 (en) Liquid seal vibration isolator
JP3578605B2 (en) Liquid ring vibration isolator
JP4018256B2 (en) Cylindrical liquid seal vibration isolator
JP4287927B2 (en) Liquid seal bush
JP3570638B2 (en) Liquid ring vibration isolator
JP4039827B2 (en) Liquid seal mount
JP2603798B2 (en) Fluid-filled engine mount
JP4179704B2 (en) Liquid seal vibration isolator
JP3813619B2 (en) Liquid seal vibration isolator
JPH0814311A (en) Liquid enclosed vibration isolator rubber device
JP4358417B2 (en) Liquid seal vibration isolator
JP5907777B2 (en) Fluid filled cylindrical vibration isolator
JPH10252812A (en) Liquid sealing type vibration control mount
JP2530624Y2 (en) Fluid-filled cylindrical engine mount
JP3934294B2 (en) Liquid filled vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees