JP4287539B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP4287539B2
JP4287539B2 JP14897299A JP14897299A JP4287539B2 JP 4287539 B2 JP4287539 B2 JP 4287539B2 JP 14897299 A JP14897299 A JP 14897299A JP 14897299 A JP14897299 A JP 14897299A JP 4287539 B2 JP4287539 B2 JP 4287539B2
Authority
JP
Japan
Prior art keywords
inner cylinder
outer cylinder
ultrasonic
ultrasonic flowmeter
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14897299A
Other languages
Japanese (ja)
Other versions
JP2000337937A (en
Inventor
幸雄 木村
徹 廣山
豊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Toho Gas Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd, Toho Gas Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP14897299A priority Critical patent/JP4287539B2/en
Publication of JP2000337937A publication Critical patent/JP2000337937A/en
Application granted granted Critical
Publication of JP4287539B2 publication Critical patent/JP4287539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は超音波流量計の改良に関する。
【0002】
【従来の技術】
測定原理の一例として、図2に示すように、流体中に距離Lを離して流管3の上流と下流に配置した1組の超音波送受波器の一方の送受波器1から他方の送受波器2への順方向伝播時間t1 は、静止流体中の超音波の音速をC、流体の流れの速さをVとすると、
1 =L/(C+V) ・・・(1)
となる。
【0003】
また、送受波器2から送受波器1への逆方向伝播時間t2 は、
2 =L/(C−V) ・・・(2)
となる。
【0004】
伝播時間t1 とt2 とから流速Vを、
V=(L/2){(1/t1 )−(1/t2 )}
として求めていた。
【0005】
上述の測定原理において、送信側の送受波器からの超音波が受信側の送受波器に到達する時期、つまり到達ポイントを特定する受信検知の方法として、特定波のゼロクロス点を検知するようにしたものがある。
【0006】
図3は発信のタイミングを示す発信駆動信号と受信波を示している。実際の受信波は非常に小さく、先ず増幅される。同図の受信波は増幅後の波形を示している。
【0007】
aが到達点で、徐々に振幅が大きくなる。その後最大振幅となり徐々に小さくなる。
ところが到達点aはノイズに隠れて検知できない。そこで、次のような方法が行われている。
【0008】
ノイズより十分大きな基準電圧レベルとしてのしきい値VTHを決め、このレベルに最初に達した波、例えば同図の第3波がb点でしきい値に達した後ゼロレベルを通るゼロクロスポイントcを検知して受信検知とする方法である。
【0009】
しきい値VTHは常に何番目かのある特定の波(例えば第3波)のゼロクロスポイントを検知するように定めてあり、実際の伝播時間tは、a点からc点までの時間τを予め求めて記憶しておき、測定した到達時間t+τから時間τを減算することにより求めている。
【0010】
【発明が解決しようとする課題】
前記従来の技術では、流管3の温度と流体の温度が異なる場合、流体の温度、特に流管3の内壁に近い部分の流体の温度が流管3の温度に近づくことになる。そして、この傾向は0流量時や小流量時に特に顕著になり、流体の温度は流管の半径方向に温度勾配をもつことになる。
【0011】
そのため、超音波の伝播状態が変化して、干渉のために受信波が小さくなったりしてゼロクロスポイントの検知が困難になることがある。このことは、流路が隙間状で、流路を挟む対向壁面の温度差が大きい場合に特に問題となる。
【0012】
例えば、断面が円環状の狭い流路を流体が流れる場合は、超音波の伝播が模擬的に平面波と考えられ、対向する壁面AとBが図4(a)のように同一温度であれば、超音波送受波器1から発信された超音波は両壁面AとBに挟まれた狭い流路4内の流体中を右方に伝播して素直に他方の他方の超音波送受波器2に到達し受信される。
【0013】
ところが、一方の壁面Aの温度が高く他方の壁面Bの温度が低くて、両壁面AとBの温度差が大きいと、流路4内の流体、例えば気体の温度が図示上下方向に温度勾配を生じ、超音波の波面が図4(b)のようになり、超音波送受波器2に受信される超音波に干渉が生じる。
【0014】
図5で、(a)は温度差がない場合の正常な受信波形で、こういう場合は目標のゼロクロスポイントを確実に高精度で検知できる。同図(b)(c)(d)は温度差がある場合で、(b)はやや干渉を受けており、ゼロクロス点が正常時からずれていて伝播時間の計測値に誤差を生じる。同図(c)はかなり干渉を受けていて、受信波の検知が困難となる。そして、同図(d)では半周期ずれた干渉波が重なり、受信波の振幅が極めて小さくなり、殆ど消えてしまっている。
【0015】
そこで、本発明では、超音波の伝播経路における前記温度勾配を少なくし、受信波の干渉を低減して計測の安定性を向上できる超音波流量計を提供することを目的とする。
【0016】
【課題を解決するための手段】
前記目的を達成するために、請求項1の発明は、ほぼ円筒形の部分の両端にフランジ部分を一体的に形成した金属製の外筒(5)と、
断熱材からなる2個のベース(7)(8)を介して外筒(5)の内側に取り付けられ、被計測流体を案内する断熱材からなる円筒状の内筒(6)と、
金属製の前記外筒(5)の円筒部分と断熱材からなる前記内筒(6)の間に形成された断面が円環状の空気層(9)と、
前記外筒(5)と同心に設けられ、中央に大径部を備えたボス状部材(10)と、
断熱材からなる前記内筒(6)の内壁(A 1 )とボス状部材(10)の前記大径部の外壁(B 1 )の間に形成された断面が円環状の流路(40)と、
断面が円環状の前記流路(40)の上流と下流に離れて配置され、流路(40)に流速計測用の超音波を送・受信する一対の超音波送受波器を具備し、
前記2個のベース(7)(8)は、内筒(6)の一端を外筒(5)に取り付ける第1のベース(7)と、内筒(6)の他端を外筒(5)に取り付ける第2のベース(8)とからなり、各ベース(7)(8)は、内筒(6)の前記各端から離れるにつれて内径が拡大する、つまり、流量計の出入口方向に向って拡径するテーパ状に形成されており、
流路(40)を流れる被計測流体が気体であることを特徴とする超音波流量計である。
【0017】
請求項2記載の発明は、請求項1記載の超音波流量計において、内筒(6)がプラスチック材料で形成されていることを特徴とするものである。
請求項3記載の発明は、請求項1又は2記載の超音波流量計において、ベース(7)(8)がプラスチック材料で形成されていることを特徴とするものである
【0018】
請求項4記載の発明は、請求項3記載の超音波流量計において、内筒(6)とベース(7)(8)が同じプラスチック材料で一体成型で形成されていることを特徴とするものである。
請求項5記載の発明は、請求項1乃至4のいずれか1項に記載の超音波流量計において、被計測流体がガスであることを特徴とするものである。
【0019】
請求項6記載の発明は、請求項1乃至5のいずれか1項に記載の超音波流量計において、ボス状部材(10)は両端部が小径となっていて、その先端が外筒(5)の前記フランジに固定されたアームにねじ止めされていることを特徴とするものである。
【0020】
【発明の実施の形態】
次に本発明の好ましい実施の形態を図1の実施例に従って説明する。
強度の大きい金属製の外筒5は、ほぼ円筒形の部分の図示左右両端にフランジ部分が一体的に形成されている。プラスチック製の円筒状の内筒6は、プラスチック製のベース7と8を介して外筒5の内側に取り付けられ、外筒5の円筒部分と内筒6の間には空気層9が形成され、外筒5と内筒6間の熱伝導を防止している。また、ベース7と8は断熱材であるプラスチック材料で形成することで、ベース7,8を介しての外筒5から内筒6への熱伝導を妨げているが、ベース7,8を内筒6と同じプラスチック材料で一体成型で形成して制作費用を低減してもよい。
【0021】
中央に直径φ1の大径部を備えたボス状部材10が外筒5に同心に設けられている。このボス状部材10は図示左右両端部が小径となっていて、その先端が前記フランジに固定されたアームにねじ止めされている。
【0022】
内筒6の内壁A1 とボス状部材10の外壁B1 の間には断面円環状の流路40が形成され、この流路40に流速計測用の超音波を発・受信する超音波送受波器1,2が距離Lを離して配設されている。
【0023】
超音波送受波器1,2は電子回路基板11に接続され、基板に搭載された電子回路のマイクロコンピュータが流量を液晶表示器12に表示する。13は給電用の電池である。
【0024】
前記、断面円環状の流路40は、外径がφ1のボス状部材10と内径がφ2の内筒6との間に挟まれる狭い流路で、該流路40を超音波が図示左右方向に伝播する。
【0025】
外筒5の温度が流れる流体、例えばガスの温度と違っていても、空気層9やプラスチック製の内筒6及びベース7,8の断熱作用で流路40の流体に半径方向の温度勾配を生じることは殆どない。従って、受信波の狙うゼロクロスポイントを確実に検知できるため、流量計の計測精度が向上する。
【0026】
【発明の効果】
本発明の超音波流量計は上述のように構成されているので、外筒の温度が流体の温度に影響することが低減される。そのため、流体の温度勾配が少なくでき、超音波の受信波の干渉を防止できるため、受信波のゼロクロスポイントを確実に精度良く検知できる。その結果、流量計測精度が向上し器差特性が安定化する。
【0027】
また、ケースとして働く外筒内壁を直接流路壁面としないため、精密加工が不要となりコストダウンに寄与する。
【図面の簡単な説明】
【図1】本発明の実施例の縦断面図である。
【図2】超音波流量計の原理を説明する略図である。
【図3】超音波流量計の受信波検知部の動作を説明する電気信号波形を示す図である。
【図4】対向する壁面の間の狭い流路を伝播する超音波の波面を示す模式図である。
【図5】受信した電気信号波形の各種の態様を示す図である。
【符号の説明】
1,2 超音波送受波器
5 外筒
6 内筒
7,8 ベース
9 空気層
10 ボス状部材
40 流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in an ultrasonic flow meter.
[0002]
[Prior art]
As an example of the measurement principle, as shown in FIG. 2, a transmitter / receiver 1 from one transmitter / receiver 1 of a set of ultrasonic transmitters / receivers arranged at upstream and downstream of the flow tube 3 at a distance L in the fluid. The forward propagation time t 1 to the waver 2 is as follows: C is the sound velocity of the ultrasonic wave in the static fluid, and V is the flow velocity of the fluid.
t 1 = L / (C + V) (1)
It becomes.
[0003]
The backward propagation time t 2 from the transducer 2 to the transducer 1 is
t 2 = L / (C−V) (2)
It becomes.
[0004]
From the propagation times t 1 and t 2 , the flow velocity V is
V = (L / 2) {(1 / t 1 ) − (1 / t 2 )}
Was asking.
[0005]
In the measurement principle described above, the zero cross point of a specific wave is detected as a reception detection method for specifying the time when the ultrasonic wave from the transmitter / receiver receives the transmitter / receiver on the receiving side, that is, the arrival point. There is what I did.
[0006]
FIG. 3 shows a transmission drive signal and a reception wave indicating the timing of transmission. The actual received wave is very small and is first amplified. The received wave in the figure shows the waveform after amplification.
[0007]
a is the arrival point, and the amplitude gradually increases. After that, it becomes maximum amplitude and gradually decreases.
However, the arrival point a is hidden behind noise and cannot be detected. Therefore, the following method is performed.
[0008]
A threshold V TH as a reference voltage level that is sufficiently larger than noise is determined, and a zero cross point that passes through the zero level after the wave that first reaches this level, for example, the third wave in FIG. This is a method of detecting c and setting it as reception detection.
[0009]
The threshold value V TH is determined so as to always detect the zero cross point of some specific wave (for example, the third wave), and the actual propagation time t is the time τ from point a to point c. Obtained in advance and stored, and obtained by subtracting the time τ from the measured arrival time t + τ.
[0010]
[Problems to be solved by the invention]
In the conventional technique, when the temperature of the flow tube 3 and the temperature of the fluid are different, the temperature of the fluid, particularly the temperature of the fluid near the inner wall of the flow tube 3 approaches the temperature of the flow tube 3. This tendency becomes particularly remarkable at the time of zero flow rate or small flow rate, and the temperature of the fluid has a temperature gradient in the radial direction of the flow tube.
[0011]
For this reason, the propagation state of the ultrasonic wave changes, and the received wave may become small due to interference, making it difficult to detect the zero cross point. This is particularly problematic when the flow path is gap-like and the temperature difference between the opposing wall surfaces sandwiching the flow path is large.
[0012]
For example, when a fluid flows through a narrow channel having an annular cross section, the propagation of ultrasonic waves is considered to be a plane wave, and if the opposing wall surfaces A and B are at the same temperature as shown in FIG. The ultrasonic wave transmitted from the ultrasonic transducer 1 propagates rightward in the fluid in the narrow flow path 4 sandwiched between both wall surfaces A and B, and obediently the other ultrasonic transducer 2. Will be received.
[0013]
However, when the temperature of one wall surface A is high and the temperature of the other wall surface B is low and the temperature difference between both wall surfaces A and B is large, the temperature of the fluid, for example, the gas in the flow path 4 is a temperature gradient in the vertical direction in the figure. 4B, the wavefront of the ultrasonic wave becomes as shown in FIG. 4B, and interference occurs in the ultrasonic wave received by the ultrasonic transducer 2.
[0014]
In FIG. 5, (a) is a normal received waveform when there is no temperature difference. In such a case, the target zero-cross point can be detected with high accuracy. (B), (c), and (d) in the figure are cases where there is a temperature difference, and (b) is slightly affected, and the zero cross point is deviated from the normal time, and an error occurs in the measured value of the propagation time. FIG. 6C is considerably interfered, and it is difficult to detect the received wave. In FIG. 4D, interference waves shifted by a half cycle overlap, the amplitude of the received wave becomes extremely small, and almost disappears.
[0015]
Therefore, an object of the present invention is to provide an ultrasonic flowmeter that can improve the stability of measurement by reducing the temperature gradient in the propagation path of ultrasonic waves and reducing interference of received waves.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 includes a metal outer cylinder (5) integrally formed with flange portions at both ends of a substantially cylindrical portion;
A cylindrical inner cylinder (6) made of a heat insulating material that is attached to the inside of the outer cylinder (5) through two bases (7) and (8) made of a heat insulating material, and guides the fluid to be measured,
An air layer (9) having an annular cross section formed between a cylindrical portion of the metal outer cylinder (5) and the inner cylinder (6) made of a heat insulating material;
A boss-like member (10) provided concentrically with the outer cylinder (5) and having a large-diameter portion at the center;
A channel (40) having an annular cross section formed between the inner wall (A 1 ) of the inner cylinder (6) made of a heat insulating material and the outer wall (B 1 ) of the large-diameter portion of the boss-like member (10 ). When,
The cross section is disposed away from the upstream and downstream of the annular flow path (40), and includes a pair of ultrasonic transducers for transmitting and receiving ultrasonic waves for flow velocity measurement in the flow path (40),
The two bases (7) and (8) include a first base (7) for attaching one end of the inner cylinder (6) to the outer cylinder (5), and the other end of the inner cylinder (6) as the outer cylinder (5). ), And the bases (7) and (8) have an inner diameter that increases as they move away from the ends of the inner cylinder (6), that is, toward the inlet / outlet of the flow meter. It is formed in a tapered shape that expands in diameter,
The ultrasonic flowmeter is characterized in that the fluid to be measured flowing through the flow path (40) is a gas .
[0017]
The invention according to claim 2 is the ultrasonic flowmeter according to claim 1, wherein the inner cylinder (6) is made of a plastic material.
The invention according to claim 3 is the ultrasonic flowmeter according to claim 1 or 2, wherein the bases (7) and (8) are made of a plastic material .
[0018]
The invention according to claim 4 is the ultrasonic flowmeter according to claim 3, characterized in that the inner cylinder (6) and the base (7) (8) are integrally formed of the same plastic material. It is.
According to a fifth aspect of the present invention, in the ultrasonic flowmeter according to any one of the first to fourth aspects, the fluid to be measured is a gas.
[0019]
According to a sixth aspect of the present invention, in the ultrasonic flowmeter according to any one of the first to fifth aspects, the boss-like member (10) has a small diameter at both ends, and the tip of the boss-shaped member (5) has an outer cylinder (5). ) Is fixed to the arm fixed to the flange.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Next, a preferred embodiment of the present invention will be described with reference to the embodiment of FIG.
The metal outer cylinder 5 having a high strength has flange portions integrally formed at the left and right ends of the substantially cylindrical portion in the figure. The plastic cylindrical inner cylinder 6 is attached to the inner side of the outer cylinder 5 via plastic bases 7 and 8, and an air layer 9 is formed between the cylindrical portion of the outer cylinder 5 and the inner cylinder 6. Heat conduction between the outer cylinder 5 and the inner cylinder 6 is prevented. In addition, the bases 7 and 8 are made of a plastic material as a heat insulating material, thereby preventing heat conduction from the outer cylinder 5 to the inner cylinder 6 through the bases 7 and 8. The production cost may be reduced by integrally forming the same plastic material as the cylinder 6.
[0021]
A boss-like member 10 having a large diameter portion with a diameter φ1 at the center is provided concentrically on the outer cylinder 5. The left and right ends of the boss-like member 10 have a small diameter, and the tip of the boss-like member 10 is screwed to an arm fixed to the flange.
[0022]
An annular channel 40 is formed between the inner wall A 1 of the inner cylinder 6 and the outer wall B 1 of the boss-like member 10. Ultrasonic wave transmission / reception for generating and receiving ultrasonic waves for measuring flow velocity in this channel 40 is formed. Wavers 1 and 2 are arranged at a distance L.
[0023]
The ultrasonic transducers 1 and 2 are connected to the electronic circuit board 11, and a microcomputer of the electronic circuit mounted on the board displays the flow rate on the liquid crystal display 12. Reference numeral 13 denotes a power supply battery.
[0024]
The annular cross-sectional flow path 40 is a narrow flow path sandwiched between the boss-like member 10 having an outer diameter of φ1 and the inner cylinder 6 having an inner diameter of φ2. Propagate to.
[0025]
Even if the temperature of the outer cylinder 5 is different from that of the fluid in which the temperature of the outer cylinder 5 flows, for example, gas, a radial temperature gradient is applied to the fluid in the flow path 40 by the heat insulating action of the air layer 9 and the plastic inner cylinder 6 and the bases 7 and 8. It rarely occurs. Therefore, since the zero cross point targeted by the received wave can be detected reliably, the measurement accuracy of the flow meter is improved.
[0026]
【The invention's effect】
Since the ultrasonic flowmeter of the present invention is configured as described above, the influence of the temperature of the outer cylinder on the temperature of the fluid is reduced. Therefore, the temperature gradient of the fluid can be reduced and interference of the received wave of the ultrasonic wave can be prevented, so that the zero cross point of the received wave can be reliably detected with high accuracy. As a result, the flow rate measurement accuracy is improved and the instrumental error characteristic is stabilized.
[0027]
In addition, since the inner wall of the outer cylinder that serves as a case is not directly used as the wall surface of the flow path, precision machining is not necessary, contributing to cost reduction.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention.
FIG. 2 is a schematic diagram illustrating the principle of an ultrasonic flow meter.
FIG. 3 is a diagram showing an electrical signal waveform for explaining the operation of the received wave detection unit of the ultrasonic flowmeter.
FIG. 4 is a schematic diagram showing a wavefront of an ultrasonic wave propagating through a narrow flow path between opposing wall surfaces.
FIG. 5 is a diagram showing various aspects of a received electrical signal waveform.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 2 Ultrasonic transmitter / receiver 5 Outer cylinder 6 Inner cylinder 7, 8 Base 9 Air layer 10 Boss-like member 40 Flow path

Claims (6)

ほぼ円筒形の部分の両端にフランジ部分を一体的に形成した金属製の外筒(5)と、
断熱材からなる2個のベース(7)(8)を介して外筒(5)の内側に取り付けられ、被計測流体を案内する断熱材からなる円筒状の内筒(6)と、
金属製の前記外筒(5)の円筒部分と断熱材からなる前記内筒(6)の間に形成された断面が円環状の空気層(9)と、
前記外筒(5)と同心に設けられ、中央に大径部を備えたボス状部材(10)と、
断熱材からなる前記内筒(6)の内壁(A 1 )とボス状部材(10)の前記大径部の外壁(B 1 )の間に形成された断面が円環状の流路(40)と、
断面が円環状の前記流路(40)の上流と下流に離れて配置され、流路(40)に流速計測用の超音波を送・受信する一対の超音波送受波器を具備し、
前記2個のベース(7)(8)は、内筒(6)の一端を外筒(5)に取り付ける第1のベース(7)と、内筒(6)の他端を外筒(5)に取り付ける第2のベース(8)とからなり、各ベース(7)(8)は、内筒(6)の前記各端から離れるにつれて内径が拡大する、つまり、流量計の出入口方向に向って拡径するテーパ状に形成されており、
流路(40)を流れる被計測流体が気体であることを特徴とする超音波流量計。
A metal outer tube (5) integrally formed with flange portions at both ends of a substantially cylindrical portion;
A cylindrical inner cylinder (6) made of a heat insulating material that is attached to the inside of the outer cylinder (5) through two bases (7) and (8) made of a heat insulating material, and guides the fluid to be measured,
An air layer (9) having an annular cross section formed between a cylindrical portion of the metal outer cylinder (5) and the inner cylinder (6) made of a heat insulating material;
A boss-like member (10) provided concentrically with the outer cylinder (5) and having a large-diameter portion at the center;
A channel (40) having an annular cross section formed between the inner wall (A 1 ) of the inner cylinder (6) made of a heat insulating material and the outer wall (B 1 ) of the large-diameter portion of the boss-like member (10 ). When,
The cross section is disposed away from the upstream and downstream of the annular flow path (40), and includes a pair of ultrasonic transducers for transmitting and receiving ultrasonic waves for flow velocity measurement in the flow path (40),
The two bases (7) and (8) include a first base (7) for attaching one end of the inner cylinder (6) to the outer cylinder (5), and the other end of the inner cylinder (6) as the outer cylinder (5). ), And the bases (7) and (8) have an inner diameter that increases as they move away from the ends of the inner cylinder (6), that is, toward the inlet / outlet of the flow meter. It is formed in a tapered shape that expands in diameter,
The ultrasonic flowmeter, wherein the fluid to be measured flowing through the flow path (40) is a gas .
内筒(6)がプラスチック材料で形成されていることを特徴とする請求項1記載の超音波流量計 The ultrasonic flowmeter according to claim 1, wherein the inner cylinder (6) is made of a plastic material . ベース(7)(8)がプラスチック材料で形成されていることを特徴とする請求項1又は2記載の超音波流量計 3. The ultrasonic flowmeter according to claim 1, wherein the base (7) (8) is made of a plastic material . 内筒(6)とベース(7)(8)が同じプラスチック材料で一体成型で形成されていることを特徴とする請求項3記載の超音波流量計 The ultrasonic flowmeter according to claim 3, wherein the inner cylinder (6) and the base (7) (8) are integrally formed of the same plastic material . 被計測流体がガスであることを特徴とする請求項1乃至4のいずれか1項に記載の超音波流量計 The ultrasonic flowmeter according to any one of claims 1 to 4, wherein the fluid to be measured is a gas . ボス状部材(10)は両端部が小径となっていて、その先端が外筒(5)の前記フランジに固定されたアームにねじ止めされていることを特徴とする請求項1乃至5のいずれか1項に記載の超音波流量計 The boss-like member (10) has a small diameter at both ends, and a tip thereof is screwed to an arm fixed to the flange of the outer cylinder (5). The ultrasonic flowmeter according to claim 1 .
JP14897299A 1999-05-28 1999-05-28 Ultrasonic flow meter Expired - Fee Related JP4287539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14897299A JP4287539B2 (en) 1999-05-28 1999-05-28 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14897299A JP4287539B2 (en) 1999-05-28 1999-05-28 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2000337937A JP2000337937A (en) 2000-12-08
JP4287539B2 true JP4287539B2 (en) 2009-07-01

Family

ID=15464804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14897299A Expired - Fee Related JP4287539B2 (en) 1999-05-28 1999-05-28 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP4287539B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090770A (en) * 2001-09-20 2003-03-28 Babcock Hitachi Kk Sound-wave type gas temperature measuring apparatus and method therefor
CN106871982B (en) * 2017-02-22 2020-08-07 中国大唐集团科学技术研究院有限公司华中分公司 Fuzzy parameter measuring method for measuring fluid flow in generator stator bar

Also Published As

Publication number Publication date
JP2000337937A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
US4452090A (en) Ultrasonic flowmeter
TWI568992B (en) Ultrasonic sensors and use of this ultrasonic flowmeter
JP2008134267A (en) Ultrasonic flow measurement method
JP3068201B2 (en) Volume flow measurement device
EP2914937B1 (en) Ultrasonic waveguide
JP2793133B2 (en) Through-flow volume measuring device
JPH109914A (en) Ultrasonic flowmeter
JPH0660832B2 (en) Vortex flowmeter
CN101793908A (en) Ultrasonic flue gas flow rate meter
JP4287539B2 (en) Ultrasonic flow meter
JPH1048009A (en) Ultrasound temperature current meter
JP2005091332A (en) Ultrasonic flowmeter
JP3738891B2 (en) Ultrasonic flow meter
JP2005180988A (en) Ultrasonic flowmeter
JP5345006B2 (en) Ultrasonic flow meter
JP2008164329A (en) Ultrasound flowmeter
JP2005300244A (en) Ultrasonic flow meter
JP4561071B2 (en) Flow measuring device
JP3144177B2 (en) Vortex flow meter
CN111473828B (en) Zero drift elimination method for commercial meter
JP4069222B2 (en) Ultrasonic vortex flowmeter
JPH01134213A (en) Flowmeter
JP2001133304A (en) Ultrasonic sensor and ultrasonic flowmeter using it
JP3973920B2 (en) Clamp-on type ultrasonic flowmeter
JP2564396B2 (en) Ultrasonic vortex flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees