JP4271881B2 - Incinerator control device and program - Google Patents

Incinerator control device and program Download PDF

Info

Publication number
JP4271881B2
JP4271881B2 JP2001237335A JP2001237335A JP4271881B2 JP 4271881 B2 JP4271881 B2 JP 4271881B2 JP 2001237335 A JP2001237335 A JP 2001237335A JP 2001237335 A JP2001237335 A JP 2001237335A JP 4271881 B2 JP4271881 B2 JP 4271881B2
Authority
JP
Japan
Prior art keywords
furnace
excess air
air ratio
concentration
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001237335A
Other languages
Japanese (ja)
Other versions
JP2003050009A (en
Inventor
学 黒田
聡 藤井
拓幸 島本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2001237335A priority Critical patent/JP4271881B2/en
Publication of JP2003050009A publication Critical patent/JP2003050009A/en
Application granted granted Critical
Publication of JP4271881B2 publication Critical patent/JP4271881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ごみ焼却炉において火格子下から炉内に吹き込む燃焼用空気量の算出を行う焼却炉制御装置及びプログラムに関する。
【0002】
【従来の技術】
ごみ焼却炉は、日々の生活において排出される様々な廃棄物を処理するという重要な役割を担っている。近年では、廃棄物であるごみの焼却処理によって発生する膨大な熱エネルギーの回収への関心が集まり、ボイラ発電設備のついたものが増加している。
【0003】
このようなごみ焼却炉では、ごみはごみクレーンによって数十分の間隔で間欠的にごみホッパへ投入され、ごみホッパの下部にあるプッシャによってごみは炉内に送り込まれる。炉内に送り込まれたごみは火格子の往復運動により、火格子上を移動しながら乾燥・燃焼され、最終的には灰となって炉外に排出される。
【0004】
炉内の燃焼状態を安定に維持するため、50〜150℃程度に加熱された空気(以下「燃焼用空気」と呼ぶ。)がごみ搬送方向に対し複数に分割された火格子下の領域(風箱)から、乾燥段、燃焼段、後燃焼段それぞれの火格子に吹き込まれる。乾燥段、燃焼段、後燃焼段のそれぞれの火格子に吹き込まれる燃焼用空気量は、供給される燃焼用空気の総流量及び各段の火格子に燃焼用空気を供給する供給配管に設けられた火格子下ダンパのダンパ開度によって調整される。
【0005】
また、炉壁に設けられた冷却空気吹き込み口からは、冷却空気ブロアにより冷却空気が吹き込まれ、燃焼ガス中の未燃焼成分を完全燃焼させると共に、炉壁の温度が過度に上昇することを防止する。
【0006】
ごみの燃焼によって発生した排ガスは、炉出口に設けられた熱交換機でボイラ水に熱を与えた後、排気される。
【0007】
ごみ焼却炉の燃焼過程では、いかなるごみ質のごみを燃焼する場合でもボイラの蒸気発生量及び炉出口温度を安定に保つため、自動燃焼制御により火格子速度、燃焼用空気量、冷却空気量等の各操作端が制御される。なお、ごみ焼却炉では各々の操作端が炉内の燃焼状態に影響を及ぼしあうため、制御の観点から見るとこれらは多変数干渉系である。
【0008】
自動燃焼制御により所定の性能を出すために、焼却炉の建設時に各操作端の制御パラメータの調整を実施する。制御パラメータの調整順序としては、まずごみの燃焼に与える影響の大きい火格子速度や燃焼用空気量を始めに調整し、その後に排ガスの再燃焼に関わる冷却空気量の調整を行うのが通例である。従来、制御パラメータの調整は、専門の技術員が過去の実績、実炉内の燃焼状態等を見ながら適切な値を設定する方法により行っており、調整には約1〜2週間を要していた。また、稼動後においても炉の経年変化等に応じて同様の方法により、逐次パラメータの見直しを実施していた。
【0009】
特に、火格子下から炉内に吹き込む燃焼用空気量は、ごみの燃焼速度に直接影響を及ぼす重要な操作端の一つであり、その制御パラメータの調整の適否は、炉内の燃焼状態の安定性に大きく影響を与える。
【0010】
火格子下から炉内に吹き込む燃焼用空気量Fは、一般に次式(1)により決定される。
F=(FT×E)×CF (1)
ここで、FT :理論空気量,E :空気過剰率,CF :補正係数をあらわす。
【0011】
ごみの燃焼に必要な理論空気量FT 及びその時のごみの発熱量はごみの組成比及びごみ量から理論的に算出される。
【0012】
空気過剰率は、ごみが完全に燃焼できるように、焼却炉の燃焼実績から算出したごみの発熱量に対応した理論空気量と炉の特性に起因する実際の燃焼に要する空気量との違いを補う形で理論空気量に補正をかける係数であり、運転時の負荷(高負荷、定格負荷、低負荷)の違い、及びごみの発熱量の違いに応じて個々に調整されるパラメータである。
【0013】
補正係数CF は、例えば蒸発量偏差、炉出口温度等の短期の変動を補正するための係数であり、操業中の炉内状況に応じて変更されるパラメータである。
【0014】
前記燃焼用空気量を適正な値に調整することにより、完全燃焼の促進による未燃分の抑制、DXN排出抑制、燃焼状態の安定化を図っている。
【0015】
【発明が解決しようとする課題】
燃焼用空気量を決定するパラメータの一つである空気過剰率は焼却炉の建設時に決定されるパラメータであるが、全体の燃焼状態を確認しながら実施しなければならず熟練した技術を要していた。さらに、空気過剰率の調整は運転時の負荷、及びごみの発熱量の違いに応じた個々の調整が必要であり長時間を要するという問題があった。
【0016】
本発明はこれらの問題点を解決するためになされたもので、燃焼用空気量を決定するパラメータの調整を精度良く短時間に行うことにより、火格子下から炉内に吹き込む燃焼用空気量の算出を高精度に行うことができる焼却炉制御装置及びプログラムを提供することを目的とする。
【0017】
【課題を解決するための手段】
上記の課題は次の発明により解決される。
[1]火格子式ごみ焼却炉の燃焼制御装置であって、空気過剰率調整手段と、該空気過剰率調整手段により調整された空気過剰率に基づき火格子下から炉内に吹き込む燃焼用空気量を算出する燃焼用空気量算出手段とを有し、
空気過剰率調整手段が炉内ガス状態判定手段Aを備え、
炉内ガス状態判定手段Aは、焼却炉出口近傍のO2濃度およびCO濃度の計測値に基づきCO濃度が所定の閾値より低い範囲と対をなすO2濃度の範囲をO2濃度の適正範囲と決定し、O2濃度の適正範囲から外れるデータ点数Ngの全データ点数Nに対する割合Ng/Nと予め定めた閾値との比較を行い、Ng/Nが該閾値より大きい場合には、O2濃度の適正範囲より低い濃度のデータ点数NlとO2濃度の適正範囲より高い濃度のデータ点数Nhを比較し、NlがNhより小さい場合には炉内の酸素が過剰と判定して空気過剰率を低減し、NlがNhより大きい場合には炉内の酸素が不足と判定して空気過剰率を増加するように空気過剰率を調整するものであることを特徴とする焼却炉制御装置。
[2]火格子式ごみ焼却炉の燃焼制御装置であって、空気過剰率調整手段と、該空気過剰率調整手段により調整された空気過剰率に基づき火格子下から炉内に吹き込む燃焼用空気量を算出する燃焼用空気量算出手段とを有し、
空気過剰率調整手段が炉内ガス状態判定手段Bを備え、
炉内ガス状態判定手段Bは、炉内画像情報を処理することにより炉内で燃焼している炎の所定周期毎に算出した輝度の所定時間での輝度平均値Saと予め定めた閾値Sbとの比較を行い、輝度平均値Saが該閾値Sbより小さい場合には、輝度とO2濃度を示す図中で輝度平均値Saと輝度平均値Saを算出した時間帯と同じ時間帯に計測した焼却炉出口近傍のO2濃度計測値の平均値O2aにより定まる点と、前記閾値Sbと予め設定される適正O2濃度O2bにより定まる点とを結んだ直線の傾きdを算出し、傾きdが正または0の場合には炉内の酸素が不足と判定して空気過剰率を増加し、傾きdが負の場合には炉内の酸素が過剰と判定して空気過剰率を低減するように空気過剰率を調整するものであることを特徴とする焼却炉制御装置。
[3]火格子式ごみ焼却炉の燃焼制御装置であって、空気過剰率調整手段と、該空気過剰率調整手段により調整された空気過剰率に基づき火格子下から炉内に吹き込む燃焼用空気量を算出する燃焼用空気量算出手段とを有し、
空気過剰率調整手段が炉内ガス状態判定手段Cを備え、
炉内ガス状態判定手段Cは、炉内画像情報を処理することにより炉内で燃焼している炎の所定周期毎に算出したR成分の所定時間でのR成分平均値eaと予め定めた閾値ebとの比較を行い、R成分平均値eaが該閾値ebより大きい場合には、R成分とO2濃度を示す図中でR成分平均値eaとR成分平均値eaを算出した時間帯と同じ時間帯に計測した焼却炉出口近傍のO2濃度計測値の平均値O2a´により定まる点と、前記閾値ebと予め設定される適正O2濃度O2b´により定まる点とを結んだ直線の傾きfを算出し、傾きfが正または0の場合には炉内の酸素が過剰と判定して空気過剰率を低減し、傾きfが負の場合には炉内の酸素が不足と判定して空気過剰率を増加ように空気過剰率を調整するものであることを特徴とする焼却炉制御装置。
[4]上記[1]乃至[3]の何れかに記載の焼却炉制御装置としてコンピュータを機能させることを特徴とするプログラム。
【0018】
【発明の実施の形態】
図1は、本発明が適用されるごみ焼却炉の一実施形態を示す概略構成図である。
【0019】
図1に示すごみ焼却炉は火格子4を有する火格子式の焼却炉であり、ごみ投入口2、ごみの燃焼が行われる炉1、炉1の出口7の下流側に設置された熱交換器9a及び蒸気ドラム9bを備えたボイラ9を有している。
【0020】
ごみ投入口2から投入されたごみは、給塵装置3によって火格子4へ送り込まれる。火格子4は往復運動し、その往復運動によってごみの撹拌および移動が行われる。火格子4上のごみは、燃焼用空気ブロア6により火格子4の下から供給される燃焼用空気の吹き込みにより乾燥が行われた後に燃焼が行われ、排ガスと灰に分解される。灰は、灰落下口5から落下して炉外に排出される。
【0021】
火格子4の下から炉内に供給される燃焼用空気の総量は燃焼用空気ブロア6の直近に設けた燃焼用空気ダンパ14により調整され、また、各風箱に供給される燃焼用空気の量は、各風箱に燃焼用空気を供給する各配管に設けられた火格子下燃焼用空気ダンパ14a,14b,14c,14dにより調整される。図1に示した例では、火格子4の下をごみ搬送方向に対し4つの風箱で分割して燃焼用空気を供給する構成としているが、ごみ焼却炉の規模及び目的に応じて適宜変更可能であり4つの風箱の場合に限られるものではないことは言うまでもない。
【0022】
また、炉壁に設けられた冷却空気吹き込み口10からは、冷却空気ブロア11により冷却空気が吹き込まれ、燃焼ガス中の未燃焼成分を完全燃焼させると共に、炉壁の温度が過度に上昇することを防止する。
【0023】
一方、火格子4の上流側のごみ乾燥過程で発生した可燃性ガスと下流側の後燃焼過程で発生した燃焼排ガスは、炉1の出口7側に設けられたガス混合部で合流し再度攪拌混合され2次燃焼が行われる。ガス混合部の下流側には熱交換器9a及び蒸気ドラム9bを備えたボイラ9が設置されており、2次燃焼ガスはここで熱エネルギーを回収された後に煙突8から外部に排気される。
【0024】
なお、炉1内には図1に仮想線で示したような中間天井30を設けても良い。中間天井30を炉内に設けることにより、炉内のガスを火格子4の上流側のごみ乾燥過程で発生した可燃性ガスと下流側の後燃焼過程で発生した燃焼排ガスに2分して排出することができる。この2分して排出したガスをガス混合部で再合流させることにより、ガス混合部でのガスの攪拌混合がさらに促進され、混合室内での燃焼がより安定化し、燃焼過程におけるダイオキシン類の発生のさらなる抑制、ごみ未燃の発生防止を図ることができる。
【0025】
焼却炉制御装置25では、焼却炉内での安定した燃焼を維持するため、例えば、炉出口7での燃焼排ガスの温度を計測する温度計12の計測値、蒸気ドラム9bからの蒸気量を計測する流量計13の計測値、炉壁に設けられた工業用カメラ15からの炉内画像情報を処理する画像処理装置16による炎の輝度や色成分あるいは火格子上のごみ燃え切り点の計測結果、焼却炉出口(ボイラ9出口)近傍のO2濃度およびCO濃度を計測するO2濃度計18およびCO濃度計19の計測値等に基づき火格子4の往復速度、燃焼用空気量、冷却空気量等を自動的に調整する。なお、焼却炉制御装置25には例えばコンピュータが使用できる。
【0026】
このような構成のごみ焼却炉において、本発明に係る焼却炉制御装置25は、O2濃度およびCO濃度の計測値、及び/又は、O2濃度の計測値および火格子上の炎の画像処理結果に基づきパラメータの調整を行うパラメータ調整手段と、該パラメータ調整手段により調整されたパラメータに基づき火格子下から炉内に吹き込む燃焼用の空気量を算出する燃焼用空気量算出手段とを有する。
【0027】
前記燃焼用空気量算出手段により算出された火格子4の下から炉内に吹き込む燃焼用空気量の値は、例えば焼却炉制御装置25の燃焼用空気ダンパ14の開度調整を行うダンパ開度調整手段に出力され、このダンパ開度調整手段は前記出力された空気量の値となるように燃焼用空気ダンパ14の開度を調整して、火格子4の下から炉内に供給される燃焼用空気の総量を制御する。
【0028】
以下、本発明に係る火格子下から炉内に吹き込む燃焼用空気量算出方法の実施形態の一例について説明する。
【0029】
火格子下から炉内に吹き込む燃焼用空気量Fは、F=(理論空気量FT×空気過剰率E)×補正係数CF で算出される。
【0030】
ここで、ごみの燃焼に必要な理論空気量FT 及びその時のごみの発熱量はごみの組成比及びごみ量から算出される。なお、焼却炉における代表的なごみ組成は地域的な状況に依存しているので、焼却炉毎に数種類の周辺ごみサンプルを組成分析した結果から、ごみ発熱量と理論空気量の対応付けを行うことが好ましい。
【0031】
空気過剰率Eは、ごみが完全に燃焼できるように、算出したごみの発熱量に対応した理論空気量と、炉の特性に起因する実際の燃焼に要する空気量との違いを補う形で理論空気量に補正をかける係数であり、運転時の負荷(高負荷、定格負荷、低負荷)の違い、及びごみの発熱量の違いに応じて個々に調整可能なパラメータである。
【0032】
補正係数CF は、例えば蒸気ドラムからの蒸発量偏差、炉出口温度等の短期の変動を補正するための係数であり、操業中の炉内状況に応じて適宜変更されるパラメータである。
【0033】
ここで、前記空気過剰率Eは、前記理論空気量FT に対応する形で焼却炉の運転時の負荷(高負荷、定格負荷、低負荷)の違い及びごみの発熱量の違いに応じて個々に設定可能なパラメータであるが、その設定された値の適否が炉内の燃焼状態の安定性に直接影響を与えるため、重要なパラメータの一つである。
【0034】
図2は、空気過剰率の設定例を示した図である。図2に示すように空気過剰率は、焼却炉の運転時の負荷(高負荷、定格負荷、低負荷)毎に、ごみの発熱量の違いに応じて個々に設定される値である。
【0035】
図3は、前記空気過剰率の調整方法の一例を示すフローチャートである。空気過剰率の調整は、焼却炉の建設時に便宜的に設定された空気過剰率の値をその焼却炉に合わせて操業前にチューニングを行う場合、炉の改造時等に空気過剰率の値の見直しを行う場合、あるいは定期的に空気過剰率の値の見直しを行う場合に行われる。なお、空気過剰率の調整を行う際には、操業中の短期の変動を補正するための係数CF は1で固定しておくことが望ましい。空気過剰率の調整中に他の変動要素の影響を受けないようにするためである。
【0036】
以下、図3のフローチャートに従って、空気過剰率の調整方法を説明する。なお、以下のフローチャートにおいて、データの計測周期は10〜30秒程度毎、空気過剰率の調整周期は5〜10分程度の間隔毎或いはごみ投入毎に行うのが炉内の燃焼挙動を正確に把握できるので望ましい。
【0037】
[炉内ガス状態判定手段A]
S1では、焼却炉出口(ボイラ9出口)近傍に設置されたO2濃度計18およびCO濃度計19の計測値に基づき、図4に示すようなO2−CO濃度分布図を作成する。図4に示すO2−CO濃度分布図は、略同時刻に計測されたO2濃度とCO濃度の値を対として、横軸を所定の濃度範囲で区分したO2濃度とし、縦軸は前記区分されたO2濃度の範囲毎にその範囲内のO2濃度と対になるCO濃度の平均値を算出してそれをプロット(図中の×印)したものである。ここで、前記O2濃度を区分する所定の濃度範囲としては、0.3〜0.5%の範囲(図4では0.5%)とすることが望ましい。なお、O2−CO濃度分布図は図4に示すように、下に凸のグラフとなるのが一般的である。
【0038】
S2では、S1で作成した図4に基づき、O2濃度の適正範囲を決定する。ここで、O2濃度の適正範囲は、図4においてCO濃度の平均値が予め定められた所定の閾値aよりも低いO2濃度の範囲として決定する。なお、前記CO濃度の所定の閾値aの値としては、10〜20ppmの範囲で定めることが望ましい。
【0039】
S3では、O2濃度の全データ点数Nに対するS2で決定したO2濃度の適正範囲(図4では1.0〜3.5%の範囲)から外れるO2濃度のデータ点数Ngの割合を算出し、予め定められた閾値xとの比較を行う。前記比較は次式1で行い、式1を満たす場合は、炉内ガス状態判定手段Aでの空気過剰率の調整は必要なしと判断、つまり酸素量は適正であり空気過剰率の調整は必要なしと判断して次のステップである炉内ガス状態判定手段B(S7)に進む。式1を満たさない場合には、酸素量が適正でないと判断してS4に進む。
【0040】
Ng/N≦x (1)
S4では、前記O2濃度の適正範囲から外れるO2濃度のデータ点数Ngの内、適正範囲より低い濃度のデータ点数Nlと適正範囲より高い濃度のデータ点数Nhの大小を次式2で比較する。ここで、Ng=Nl+Nhの関係が成り立つ。
【0041】
Nl<Nh (2)
式2を満たす場合は、炉内の酸素が過剰と判断して空気過剰率の値を所定量bだけ減らし(S5)、S17へ進む。式2を満たさない場合は、炉内の酸素が不足と判断して空気過剰率の値を所定量bだけ増やし(S6)、S17へ進む。
【0042】
S17では、現在の運転負荷及びごみの発熱量に対応した空気過剰率の値を、S或いはSで変更された空気過剰率の値に更新して、当該区分の空気過剰率の調整を終了する。
【0043】
なお、上述のようにS5またはS6の終了後にS17に進むのではなく、S5またはS6を終了した後、さらにS7に進むようにしても良い。この場合、炉内ガス状態判定手段Aによる空気過剰率の調整後に、炉内ガス状態判定手段B及び炉内ガス状態判定手段Cによる調整が行われるのでより精密な調整が可能となる。
【0044】
[炉内ガス状態判定手段B]
S3での判定で式1を満たす場合、S7では、炉内で燃焼している炎の所定周期毎に算出した輝度(画像内全てのピクセルにおける輝度Sの平均値)の所定時間での平均値Saを算出し、予め定められた閾値Sbとの比較を行う。前記比較は次式3で行い、式3を満たす場合は、空気量は適切であると判断して次のステップである炉内ガス状態判定手段C(S12)に進む。式3を満たさない場合は、S8に進む。
【0045】
Sa≧Sb (3)
炎の輝度は、工業用カメラ15からの炉内画像情報を処理する画像処理装置16で算出される。炉内の炎は、空気の供給量が適切なときには青白く輝度の大きな炎となるが、空気の供給量が過剰或いは不足しているときには、輝度の小さい見た感じ勢いのない炎となる。炎の輝度は、画像処理装置16に取り込まれた炉内画像情報において、ピクセル毎に色成分(R,G,B)を次式4の一次結合式により、人間の視覚から得られる輝度の度合を256等分して表示し、画像内全てのピクセルにおける輝度Sの平均値として算出する。なお、各ピクセルの輝度Sの値は0〜255で示され、この値が大きいほど輝度が大きいことを意味する。
【0046】
S=0.3×R+0.59×G+0.11×B (4)
ここで、R:赤成分(0〜255の整数)、G:緑成分(0〜255の整数)、B:青成分(0〜255の整数)を表す。
【0047】
S8では、S7で算出した輝度平均値Sa及びそのほぼ同時間帯に計測されたO2濃度計18によるO2濃度計測値の平均値O2aにより定まる点と、前記閾値Sb及び予め設定される適正O2濃度O2bにより定まる点とを結んだ直線の傾きdを算出する。
【0048】
図5は、前記Sa及びO2aにより定まる点とSb及びO2bにより定まる点との関係を示した図である。図5(a)はSa及びO2aにより定まる点とSb及びO2bにより定まる点とを結んだ直線の傾きdが正の場合、図5(b)はSa及びO2aにより定まる点とSb及びO2bにより定まる点とを結んだ直線の傾きdが負の場合を示している。
【0049】
S9では、S8で求めた傾きdを次式5により判定を行い、式5を満たす場合にはS10に進み、式5を満たさない場合にはS11に進む。
【0050】
d≧0 (5)
式5を満たす場合、S10では、空気過剰率を所定量増やし、S12に進む。図5(a)に示すように傾きdが正となる場合は、輝度を大きくするためにはO2濃度を高くする必要があり、そのために空気過剰率を所定量増やす。この場合、前記空気過剰率の増加量は前記閾値Sbと平均輝度Saとの差分を考慮して、(Sb−Sa)×βとすることが好ましい。なお、βは予め定められる正の定数である。
【0051】
式5を満たさない場合、S11では、空気過剰率を所定量減らし、S12に進む。図5(b)に示すように傾きdが負となる場合は、輝度を大きくするためにはO2濃度を下げる必要があり、そのために空気過剰率を所定量減らす。この場合、前記空気過剰率の減少量は前記閾値Sbと平均輝度Saとの差分を考慮して、(Sb−Sa)×βとすることが好ましい。なお、βは予め定められる正の定数である。
【0052】
[炉内ガス状態判定手段C]
S7での判定で式3を満たす場合、或いはS10またはS11で空気過剰率の調整を行った後、S12では、炉内で燃焼している炎の所定周期毎に算出したR(赤色)成分(画像内全てのピクセルにおけるR成分の平均値)の所定時間での平均値eaを算出し、予め定められた閾値ebとの比較を行う。前記比較は次式6で行い、式6を満たす場合は、空気量は適切であると判断してS17に進む。式6を満たさない場合は、S13に進む。
【0053】
a≦eb (6)
aは、工業用カメラ15からの炉内画像情報を処理する画像処理装置16により算出される。炉内の炎は、空気の供給量が適切なときには青白くR成分の値が小さな炎となるが、空気の供給量が過剰或いは不足しているときにはR成分の値が大きな炎となる。炎のR成分は、画像処理装置16に取り込まれた炉内画像情報において、画像内全てのピクセルにおけるR成分の平均値として算出する。
【0054】
S13では、S12で算出したR成分平均値ea及びそのほぼ同時間帯に計測されたO2濃度計18による計測値の平均値O2a’により定まる点と、前記閾値eb及び予め設定される適正O2濃度O2b’により定まる点とを結んだ直線の傾きfを算出する。
【0055】
図6は、前記ea及びO2a’により定まる点とeb及びO2b’により定まる点との関係を示した図である。図5(a)はea及びO2a’により定まる点とeb及びO2b’により定まる点とを結んだ直線の傾きfが正の場合、図5(b)はea及びO2a’により定まる点とeb及びO2b’により定まる点とを結んだ直線の傾きfが負の場合を示している。
【0056】
S14では、S13で求めた傾きfを次式7により判定を行い、式7を満たす場合にはS15に進み、式7を満たさない場合にはS16に進む。
【0057】
f≧0 (7)
式7を満たす場合、S15では、空気過剰率を所定量減らし、S17に進む。図6(a)に示すように傾きfが正となる場合は、R成分を小さくするためにはO2濃度を低くする必要があり、そのために空気過剰率を所定量減らす。この場合、前記空気過剰率の減少量は前記閾値ebと平均輝度eaとの差分を考慮して、(ea−eb)×γとすることが好ましい。なお、γは予め定められる正の定数である。
【0058】
式7を満たさない場合、S16では、空気過剰率を所定量増やし、S17に進む。図6(b)に示すように傾きが負となる場合は、R成分を小さくするためにはO2濃度を高くする必要があり、そのために空気過剰率を所定量増やす。この場合、前記空気過剰率の増加量は前記閾値ebと平均輝度eaとの差分を考慮して、(ea−eb)×γとすることが好ましい。なお、γは予め定められる正の定数である。
【0059】
なお、本実施形態における炉内ガス状態判定手段CではR(赤色)成分の値のみで評価しているが、G(緑色)成分及び/又はB(青色)成分との値の比率で評価する方法等もあり、評価方法は本実施形態に限定されない。
【0060】
S17では、S5,S6,S15或いはS16で調整された現在の運転負荷及びごみの発熱量に対応した空気過剰率のデータの更新を行う。
【0061】
上述した炉内ガス状態判定手段A、炉内ガス状態判定手段B及び炉内ガス状態判定手段Cは単独で行うことも可能であり、さらに任意の2つを組み合わせて実施することも可能である。この場合、各ステップ単独の効果、或いは組み合わせた効果が得られる。
【0062】
炉内ガス状態判定手段Aを単独で行う場合には、S3で式1を満たした場合にはS17に進み、空気過剰率のデータは更新せずに現在の運転負荷及びごみの発熱量に対応した空気過剰率データの調整を終了する。
【0063】
また、炉内ガス状態判定手段Bを単独で行う場合には、S7からスタートし、S7で式3を満たした場合にはS17に進み、空気過剰率のデータは更新せずに現在の運転負荷及びごみの発熱量に対応した空気過剰率データの調整を終了する。式3を満たさない場合には、上述した場合と同様にS8からS9に進み、S10或いはS11を終了した時点でS17に進む。
【0064】
また、炉内ガス状態判定手段Cを単独で行う場合には、S12からのスタートとなり、上述した場合と同様に処理が行われる。
【0065】
空気過剰率を図2に示したような形式で設定している場合には、上述した方法による空気過剰率の調整は、焼却炉の運転時の各負荷(高負荷、定格負荷、低負荷)のそれぞれにおいて、区分された発熱量に該当するごみ質のごみが少なくとも一通り投入されるまで行うことが望ましい。なお、各負荷につき空気過剰率の調整は半日から1日程度行うことが望ましい。
【0066】
また、過去の所定回数分の調整において更新された数値の総数が所定の値以下になったときに空気過剰率の調整を終了するという方法をとることもできる。
【0067】
【発明の効果】
以上説明したように本発明によれば、燃焼用空気量を決定するパラメータの調整を精度良く短時間に行うことにより、火格子下から炉内に吹き込む燃焼用空気量の算出を高精度に行うことができる焼却炉制御装置及びプログラムが提供される。
【図面の簡単な説明】
【図1】本発明が適用されるごみ焼却炉の一実施形態を示す概略構成図である。
【図2】空気過剰率の設定例を示した図である。
【図3】空気過剰率の調整方法の一例を示すフローチャートである。
【図4】O2−CO濃度分布図である。
【図5】輝度とO2濃度の関係を示した図である。
【図6】赤成分(R)とO2濃度の関係を示した図である。
【符号の説明】
1 炉
2 ごみ投入口
3 給塵装置
4 火格子
5 灰落下口
6 燃焼用空気ブロア
7 炉出口
8 煙突
9 ボイラ
9a 熱交換器
9b 蒸気ドラム
10 冷却空気吹き込み口
11 冷却空気ブロア
12 温度計
13 流量計
14 燃焼用空気ダンパ
14a,14b,14c,14d 火格子下燃焼用空気ダンパ
15 工業用カメラ
16 画像処理装置
18 O2濃度計
19 CO濃度計
25 焼却炉制御装置
30 中間天井
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an incinerator control device and a program for calculating an amount of combustion air blown into a furnace from below a grate in a waste incinerator.
[0002]
[Prior art]
Garbage incinerators play an important role in treating various wastes discharged in daily life. In recent years, interest in collecting enormous heat energy generated by incineration of waste, which is waste, has gathered, and those with boiler power generation facilities are increasing.
[0003]
In such a waste incinerator, waste is intermittently thrown into the waste hopper at a few tens of minutes by a waste crane, and the waste is sent into the furnace by a pusher under the waste hopper. The garbage sent into the furnace is dried and burned while moving on the grate by the reciprocating motion of the grate, and finally becomes ash and is discharged outside the furnace.
[0004]
In order to stably maintain the combustion state in the furnace, an area under a grate where air heated to about 50 to 150 ° C. (hereinafter referred to as “combustion air”) is divided into a plurality of parts in the garbage transport direction ( From the wind box), it is blown into the grate of each of the drying stage, the combustion stage, and the post-combustion stage. The amount of combustion air blown into each grate of the drying stage, the combustion stage, and the post-combustion stage is provided in the total flow rate of the supplied combustion air and the supply pipe that supplies the combustion air to the grate of each stage. It is adjusted by the damper opening of the damper under the grate.
[0005]
In addition, cooling air is blown in from the cooling air inlet provided in the furnace wall by the cooling air blower to completely burn the unburned components in the combustion gas and prevent the furnace wall temperature from rising excessively. To do.
[0006]
The exhaust gas generated by the combustion of garbage is exhausted after heating the boiler water with a heat exchanger provided at the furnace outlet.
[0007]
In the combustion process of a garbage incinerator, the grate speed, combustion air volume, cooling air volume, etc. are controlled by automatic combustion control in order to keep the amount of steam generated in the boiler and the furnace outlet temperature stable even when burning any kind of waste. Each operation end is controlled. In the refuse incinerator, each operation end affects the combustion state in the furnace, so these are multivariable interference systems from the viewpoint of control.
[0008]
In order to obtain a predetermined performance by automatic combustion control, the control parameters of each operation end are adjusted at the time of construction of the incinerator. As a control parameter adjustment sequence, it is customary to first adjust the grate speed and the amount of combustion air, which have a large impact on the combustion of waste, and then adjust the amount of cooling air related to exhaust gas recombustion. is there. Conventionally, control parameters are adjusted by a method in which specialized technicians set appropriate values while observing past results, combustion conditions in the actual furnace, etc., and adjustment takes about 1 to 2 weeks. It was. In addition, after the operation, the parameters were sequentially reviewed by the same method according to the aging of the furnace.
[0009]
In particular, the amount of combustion air blown into the furnace from below the grate is one of the important operating ends that directly affects the combustion speed of waste, and whether or not the control parameters are adjusted properly depends on the combustion state in the furnace. The stability is greatly affected.
[0010]
The amount of combustion air F blown into the furnace from below the grate is generally determined by the following equation (1).
F = (F T × E) × C F (1)
Here, F T represents the theoretical air amount, E represents the excess air ratio, and C F represents the correction coefficient.
[0011]
Calorific value of waste when the theoretical amount of air F T and its required for combustion of the waste is theoretically calculated from the composition ratio and amount of waste of waste.
[0012]
The excess air ratio is the difference between the theoretical amount of air corresponding to the amount of heat generated by the incinerator and the amount of air required for actual combustion due to the characteristics of the furnace so that the waste can burn completely. It is a coefficient that corrects the theoretical air amount in a compensated manner, and is a parameter that is individually adjusted according to the difference in load during operation (high load, rated load, low load) and the amount of heat generated by waste.
[0013]
The correction coefficient C F is a coefficient for correcting short-term fluctuations such as evaporation amount deviation and furnace outlet temperature, and is a parameter that is changed according to the in-furnace situation during operation.
[0014]
By adjusting the amount of combustion air to an appropriate value, suppression of unburned portion, promotion of DXN emission, and stabilization of combustion state are promoted by promoting complete combustion.
[0015]
[Problems to be solved by the invention]
The excess air ratio, which is one of the parameters that determine the amount of combustion air, is a parameter that is determined during the construction of the incinerator, but it must be carried out while checking the overall combustion state, and requires skill. It was. Furthermore, the adjustment of the excess air ratio has a problem that it takes a long time because individual adjustments are required depending on the load during operation and the amount of heat generated by the waste.
[0016]
The present invention has been made to solve these problems, and by adjusting the parameters for determining the amount of combustion air accurately and in a short time, the amount of combustion air blown into the furnace from below the grate can be reduced. An object of the present invention is to provide an incinerator control device and program capable of performing calculation with high accuracy.
[0017]
[Means for Solving the Problems]
The above problems are solved by the following invention.
[1] A combustion control device for a grate-type waste incinerator, comprising an excess air ratio adjusting means and combustion air blown into the furnace from below the grate based on the excess air ratio adjusted by the excess air ratio adjusting means Combustion air amount calculation means for calculating the amount,
The excess air ratio adjusting means includes in-furnace gas state determining means A,
The gas state judging means A furnace, a range of O 2 concentrations CO concentration based on the measurement value of the O 2 concentration and CO concentration of incinerator outlet near forms a pair range below a predetermined threshold value of the O 2 concentration appropriate range determines that performs comparison with a predetermined threshold value and the ratio Ng / N for all data points N of the data points Ng departing from the proper scope of the O 2 concentration, when Ng / N is greater than the threshold value, O 2 Compare the number of data points Nl with a concentration lower than the appropriate range of concentration and the number of data points Nh with a higher concentration than the appropriate range of O 2 concentration, and if Nl is smaller than Nh, determine that the oxygen in the furnace is excessive and the excess air ratio And the excess air ratio is adjusted so that the excess air ratio is increased by determining that the oxygen in the furnace is insufficient when Nl is greater than Nh.
[2] A combustion control device for a grate-type waste incinerator, comprising an excess air ratio adjusting means and combustion air blown into the furnace from below the grate based on the excess air ratio adjusted by the excess air ratio adjusting means Combustion air amount calculation means for calculating the amount,
The excess air ratio adjusting means includes in-furnace gas state determining means B,
The in-furnace gas state determination means B processes the in-furnace image information to obtain a luminance average value Sa for a predetermined time and a predetermined threshold value Sb calculated for each predetermined period of the flame burning in the furnace. makes a comparison, if the average luminance value Sa is smaller than the threshold value Sb were measured in the same time zone as the time zone of calculating the average luminance value Sa and the luminance mean value Sa in the figure showing the luminance and the O 2 concentration The slope d of a straight line connecting the point determined by the average value O 2 a of the measured O 2 concentration in the vicinity of the incinerator exit and the point determined by the preset appropriate O 2 concentration O 2 b is calculated. When the slope d is positive or 0, it is determined that the oxygen in the furnace is insufficient and the excess air ratio is increased. When the slope d is negative, the oxygen in the furnace is determined to be excessive and the excess air ratio is increased. Incinerator control device characterized by adjusting excess air ratio so as to reduce
[3] A combustion control device for a grate-type waste incinerator, comprising an excess air ratio adjusting means and combustion air blown into the furnace from below the grate based on the excess air ratio adjusted by the excess air ratio adjusting means Combustion air amount calculation means for calculating the amount,
The excess air ratio adjusting means includes in-furnace gas state determining means C,
The in-furnace gas state determination means C processes the in-furnace image information and calculates the R component average value ea at a predetermined time of the R component calculated for each predetermined period of the flame burning in the furnace and a predetermined threshold value. It compares with eb, when R component average value ea is greater than the threshold value eb is, R component and O 2 in the figure showing the concentration time were calculated R component average value ea and R component average value ea band and The point determined by the average value O 2 a ′ of the measured O 2 concentration near the incinerator outlet measured in the same time zone is connected to the point determined by the threshold value eb and the preset appropriate O 2 concentration O 2 b ′. If the slope f is positive or 0, the oxygen in the furnace is determined to be excessive and the excess air ratio is reduced. If the slope f is negative, the oxygen in the furnace is insufficient. Incineration characterized in that the excess air ratio is adjusted so as to increase the excess air ratio Furnace control device.
[4] A program that causes a computer to function as the incinerator control device according to any one of [1] to [3].
[0018]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic configuration diagram showing an embodiment of a waste incinerator to which the present invention is applied.
[0019]
The waste incinerator shown in FIG. 1 is a grate-type incinerator having a grate 4, a heat exchange installed on the downstream side of a waste inlet 2, a furnace 1 in which waste is burned, and an outlet 7 of the furnace 1. It has a boiler 9 equipped with a vessel 9a and a steam drum 9b.
[0020]
Garbage thrown in from the dust inlet 2 is sent to the grate 4 by the dust feeder 3. The grate 4 reciprocates, and the agitation and movement of dust are performed by the reciprocation. The dust on the grate 4 is burned after being blown by the combustion air blower 6 blowing in the combustion air supplied from below the grate 4 and decomposed into exhaust gas and ash. Ashes fall from the ash drop opening 5 and are discharged out of the furnace.
[0021]
The total amount of combustion air supplied from below the grate 4 into the furnace is adjusted by a combustion air damper 14 provided in the immediate vicinity of the combustion air blower 6, and the amount of combustion air supplied to each wind box is adjusted. The amount is adjusted by combustion air dampers 14a, 14b, 14c, and 14d under the grate provided in each pipe that supplies combustion air to each wind box. In the example shown in FIG. 1, the combustion air is supplied by dividing the bottom of the grate 4 by four wind boxes in the garbage transport direction. However, the structure is appropriately changed according to the scale and purpose of the waste incinerator. It goes without saying that this is possible and is not limited to four wind boxes.
[0022]
In addition, cooling air is blown from the cooling air blowing port 10 provided in the furnace wall by the cooling air blower 11 to completely burn the unburned components in the combustion gas, and the temperature of the furnace wall excessively increases. To prevent.
[0023]
On the other hand, the combustible gas generated in the dust drying process upstream of the grate 4 and the combustion exhaust gas generated in the downstream post-combustion process merge at the gas mixing section provided on the outlet 7 side of the furnace 1 and are stirred again. Mixed and secondary combustion is performed. A boiler 9 having a heat exchanger 9a and a steam drum 9b is installed on the downstream side of the gas mixing section, and the secondary combustion gas is exhausted from the chimney 8 after recovering the thermal energy.
[0024]
In the furnace 1, an intermediate ceiling 30 as indicated by a virtual line in FIG. 1 may be provided. By providing the intermediate ceiling 30 in the furnace, the gas in the furnace is divided into two parts: a combustible gas generated in the dust drying process upstream of the grate 4 and a combustion exhaust gas generated in the downstream post-combustion process. can do. By recombining the gas discharged in two minutes in the gas mixing section, the stirring and mixing of the gas in the gas mixing section is further promoted, the combustion in the mixing chamber is further stabilized, and the generation of dioxins in the combustion process Can be further suppressed, and the generation of unburned waste can be prevented.
[0025]
In order to maintain stable combustion in the incinerator, the incinerator control device 25 measures, for example, the measured value of the thermometer 12 that measures the temperature of the combustion exhaust gas at the furnace outlet 7 and the amount of steam from the steam drum 9b. Measurement result of the flow meter 13, the measurement result of the flame brightness and color component or the garbage burnout point on the grate by the image processing device 16 that processes the in-furnace image information from the industrial camera 15 provided on the furnace wall Based on the measured values of the O 2 concentration meter 18 and the CO concentration meter 19 that measure the O 2 concentration and the CO concentration in the vicinity of the incinerator outlet (boiler 9 outlet), the reciprocating speed of the grate 4, the amount of combustion air, the cooling air Adjust the amount automatically. For example, a computer can be used for the incinerator control device 25.
[0026]
In the waste incinerator having such a configuration, the incinerator control device 25 according to the present invention performs the O 2 concentration and CO concentration measurement values and / or the O 2 concentration measurement values and image processing of flames on the grate. Parameter adjusting means for adjusting parameters based on the results, and combustion air amount calculating means for calculating the amount of combustion air blown into the furnace from below the grate based on the parameters adjusted by the parameter adjusting means.
[0027]
The value of the amount of combustion air blown into the furnace from below the grate 4 calculated by the combustion air amount calculation means is, for example, a damper opening degree for adjusting the opening degree of the combustion air damper 14 of the incinerator control device 25. The damper opening degree adjusting means adjusts the opening degree of the combustion air damper 14 so as to be the value of the output air amount, and is supplied into the furnace from below the grate 4. Control the total amount of combustion air.
[0028]
Hereinafter, an example of an embodiment of a method for calculating the amount of combustion air blown into the furnace from below the grate according to the present invention will be described.
[0029]
The amount of combustion air F blown into the furnace from below the grate is calculated by F = (theoretical air amount F T × excess air ratio E) × correction coefficient C F.
[0030]
Here, the heating value of waste when the theoretical amount of air F T and its required for combustion of the waste is calculated from the composition ratio and amount of waste of waste. The typical waste composition in incinerators depends on local conditions, so the compositional analysis of several types of peripheral waste samples for each incinerator should be used to correlate the waste heat value with the theoretical air amount. Is preferred.
[0031]
The excess air ratio E is theoretically compensated for the difference between the theoretical air volume corresponding to the calculated amount of generated heat and the actual air volume required for combustion due to the characteristics of the furnace so that the waste can be burned completely. It is a coefficient that corrects the amount of air, and is a parameter that can be individually adjusted according to the difference in load during operation (high load, rated load, low load) and the amount of heat generated by waste.
[0032]
The correction coefficient C F is a coefficient for correcting short-term fluctuations such as a deviation in evaporation amount from the steam drum and a furnace outlet temperature, and is a parameter that is appropriately changed according to the in-furnace situation during operation.
[0033]
Here, the excess air ratio E, the theoretical amount of air F T to a load during operation of the incinerator in the corresponding form (high load, rated load, low load) in accordance with a difference calorific value difference and waste Although it is a parameter that can be set individually, it is one of the important parameters because the suitability of the set value directly affects the stability of the combustion state in the furnace.
[0034]
FIG. 2 is a diagram showing an example of setting the excess air ratio. As shown in FIG. 2, the excess air ratio is a value that is individually set for each load (high load, rated load, low load) during operation of the incinerator according to the difference in the amount of heat generated by the waste.
[0035]
FIG. 3 is a flowchart illustrating an example of a method for adjusting the excess air ratio. Adjustment of the excess air ratio is done by adjusting the excess air ratio value, which was set for convenience during construction of the incinerator, before tuning to the incinerator. This is done when reviewing, or when reviewing the value of air excess ratio periodically. It should be noted that when adjusting the excess air ratio, it is desirable that the coefficient C F for correcting short-term fluctuations during operation is fixed at 1. This is to prevent the influence of other variables during the adjustment of the excess air ratio.
[0036]
Hereinafter, a method for adjusting the excess air ratio will be described with reference to the flowchart of FIG. In the following flowchart, the data measurement cycle is about every 10 to 30 seconds, the adjustment period of the excess air ratio is about every 5 to 10 minutes, or every time when garbage is put in, the combustion behavior in the furnace is accurately determined. It is desirable because it can be grasped.
[0037]
[In-furnace gas state determination means A]
In S1, an O 2 —CO concentration distribution diagram as shown in FIG. 4 is created based on the measured values of the O 2 concentration meter 18 and the CO concentration meter 19 installed near the incinerator outlet (boiler 9 outlet). The O 2 —CO concentration distribution chart shown in FIG. 4 is a pair of O 2 concentration and CO concentration values measured at approximately the same time, and the horizontal axis is an O 2 concentration divided by a predetermined concentration range, and the vertical axis is is obtained by the segmented O 2 within that range for each concentration O 2 concentration and calculates the average value of CO concentration paired it plot (× mark in the figure). Here, the predetermined concentration range for dividing the O 2 concentration is preferably in the range of 0.3 to 0.5% (0.5% in FIG. 4). In general, the O 2 —CO concentration distribution chart is a downwardly convex graph as shown in FIG.
[0038]
In S2, an appropriate range of O 2 concentration is determined based on FIG. 4 created in S1. Here, the proper range of O 2 concentrations, the average value of CO concentration is determined as low O 2 concentration range than the predetermined threshold a predetermined 4. Note that the value of the predetermined threshold value a of the CO concentration is preferably set in a range of 10 to 20 ppm.
[0039]
In S3, it calculates a ratio of O 2 out of the proper range of O 2 concentration determined in step S2 to the total number of data points N concentrations (range 4 in 1.0 to 3.5%) O 2 concentration data points Ng Then, a comparison with a predetermined threshold value x is performed. The above comparison is performed by the following formula 1, and when the formula 1 is satisfied, it is determined that the adjustment of the excess air ratio in the in-furnace gas state determination means A is not necessary, that is, the oxygen amount is appropriate and the adjustment of the excess air ratio is necessary. If it is determined that there is none, the process proceeds to the in-furnace gas state determination means B (S7). If Equation 1 is not satisfied, it is determined that the amount of oxygen is not appropriate, and the process proceeds to S4.
[0040]
Ng / N ≦ x (1)
In S4, the O 2 of concentration deviates from a proper range O 2 concentration data points Ng, compares the magnitude of the data points Nh data points Nl and higher than the proper range concentration of less than the proper range concentration by the following equation 2 . Here, the relationship of Ng = Nl + Nh is established.
[0041]
Nl <Nh (2)
When Expression 2 is satisfied, it is determined that the oxygen in the furnace is excessive, the value of the excess air ratio is reduced by a predetermined amount b (S5), and the process proceeds to S17. If Equation 2 is not satisfied, it is determined that the oxygen in the furnace is insufficient, the value of the excess air ratio is increased by a predetermined amount b (S6), and the process proceeds to S17.
[0042]
In S17, the value of the excess air ratio corresponding to the heating value of the current operational load and dust, and update the changed value of the air excess ratio at S 5 or S 6, the adjustment of the excess air ratio of the segment finish.
[0043]
Note that, instead of proceeding to S17 after the end of S5 or S6 as described above, the process may further proceed to S7 after S5 or S6 is terminated. In this case, since the adjustment by the in-furnace gas state determination unit B and the in-furnace gas state determination unit C is performed after the adjustment of the excess air ratio by the in-furnace gas state determination unit A, more precise adjustment is possible.
[0044]
[In-furnace gas state determination means B]
When Expression 1 is satisfied in the determination in S3, in S7, the average value of the luminance (average value of the luminance S in all the pixels in the image) calculated for each predetermined period of the flame burning in the furnace at a predetermined time. Sa is calculated and compared with a predetermined threshold value Sb. The comparison is performed by the following formula 3. If the formula 3 is satisfied, it is determined that the amount of air is appropriate, and the process proceeds to the in-furnace gas state determination means C (S12). When Expression 3 is not satisfied, the process proceeds to S8.
[0045]
Sa ≧ Sb (3)
The brightness of the flame is calculated by the image processing device 16 that processes the in-furnace image information from the industrial camera 15. The flame in the furnace becomes a bluish and bright flame when the air supply amount is appropriate, but when the air supply amount is excessive or insufficient, the flame becomes a low-luminance flame with no apparent feeling. The brightness of the flame is the degree of brightness obtained from human vision by linear combination of the color components (R, G, B) for each pixel in the in-furnace image information captured by the image processing device 16 as follows: Are divided into 256 equal parts and displayed, and calculated as an average value of the luminance S in all pixels in the image. The value of the luminance S of each pixel is indicated by 0 to 255, and the larger the value, the higher the luminance.
[0046]
S = 0.3 × R + 0.59 × G + 0.11 × B (4)
Here, R: red component (integer of 0-255), G: green component (integer of 0-255), B: blue component (integer of 0-255).
[0047]
In S8, the point determined by the average value O 2 a of the O 2 concentration measuring values due to the O 2 concentration meter 18 which is measured on the luminance average value Sa and about the same time period that was calculated in S7, set the threshold value Sb and advance The slope d of a straight line connecting points determined by the appropriate O 2 concentration O 2 b is calculated.
[0048]
FIG. 5 shows the relationship between the points determined by Sa and O 2 a and the points determined by Sb and O 2 b. 5A shows a case where the slope d of a straight line connecting a point determined by Sa and O 2 a and a point determined by Sb and O 2 b is positive, and FIG. 5B shows a point determined by Sa and O 2 a. And the slope d of the straight line connecting the point determined by Sb and O 2 b is negative.
[0049]
In S9, the inclination d obtained in S8 is determined by the following expression 5. If Expression 5 is satisfied, the process proceeds to S10, and if Expression 5 is not satisfied, the process proceeds to S11.
[0050]
d ≧ 0 (5)
When Expression 5 is satisfied, in S10, the excess air ratio is increased by a predetermined amount, and the process proceeds to S12. When the slope d is positive as shown in FIG. 5 (a), it is necessary to increase the O 2 concentration in order to increase the luminance. For this purpose, the excess air ratio is increased by a predetermined amount. In this case, the increase amount of the excess air ratio is preferably (Sb−Sa) × β in consideration of the difference between the threshold value Sb and the average luminance Sa. Β is a predetermined positive constant.
[0051]
If Equation 5 is not satisfied, the excess air ratio is reduced by a predetermined amount in S11, and the process proceeds to S12. As shown in FIG. 5B, when the slope d is negative, it is necessary to lower the O 2 concentration in order to increase the luminance. For this purpose, the excess air ratio is reduced by a predetermined amount. In this case, it is preferable that the reduction amount of the excess air ratio is (Sb−Sa) × β in consideration of the difference between the threshold value Sb and the average luminance Sa. Β is a predetermined positive constant.
[0052]
[In-furnace gas state determination means C]
When the expression 3 is satisfied in the determination in S7, or after adjusting the excess air ratio in S10 or S11, in S12, an R (red) component calculated for each predetermined period of the flame burning in the furnace ( calculates an average value e a of a predetermined time of the average value of the R component) in the image all pixels, is compared with the threshold e b determined in advance. The comparison is performed by the following expression 6. If expression 6 is satisfied, it is determined that the amount of air is appropriate, and the process proceeds to S17. When Expression 6 is not satisfied, the process proceeds to S13.
[0053]
e a ≦ e b (6)
e a is calculated by the image processing device 16 that processes the in-furnace image information from the industrial camera 15. The flame in the furnace is pale with a small R component value when the air supply amount is appropriate, but becomes a large flame with a large R component value when the air supply amount is excessive or insufficient. The R component of the flame is calculated as an average value of the R component in all the pixels in the image in the furnace image information taken into the image processing device 16.
[0054]
In S13, a point determined by the R component average value e a calculated in S12 and the average value O 2 a ′ of the measured value by the O 2 densitometer 18 measured in substantially the same time zone, the threshold value e b and the preset value are set in advance. The slope f of the straight line connecting the point determined by the appropriate O 2 concentration O 2 b ′ is calculated.
[0055]
FIG. 6 is a diagram showing the relationship between the points determined by e a and O 2 a ′ and the points determined by e b and O 2 b ′. 5 (a) is the case e a and O 2 a 'by defined points and e b and O 2 b' connecting points and determined by the inclination of the straight line f is positive, FIG. 5 (b) e a and O 2 shows a case where the slope f of a straight line connecting a point determined by 2a ′ and a point determined by e b and O 2 b ′ is negative.
[0056]
In S14, the inclination f obtained in S13 is determined by the following expression 7. If Expression 7 is satisfied, the process proceeds to S15. If Expression 7 is not satisfied, the process proceeds to S16.
[0057]
f ≧ 0 (7)
When Expression 7 is satisfied, in S15, the excess air ratio is reduced by a predetermined amount, and the process proceeds to S17. When the slope f is positive as shown in FIG. 6A, it is necessary to lower the O 2 concentration in order to reduce the R component, and therefore the excess air ratio is reduced by a predetermined amount. In this case, reduction of the excess air ratio is in consideration of the difference between the threshold value e b and the average luminance e a, it is preferable that the (e a -e b) × γ . Note that γ is a predetermined positive constant.
[0058]
When Expression 7 is not satisfied, the excess air ratio is increased by a predetermined amount in S16, and the process proceeds to S17. As shown in FIG. 6B, when the slope f is negative, it is necessary to increase the O 2 concentration in order to reduce the R component. For this purpose, the excess air ratio is increased by a predetermined amount. In this case, the increase of the excess air ratio is in consideration of the difference between the threshold value e b and the average luminance e a, it is preferable that the (e a -e b) × γ . Note that γ is a predetermined positive constant.
[0059]
In addition, in the in-furnace gas state determination means C in the present embodiment, the evaluation is performed only by the value of the R (red) component, but the evaluation is performed by the ratio of the value to the G (green) component and / or the B (blue) component. There are also methods and the like, and the evaluation method is not limited to this embodiment.
[0060]
In S17, the data on the excess air ratio corresponding to the current operation load adjusted in S5, S6, S15, or S16 and the heat generation amount of the waste is updated.
[0061]
The in-furnace gas state determination means A, the in-furnace gas state determination means B, and the in-furnace gas state determination means C can be performed independently, and can be performed in combination of any two. . In this case, the effect of each step alone or the combined effect can be obtained.
[0062]
When the in-furnace gas state determination means A is carried out independently, when S1 is satisfied, the process proceeds to S17, and the data on the excess air ratio is not updated, and the current operating load and waste heat generation are handled. The adjustment of the excess air ratio data is finished.
[0063]
In addition, when the in-furnace gas state determination means B is performed alone, the process starts from S7, and when Expression 3 is satisfied in S7, the process proceeds to S17, and the current operating load is not updated without updating the excess air ratio data. And the adjustment of the excess air ratio data corresponding to the heat generation amount of the garbage is finished. When Expression 3 is not satisfied, the process proceeds from S8 to S9 as in the case described above, and proceeds to S17 when S10 or S11 is completed.
[0064]
Further, when the in-furnace gas state determination means C is performed alone, the process starts from S12, and the process is performed in the same manner as described above.
[0065]
When the excess air ratio is set in the format shown in FIG. 2, the adjustment of the excess air ratio by the above-described method is performed for each load during operation of the incinerator (high load, rated load, low load). In each of the above, it is desirable to carry out the process until at least one set of garbage of the quality corresponding to the divided calorific value is charged. It is desirable to adjust the excess air ratio for each load for about half a day to one day.
[0066]
Further, it is also possible to take a method in which the adjustment of the excess air ratio is ended when the total number of numerical values updated in the past predetermined number of adjustments becomes equal to or less than a predetermined value.
[0067]
【The invention's effect】
As described above, according to the present invention, the amount of combustion air blown into the furnace from below the grate is calculated with high accuracy by adjusting the parameter for determining the amount of combustion air in a short time with high accuracy. An incinerator control device and a program that can be provided are provided.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a waste incinerator to which the present invention is applied.
FIG. 2 is a diagram showing a setting example of an excess air ratio.
FIG. 3 is a flowchart showing an example of a method for adjusting the excess air ratio.
FIG. 4 is an O 2 —CO concentration distribution chart.
FIG. 5 is a diagram showing a relationship between luminance and O 2 concentration.
FIG. 6 is a diagram showing a relationship between a red component (R) and an O 2 concentration.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Furnace 2 Garbage inlet 3 Dust supply device 4 Grate 5 Ash drop port 6 Combustion air blower 7 Furnace outlet 8 Chimney 9 Boiler 9a Heat exchanger 9b Steam drum 10 Cooling air inlet 11 Cooling air blower 12 Thermometer 13 Flow rate Total 14 Combustion air dampers 14a, 14b, 14c, 14d Under-grate combustion air damper 15 Industrial camera 16 Image processing device 18 O 2 concentration meter 19 CO concentration meter 25 Incinerator control device 30 Intermediate ceiling

Claims (4)

火格子式ごみ焼却炉の燃焼制御装置であって、空気過剰率調整手段と、該空気過剰率調整手段により調整された空気過剰率に基づき火格子下から炉内に吹き込む燃焼用空気量を算出する燃焼用空気量算出手段とを有し、
空気過剰率調整手段が炉内ガス状態判定手段Aを備え、
炉内ガス状態判定手段Aは、焼却炉出口近傍のO2濃度およびCO濃度の計測値に基づきCO濃度が所定の閾値より低い範囲と対をなすO2濃度の範囲をO2濃度の適正範囲と決定し、O2濃度の適正範囲から外れるデータ点数Ngの全データ点数Nに対する割合Ng/Nと予め定めた閾値との比較を行い、Ng/Nが該閾値より大きい場合には、O2濃度の適正範囲より低い濃度のデータ点数NlとO2濃度の適正範囲より高い濃度のデータ点数Nhを比較し、NlがNhより小さい場合には炉内の酸素が過剰と判定して空気過剰率を低減し、NlがNhより大きい場合には炉内の酸素が不足と判定して空気過剰率を増加するように空気過剰率を調整するものであることを特徴とする焼却炉制御装置。
A combustion control device for a grate-type waste incinerator, which calculates excess air ratio adjustment means and the amount of combustion air blown into the furnace from below the grate based on the excess air ratio adjusted by the excess air ratio adjustment means Combustion air amount calculation means for
The excess air ratio adjusting means includes in-furnace gas state determining means A,
The gas state judging means A furnace, a range of O 2 concentrations CO concentration based on the measurement value of the O 2 concentration and CO concentration of incinerator outlet near forms a pair range below a predetermined threshold value of the O 2 concentration appropriate range determines that performs comparison with a predetermined threshold value and the ratio Ng / N for all data points N of the data points Ng departing from the proper scope of the O 2 concentration, when Ng / N is greater than the threshold value, O 2 Compare the number of data points Nl with a concentration lower than the appropriate range of concentration and the number of data points Nh with a higher concentration than the appropriate range of O 2 concentration, and if Nl is smaller than Nh, determine that the oxygen in the furnace is excessive and the excess air ratio And the excess air ratio is adjusted so that the excess air ratio is increased by determining that the oxygen in the furnace is insufficient when Nl is greater than Nh.
火格子式ごみ焼却炉の燃焼制御装置であって、空気過剰率調整手段と、該空気過剰率調整手段により調整された空気過剰率に基づき火格子下から炉内に吹き込む燃焼用空気量を算出する燃焼用空気量算出手段とを有し、
空気過剰率調整手段が炉内ガス状態判定手段Bを備え、
炉内ガス状態判定手段Bは、炉内画像情報を処理することにより炉内で燃焼している炎の所定周期毎に算出した輝度の所定時間での輝度平均値Saと予め定めた閾値Sbとの比較を行い、輝度平均値Saが該閾値Sbより小さい場合には、輝度とO2濃度を示す図中で輝度平均値Saと輝度平均値Saを算出した時間帯と同じ時間帯に計測した焼却炉出口近傍のO2濃度計測値の平均値O2aにより定まる点と、前記閾値Sbと予め設定される適正O2濃度O2bにより定まる点とを結んだ直線の傾きdを算出し、傾きdが正または0の場合には炉内の酸素が不足と判定して空気過剰率を増加し、傾きdが負の場合には炉内の酸素が過剰と判定して空気過剰率を低減するように空気過剰率を調整するものであることを特徴とする焼却炉制御装置。
A combustion control device for a grate-type waste incinerator, which calculates excess air ratio adjustment means and the amount of combustion air blown into the furnace from below the grate based on the excess air ratio adjusted by the excess air ratio adjustment means Combustion air amount calculation means for
The excess air ratio adjusting means includes in-furnace gas state determining means B,
The in-furnace gas state determination means B processes the in-furnace image information to obtain a luminance average value Sa for a predetermined time and a predetermined threshold value Sb calculated for each predetermined period of the flame burning in the furnace. makes a comparison, if the average luminance value Sa is smaller than the threshold value Sb were measured in the same time zone as the time zone of calculating the average luminance value Sa and the luminance mean value Sa in the figure showing the luminance and the O 2 concentration The slope d of a straight line connecting the point determined by the average value O 2 a of the measured O 2 concentration in the vicinity of the incinerator exit and the point determined by the preset appropriate O 2 concentration O 2 b is calculated. When the slope d is positive or 0, it is determined that the oxygen in the furnace is insufficient and the excess air ratio is increased. When the slope d is negative, the oxygen in the furnace is determined to be excessive and the excess air ratio is increased. Incinerator control device characterized by adjusting excess air ratio so as to reduce
火格子式ごみ焼却炉の燃焼制御装置であって、空気過剰率調整手段と、該空気過剰率調整手段により調整された空気過剰率に基づき火格子下から炉内に吹き込む燃焼用空気量を算出する燃焼用空気量算出手段とを有し、
空気過剰率調整手段が炉内ガス状態判定手段Cを備え、
炉内ガス状態判定手段Cは、炉内画像情報を処理することにより炉内で燃焼している炎の所定周期毎に算出したR成分の所定時間でのR成分平均値eaと予め定めた閾値ebとの比較を行い、R成分平均値eaが該閾値ebより大きい場合には、R成分とO2濃度を示す図中でR成分平均値eaとR成分平均値eaを算出した時間帯と同じ時間帯に計測した焼却炉出口近傍のO2濃度計測値の平均値O2a´により定まる点と、前記閾値ebと予め設定される適正O2濃度O2b´により定まる点とを結んだ直線の傾きfを算出し、傾きfが正または0の場合には炉内の酸素が過剰と判定して空気過剰率を低減し、傾きfが負の場合には炉内の酸素が不足と判定して空気過剰率を増加ように空気過剰率を調整するものであることを特徴とする焼却炉制御装置。
A combustion control device for a grate-type waste incinerator, which calculates excess air ratio adjustment means and the amount of combustion air blown into the furnace from below the grate based on the excess air ratio adjusted by the excess air ratio adjustment means Combustion air amount calculation means for
The excess air ratio adjusting means includes in-furnace gas state determining means C,
The in-furnace gas state determination means C processes the in-furnace image information and calculates the R component average value ea at a predetermined time of the R component calculated for each predetermined period of the flame burning in the furnace and a predetermined threshold value. It compares with eb, when R component average value ea is greater than the threshold value eb is, R component and O 2 in the figure showing the concentration time were calculated R component average value ea and R component average value ea band and The point determined by the average value O 2 a ′ of the measured O 2 concentration near the incinerator outlet measured in the same time zone is connected to the point determined by the threshold value eb and the preset appropriate O 2 concentration O 2 b ′. If the slope f is positive or 0, the oxygen in the furnace is determined to be excessive and the excess air ratio is reduced. If the slope f is negative, the oxygen in the furnace is insufficient. Incineration characterized in that the excess air ratio is adjusted so as to increase the excess air ratio Furnace control device.
請求項1乃至請求項3の何れかに記載の焼却炉制御装置としてコンピュータを機能させることを特徴とするプログラム。  A program that causes a computer to function as the incinerator control device according to any one of claims 1 to 3.
JP2001237335A 2001-08-06 2001-08-06 Incinerator control device and program Expired - Fee Related JP4271881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237335A JP4271881B2 (en) 2001-08-06 2001-08-06 Incinerator control device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237335A JP4271881B2 (en) 2001-08-06 2001-08-06 Incinerator control device and program

Publications (2)

Publication Number Publication Date
JP2003050009A JP2003050009A (en) 2003-02-21
JP4271881B2 true JP4271881B2 (en) 2009-06-03

Family

ID=19068432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237335A Expired - Fee Related JP4271881B2 (en) 2001-08-06 2001-08-06 Incinerator control device and program

Country Status (1)

Country Link
JP (1) JP4271881B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6146701B2 (en) * 2013-12-11 2017-06-14 Jfeエンジニアリング株式会社 Evaluation apparatus and evaluation method for combustion control device of waste incinerator
JP7403942B2 (en) * 2018-05-07 2023-12-25 一般財団法人電力中央研究所 Combustion field observation method, observation device, and observation program

Also Published As

Publication number Publication date
JP2003050009A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
CN109084324B (en) The burning air quantity control system and control method of biomass boiler
KR100304244B1 (en) Combustion control method and apparatus for waste incinerators
JP6153090B2 (en) Waste incinerator and waste incineration method
US6190160B1 (en) Process for combustion of a fuel with an oxygen-rich oxidant
JP2006064300A (en) Combustion information monitoring controlling device for stoker type refuse incinerator
JP6146701B2 (en) Evaluation apparatus and evaluation method for combustion control device of waste incinerator
JP4271881B2 (en) Incinerator control device and program
JPH1068514A (en) Combustion controlling method for refuse incinerating furnace
JPH1194227A (en) Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JP2019178848A (en) Waste incinerator and waste incineration method
JP7120105B2 (en) Control parameter determination support device and control parameter determination support method for combustion control device of waste incinerator
JP3466555B2 (en) Combustion control method and device for refuse incineration plant
JP2001033017A (en) Method for controlling combustion of refuse incinerator
WO2021079845A1 (en) Waste combustion device and waste combustion method
JP7237654B2 (en) Automatic combustion control method for garbage incinerator
JP2022134592A (en) Prediction model creation device, flue gas concentration control system, prediction model creation method, and flue gas concentration control method
KR102574488B1 (en) Appararus and method of controlling operation of incinerator for combustion stabilizaion
JPH08100916A (en) Combustion controller
JP2004239508A (en) Combustion control method of refuse incinerator, and refuse incinerator
KR100804230B1 (en) Combustion control method for hot stove of blast furnace
JP3844333B2 (en) Combustion control system for waste incinerator without boiler equipment
JPH11108327A (en) Garbage incinerator and combustion control method
JP2002122317A (en) Combustion control system of refuse incinerator
JPH11325433A (en) Method and apparatus for controlling fluidized bed type incinerator
JPH09273732A (en) Control method of combustion in incinerating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4271881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees