JP4279546B2 - High pressure hydrogen supply system - Google Patents

High pressure hydrogen supply system Download PDF

Info

Publication number
JP4279546B2
JP4279546B2 JP2002369936A JP2002369936A JP4279546B2 JP 4279546 B2 JP4279546 B2 JP 4279546B2 JP 2002369936 A JP2002369936 A JP 2002369936A JP 2002369936 A JP2002369936 A JP 2002369936A JP 4279546 B2 JP4279546 B2 JP 4279546B2
Authority
JP
Japan
Prior art keywords
hydrogen
heat
exhaust gas
pressure
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002369936A
Other languages
Japanese (ja)
Other versions
JP2004197705A (en
Inventor
紀之 国分
伸二 兵藤
佳己 岡田
裕明 西島
光則 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP2002369936A priority Critical patent/JP4279546B2/en
Publication of JP2004197705A publication Critical patent/JP2004197705A/en
Application granted granted Critical
Publication of JP4279546B2 publication Critical patent/JP4279546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Description

【0001】
【発明の属する技術分野】
この発明は、水素を製造し、水素エンジンを搭載した水素自動車や燃料電池を搭載した燃料電池自動車、更には家庭用等の燃料電池等の種々の水素消費機関に高圧水素を供給する高圧水素の供給システムに関する。
【0002】
【従来の技術】
【特許文献1】
特開平07-112,796号公報
【特許文献2】
特開2002-184,436号公報
【特許文献3】
特開2002-249,032号公報
【特許文献4】
特開2002-274,801号公報
【特許文献5】
特開2002-274,802号公報
【特許文献6】
特開2002-274,803号公報
【特許文献7】
特開2000-37,626号公報
【0003】
近年、水素自動車や燃料電池自動車等の開発や実用化が進んでいることから、これらの水素自動車や燃料電池自動車等にその燃料としての水素を供給するための水素スタンド等の施設が全国的に必要になり、水素を製造し、貯蔵し、また、供給するための水素供給システムについて幾つかの提案がされている。
【0004】
例えば、特開平07-112,796号公報には、水素吸蔵合金に水素を吸蔵させ、この水素吸蔵合金を車両で運搬することにより、パイプラインを付設することなく水素貯留ステーションから給水素スタンドまで水素を大量かつ安全に搬送することができる給水素システム、水素貯留ステーション構造及び水素運搬用車両が提案されている。
【0005】
また、特開2002-184,436号公報には、ベンゼン等の水素を貯蔵する芳香族化合物からなる水素貯蔵体とシクロヘキサン等の水素を放出して前記芳香族化合物に変化する水素供給体との間における水素付加反応及び脱水素反応を利用して水素の貯蔵及び供給を行う水素貯蔵・供給システムであって、水素付加反応又は脱水素反応の前に水素貯蔵体又は水素供給体を加熱するヒーターを備えた水素反応装置と、この水素反応装置に水素を供給する水素供給装置と、この水素反応装置で生成した水素を利用して発電する燃料電池等の発電装置とを備え、水素付加反応又は脱水素反応の反応効率を高めることができるようにした水素貯蔵・供給システム及び水素貯蔵・供給装置並びに水素貯蔵・供給用触媒が提案されている。
【0006】
更に、特開2002-249,032号公報には、水電解装置と、この水電解装置で製造された水素を精製して第1精製水素を得る第1精製器と、上記第1精製水素を貯蔵側及び再精製側の一方に流すべくその流れ方向を変える切換装置と、第1精製水素が充填される第1貯蔵器と、第1精製水素を再精製して第2精製水素を得る第2精製器と、第2精製水素が充填される第2貯蔵器とを有し、厳しい精製能が要求されて耐久性や生産性に問題のある精製器、特に高純度水素を得るための精製器の延命を図ることができ、また、第1、第2精製水素を経済的に得ることができる水素ステーションが提案されている。
【0007】
そして、特開2002-274,801号公報には、芳香族化合物からなる水素貯蔵体及び/又は該芳香族化合物の水素化誘導体からなる水素供給体を収納する原料貯蔵手段と、水素貯蔵体の水素化及び/又は水素供給体の脱水素化を行わせる金属担持触媒等とヒーター等とを収納する複数の反応装置と、水素貯蔵体及び/又は水素供給体を反応装置に供給する原料供給手段と、生成気体を凝縮させて水素と水素貯蔵体及び/又は水素供給体に分離する気液分離手段と、分離した水素貯蔵体及び/又は水素供給体を回収する反応物回収手段と、水素付加反応及び/又は脱水素反応の条件を制御する制御手段とからなり、所定の供給周期から順次遅延させた供給タイミングで各反応装置に所定量の水素貯蔵体及び/又は水素供給体供給することにより、少ない変動で安定的かつ効率的に水素供給を行うことができる燃料電池システムを可能とする水素貯蔵・供給システムが提案されている。
【0008】
また、特開2002-274,802号公報には、芳香族化合物からなる水素貯蔵体及び該芳香族化合物の水素化誘導体からなる水素供給体の少なくとも一方を利用する水素貯蔵・供給システムであって、(a)水素貯蔵体及び/又は水素化誘導体からなる水素供給体を収納する原料貯蔵手段と、(b)水素貯蔵体の水素化及び/又は水素供給体の脱水素化を行わせる金属担持触媒を収納する反応装置と、(c)原料貯蔵手段内の水素貯蔵体及び/又は水素供給体を反応装置に供給する原料供給手段と、(d)反応装置からの生成気体を凝縮させて水素と水素貯蔵体及び/又は水素供給体に分離する気液分離手段と、(e)分離した水素貯蔵体及び/又は水素供給体を回収する反応物回収手段とからなり、上記反応装置を、水素供給体若しくは水素貯蔵体が気相と液相の共存界面を形成する、少なくとも1本の筒状体で形成し、安定的かつ効率的に水素供給を行うことができる燃料電池システムを可能とする水素貯蔵・供給システムが提案されている。
【0009】
また、特開2002-274,803号公報には、芳香族化合物からなる水素貯蔵体及び該芳香族化合物の水素化誘導体からなる水素供給体の少なくとも一方を利用する水素貯蔵・供給システムであって、(a)水素貯蔵体及び/又は水素化誘導体からなる水素供給体を収納する原料貯蔵手段と、(b)水素貯蔵体の水素化及び/又は水素供給体の脱水素化を行わせる金属担持触媒を収納する反応装置と、(c)高周波の電磁誘導方式による高周波誘導加熱であって金属担持触媒を加熱する加熱手段と、(d)原料貯蔵手段内の水素貯蔵体及び/又は水素供給体を反応装置に供給する原料供給手段と、(e)反応装置からの生成気体を凝縮させて水素と水素貯蔵体及び/又は水素供給体に分離する気液分離手段と、(f)分離した水素貯蔵体及び/又は水素供給体を回収する反応物回収手段とからなり、安定的かつ効率的に水素供給を行うことができる燃料電池システムを可能とし、しかも、低コストで、安定性、効率性に優れた水素貯蔵・供給システムが提案されている。
【0010】
しかしながら、これらいずれのシステム、装置あるいは方法においても、脱水素反応が吸熱反応であって多くの熱エネルギーを必要とすることから、水素製造装置では高温吸熱反応用の高温熱源を始めとして、各装置での加熱工程用熱源、電力、冷熱源等の多くの熱エネルギーや電力を必要とし、また、水素エンジンや燃料電池を搭載した自動車には大量の水素を効率良く積載させる必要があることから高圧水素の供給が望まれるが、そのためには水素圧縮装置が不可欠になり、この水素圧縮装置についても、圧縮機駆動用電力を始めとして内部クーラー用冷熱源等の多くの熱エネルギーや電力が必要になる。
【0011】
例えば、水素供給体としてのシクロヘキサンを脱水素して400Nm3の水素を製造して供給するためには、脱水素反応のための熱量だけでも約1.2×106kjの熱量(デカリンの脱水素反応の場合は約1.1×106kjで、メタノールの水蒸気改質反応の場合は約0.77×106kjである)を必要とし、電力については水素圧縮装置だけでも常圧から440気圧まで加圧する場合約260kWを必要とし、小規模工場並みの熱エネルギーや電力を必要としている。
【0012】
しかも、水素供給システムにおける水素供給量は、水素自動車や燃料電池搭載自動車の台数や、家庭用の燃料電池の使用量等により決まり、常に一定しているわけではなく、季節や月によって、更には日によって大幅に変動する。そして、この水素供給量の変動、すなわちシステムの負荷変動に対応する方法として、水素製造装置を超低負荷運転したり、複数系列の水素製造装置で対応したり、更には水素貯槽を用意することが考えられるが、超低負荷運転の水素製造装置は装置が大型化して水素スタンドとして全国に多数設置することが難しく、また、複数系列の水素製造装置は装置の熱容量が大きいので停止時に装置が冷却すると熱損失が大きくなって熱効率が大幅に低下し、更に、水素貯槽による対応は超高圧でも数m3の、10〜20気圧では数10m3の貯槽が必要になり、設置面積の問題や安全性等の問題があり、この場合も水素スタンドとして全国に多数設置することが難しいという問題がある。
【0013】
【発明が解決しようとする課題】
そこで、本発明者らは、水素供給システム、特に高圧水素の供給システム全体の熱効率化を図り、また、負荷変動に対しても容易に対応でき、これによって所定の水素供給能力を維持しつつシステム全体の小型化を図ると共に水素スタンドとして容易に設置可能な高圧水素の供給システムを開発すべく鋭意検討した結果、燃焼タービン発電装置の高温排ガスが有する廃熱で水素製造装置の脱水素反応に必要な熱量の一部/又は全部を賄うことができることを突き止め、本発明に到達した。
【0014】
すなわち、本発明の目的は、高圧水素の供給システムにおいて、システム全体での熱効率化を達成し、これによって所定の水素供給能力を維持しつつシステム全体の小型化を図り、水素スタンドとして容易に設置可能な高圧水素の供給システムを提供することにある。
【0015】
また、本発明の他の目的は、このような高圧水素の供給システムにおいて、システム全体での熱効率化を達成しつつ同時に負荷変動に対して容易に対応できるようにし、これによって所定の水素供給能力を維持しつつシステム全体の小型化を図り、水素スタンドとして容易に設置可能な高圧水素の供給システムを提供することにある。
【0016】
【課題を解決するための手段】
すなわち、本発明は、水素を製造し、製造された水素を圧縮して水素消費機関に高圧水素を供給する高圧水素の供給システムであって、水素を製造する水素製造装置と、製造された水素を所定の圧力まで圧縮する水素圧縮装置と、圧縮された高圧水素を水素消費機関に供給する水素供給装置と、当該高圧水素の供給システムで消費する電力の一部又は全部を賄う燃焼タービン発電装置と、上記水素製造装置に組み込まれ、上記燃焼タービン発電装置の高温排ガスを熱源として脱水素反応に要する熱量の一部又は全部を賄う熱交換器とを備えており、上記水素圧縮装置が前段圧縮機と後段圧縮機とで構成されており、これら前段圧縮機と後段圧縮機との間には、水素精製装置が直列に接続されていると共にこの水素精製装置と後段圧縮機との間に水素精製装置で精製された水素の一部又は全部を一時的に貯蔵する水素貯蔵装置が接続されていることを特徴とする高圧水素の供給システムである。
【0017】
本発明において、水素を製造するための水素製造装置としては、特に制限されるものではなく、例えば、有機ハイドライドを脱水素触媒の存在下に脱水素して水素を製造する装置や、軽質炭化水素、メタノール、ジメチルエーテル等を水蒸気改質反応させて水素を製造する装置等を挙げることができ、好ましくは前者の有機ハイドライドを脱水素触媒の存在下に脱水素して水素を製造する装置がよい。
以下、この有機ハイドライドを脱水素して水素を製造する水素製造装置を例にして、本発明を説明する。
【0018】
この有機ハイドライドを脱水素して水素を製造するための水素製造装置については、内部にこの水素製造装置に導入される有機ハイドライドと効率良く接触し得る脱水素触媒を収納し、かつ、上記燃焼タービン発電装置から排出される高温排ガスが導入され、有機ハイドライドと熱交換してその脱水素反応に要する熱量の一部又は全部を賄う熱交換器とを備えているものであればよく、例えば、二重管や多管円筒型熱交換器型の反応器のごとき装置が好適に用いられる。これらの装置については、良好な伝熱とホットスポット防止のための工夫がなされなければならず、例えば、高温排ガスを用いてホットオイル等の熱媒体を生成せしめ、この熱媒体を使用して反応熱の供給を行う等の方法も適宜行われる。
【0019】
このような水素製造装置で用いられる有機ハイドライドとしては、再生して再利用可能なことから、ベンゼン、トルエン、キシレン、メシチレン、ナフタレン、メチルナフタレン、アントラセン、ビフェニル、フェナンスレン等の芳香族化合物のいずれか1種又は2種以上の混合物を水素化して得られ、脱水素反応により水素を放出する芳香族化合物の水素化誘導体が好適であり、特にベンゼンやナフタレンの水素化により得られるシクロヘキサンやデカリンが好ましい。
【0020】
また、この水素製造装置で用いられる脱水素触媒については、従来よりこの種の用途で知られている種々の脱水素触媒、例えば、ニッケル、パラジウム、白金、ロジウム、イリジウム、ルテニウム、モリブデン、レニウム、タングステン、バナジウム、オスミウム、クロム、コバルト、鉄等の触媒活性を有する金属をシリカゲル、アルミナ、ゼオライト、活性炭、モレキュラーシーブ、カーボンナノチューブ等の担体に担持させたもの等を用いることができるが、全国的に多数個所設置される水素スタンドを構成する1つの装置であることを考慮すると、メンテナンス等の観点から、高い触媒活性を有し、炭素析出が可及的に抑制されており、しかも、高い選択性を有して長期間に亘って安定して触媒活性を維持し得るものであるのがよい。
【0021】
このような観点から、本発明の水素製造装置で用いる脱水素触媒については、特に、表面積150m2/g以上、細孔容積0.55cm3/g以上及び平均細孔径90〜200Åであって細孔径90〜200Åの細孔が全細孔容積の60%以上を占める多孔質γ−アルミナ担体に酸化亜鉛を5〜50重量%の割合で担持させ、次いで600℃以上の高温で10時間以上焼成して得られた複合酸化物からなり、結晶構造の大半がスピネル構造となっている複合担体に、白金0.05〜1.5重量%、スズ0.5〜10重量%、及び周期律表の第1A族及び第2A族からなる群(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等)から選ばれる少なくとも1つのアルカリ性金属0.01〜10重量%を担持させて得られた脱水素触媒が好ましい。この脱水素触媒については特開2000-37,626号公報に詳細に説明されている。
【0022】
また、本発明で用いる水素圧縮装置については、上記水素製造装置で製造された水素を常圧から所定の圧力、すなわち水素供給装置の供給圧力以上まで圧縮することができ、かつ、上記燃焼タービン発電装置で発電された電力により駆動できるものであればよく、例えば往復動圧縮機等の圧縮機が挙げられる。
【0023】
更に、上記水素圧縮装置で圧縮された高圧水素を水素消費機関に供給する水素供給装置は、通常ディスペンサーと呼ばれる装置であり、供給用の水素ホルダー、水素を水素自動車や燃料電池自動車等の水素消費機関に注入するための供給ノズル、水素流量計等の機器を備えており、高圧水素を水素自動車や燃料電池自動車等の水素消費機関に供給するものである。
【0024】
そして、本発明の高圧水素の供給システムで消費する電力の一部又は全部を賄う燃焼タービン発電装置については、軽油、灯油、都市ガス、LPG等の入手し易い燃料により駆動され、タービンの動力により発電する燃焼タービン発電機であり、その出力については供給システムの規模によって選択され、具体的には軸流タービン等を例示することができる。
【0025】
本発明の高圧水素の供給システムにおいては、上記水素製造装置に組み込まれた熱交換器の排ガス下流側にタービン排ガス熱回収装置を設け、このタービン排ガス熱回収装置により上記熱交換器で熱交換された排ガスからその余熱を更に回収し、好ましくは、100℃を超える温度で熱回収する高温熱回収部と100℃以下の温度で熱回収する低温熱回収部とを設け、燃焼タービン発電装置からの高温排ガスにより持ち出される廃熱を可及的に回収するのがよく、例えば後述するように、この高圧水素の供給システムで用いる種々の用途の熱エネルギーとして利用するのが望ましい。
【0026】
また、本発明の高圧水素の供給システムにおいては、上記水素圧縮装置を前段圧縮機と後段圧縮機とで構成し、これら前段圧縮機と後段圧縮機との間には製造された水素中の有機ハイドライド由来の分解生成物や部分脱水素生成物等の不純物を分離除去して高純度の水素を得る水素精製装置を直列に接続すると共に、この水素精製装置と後段圧縮機との間には水素精製装置で精製された水素の一部又は全部を一時的に貯蔵する水素貯蔵装置を接続し、これによって、水素の供給先である水素消費機関の性能維持や寿命確保を達成できると共に、予め水素精製装置で水素を製造してその水素消費機関への供給まで一時的に貯蔵したり、あるいは、水素製造装置で供給量を超えて製造された水素の余剰分を一時的に貯蔵できるようにし、これによって水素供給量の変動(システムの負荷変動)に容易に対応することができる。
【0027】
そして、上記前段圧縮機では水素製造装置で製造された水素を水素精製装置で必要とする圧力まで、通常5〜50気圧、好ましくは10〜30気圧まで圧縮し、また、後段圧縮機では水素精製装置で精製された水素を水素供給装置の供給圧力以上まで、通常は水素消費機関に備えられた水素貯槽の定格圧力より10〜25%程度高い圧力まで、具体的には通常100〜1000気圧程度まで圧縮する。
【0028】
ここで、上記の水素精製装置としては、例えばプレッシャースウィングタイプ精製装置(PSA)や膜分離器等が好適に用いられ、また、上記圧縮機としては、上記燃焼タービン発電装置で発電された電力により駆動される往復動圧縮機等が好適に用いられ、更に、上記水素貯蔵装置としては、例えば水素吸蔵合金とその加熱・冷却システムとを有する水素貯蔵システムが好適に用いられ、より好ましくはこの水素貯蔵システムの稼動に必要な熱量を上記タービン排ガス熱回収装置により回収される回収熱で賄うようにするのがよい。
【0029】
更に、本発明の高圧水素の供給システムにおいては、上記水素製造装置、水素圧縮装置及び水素供給装置に、更には必要に応じて設けられるタービン排ガス熱回収装置、水素精製装置及び水素貯蔵装置に、それぞれ冷却媒体を供給するための冷媒供給装置を設け、この冷媒供給装置から供給される冷却媒体を用いてこれら水素製造装置、水素圧縮装置、水素供給装置、タービン排ガス熱回収装置、水素精製装置、水素貯蔵装置等の温度制御や稼動を行うのがよい。
【0030】
そして、これら水素製造装置、水素圧縮装置、水素供給装置、タービン排ガス熱回収装置、水素精製装置、水素貯蔵装置、冷媒供給装置等がその稼動のために必要とする電力については、燃焼タービン発電装置で発電される電力で賄うように設計するのがよく、より好ましくは、燃焼タービン発電装置で発電される電力及びこの燃焼タービン発電装置の高温排ガスから直接及びタービン排ガス熱回収装置を介して回収される回収熱により、高圧水素の供給システム全体で必要とする電力及び熱量の60%以上、好ましくは80%以上を賄うように設計するのがよい。
【0031】
なお、本発明において、上記水素製造装置がその水素の製造のために多くの熱量を必要とする等の場合に、上記燃焼タービン発電装置における高温排ガスの出口から水素製造装置の熱交換器における高温排ガスの入口までの高温排ガスの移送ライン中に、例えばバーナー等の助燃機構を組み込み、これによって熱交換器に入る高温排ガスの温度を更に高めて水素製造装置が要求する熱量を十分に賄うことができるようにしてもよい。
【0032】
【発明の実施の形態】
以下、添付図面に示す実施例に基づいて、本発明の好適な実施の形態を具体的に説明する。
【0033】
図1〜図3に、本発明の高圧水素の供給システムが適用された水素スタンドのフローチャートが示されている。
原料となる有機ハイドライド(シクロヘキサン又はデカリン)はタンクローリー等で水素スタンドに運ばれ、原料貯槽1に一旦貯えられる(図1及び図2参照)。この有機ハイドライドは原料貯槽1からポンプ2により熱交換器3に送り込まれ、そこで150〜170℃に加熱された後、水素製造装置4の反応器5内に供給される(図1及び図2参照)。
【0034】
この水素製造装置4の反応器5は、脱水素触媒(例えば、アルミナ担持白金系触媒等)が充填され、原料の有機ハイドライドがこの脱水素触媒に接触しつつ通過する触媒充填領域5aと、この触媒充填領域5aとの間で間接的に熱交換可能に形成され、燃焼タービン発電機6からライン7を介して直接的に導入される約500℃の高温排ガスが流通し、上記脱水素触媒中を通過する有機ハイドライドと熱交換する高温排ガス流通領域5bとを備えており、反応器5自体が有機ハイドライドの脱水素反応に要する熱量の全部を賄う熱交換器として機能するように構成されている(図2参照)。なお、上記燃焼タービン発電機6は、燃料貯槽8からライン8aを介して供給される軽油、灯油、都市ガス、LPG等の燃料により駆動される(図1参照)。
【0035】
この水素製造装置4の反応器5では、有機ハイドライドの脱水素反応が生起して水素が製造され、この際の吸熱反応により上記燃焼タービン発電機6から導入される約500℃の高温排気ガスは約300〜350℃まで低下し、また、この反応器5から排出される約300〜350℃の排ガスはライン9から反応器5の下流側に接続されたタービン排ガス熱回収装置10に導入される(図1及び図2参照)。
【0036】
上記タービン排ガス熱回収装置10は、高温熱媒体のホットオイルと熱交換し、100℃を超える温度で排ガスから熱回収する図示外の高温熱回収部と、低温熱媒体、例えば100℃以下の水と熱交換し、100℃以下の温度で熱回収する図示外の低温熱回収部とを備えており、タービン排ガス熱回収装置10に導入された排ガスはその高温熱回収部及び低温熱回収部で熱交換して約150℃程度まで低下し、ライン10aから外部に排出される(図1参照)。
【0037】
上記水素製造装置4の反応器5を出た反応混合物は、上記熱交換器3に導入され、そこで反応器5に導入される原料の有機ハイドライドと熱交換した後、冷水11aを用いた冷却器11に導入され、更に気液分離器12に導入されて水素(不純物の軽質ガスを含む)と芳香族化合物(脱水素生成物であるベンゼン又はナフタレン)とに分離される(図2参照)。
【0038】
また、上記気液分離器12で分離された水素は、ライン13から前段圧縮機14に導入される。また、上記気液分離器12で分離された芳香族化合物は、ライン15からポンプ16を経て熱交換器17に入り、更にその下流の脱ガス器18に導入され、芳香族化合物中に溶け込んだ気体(水素及び軽質ガス等)が分離され、オフガスとしてライン19から抜き出され、上記燃料貯槽8からのライン8a中の燃料に合流し、燃焼タービン発電機6の燃料の一部として利用される。また、脱ガス器18を通過した脱ガス後の芳香族化合物は、ライン20から上記熱交換器17に導入され、気液分離器12から脱ガス器18に導入される脱ガス前の芳香族化合物と熱交換した後、冷水21aを用いた冷却器21で冷却され、一時的にタンク22に蓄えられた後、タンクローリーで回収されて例えば再生工場で原料の有機ハイドライド(シクロヘキサン又はデカリン)に還元される(図1及び図2参照)。
【0039】
上記前段圧縮機14に導入された水素は、そこで10〜20気圧まで圧縮され、次いでPSA又は膜分離器からなる水素精製装置23に送り込まれ、水素自動車や燃料電池自動車等の水素消費機関27に不適な不純物が分離除去される。この水素精製装置23で分離された不純物もライン24から上記ライン19中のオフガスと合流し、上記燃焼タービン発電機6の燃料の一部として利用される(図1参照)。
【0040】
上記水素精製装置23で精製された水素は、次に後段圧縮機25に導入され、そこで水素消費機関27が搭載する水素貯槽の定格圧力より10〜25%程度高い圧力、例えば水素貯槽の定格圧力が350気圧であれば420〜440気圧程度まで加圧され、水素供給装置26により水素消費機関27の水素貯槽内に供給され、充填される(図1参照)。
【0041】
この実施例において、上記水素精製装置23と後段圧縮機25との間には水素吸蔵合金とその加熱・冷却システムとを有する水素貯蔵システムを備えた水素貯蔵装置28がライン28a,28bを介して設けられており(図1参照)、余剰の水素があるときには後述する冷媒供給装置31からの冷却媒体がライン31a,31bから導入・排出されて水素吸蔵合金が冷却され、余剰の水素がこの水素吸蔵合金に吸蔵され、また、水素が不足したときには後述のタービン排ガス熱回収装置10の高温熱回収部からのホットオイルがライン10b,10cから導入・排出されて水素吸蔵合金が加熱され、この水素吸蔵合金に吸蔵されている水素が放出されるようになっており、これによって予め水素精製装置4で多量の水素を製造して水素消費機関27への供給まで一時的に貯蔵したり、あるいは、水素製造装置4で供給量を超えて製造された水素の余剰分を一時的に貯蔵できるようになっており、水素供給量の変動(システムの負荷変動)に容易に対応できるようになっている(図1及び図3参照)。
【0042】
また、この実施例において、上記タービン排ガス熱回収装置10の高温熱回収部で熱交換したホットオイルは、ライン10b,10cにより水素製造装置4や水素貯蔵装置28の熱源として供給されていると共に、その余剰分はライン29a,29bを通して外部に循環供給され、また、低温熱回収部で熱交換した温水は、ライン30a,30bを通して外部に循環供給され、外部で温水器や暖房等の用途に供されている(図1参照)。
【0043】
更に、この実施例においては、高圧水素の供給システムで必要とする冷却媒体を供給するための冷媒供給装置31が設けられており、この冷媒供給装置31で調製された冷却媒体が上記水素製造装置4、前段圧縮機14、水素精製装置23、水素供給装置26、及び水素貯蔵装置28に循環されて冷熱を供給するようになっており、これら水素製造装置4、タービン排ガス熱回収装置10、前段圧縮機14、水素精製装置23、水素供給装置26、及び水素貯蔵装置28の温度制御や稼動の冷熱エネルギーとして利用されている。
【0044】
更にまた、この実施例においては、上記燃焼タービン発電機6で発電された電力は、上記の全ての装置等、すなわち水素製造装置4、タービン排ガス熱回収装置10、前段圧縮機14、水素精製装置23、水素供給装置26、水素貯蔵装置28、及び冷媒供給装置31に、ライン6aを介して動力源として供給され、これらの各装置等を稼動するようになっている。
【0045】
本発明者らがこの実施例に係る高圧水素の供給システムに関して、有機ハイドライドとしてシクロヘキサンを用いて水素400Nm3/hrを製造し、貯蔵し、また、供給する場合について、その用役コストと総合熱効率を計算し、燃焼タービン発電装置を用いない従来の方法と比較した結果、この実施例の方法では用役コストが約20%減少でき、また、総合熱効率が約8%向上できることが見込まれた。また、上記と同様に水素供給量の変動を考慮して1日の運転4,200Nm3/日について検討した結果、この実施例の方法では用役コストが約27%減少でき、また、総合熱効率が約8%向上できることが見込まれた。
【0046】
【発明の効果】
本発明の高圧水素の供給システムによれば、燃焼タービン発電装置の高温排ガスが有する廃熱を水素製造装置の脱水素反応に利用することにより、システム全体での熱効率化を達成し、これによって所定の水素供給能力を維持しつつシステム全体の小型化を図り、水素スタンドとして容易に設置可能な高圧水素の供給システムとすることができ、また、同時に負荷変動に対しても容易に対応することができる。
【図面の簡単な説明】
【図1】 図1は、本発明の実施例に係る高圧水素の供給システムが適用された水素スタンドのフローチャートである。
【図2】 図2は、図1の水素製造装置を詳細に示すフローチャートである。
【図3】 図3は、図1の水素貯蔵装置を詳細に示すフローチャートである。
【符号の説明】
1…原料貯槽、2,16…ポンプ、3,17…熱交換器、4…水素製造装置、5…反応器、5a…触媒充填領域、5b…高温排ガス流通領域、6…燃焼タービン発電機(燃焼タービン発電装置)、6a,7,8a,9,10a,10b,10c,13,15,19,20,24,28a,28b,29a,29b,30a,30b,31a,31b…ライン、8…燃料貯槽、10…タービン排ガス熱回収装置、11,21…冷却器、11a,21a…冷水、12…気液分離器、14…前段圧縮機(水素圧縮装置)、18…脱ガス器、22…タンク、23…水素精製装置、25…後段圧縮機(水素圧縮装置)、26…水素供給装置、27…水素消費機関、28…水素貯蔵装置、31…冷媒供給装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-pressure hydrogen that produces hydrogen and supplies high-pressure hydrogen to various hydrogen consuming engines such as a hydrogen vehicle equipped with a hydrogen engine, a fuel cell vehicle equipped with a fuel cell, and a fuel cell for home use. Regarding the supply system.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Laid-Open No. 07-112,796
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-184,436
[Patent Document 3]
Japanese Patent Laid-Open No. 2002-249,032
[Patent Document 4]
Japanese Patent Laid-Open No. 2002-274,801
[Patent Document 5]
Japanese Patent Laid-Open No. 2002-274,802
[Patent Document 6]
JP 2002-274,803 JP
[Patent Document 7]
JP 2000-37,626 A
[0003]
In recent years, as hydrogen vehicles and fuel cell vehicles have been developed and put into practical use, facilities such as hydrogen stations for supplying hydrogen as fuel to these hydrogen vehicles and fuel cell vehicles are nationwide. Several proposals have been made for hydrogen supply systems for producing, storing and supplying hydrogen that are needed.
[0004]
For example, in Japanese Patent Application Laid-Open No. 07-112,796, hydrogen is stored in a hydrogen storage alloy, and the hydrogen storage alloy is transported by a vehicle, so that hydrogen can be transferred from a hydrogen storage station to a hydrogen supply station without adding a pipeline. Hydrogen supply systems, hydrogen storage station structures, and hydrogen transport vehicles that can be transported in large quantities and safely have been proposed.
[0005]
Further, JP 2002-184436 A discloses a hydrogen storage body composed of an aromatic compound that stores hydrogen such as benzene and a hydrogen supply body that releases hydrogen such as cyclohexane and changes into the aromatic compound. A hydrogen storage and supply system for storing and supplying hydrogen using a hydrogenation reaction and a dehydrogenation reaction, comprising a heater for heating the hydrogen storage body or the hydrogen supply body before the hydrogenation reaction or dehydrogenation reaction And a hydrogen supply device for supplying hydrogen to the hydrogen reaction device, and a power generation device such as a fuel cell for generating electricity using the hydrogen generated by the hydrogen reaction device, and a hydrogen addition reaction or dehydrogenation A hydrogen storage / supply system, a hydrogen storage / supply apparatus, and a hydrogen storage / supply catalyst that can increase the reaction efficiency of the reaction have been proposed.
[0006]
Further, JP-A-2002-249,032 discloses a water electrolysis apparatus, a first purifier for purifying hydrogen produced by the water electrolysis apparatus to obtain first purified hydrogen, and the first purified hydrogen on the storage side. And a switching device that changes the flow direction to flow to one side of the repurification side, a first reservoir filled with the first purified hydrogen, and a second purification that repurifies the first purified hydrogen to obtain a second purified hydrogen. And a second storage tank filled with second purified hydrogen, and a refiner that requires strict purification ability and has problems in durability and productivity, particularly a purifier for obtaining high-purity hydrogen. There has been proposed a hydrogen station that can prolong the life and can economically obtain the first and second purified hydrogen.
[0007]
JP-A-2002-274,801 discloses a hydrogen storage body composed of an aromatic compound and / or raw material storage means for storing a hydrogen supply body composed of a hydrogenated derivative of the aromatic compound, and hydrogenation of the hydrogen storage body. And / or a plurality of reactors containing a metal-supported catalyst and the like for dehydrogenating the hydrogen supplier and a heater, raw material supply means for supplying the hydrogen storage body and / or hydrogen supplier to the reactor, A gas-liquid separation means for condensing the product gas and separating it into hydrogen and a hydrogen storage body and / or a hydrogen supply body; a reactant recovery means for recovering the separated hydrogen storage body and / or hydrogen supply body; And / or control means for controlling dehydrogenation reaction conditions, and by supplying a predetermined amount of hydrogen storage body and / or hydrogen supply body to each reactor at a supply timing sequentially delayed from a predetermined supply cycle Strange In stable and efficient hydrogen storage and supply system that enables fuel cell system capable of performing hydrogen supply has been proposed.
[0008]
JP-A-2002-274,802 discloses a hydrogen storage / supply system using at least one of a hydrogen storage body made of an aromatic compound and a hydrogen supply body made of a hydrogenated derivative of the aromatic compound, a) raw material storage means for storing a hydrogen supply comprising a hydrogen storage and / or a hydrogenated derivative; and (b) a metal-supported catalyst for performing hydrogenation of the hydrogen storage and / or dehydrogenation of the hydrogen supply. (C) a raw material supply means for supplying a hydrogen storage body and / or a hydrogen supply body in the raw material storage means to the reaction apparatus, and (d) condensing product gas from the reaction apparatus to condense hydrogen and hydrogen. A gas-liquid separation means for separating the storage body and / or the hydrogen supply body, and (e) a reactant recovery means for recovering the separated hydrogen storage body and / or hydrogen supply body. Alternatively, the hydrogen storage body creates a coexistence interface between the gas phase and the liquid phase. To formed, formed at least one cylindrical body, hydrogen storage and supply system that enables fuel cell system capable of stably and efficiently hydrogen supply has been proposed.
[0009]
JP-A-2002-274,803 discloses a hydrogen storage / supply system using at least one of a hydrogen storage body made of an aromatic compound and a hydrogen supply body made of a hydrogenated derivative of the aromatic compound, a) raw material storage means for storing a hydrogen supply comprising a hydrogen storage and / or a hydrogenated derivative; and (b) a metal-supported catalyst for performing hydrogenation of the hydrogen storage and / or dehydrogenation of the hydrogen supply. A reaction device to be stored; (c) a high-frequency induction heating method using high-frequency electromagnetic induction to heat the metal-supported catalyst; and (d) a hydrogen storage body and / or a hydrogen supply body in the raw material storage means. Raw material supply means to be supplied to the apparatus, (e) gas-liquid separation means for condensing the product gas from the reaction apparatus and separating it into hydrogen and a hydrogen storage body and / or a hydrogen supply body, and (f) a separated hydrogen storage body And / or reactant recovery to recover hydrogen supply It consists of a stage, to allow the fuel cell system capable of stably and efficiently hydrogen supply, moreover, at low cost, stability, excellent hydrogen storage and supply system efficiency has been proposed.
[0010]
However, in any of these systems, apparatuses or methods, the dehydrogenation reaction is an endothermic reaction and requires a lot of heat energy. Therefore, in the hydrogen production apparatus, each apparatus including a high-temperature heat source for a high-temperature endothermic reaction is used. It requires a lot of heat energy and power, such as a heat source for heating processes, electric power, and a cold heat source, and it is necessary to efficiently load a large amount of hydrogen on a vehicle equipped with a hydrogen engine or fuel cell. Hydrogen supply is desired, but for that purpose, a hydrogen compressor is indispensable, and this hydrogen compressor also requires a lot of thermal energy and power from the compressor drive power, as well as the internal cooler cold source. Become.
[0011]
For example, cyclohexane as a hydrogen supplier is dehydrogenated to 400 Nm Three In order to produce and supply a large amount of hydrogen, only the amount of heat for the dehydrogenation reaction is about 1.2 × 10 6 calorie of kj (about 1.1 × 10 in the case of decalin dehydrogenation reaction) 6 kj, about 0.77 × 10 in the case of methanol steam reforming reaction 6 kj), and about 260 kW is required for electric power from a normal pressure to 440 atm even with a hydrogen compressor alone, and heat energy and electric power equivalent to those of a small factory are required.
[0012]
Moreover, the amount of hydrogen supplied in the hydrogen supply system is determined by the number of hydrogen vehicles and vehicles equipped with fuel cells, the amount of fuel cells used for home use, etc., and is not always constant. Varies significantly from day to day. And, as a method to cope with this fluctuation of the hydrogen supply amount, that is, the load fluctuation of the system, the hydrogen production apparatus is operated at an extremely low load, the multiple series of hydrogen production apparatuses are used, and a hydrogen storage tank is prepared. However, it is difficult to install a large number of hydrogen production devices for ultra-low-load operation nationwide as hydrogen stations, and multiple series of hydrogen production devices have a large heat capacity. Cooling increases heat loss and significantly reduces thermal efficiency. Furthermore, hydrogen storage tanks can handle several meters even at ultra high pressures. Three Tens of meters at 10-20 atmospheres Three Storage tanks are required, and there are problems such as installation area and safety. In this case as well, there are problems that it is difficult to install a large number of hydrogen stations throughout the country.
[0013]
[Problems to be solved by the invention]
Accordingly, the present inventors have attempted to increase the thermal efficiency of the entire hydrogen supply system, particularly the high-pressure hydrogen supply system, and can easily cope with load fluctuations, thereby maintaining a predetermined hydrogen supply capability. As a result of diligent research to develop a high-pressure hydrogen supply system that can be easily installed as a hydrogen stand while reducing the overall size, it is necessary for the dehydrogenation reaction of the hydrogen production system using the waste heat of the high-temperature exhaust gas from the combustion turbine power generation system. As a result, the present inventors have reached the present invention.
[0014]
That is, the object of the present invention is to achieve high efficiency in the entire system in a high-pressure hydrogen supply system, thereby reducing the size of the entire system while maintaining a predetermined hydrogen supply capacity, and easily installing as a hydrogen stand. The object is to provide a high-pressure hydrogen supply system that is possible.
[0015]
Another object of the present invention is to make it possible to easily cope with load fluctuations at the same time in the high-pressure hydrogen supply system while achieving thermal efficiency of the entire system, thereby providing a predetermined hydrogen supply capacity. The high-pressure hydrogen supply system can be easily installed as a hydrogen stand by reducing the size of the entire system while maintaining the above.
[0016]
[Means for Solving the Problems]
That is, the present invention is a high-pressure hydrogen supply system that produces hydrogen, compresses the produced hydrogen, and supplies high-pressure hydrogen to a hydrogen consuming engine. What A hydrogen production apparatus that produces hydrogen, a hydrogen compression apparatus that compresses the produced hydrogen to a predetermined pressure, a hydrogen supply apparatus that supplies compressed high-pressure hydrogen to a hydrogen consuming engine, and a high-pressure hydrogen supply system. Combustion turbine power generator that covers part or all of the consumed power, and heat exchange that is built into the hydrogen production device and covers part or all of the heat required for the dehydrogenation reaction using the high-temperature exhaust gas from the combustion turbine power generator as a heat source With a vessel The hydrogen compressor is composed of a front-stage compressor and a rear-stage compressor, and a hydrogen purifier is connected in series between the front-stage compressor and the rear-stage compressor, and the hydrogen purifier A hydrogen storage device that temporarily stores part or all of the hydrogen purified by the hydrogen purification device is connected between the compressor and the latter stage compressor. This is a high-pressure hydrogen supply system.
[0017]
In the present invention, the hydrogen production apparatus for producing hydrogen is not particularly limited. For example, an apparatus for producing hydrogen by dehydrogenating an organic hydride in the presence of a dehydrogenation catalyst, or a light hydrocarbon An apparatus for producing hydrogen by subjecting methanol, dimethyl ether or the like to a steam reforming reaction, and the like, preferably an apparatus for producing hydrogen by dehydrogenating the former organic hydride in the presence of a dehydrogenation catalyst.
Hereinafter, the present invention will be described by taking as an example a hydrogen production apparatus for producing hydrogen by dehydrogenating the organic hydride.
[0018]
Regarding a hydrogen production apparatus for producing hydrogen by dehydrogenating the organic hydride, a dehydrogenation catalyst capable of efficiently contacting the organic hydride introduced into the hydrogen production apparatus is housed therein, and the combustion turbine Any high-temperature exhaust gas discharged from the power generation device may be introduced and provided with a heat exchanger that exchanges heat with the organic hydride to cover part or all of the heat required for the dehydrogenation reaction. A device such as a heavy tube or multi-tube cylindrical heat exchanger type reactor is preferably used. These devices must be devised for good heat transfer and prevention of hot spots. For example, a high-temperature exhaust gas is used to generate a heat medium such as hot oil, and this heat medium is used to react. A method such as supplying heat is also appropriately performed.
[0019]
As an organic hydride used in such a hydrogen production apparatus, any of aromatic compounds such as benzene, toluene, xylene, mesitylene, naphthalene, methylnaphthalene, anthracene, biphenyl, and phenanthrene can be recycled and reused. Hydrogenated derivatives of aromatic compounds obtained by hydrogenating one or a mixture of two or more and releasing hydrogen by a dehydrogenation reaction are preferred, and cyclohexane and decalin obtained by hydrogenating benzene and naphthalene are particularly preferred. .
[0020]
As for the dehydrogenation catalyst used in this hydrogen production apparatus, various dehydrogenation catalysts conventionally known for this type of use, such as nickel, palladium, platinum, rhodium, iridium, ruthenium, molybdenum, rhenium, Metals with catalytic activity such as tungsten, vanadium, osmium, chromium, cobalt, iron, etc. supported on silica gel, alumina, zeolite, activated carbon, molecular sieve, carbon nanotube, etc. can be used. Considering that it is a single device that constitutes a hydrogen station installed at multiple locations, it has high catalytic activity and carbon deposition is suppressed as much as possible from the viewpoint of maintenance, etc. It is preferable that the catalyst activity can be stably maintained over a long period of time.
[0021]
From such a viewpoint, the dehydrogenation catalyst used in the hydrogen production apparatus of the present invention has a surface area of 150 m. 2 / g or more, pore volume 0.55cm Three Zinc oxide in a proportion of 5 to 50% by weight on a porous γ-alumina carrier having a pore size of 90 to 200 mm and an average pore diameter of 90 to 200 mm and pores having a pore diameter of 90 to 200 mm account for 60% or more of the total pore volume. The composite carrier made of a composite oxide obtained by supporting and then firing at a high temperature of 600 ° C. or higher for 10 hours or more, and having a crystal structure having a spinel structure, platinum 0.05 to 1.5 wt% Selected from the group consisting of Group 1A and Group 2A of the periodic table (lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, etc.) A dehydrogenation catalyst obtained by supporting 0.01 to 10% by weight of at least one alkaline metal is preferred. This dehydrogenation catalyst is described in detail in JP-A-2000-37,626.
[0022]
In addition, the hydrogen compression apparatus used in the present invention can compress hydrogen produced by the hydrogen production apparatus from normal pressure to a predetermined pressure, that is, higher than the supply pressure of the hydrogen supply apparatus. Any compressor can be used as long as it can be driven by the power generated by the apparatus, and examples thereof include a reciprocating compressor.
[0023]
Furthermore, a hydrogen supply device that supplies high-pressure hydrogen compressed by the hydrogen compression device to a hydrogen consuming engine is a device that is usually called a dispenser, and is a hydrogen holder for supply, and hydrogen is consumed by hydrogen vehicles such as hydrogen vehicles and fuel cell vehicles. It is equipped with equipment such as a supply nozzle for injecting into the engine and a hydrogen flow meter, and supplies high-pressure hydrogen to hydrogen consuming engines such as hydrogen vehicles and fuel cell vehicles.
[0024]
And about the combustion turbine power generator which covers a part or all of the electric power consumed by the high-pressure hydrogen supply system of the present invention, it is driven by easily available fuel such as light oil, kerosene, city gas, LPG, etc. It is a combustion turbine generator that generates electric power, and its output is selected depending on the scale of the supply system, and specifically, an axial flow turbine or the like can be exemplified.
[0025]
In the high-pressure hydrogen supply system of the present invention, a turbine exhaust gas heat recovery device is provided on the exhaust gas downstream side of the heat exchanger incorporated in the hydrogen production device, and heat is exchanged by the heat exchanger by the turbine exhaust gas heat recovery device. The waste heat is further recovered from the exhaust gas, and preferably, a high temperature heat recovery unit that recovers heat at a temperature exceeding 100 ° C. and a low temperature heat recovery unit that recovers heat at a temperature of 100 ° C. or less are provided. The waste heat brought out by the high-temperature exhaust gas should be recovered as much as possible. For example, as described later, it is desirable to use it as thermal energy for various uses used in this high-pressure hydrogen supply system.
[0026]
Further, in the high-pressure hydrogen supply system of the present invention, the hydrogen compressor is composed of a front-stage compressor and a rear-stage compressor, and between the front-stage compressor and the rear-stage compressor, organic matter in the produced hydrogen is provided. A hydrogen purifier that separates and removes impurities such as hydride-derived decomposition products and partially dehydrogenated products to obtain high-purity hydrogen is connected in series, and a hydrogen purifier is connected between the hydrogen purifier and the subsequent compressor. By connecting a hydrogen storage device that temporarily stores part or all of the hydrogen purified by the purification device, it is possible to maintain the performance of the hydrogen consuming engine to which hydrogen is supplied and to ensure the service life, Producing hydrogen with a refiner and temporarily storing it until its supply to the hydrogen consuming engine, or temporarily storing surplus hydrogen produced in excess of the supply with the hydrogen producing device, This It is possible to easily correspond to the hydrogen supply amount of the variation (load variation of the system) Te.
[0027]
In the former stage compressor, the hydrogen produced in the hydrogen production apparatus is compressed to a pressure required by the hydrogen purification apparatus, usually 5 to 50 atmospheres, preferably 10 to 30 atmospheres. In the latter stage compressor, the hydrogen purification is performed. Hydrogen refined in the apparatus is higher than the supply pressure of the hydrogen supply apparatus, usually up to about 10-25% higher than the rated pressure of the hydrogen storage tank provided in the hydrogen consuming engine, specifically about 100-1000 atm. Compress until
[0028]
Here, as the hydrogen purification device, for example, a pressure swing type purification device (PSA), a membrane separator, or the like is preferably used, and as the compressor, electric power generated by the combustion turbine power generation device is used. A driven reciprocating compressor or the like is preferably used. Further, as the hydrogen storage device, for example, a hydrogen storage system having a hydrogen storage alloy and its heating / cooling system is preferably used, and more preferably this hydrogen storage system. It is preferable to cover the amount of heat necessary for operation of the storage system with the recovered heat recovered by the turbine exhaust gas heat recovery device.
[0029]
Furthermore, in the high-pressure hydrogen supply system of the present invention, the hydrogen production apparatus, the hydrogen compression apparatus, and the hydrogen supply apparatus, and further, the turbine exhaust gas heat recovery apparatus, the hydrogen purification apparatus, and the hydrogen storage apparatus that are provided as necessary, Refrigerant supply devices for supplying a cooling medium are provided, and these hydrogen production devices, hydrogen compression devices, hydrogen supply devices, turbine exhaust gas heat recovery devices, hydrogen purification devices, using the cooling medium supplied from the refrigerant supply devices, It is preferable to perform temperature control and operation of a hydrogen storage device or the like.
[0030]
And about the electric power which these hydrogen production devices, hydrogen compression devices, hydrogen supply devices, turbine exhaust gas heat recovery devices, hydrogen purification devices, hydrogen storage devices, refrigerant supply devices, etc. require for their operation, combustion turbine power generation devices It is preferable to cover the power generated by the combustion turbine power generator, and more preferably, it is recovered directly from the power generated by the combustion turbine power generator and the high temperature exhaust gas of the combustion turbine power generator and via the turbine exhaust gas heat recovery device. It is preferable to design so as to cover 60% or more, preferably 80% or more of the electric power and heat required by the entire high-pressure hydrogen supply system by the recovered heat.
[0031]
In the present invention, when the hydrogen production apparatus requires a large amount of heat for producing the hydrogen, the high temperature exhaust gas from the high temperature exhaust gas in the combustion turbine power generation apparatus is used in the heat exchanger of the hydrogen production apparatus. Incorporating an auxiliary combustion mechanism such as a burner in the high-temperature exhaust gas transfer line to the exhaust gas inlet, thereby further increasing the temperature of the high-temperature exhaust gas entering the heat exchanger to sufficiently cover the amount of heat required by the hydrogen production equipment. You may be able to do it.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be specifically described based on examples shown in the accompanying drawings.
[0033]
1 to 3 show flowcharts of a hydrogen station to which the high-pressure hydrogen supply system of the present invention is applied.
Organic hydride (cyclohexane or decalin) as a raw material is transported to a hydrogen stand by a tank lorry or the like and temporarily stored in the raw material storage tank 1 (see FIGS. 1 and 2). This organic hydride is sent from the raw material storage tank 1 to the heat exchanger 3 by the pump 2, where it is heated to 150 to 170 ° C. and then supplied into the reactor 5 of the hydrogen production apparatus 4 (see FIGS. 1 and 2). ).
[0034]
The reactor 5 of the hydrogen production apparatus 4 is filled with a dehydrogenation catalyst (for example, an alumina-supported platinum-based catalyst), and a catalyst filling region 5a through which organic hydride as a raw material passes while contacting the dehydrogenation catalyst, A high-temperature exhaust gas of about 500 ° C. that is formed so as to be capable of indirectly exchanging heat with the catalyst filling region 5a and that is directly introduced from the combustion turbine generator 6 via the line 7 circulates in the dehydrogenation catalyst. And a high-temperature exhaust gas circulation region 5b for exchanging heat, and the reactor 5 itself is configured to function as a heat exchanger that covers the entire amount of heat required for the dehydrogenation reaction of the organic hydride. (See FIG. 2). The combustion turbine generator 6 is driven by fuel such as light oil, kerosene, city gas, and LPG supplied from the fuel storage tank 8 via the line 8a (see FIG. 1).
[0035]
In the reactor 5 of this hydrogen production apparatus 4, hydrogen is produced by the dehydrogenation reaction of organic hydride, and the high temperature exhaust gas of about 500 ° C. introduced from the combustion turbine generator 6 by the endothermic reaction at this time is The exhaust gas at a temperature of about 300 to 350 ° C. that is discharged from the reactor 5 is introduced from the line 9 to the turbine exhaust gas heat recovery device 10 connected to the downstream side of the reactor 5. (See FIGS. 1 and 2).
[0036]
The turbine exhaust gas heat recovery device 10 exchanges heat with hot oil of a high-temperature heat medium, recovers heat from the exhaust gas at a temperature exceeding 100 ° C., and a low-temperature heat medium such as water of 100 ° C. or less. And a low-temperature heat recovery unit (not shown) that recovers heat at a temperature of 100 ° C. or less, and the exhaust gas introduced into the turbine exhaust gas heat recovery device 10 is supplied to the high-temperature heat recovery unit and the low-temperature heat recovery unit. The temperature is reduced to about 150 ° C. through heat exchange, and discharged to the outside from the line 10a (see FIG. 1).
[0037]
The reaction mixture exiting the reactor 5 of the hydrogen production apparatus 4 is introduced into the heat exchanger 3, where it is heat-exchanged with the raw material organic hydride introduced into the reactor 5, and then a cooler using cold water 11a. 11 and further introduced into the gas-liquid separator 12 to be separated into hydrogen (including light impurities gas) and aromatic compound (dehydrogenated product benzene or naphthalene) (see FIG. 2).
[0038]
Further, the hydrogen separated by the gas-liquid separator 12 is introduced from the line 13 into the pre-stage compressor 14. Further, the aromatic compound separated by the gas-liquid separator 12 enters the heat exchanger 17 from the line 15 via the pump 16, and is further introduced into the degasser 18 downstream thereof, and dissolved in the aromatic compound. Gas (hydrogen, light gas, etc.) is separated, extracted from the line 19 as off-gas, merged with the fuel in the line 8a from the fuel storage tank 8, and used as part of the fuel of the combustion turbine generator 6 . Further, the degassed aromatic compound that has passed through the degasser 18 is introduced into the heat exchanger 17 from the line 20, and the aromatics before degassing that is introduced from the gas-liquid separator 12 into the degasser 18. After exchanging heat with the compound, it is cooled in a cooler 21 using cold water 21a, temporarily stored in a tank 22, and then recovered in a tank lorry and reduced to, for example, a raw material organic hydride (cyclohexane or decalin) at a recycling plant (See FIGS. 1 and 2).
[0039]
The hydrogen introduced into the pre-stage compressor 14 is compressed to 10 to 20 atm and then sent to a hydrogen purifier 23 comprising a PSA or a membrane separator, to a hydrogen consuming engine 27 such as a hydrogen car or a fuel cell car. Unsuitable impurities are separated and removed. The impurities separated by the hydrogen purifier 23 also merge with the off-gas in the line 19 from the line 24 and are used as part of the fuel for the combustion turbine generator 6 (see FIG. 1).
[0040]
The hydrogen purified by the hydrogen purifier 23 is then introduced into the rear compressor 25, where the pressure is about 10 to 25% higher than the rated pressure of the hydrogen storage tank mounted on the hydrogen consuming engine 27, for example, the rated pressure of the hydrogen storage tank When the pressure is 350 atm, the pressure is increased to about 420 to 440 atm, and the hydrogen supply device 26 supplies and fills the hydrogen storage tank of the hydrogen consuming engine 27 (see FIG. 1).
[0041]
In this embodiment, a hydrogen storage device 28 having a hydrogen storage system having a hydrogen storage alloy and its heating / cooling system is provided between the hydrogen purification device 23 and the rear compressor 25 via lines 28a and 28b. 1 (see FIG. 1), when there is surplus hydrogen, a cooling medium from a refrigerant supply device 31 described later is introduced and discharged from the lines 31a and 31b to cool the hydrogen storage alloy, and surplus hydrogen is converted into this hydrogen. When the hydrogen is insufficient and hydrogen is insufficient, hot oil from the high-temperature heat recovery part of the turbine exhaust gas heat recovery device 10 described later is introduced and discharged from the lines 10b and 10c to heat the hydrogen storage alloy. Hydrogen stored in the storage alloy is released so that a large amount of hydrogen is produced in advance by the hydrogen purifier 4 and temporarily stored until being supplied to the hydrogen consuming engine 27. The surplus amount of hydrogen produced by the hydrogen production device 4 exceeding the supply amount can be temporarily stored, and the fluctuation of the hydrogen supply amount (system load fluctuation) can be easily dealt with. (See FIGS. 1 and 3).
[0042]
In this embodiment, the hot oil heat-exchanged in the high-temperature heat recovery section of the turbine exhaust gas heat recovery device 10 is supplied as a heat source for the hydrogen production device 4 and the hydrogen storage device 28 through lines 10b and 10c. The surplus is circulated and supplied to the outside through the lines 29a and 29b, and the hot water exchanged by the low-temperature heat recovery unit is circulated and supplied to the outside through the lines 30a and 30b, and is used outside for applications such as water heaters and heating. (See FIG. 1).
[0043]
Further, in this embodiment, there is provided a refrigerant supply device 31 for supplying a cooling medium required for the high-pressure hydrogen supply system, and the cooling medium prepared by the refrigerant supply device 31 is the hydrogen production device. 4. It is circulated to the front stage compressor 14, the hydrogen purifier 23, the hydrogen supply unit 26, and the hydrogen storage unit 28 to supply cold heat. These hydrogen production unit 4, turbine exhaust gas heat recovery unit 10, The compressor 14, the hydrogen purification device 23, the hydrogen supply device 26, and the hydrogen storage device 28 are used as temperature control and cold energy for operation.
[0044]
Furthermore, in this embodiment, the electric power generated by the combustion turbine generator 6 is used for all the above-mentioned devices, that is, the hydrogen production device 4, the turbine exhaust gas heat recovery device 10, the pre-stage compressor 14, the hydrogen purification device. 23, the hydrogen supply device 26, the hydrogen storage device 28, and the refrigerant supply device 31 are supplied as power sources via the line 6a, and these devices and the like are operated.
[0045]
With respect to the high-pressure hydrogen supply system according to this embodiment, the present inventors used 400 Nm of hydrogen using cyclohexane as an organic hydride. Three As a result of calculating the utility cost and total thermal efficiency for the production, storage, and supply of / hr, and comparing with the conventional method that does not use the combustion turbine power generator, the utility of this example is Costs could be reduced by about 20% and overall thermal efficiency could be improved by about 8%. In the same manner as described above, the daily operation is 4,200 Nm considering the fluctuation of the hydrogen supply amount Three As a result of examining / day, it was expected that the utility cost could be reduced by about 27% and the overall thermal efficiency could be improved by about 8% by the method of this example.
[0046]
【The invention's effect】
According to the high-pressure hydrogen supply system of the present invention, the waste heat of the high-temperature exhaust gas of the combustion turbine power generator is used for the dehydrogenation reaction of the hydrogen production device, thereby achieving thermal efficiency in the entire system, thereby The high-pressure hydrogen supply system that can be easily installed as a hydrogen stand can be achieved while maintaining the hydrogen supply capacity of the system, and at the same time, it can easily cope with load fluctuations. it can.
[Brief description of the drawings]
FIG. 1 is a flowchart of a hydrogen station to which a high-pressure hydrogen supply system according to an embodiment of the present invention is applied.
FIG. 2 is a flowchart showing in detail the hydrogen production apparatus of FIG. 1;
FIG. 3 is a flowchart showing in detail the hydrogen storage device of FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Raw material storage tank, 2,16 ... Pump, 3,17 ... Heat exchanger, 4 ... Hydrogen production apparatus, 5 ... Reactor, 5a ... Catalyst filling area | region, 5b ... High temperature exhaust gas distribution | circulation area | region, 6 ... Combustion turbine generator ( Combustion turbine generator), 6a, 7, 8a, 9, 10a, 10b, 10c, 13, 15, 19, 20, 24, 28a, 28b, 29a, 29b, 30a, 30b, 31a, 31b ... line, 8 ... Fuel storage tank, 10 ... turbine exhaust gas heat recovery device, 11, 21 ... cooler, 11a, 21a ... cold water, 12 ... gas-liquid separator, 14 ... pre-stage compressor (hydrogen compression device), 18 ... degasser, 22 ... Tank, 23 ... hydrogen purification device, 25 ... latter stage compressor (hydrogen compression device), 26 ... hydrogen supply device, 27 ... hydrogen consuming engine, 28 ... hydrogen storage device, 31 ... refrigerant supply device.

Claims (7)

水素を製造し、製造された水素を圧縮して水素消費機関に高圧水素を供給する高圧水素の供給システムであって、水素を製造する水素製造装置と、製造された水素を所定の圧力まで圧縮する水素圧縮装置と、圧縮された高圧水素を水素消費機関に供給する水素供給装置と、当該高圧水素の供給システムで消費する電力の一部又は全部を賄う燃焼タービン発電装置と、上記水素製造装置に組み込まれ、上記燃焼タービン発電装置の高温排ガスを熱源として脱水素反応に要する熱量の一部又は全部を賄う熱交換器とを備えており、上記水素圧縮装置が前段圧縮機と後段圧縮機とで構成されており、これら前段圧縮機と後段圧縮機との間には、水素精製装置が直列に接続されていると共にこの水素精製装置と後段圧縮機との間に水素精製装置で精製された水素の一部又は全部を一時的に貯蔵する水素貯蔵装置が接続されていることを特徴とする高圧水素の供給システム。To produce hydrogen, I supply system der high-pressure hydrogen supplying high-pressure hydrogen to hydrogen-consuming mechanisms by compressing the produced hydrogen, and the hydrogen production device for producing hydrogen, the produced hydrogen to a predetermined pressure Hydrogen compression device for compressing, hydrogen supply device for supplying compressed high-pressure hydrogen to a hydrogen consuming engine, combustion turbine generator for supplying part or all of the power consumed by the high-pressure hydrogen supply system, and hydrogen production And a heat exchanger that covers part or all of the amount of heat required for the dehydrogenation reaction using the high-temperature exhaust gas of the combustion turbine power generation apparatus as a heat source, and the hydrogen compression apparatus includes a front-stage compressor and a rear-stage compressor. A hydrogen purifier is connected in series between the front and rear compressors, and the hydrogen purifier is purified between the hydrogen purifier and the rear compressor. Supply system of the high-pressure hydrogen, wherein the hydrogen storage device is connected to temporarily store some or all of the hydrogen. 水素製造装置に組み込まれた熱交換器の排ガス下流側には上記熱交換器で熱交換された排ガスの余熱を回収するタービン排ガス熱回収装置が設けられている請求項1に記載の高圧水素の供給システム。  2. The high-pressure hydrogen exhaust gas heat recovery device according to claim 1, wherein a turbine exhaust gas heat recovery device that recovers residual heat of the exhaust gas heat-exchanged by the heat exchanger is provided on the exhaust gas downstream side of the heat exchanger incorporated in the hydrogen production device. Supply system. タービン排ガス熱回収装置は、100℃を超える温度で熱回収する高温熱回収部と100℃以下の温度で熱回収する低温熱回収部とを備えている請求項2に記載の高圧水素の供給システム。  The high-pressure hydrogen supply system according to claim 2, wherein the turbine exhaust gas heat recovery device includes a high-temperature heat recovery unit that recovers heat at a temperature exceeding 100 ° C. and a low-temperature heat recovery unit that recovers heat at a temperature of 100 ° C. or less. . 前段圧縮機では水素製造装置で製造された水素を10〜30気圧に圧縮し、後段圧縮機では水素精製装置で精製された水素を水素供給装置の供給圧力以上まで圧縮する請求項1〜3のいずれかに記載の高圧水素の供給システム。The hydrogen produced in the hydrogen production apparatus is compressed to 10 to 30 atm in the front stage compressor, and the hydrogen purified in the hydrogen purification apparatus is compressed to the supply pressure of the hydrogen supply apparatus or higher in the rear stage compressor . The high-pressure hydrogen supply system according to any one of the above. 水素貯蔵装置が水素吸蔵合金による水素貯蔵システムで構成されており、この水素貯蔵システムの稼動に必要な熱量をタービン排ガス熱回収装置で回収される回収熱で賄う請求項2〜4のいずれかに記載の高圧水素の供給システム。Hydrogen storage device is constituted by a hydrogen storage system according to the hydrogen absorbing alloy, to one of the claims 2-4 to cover the amount of heat required for operation of the hydrogen storage system recovery heat recovered in the turbine exhaust gas heat recovery device The high-pressure hydrogen supply system described. 水素製造装置、水素圧縮装置及び水素供給装置に、更には必要に応じて設けられる水素精製装置及び水素貯蔵装置にそれぞれ冷却媒体を供給するための冷媒供給装置を備えており、これら水素製造装置、水素圧縮装置、水素供給装置、タービン排ガス熱回収装置、水素精製装置、水素貯蔵装置及び冷媒供給装置が燃焼タービン発電装置で発電される電力により駆動される請求項1〜のいずれかに記載の高圧水素の供給システム。The hydrogen production apparatus, the hydrogen compression apparatus, and the hydrogen supply apparatus are further provided with a refrigerant supply apparatus for supplying a cooling medium to the hydrogen purification apparatus and the hydrogen storage apparatus, which are provided as necessary. hydrogen compressor, the hydrogen supply device, the turbine exhaust gas heat recovery device, the hydrogen purifier, a hydrogen storage device and a coolant supply device according to any one of claims 1 to 5 which is driven by electric power generated by the combustion turbine power generator High pressure hydrogen supply system. 燃焼タービン発電装置で発電される電力及びこの燃焼タービン発電装置の高温排ガスから直接及びタービン排ガス熱回収装置を介して回収される回収熱により高圧水素の供給システムで必要とする電力及び熱量の60%以上を賄う請求項2〜のいずれかに記載の高圧水素の供給システム。60% of the power and amount of heat required for the high-pressure hydrogen supply system by the power generated by the combustion turbine power generator and the recovered heat recovered directly from the high-temperature exhaust gas of the combustion turbine power generator and through the turbine exhaust gas heat recovery device The high-pressure hydrogen supply system according to any one of claims 2 to 6 , which covers the above.
JP2002369936A 2002-12-20 2002-12-20 High pressure hydrogen supply system Expired - Lifetime JP4279546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002369936A JP4279546B2 (en) 2002-12-20 2002-12-20 High pressure hydrogen supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002369936A JP4279546B2 (en) 2002-12-20 2002-12-20 High pressure hydrogen supply system

Publications (2)

Publication Number Publication Date
JP2004197705A JP2004197705A (en) 2004-07-15
JP4279546B2 true JP4279546B2 (en) 2009-06-17

Family

ID=32766017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002369936A Expired - Lifetime JP4279546B2 (en) 2002-12-20 2002-12-20 High pressure hydrogen supply system

Country Status (1)

Country Link
JP (1) JP4279546B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758722B2 (en) 2010-03-29 2014-06-24 Chiyoda Corporation Method for producing hydrogen aimed at storage and transportation
KR20210094731A (en) * 2020-01-22 2021-07-30 주식회사 효성 Gas supply system and gas filling device using the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5036969B2 (en) * 2005-02-08 2012-09-26 Jx日鉱日石エネルギー株式会社 Energy station
JP4611924B2 (en) * 2006-03-29 2011-01-12 株式会社日立プラントテクノロジー Hydrogen compressor system
JP5215057B2 (en) * 2008-06-27 2013-06-19 Jx日鉱日石エネルギー株式会社 Hydrogen production method
JP5215058B2 (en) * 2008-06-27 2013-06-19 Jx日鉱日石エネルギー株式会社 Hydrogen production equipment
JP5331410B2 (en) * 2008-08-22 2013-10-30 出光興産株式会社 High purity high pressure hydrogen supply system
JP5575549B2 (en) * 2010-05-31 2014-08-20 株式会社日立製作所 Energy generation system
JP5548032B2 (en) * 2010-05-31 2014-07-16 株式会社日立製作所 Organic hydride dehydrogenation system
JP2011251857A (en) * 2010-05-31 2011-12-15 Japan Petroleum Energy Center Electrothermal supplying type organic hydride station
JP5602698B2 (en) * 2011-09-22 2014-10-08 株式会社日立製作所 Power conversion system
JP2013087820A (en) * 2011-10-14 2013-05-13 Jx Nippon Oil & Energy Corp Hydrogen station
JP6244242B2 (en) 2014-03-26 2017-12-06 千代田化工建設株式会社 Hydrogen production system and hydrogen production method
JP6198677B2 (en) * 2014-05-30 2017-09-20 Jxtgエネルギー株式会社 Hydrogen supply system
JP6363471B2 (en) 2014-10-31 2018-07-25 株式会社東芝 Hydrogen production apparatus and hydrogen production method
JP6812252B2 (en) * 2017-01-27 2021-01-13 関西電力株式会社 Hydrogen production equipment, power generation system and hydrogen production method
CN109708000B (en) * 2019-02-25 2020-08-18 北方工业大学 L-CH2 type hydrogen station heat management system
CN110029043A (en) * 2019-04-29 2019-07-19 北京铂陆氢能科技开发有限公司 Raising kitchen garbage energy system based on fuel cell and alloy hydrogen storage technology
KR102512996B1 (en) * 2022-07-05 2023-03-24 한국가스공사 System and Method for Controlling Boil-Off Gas of Liquefied Hydrogen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758722B2 (en) 2010-03-29 2014-06-24 Chiyoda Corporation Method for producing hydrogen aimed at storage and transportation
KR20210094731A (en) * 2020-01-22 2021-07-30 주식회사 효성 Gas supply system and gas filling device using the same
KR102310951B1 (en) * 2020-01-22 2021-10-08 주식회사 효성 Gas supply system and gas filling device using the same

Also Published As

Publication number Publication date
JP2004197705A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP4279546B2 (en) High pressure hydrogen supply system
EP2905359B1 (en) Renewable energy storage system
US20060118201A1 (en) Mobile hydrogen delivery system
JP5036969B2 (en) Energy station
JP5288840B2 (en) Hydrogen production system
Han et al. High purity hydrogen generator for on-site hydrogen production
US11848467B2 (en) Carbon-neutral process for generating electricity
JP5897811B2 (en) Hybrid hydrogen production and power generation system
CN111212810A (en) System and method for supplying and further using hydrogen
US20230402636A1 (en) Carbon-neutral process for generating electricity
CN105347300A (en) Methanol to hydrogen machine system with rapid cold boot
KR20090005042A (en) Solid oxide fuel cell system and method of operating the same
JP2004256336A (en) System and method for hydrogen generation
JP4835967B2 (en) Hydrogen production system
JP2007273470A (en) Fuel cell system
JP4697921B2 (en) Electricity, hydrogen and aromatic hydrocarbon co-production system
JP3964657B2 (en) Hydrogen production system
KR102198519B1 (en) Liquid compound based power generation system and method
CN115427346A (en) Hydrogen supply system
KR20170080945A (en) Ship
KR20170076946A (en) Ship
KR101704913B1 (en) Ship
JP2004051391A (en) Apparatus for producing gaseous hydrogen
CN116924332A (en) Method for producing high-purity hydrogen based on hydrogen-rich raw material gas
Bromberg et al. System optimization and cost analysis of plasma catalytic reforming of hydrocarbons

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4279546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term