JP4277243B2 - Cerium compound abrasive and substrate polishing method - Google Patents

Cerium compound abrasive and substrate polishing method Download PDF

Info

Publication number
JP4277243B2
JP4277243B2 JP13509899A JP13509899A JP4277243B2 JP 4277243 B2 JP4277243 B2 JP 4277243B2 JP 13509899 A JP13509899 A JP 13509899A JP 13509899 A JP13509899 A JP 13509899A JP 4277243 B2 JP4277243 B2 JP 4277243B2
Authority
JP
Japan
Prior art keywords
cerium
polishing
cerium compound
substrate
compound abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13509899A
Other languages
Japanese (ja)
Other versions
JP2000328044A (en
Inventor
靖浩 山本
剛史 櫻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP13509899A priority Critical patent/JP4277243B2/en
Publication of JP2000328044A publication Critical patent/JP2000328044A/en
Application granted granted Critical
Publication of JP4277243B2 publication Critical patent/JP4277243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、セリウム化合物研磨剤及び基板の研磨法に関する。
【0002】
【従来の技術】
従来、半導体装置の製造工程において、プラズマ−CVD、低圧−CVD等の方法で形成されるSiO2絶縁膜等の無機絶縁膜層を平坦化するための化学機械研磨剤としてコロイダルシリカ系の研磨剤が一般的に検討されている。コロイダルシリカ系の研磨剤は、シリカ粒子を四塩化珪酸を熱分解する等の方法で粒成長させ、アンモニア等のアルカリ金属を含まないアルカリ溶液でpH調整を行って製造している。しかしながら、この様な研磨剤はコロイダルシリカの凝集が進み大粒子が生じ、研磨の無機絶縁膜表面に研磨傷が発生するという問題がある。
【0003】
【発明が解決しようとする課題】
請求項1〜記載の発明は、酸化珪素絶縁膜等の被研磨面を傷が極めて少なく研磨することが可能なセリウム化合物研磨剤を提供するものである。請求項5、6記載の発明は、被研磨面を傷が極めて少なく研磨することが可能な半導体素子等の基板の研磨法を提供するものである。
【0004】
【課題を解決するための手段】
本発明は、硫酸セリウム(IV)、硝酸セリウム(IV)、硫酸アンモニウムセリウム(IV)、硝酸アンモニウムセリウム(IV)及びそれらの水和物からなる群より選ばれる少なくとも1種である4価のセリウムイオンを含む溶液に塩基性物質を加えることにより得られるコロイドを含むセリウム化合物研磨剤に関する
【0005】
また、本発明は、塩基性物質がアンモニア水溶液である前記のセリウム化合物研磨剤に関する。また、本発明は、コロイドの分散媒が水である前記のセリウム化合物研磨剤に関する。また、本発明は、pHが7.0以上である前記のセリウム化合物研磨剤に関する。
【0006】
また、本発明は、前記のセリウム化合物研磨剤で、所定の基板を研磨する基板の研磨法に関する。
また、本発明は、所定の基板が酸化珪素絶縁膜の形成された半導体素子である前記の基板の研磨法に関する。
【0007】
【発明の実施の形態】
本発明に使用される4価のセリウムイオンを含む溶液としては、例えば、セリウム塩の水溶液が挙げられ、セリウム塩としては、例えば、硫酸セリウム(IV)、硝酸セリウム(IV)、硫酸アンモニウムセリウム(IV)、硝酸アンモニウムセリウム(IV)、それらの水和物等が挙げられ、これらは単独で又は2種以上を組み合わせて用いられる。
【0008】
4価のセリウムイオンを含む溶液の溶媒は、特に制限はないが、水(特に、純水)が好ましく使用される。
【0009】
本発明に使用される塩基性化合物としては、アンモニア(アンモニア水として使用してもよい)、オクチルアミン、N,N−ジメチルベンジルアミン等のフェニル基等の芳香族基で置換されてもよいアルキル基(置換基を除いて単素数1〜9であることが好ましい)を有するアルキルアミン、ジアルキルアミン若しくはトリアルキルアミン、アニリン等のアリールアミン(芳香族基を有するアミン化合物)などがあり、これらは単独で又は2種以上を組み合わせて用いられる。
【0010】
上記塩基性化合物はセリウム化合物研磨剤のpHを調整できる。
セリウム化合物研磨剤のpHは7.0以上であることが好ましく、pH7.0未満では研磨剤の研磨速度が低下する傾向がある。このpHの上限は10.0程度である。
【0011】
本発明のセリウム化合物研磨剤は、セリウムイオン、塩基性物質、水のモル濃度が次のような範囲として調整されることが好ましい。
セリウムイオン:0.029〜0.5モル/1リットル(0.029以下では研磨速度が遅い傾向があり、0.5を超えると増粘して取扱いが困難となる傾向がある)。
塩基性物質:0〜2×10-5モル/1リットル(2×10-5を超えると必要とする研磨速度が得られない傾向がある)
水:52.8〜55.5モル/1リットル
【0012】
本発明のセリウム化合物研磨剤を用いて研磨される被研磨対象の1つである無機絶縁膜は、定圧CVD法、プラズマCVD法等により得ることができる。定圧CVD法による酸化珪素絶縁膜形成は、Si源としてモノシラン:SiH、酸素源として酸素:Oを用いる。このSiH4−O2系酸化反応を、400℃程度以下の低温で行わせることにより得られる。高温リフローによる表面平坦化を図るために、リン:Pをドープするときには、SiH−O2−PH系反応ガスを用いることが好ましい。プラズマCD法は、通常の熱平衡下では高温を必要とする化学反応が低温できる利点を有する。
【0013】
プラズマ発生法には、容量結合型と誘導結合型の2つが挙げられる。反応ガスとしては、Si源としてSiH4、酸素源としてN2Oを用いたSiH4−N2O系ガスとテトラエトキシシラン(TEOS)を、Si源に用いたTEOS−O2系ガス(TEOS−プラズマCVD法)が挙げられる。基板温度は250℃〜400℃、反応圧力は67〜400Paの範囲が好ましい。このように、酸化珪素絶縁膜にはリン、ホウ素等の元素がドープされていてもよい。
【0014】
所定の基板としては、例えば、半導体基板すなわち回路素子とアルミニウム配線が形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板上に酸化珪素絶縁膜層が形成された基板等が挙げられる。このような半導体基板上に形成された酸化珪素絶縁膜層を、本発明の酸化セリウム研磨剤で研磨することによって、酸化珪素絶縁膜層表面の凹凸を解消し、半導体基板全面に渡って平滑な面とできる。
【0015】
ここで、研磨する装置としては、半導体基板を保持するホルダーと研磨布(パッド)を貼り付けた(回転数が変更可能なモータ等を取り付けてある)定盤を有する一般的な研磨装置が使用できる。研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。また、研磨布にはスラリーが溜まる様な溝加工を施すことが好ましい。研磨条件には制限はないが、ホルダーと定盤の回転速度は、半導体基板が飛び出さない様にそれぞれ100rpm以下の低回転が好ましく、半導体基板にかける圧力は、研磨後に傷が発生しない様に1kgf/cm2以下が好ましい。研磨している間、研磨布にはスラリーをポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常にスラリーで覆われていることが好ましい。
【0016】
研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させることが好ましい。このようにして平坦化された酸化珪素絶縁膜層の上に、第2層目のアルミニウム配線を形成し、その配線間及び配線上に再度上記方法により、酸化珪素絶縁膜を形成後、上記酸化セリウム研磨剤を用いて研磨するとによって、絶縁膜表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。この工程を所定数繰り返すことにより、所望の層数の半導体を製造する。
【0017】
本発明のセリウム化合物研磨剤及び基板の研磨法において所定の基板とは、半導体基板に形成された酸化珪素絶縁膜だけでなく、所定の配線を有する配線板に形成された酸化珪素絶縁膜、ガラス、窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プリズム等の光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバーの端面、シンチレータ等の光学用単結晶、固体レーザ単結晶、青色レーザ用LEDサファイア基板、SiC、GaP、GaAS等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を含む。
【0018】
【実施例】
以下、本発明を実施例により詳しく説明する。
実施例1
硫酸セリウム(IV)四水和物の粉末を11.7g計り取り、脱イオン水800gに溶解させ、これを攪拌しながらpHメーターを用いて、pHが8.5になるまでアンモニア5重量%水溶液を徐々に添加していき、その後、さらに脱イオン水を加えて全量を1000gにしスラリー(セリウム化合物研磨剤)を得た。
【0019】
TEOS−プラズマCVD法で作製した酸化珪素絶縁膜を形成させたSiウエハをセットし、多孔質ウレタン樹脂製の研磨パッドを貼り付けた定盤上に、絶縁膜面を下にしてホルダーを載せ、さらに加工荷重が300gf/cm2になるように重しを載せた。上記作製の研磨剤を攪拌しながらポンプで配管を通じて定盤上に供給できるようにした。定盤上にスラリーを100cc/minの速度で滴下しながら、定盤を50rpmで5分間回転させ、絶縁膜を研磨した。研磨後ウエハをホルダーから取り外して、流水で良く洗浄後、超音波洗浄機によりさらに20分間洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を除去し、120℃の乾燥機で10分間乾燥させた。光干渉式膜厚測定装置を用いて、研磨前後の膜厚変化から研磨速度を算出した結果、50nm/minであった。また、光学顕微鏡を用いて絶縁膜表面を観察したところ、明確な傷は全く観察されなかった。
【0020】
比較例1
シリカが分散されたシリカスラリーを研磨剤として用い、実施例1と同様にして、Siウエハ表面にTEOS−CVD法により形成されたSiO2絶縁膜の研磨を行った。このスラリーのpHは10.3であり、SiO2粒子を12.5重量%含んでいるものであった。また、研磨条件は実施例と同一にした。
研磨後の絶縁膜を観察したところ、研磨による傷が若干見られた。
【0021】
【発明の効果】
請求項1〜記載のセリウム化合物研磨剤は、酸化珪素絶縁膜等の被研磨面を傷が極めて少なく研磨することが可能なものである。請求項5、6記載の基板の研磨法は、半導体素子等の基板の被研磨面を傷が極めて少なく研磨することが可能なものである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cerium compound abrasive and a method for polishing a substrate.
[0002]
[Prior art]
Conventionally, colloidal silica-based polishing agents have been used as chemical mechanical polishing agents for planarizing inorganic insulating film layers such as SiO2 insulating films formed by methods such as plasma-CVD and low-pressure CVD in the manufacturing process of semiconductor devices Generally considered. Colloidal silica-based abrasives are produced by growing silica particles by a method such as thermal decomposition of tetrachlorosilicic acid and adjusting the pH with an alkaline solution containing no alkali metal such as ammonia. However, such an abrasive has a problem that colloidal silica is agglomerated and large particles are formed, and polishing scratches are generated on the surface of the inorganic insulating film after polishing.
[0003]
[Problems to be solved by the invention]
The inventions according to claims 1 to 4 provide a cerium compound abrasive capable of polishing a surface to be polished such as a silicon oxide insulating film with very few scratches. The inventions according to claims 5 and 6 provide a method for polishing a substrate such as a semiconductor element capable of polishing a surface to be polished with very few scratches.
[0004]
[Means for Solving the Problems]
The present invention provides a tetravalent cerium ion that is at least one selected from the group consisting of cerium sulfate (IV), cerium nitrate (IV), ammonium cerium sulfate (IV), ammonium cerium nitrate (IV) and hydrates thereof. the colloid obtained by adding a basic substance to a solution containing about containing choking imidazolium compound abrasives.
[0005]
The present invention also relates to the above cerium compound abrasive wherein the basic substance is an aqueous ammonia solution . Also, the present invention is the dispersion medium of the colloid for said cerium compound abrasive is water. Moreover, this invention relates to the said cerium compound abrasive | polishing agent whose pH is 7.0 or more.
[0006]
The present invention also relates to a substrate polishing method for polishing a predetermined substrate with the cerium compound abrasive.
The present invention also relates to a method for polishing a substrate, wherein the predetermined substrate is a semiconductor element on which a silicon oxide insulating film is formed.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the solution containing tetravalent cerium ions used in the present invention include an aqueous solution of cerium salt. Examples of the cerium salt include cerium (IV) sulfate, cerium nitrate (IV), and ammonium cerium sulfate (IV). ), Ammonium cerium (IV) nitrate, hydrates thereof and the like, and these may be used alone or in combination of two or more.
[0008]
The solvent of the solution containing tetravalent cerium ions is not particularly limited, but water (particularly pure water) is preferably used.
[0009]
Examples of the basic compound used in the present invention include alkyls that may be substituted with aromatic groups such as phenyl groups such as ammonia (which may be used as ammonia water), octylamine, N, N-dimethylbenzylamine and the like. There are arylamines (amine compounds having an aromatic group) such as alkylamines, dialkylamines or trialkylamines, and anilines having a group (preferably having a prime number of 1 to 9 excluding substituents). It is used alone or in combination of two or more.
[0010]
The basic compound can adjust the pH of the cerium compound abrasive.
The pH of the cerium compound abrasive is preferably 7.0 or more. If the pH is less than 7.0, the polishing rate of the abrasive tends to decrease. The upper limit of this pH is about 10.0.
[0011]
In the cerium compound abrasive of the present invention, the molar concentration of cerium ions, basic substances and water is preferably adjusted as follows.
Cerium ion: 0.029 to 0.5 mol / 1 liter (If it is 0.029 or less, the polishing rate tends to be slow, and if it exceeds 0.5, the viscosity tends to increase and handling becomes difficult).
Basic substance: 0 to 2 × 10 −5 mol / 1 liter (If it exceeds 2 × 10 −5 , the required polishing rate tends not to be obtained)
Water: 52.8-55.5 mol / 1 liter
An inorganic insulating film that is one of objects to be polished that is polished using the cerium compound abrasive of the present invention can be obtained by a constant pressure CVD method, a plasma CVD method, or the like. Formation of the silicon oxide insulating film by the constant pressure CVD method uses monosilane: SiH 4 as the Si source and oxygen: O 2 as the oxygen source. This SiH4-O2 oxidation reaction can be obtained by performing it at a low temperature of about 400 [deg.] C. or less. In order to achieve surface flattening by high temperature reflow, when doping with phosphorus: P, it is preferable to use a SiH 4 —O 2 —PH 3 -based reactive gas. The plasma C V D method has an advantage that a chemical reaction requiring a high temperature can be performed under a normal thermal equilibrium.
[0013]
There are two plasma generation methods, capacitive coupling type and inductive coupling type. As the reaction gas, SiH 4 -N 2 O-based gas using SiH 4 as the Si source, N 2 O as the oxygen source and tetraethoxysilane (TEOS) and TEOS-O 2 -based gas (TEOS) using the Si source are used. -Plasma CVD method). The substrate temperature is preferably 250 ° C. to 400 ° C., and the reaction pressure is preferably 67 to 400 Pa. As described above, the silicon oxide insulating film may be doped with an element such as phosphorus or boron.
[0014]
As the predetermined substrate, for example, a silicon oxide insulating film layer is formed on a semiconductor substrate, that is, a semiconductor substrate in which a circuit element and an aluminum wiring are formed, a semiconductor substrate in a stage in which a circuit element is formed Examples include substrates. By polishing the silicon oxide insulating film layer formed on such a semiconductor substrate with the cerium oxide abrasive of the present invention, unevenness on the surface of the silicon oxide insulating film layer is eliminated, and the entire surface of the semiconductor substrate is smooth. It can be a surface.
[0015]
Here, as a polishing apparatus, a general polishing apparatus having a surface plate with a holder for holding a semiconductor substrate and a polishing cloth (pad) attached (a motor etc. capable of changing the number of rotations) is used. it can. As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular. Further, it is preferable that the polishing cloth is subjected to groove processing so that slurry is accumulated. The polishing conditions are not limited, but the rotation speed of the holder and the surface plate is preferably low rotation of 100 rpm or less so that the semiconductor substrate does not jump out, and the pressure applied to the semiconductor substrate is such that no scratches are generated after polishing. 1 kgf / cm 2 or less is preferable. During polishing, slurry is continuously supplied to the polishing cloth with a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of polishing cloth is always covered with the slurry.
[0016]
The semiconductor substrate after the polishing is preferably washed in running water, and then dried after removing water droplets adhering to the semiconductor substrate using a spin dryer or the like. A second-layer aluminum wiring is formed on the silicon oxide insulating film layer planarized in this manner, and after the silicon oxide insulating film is formed again between the wirings and on the wiring by the above method, By polishing with a cerium abrasive, the unevenness of the surface of the insulating film is eliminated, and the entire surface of the semiconductor substrate is made smooth. By repeating this process a predetermined number of times, a desired number of semiconductor layers are manufactured.
[0017]
The predetermined substrate in the cerium compound abrasive and substrate polishing method of the present invention is not only a silicon oxide insulating film formed on a semiconductor substrate, but also a silicon oxide insulating film formed on a wiring board having predetermined wiring, glass Optical insulating circuits such as silicon nitride, optical glass such as photomasks, lenses and prisms, inorganic conductive films such as ITO, optical integrated circuits / optical switching elements / waveguides composed of glass and crystalline materials, end faces of optical fibers Optical single crystals such as scintillators, solid state laser single crystals, LED sapphire substrates for blue lasers, semiconductor single crystals such as SiC, GaP, and GaAS, glass substrates for magnetic disks, and magnetic heads.
[0018]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
Weigh out 11.7 g of cerium (IV) sulfate tetrahydrate powder, dissolve it in 800 g of deionized water, and use a pH meter while stirring the solution to a pH of 8.5 with a 5 wt% aqueous ammonia solution. After that, deionized water was further added to make a total amount of 1000 g to obtain a slurry (cerium compound abrasive).
[0019]
Set the Si wafer on which the silicon oxide insulating film produced by TEOS-plasma CVD method was set, and place the holder with the insulating film surface down on the surface plate on which the polishing pad made of porous urethane resin was attached, Further, a weight was placed so that the processing load was 300 gf / cm 2 . It was made possible to supply the above-prepared abrasive on the surface plate through a pipe with a pump while stirring. While dropping the slurry on the surface plate at a speed of 100 cc / min, the surface plate was rotated at 50 rpm for 5 minutes to polish the insulating film. After polishing, the wafer was removed from the holder, washed thoroughly with running water, and further washed with an ultrasonic cleaner for 20 minutes. After washing, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of calculating the polishing rate from the change in film thickness before and after polishing using an optical interference type film thickness measuring device, it was 50 nm / min. Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was observed.
[0020]
Comparative Example 1
The silica slurry in which silica was dispersed was used as an abrasive, and the SiO 2 insulating film formed on the Si wafer surface by the TEOS-CVD method was polished in the same manner as in Example 1. The slurry had a pH of 10.3 and contained 12.5% by weight of SiO 2 particles. The polishing conditions were the same as in the examples.
When the insulating film after polishing was observed, some scratches due to polishing were observed.
[0021]
【The invention's effect】
The cerium compound abrasive according to claims 1 to 4 can polish a surface to be polished such as a silicon oxide insulating film with very few scratches. The substrate polishing method according to claims 5 and 6 can polish the surface to be polished of a substrate such as a semiconductor element with very few scratches.

Claims (6)

硫酸セリウム(IV)、硝酸セリウム(IV)、硫酸アンモニウムセリウム(IV)、硝酸アンモニウムセリウム(IV)及びそれらの水和物からなる群より選ばれる少なくとも1種である4価のセリウムイオンを含む溶液に塩基性物質を加えることにより得られるコロイドを含むセリウム化合物研磨剤。 Base to the solution containing the tetravalent cerium ions is at least one selected from the group consisting of cerium sulfate (IV), cerium (IV), cerium ammonium sulfate (IV), cerium (IV) ammonium nitrate and their hydrates A cerium compound abrasive containing a colloid obtained by adding a functional substance . 塩基性物質がアンモニア水溶液である請求項記載のセリウム化合物研磨剤。Cerium compound polishing agent according to claim 1 basic substance is ammonia aqueous solution. コロイドの分散媒が水である請求項1記載のセリウム化合物研磨剤。Cerium compound abrasive of claim 1 Symbol placing the dispersion medium is water colloidal. pHが7.0以上である請求項1記載のセリウム化合物研磨剤。pH is cerium compound abrasive of claim 1 Symbol placement is 7.0 or more. 請求項1〜4のいずれかに記載のセリウム化合物研磨剤で、所定の基板を研磨する基板の研磨法。A method for polishing a substrate, comprising polishing a predetermined substrate with the cerium compound abrasive according to any one of claims 1 to 4 . 所定の基板が酸化珪素絶縁膜の形成された半導体素子である請求項記載の基板の研磨法。6. The method for polishing a substrate according to claim 5 , wherein the predetermined substrate is a semiconductor element having a silicon oxide insulating film formed thereon.
JP13509899A 1999-05-17 1999-05-17 Cerium compound abrasive and substrate polishing method Expired - Lifetime JP4277243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13509899A JP4277243B2 (en) 1999-05-17 1999-05-17 Cerium compound abrasive and substrate polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13509899A JP4277243B2 (en) 1999-05-17 1999-05-17 Cerium compound abrasive and substrate polishing method

Publications (2)

Publication Number Publication Date
JP2000328044A JP2000328044A (en) 2000-11-28
JP4277243B2 true JP4277243B2 (en) 2009-06-10

Family

ID=15143800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13509899A Expired - Lifetime JP4277243B2 (en) 1999-05-17 1999-05-17 Cerium compound abrasive and substrate polishing method

Country Status (1)

Country Link
JP (1) JP4277243B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100512134B1 (en) * 2001-02-20 2005-09-02 히다치 가세고교 가부시끼가이샤 Polishing compound and method for polishing substrate
JP2002241739A (en) * 2001-02-20 2002-08-28 Hitachi Chem Co Ltd Polishing agent and method for polishing substrate
WO2018179062A1 (en) * 2017-03-27 2018-10-04 日立化成株式会社 Polishing liquid, polishing liquid set, additive liquid, and polishing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062582B2 (en) * 1987-12-02 1994-01-12 多木化学株式会社 Crystalline ceric oxide sol and method for producing the same
JP3837754B2 (en) * 1994-07-11 2006-10-25 日産化学工業株式会社 Method for producing crystalline ceric oxide
JPH08304804A (en) * 1995-05-12 1996-11-22 Sony Corp Production of plasma address display device
JP3653133B2 (en) * 1996-01-30 2005-05-25 昭和電工株式会社 Polishing composition, magnetic disk substrate polishing method, and manufacturing method
US6420269B2 (en) * 1996-02-07 2002-07-16 Hitachi Chemical Company, Ltd. Cerium oxide abrasive for polishing insulating films formed on substrate and methods for using the same
JPH11330019A (en) * 1996-03-29 1999-11-30 Hitachi Chem Co Ltd Cerium oxide abrasives and producing method for substrate

Also Published As

Publication number Publication date
JP2000328044A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
JP4729834B2 (en) CMP abrasive, substrate polishing method and semiconductor device manufacturing method using the same, and additive for CMP abrasive
JPH10106994A (en) Cerium oxide abrasive agent and polishing method of substrate
KR100714246B1 (en) Cmp abrasive and substrate polishing method
JP4972829B2 (en) CMP polishing agent and substrate polishing method
JP2009182344A (en) Cerium oxide abrasive and method of polishing substrate
JP4277243B2 (en) Cerium compound abrasive and substrate polishing method
JPH10106988A (en) Cerium oxide abrasive agent and polishing method of substrate
JPH10102040A (en) Cerium oxide abrasive and grinding of substrate
JPH10106987A (en) Cerium oxide abrasive agent and polishing method of substrate
JPH10106990A (en) Cerium oxide abrasive material and polishing method of substrate
JPH10102038A (en) Cerium oxide abrasive and grinding of substrate
JP2003158101A (en) Cmp abrasive and manufacturing method therefor
JPH10106992A (en) Cerium oxide abrasive agent and polishing method of substrate
JPH10298538A (en) Cerium oxide abrasive material and polishing of substrate
JP4491857B2 (en) CMP polishing agent and substrate polishing method
JP2000188270A (en) Cerium oxide abrasive and method of grinding substrate
JPH10106991A (en) Cerium oxide abrasive powder, and polishing method of substrate
JP5418571B2 (en) CMP polishing agent and substrate polishing method
JPH10106989A (en) Cerium oxide abrasive agent and polishing method of substrate
JPH10106986A (en) Cerium oxide abrasive agent and polishing method of substrate
JP2003017445A (en) Cmp abrasive and method for polishing substrate
JP4830194B2 (en) CMP polishing agent and substrate polishing method
JP2003017447A (en) Cmp abrasives and method for polishing substrate
JP2001332516A (en) Cmp abrasive and method for polishing substrate
JP2003059866A (en) Cmp abrasive and method of polishing board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term