JP4269189B2 - Optical element, optical film planarization method, and optical element manufacturing method - Google Patents

Optical element, optical film planarization method, and optical element manufacturing method Download PDF

Info

Publication number
JP4269189B2
JP4269189B2 JP2007067901A JP2007067901A JP4269189B2 JP 4269189 B2 JP4269189 B2 JP 4269189B2 JP 2007067901 A JP2007067901 A JP 2007067901A JP 2007067901 A JP2007067901 A JP 2007067901A JP 4269189 B2 JP4269189 B2 JP 4269189B2
Authority
JP
Japan
Prior art keywords
film
optical film
sliding surface
optical
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007067901A
Other languages
Japanese (ja)
Other versions
JP2008225421A (en
Inventor
岡田  卓也
泰男 日向野
隆一 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2007067901A priority Critical patent/JP4269189B2/en
Priority to KR1020080020277A priority patent/KR100998500B1/en
Priority to CN200810082989XA priority patent/CN101266308B/en
Priority to TW097109321A priority patent/TW200909884A/en
Publication of JP2008225421A publication Critical patent/JP2008225421A/en
Application granted granted Critical
Publication of JP4269189B2 publication Critical patent/JP4269189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Description

本発明は、基板の1面に光学膜を形成したときに、基板に対して作用する光学膜の応力を緩和して光学膜が形成された面を平面化させる光学素子、膜応力を緩和して基板の表面を平面化する光学膜平面化方法及び前記の光学素子の製造方法に関するものである。   The present invention provides an optical element that relaxes the stress of the optical film acting on the substrate and planarizes the surface on which the optical film is formed when an optical film is formed on one surface of the substrate, and relaxes the film stress. The present invention relates to an optical film planarizing method for planarizing the surface of a substrate and a method for manufacturing the optical element.

液晶プロジェクタや光ピックアップ等の光学装置は種々の光学素子から構成され、光学素子は、一般にガラス素材等の透明基板の一面に光学膜が形成されている。光学膜としては、誘電体単層膜や誘電体多層膜、金属膜等の種々の光学膜があるが、これらの光学膜は内部応力(膜応力)を有しているため、蒸着法等により透明基板に形成させた後には、膜応力によって透明基板全体に変形が生じる。その結果、光学膜の性能が劣化又は損失する。   Optical devices such as liquid crystal projectors and optical pickups are composed of various optical elements, and an optical film is generally formed on one surface of a transparent substrate such as a glass material. As optical films, there are various optical films such as a dielectric single layer film, a dielectric multilayer film, and a metal film. These optical films have internal stress (film stress). After being formed on the transparent substrate, the entire transparent substrate is deformed by the film stress. As a result, the performance of the optical film is deteriorated or lost.

近年の光学装置はコンパクト化の要請が極めて高いため、透明基板の板厚の薄型化が求められている。そうすると、その分膜応力によって透明基板に与える影響が顕著なものとなる。このため、(1)板厚の薄型化の要請を充足しつつ、(2)透明基板の形状の変形を修正する必要がある。   Since optical devices in recent years are highly demanded to be compact, it is required to reduce the thickness of the transparent substrate. If it does so, the influence which it has on the transparent substrate by the membrane stress will become remarkable. For this reason, (1) It is necessary to correct the deformation of the shape of the transparent substrate while satisfying the request for reducing the plate thickness.

上記(1)、(2)の要請を同時に充足する手法としては、例えば透明基板の光学膜が形成されている反対の面に、光学膜の膜応力による基板の変形を修正するための膜(修正用の薄膜とする)を形成する手法がある。この手法は、特許文献1に開示されており、光学素子の非光学機能面(裏面)に内部応力を有する薄膜を形成し、薄膜の内部応力(膜応力)の作用を利用して光学素子に変形を生じさせ、これにより光学素子の光学機能面の形状を修正している。つまり、基板の1面に形成される光学膜の反対の面に膜応力の作用を修正するような薄膜を形成して、素子全体の形状の修正を図っている。
特開2005−19485号公報
As a method for simultaneously satisfying the above requirements (1) and (2), for example, a film for correcting deformation of the substrate due to the film stress of the optical film (on the opposite surface on which the optical film of the transparent substrate is formed) There is a method of forming a thin film for correction. This technique is disclosed in Patent Document 1, in which a thin film having internal stress is formed on the non-optical functional surface (back surface) of the optical element, and the optical element is applied to the optical element using the action of the internal stress (film stress) of the thin film. Deformation is caused, thereby correcting the shape of the optical functional surface of the optical element. That is, a thin film that corrects the action of the film stress is formed on the surface opposite to the optical film formed on one surface of the substrate to correct the shape of the entire element.
Japanese Patent Laid-Open No. 2005-19485

ところで、特許文献1では、基板形状修正用に薄膜を基板(非光学機能面)に形成する必要があるが、一般に、所望の薄膜を得るためには、微細なコントロールが必要となる。一方で、基板は薄型にする必要があり、薄い基板に対しては、光学膜による膜応力による変形の度合いが大きいが、同時に修正用の薄膜の膜応力も強力に作用する。そうすると、光学膜による膜応力を正確且つ高精度に修正するように、薄膜の形成精度は極めて微細にコントロールしなくてはならず、極めて困難である。   By the way, in Patent Document 1, it is necessary to form a thin film on a substrate (non-optical functional surface) for correcting the substrate shape, but in general, fine control is required to obtain a desired thin film. On the other hand, it is necessary to make the substrate thin, and for a thin substrate, the degree of deformation due to the film stress by the optical film is large, but at the same time, the film stress of the thin film for correction acts strongly. In this case, the thin film formation accuracy must be very finely controlled so as to correct the film stress caused by the optical film accurately and with high accuracy, which is extremely difficult.

また、修正用の薄膜は、基本的には、基板形状の修正という機能のみを発揮し、他の光学的機能を発揮していない。このような薄膜は、光学的機能という観点からは不要な要素であるため、余剰コストとなる。また、薄膜の形成には比較的時間がかかることから、この工程に時間がかかると、生産効率の低下という問題を招来する。さらに言えば、本来不要な修正用の薄膜が薄型の基板に形成されているため、ストレスに対する耐性という点でも問題がある。   Further, the correction thin film basically exhibits only the function of correcting the substrate shape and does not exhibit other optical functions. Such a thin film is an unnecessary element from the viewpoint of the optical function, and thus becomes a surplus cost. Moreover, since it takes a relatively long time to form a thin film, if this process takes a long time, a problem of a decrease in production efficiency is caused. Furthermore, since a thin film for correction which is originally unnecessary is formed on a thin substrate, there is a problem in terms of resistance to stress.

そこで、本発明では、修正用の薄膜を形成することなく、光学膜による膜応力を緩和して、光学膜の平面化を図ることを目的とする。   Accordingly, an object of the present invention is to reduce the film stress caused by the optical film and to planarize the optical film without forming a thin film for correction.

以上の目的を達成するため、本発明の請求項1の光学素子は、基板の表面と裏面とで面の粗さに差を持たせて、前記表面又は前記裏面のうち粗さの細かい方の面に光学膜を形成し、前記光学膜の応力を緩和させることを特徴とする。   In order to achieve the above object, the optical element according to claim 1 of the present invention has a difference in surface roughness between the front surface and the back surface of the substrate, and the surface of the front surface or the back surface has a smaller roughness. An optical film is formed on the surface, and stress of the optical film is relieved.

基板が非常に薄型である場合、基板の表面と裏面との間で面の粗さに差を持たせると、基板の粗い面の方向に凸の歪みが生じる効果(所謂トワイマン効果)がある。一方、光学膜には、基板の成膜面の方向に凸の歪みを生じさせる膜応力が存在する。そこで、粗さの細かい方の面に光学膜を形成すれば、膜応力の作用による歪みの方向と前記のトワイマン効果による歪みの方向とが相互に逆の凸方向の関係となるため、相互の応力をキャンセルし合う。そうすると、基板全体としての形状は修正され、光学膜を平面化することができる。   When the substrate is very thin, if there is a difference in surface roughness between the front surface and the back surface of the substrate, there is an effect that a convex distortion occurs in the direction of the rough surface of the substrate (so-called Twiman effect). On the other hand, the optical film has a film stress that causes a convex distortion in the direction of the film formation surface of the substrate. Therefore, if an optical film is formed on the surface with the finer roughness, the direction of distortion due to the action of the film stress and the direction of distortion due to the Twiman effect have a relationship of opposite convex directions. Cancel each other's stress. If it does so, the shape as the whole board | substrate will be corrected and an optical film can be planarized.

ここで、光学膜は、許容誤差範囲内であれば、完全に平面化されなくてもよい。つまり、摺面が形成されれば光学膜の膜応力はキャンセルされて平面化の度合いを高くすることができるが、光学的機能を発揮する許容誤差範囲内であれば、完全に平面化されなくても、微小に湾曲している状態であってもよい。   Here, the optical film may not be completely planarized as long as it is within an allowable error range. In other words, if the sliding surface is formed, the film stress of the optical film is canceled and the degree of planarization can be increased, but if it is within an allowable error range that exhibits the optical function, it is not completely planarized. Alternatively, it may be in a slightly curved state.

本発明の請求項2の光学素子は、請求項1記載の光学素子であって、前記粗さの細かい方の面は鏡面研磨により仕上げて成膜面となし、この成膜面とは反対の面を摺面に形成することを特徴とする。   An optical element according to a second aspect of the present invention is the optical element according to the first aspect, wherein the surface with the finer roughness is finished by mirror polishing to form a film forming surface, which is opposite to the film forming surface. The surface is formed as a sliding surface.

鏡面研磨を行って成膜面を形成し、反対の面を摺面の形成をすることにより、面の粗さに差を持たせることができる。ここで、摺面の形成とは、粒度の粗い研磨剤を用いて基板の一面を摺ることをいい、摺面とは、摺面の形成が行われた面をいう。摺面の形成を行うための手段(摺面の形成手段)としては、他に研削剤を用いた研削処理や研磨剤を基板表面に吹き付けるサンドブラストやダイヤモンドによる切削、サンドペーパー、ブラッシング等の種々の手段も適用することができる。換言すれば、摺面の形成とは、基板表面に微小な傷、つまり微小な凹凸を形成することをいい、梨地を面上に形成することをいう。   By performing mirror polishing to form a film formation surface and forming a sliding surface on the opposite surface, a difference in surface roughness can be provided. Here, the formation of the sliding surface means that one surface of the substrate is slid using an abrasive having a coarse particle size, and the sliding surface means a surface on which the sliding surface is formed. As a means for forming the sliding surface (sliding surface forming means), there are various other methods such as grinding using a grinding agent, sandblasting that blows an abrasive onto the substrate surface, cutting with diamond, sandpaper, brushing, etc. Means can also be applied. In other words, the formation of the sliding surface refers to forming minute scratches, that is, minute irregularities on the substrate surface, and means forming satin on the surface.

一方、鏡面研磨は基板表面を鏡面仕上げするもの(基板表面上の凹凸をなくすもの)であり、所謂ラップ処理やバニッシュ処理、ポリッシュ処理等の手法を適用することができる。前記の摺面の形成において研磨剤を用いる場合は摺面研磨となるが、摺面研磨と鏡面研磨とは、研磨という同じ用語が用いられる。しかし、摺面研磨は基板表面に微小凹凸を形成する手法であり、鏡面研磨は基板表面の微小凹凸をなくす手法である点で、両者は用途も機能も全く逆のものとなる。   On the other hand, mirror polishing is a method for mirror-finishing the surface of a substrate (removing irregularities on the surface of the substrate), and so-called lapping, burnishing, polishing, or the like can be applied. When an abrasive is used in the formation of the sliding surface, sliding surface polishing is performed. However, the same term “polishing” is used for sliding surface polishing and mirror polishing. However, the sliding surface polishing is a technique for forming minute irregularities on the substrate surface, and the mirror polishing is a technique for eliminating the minute irregularities on the substrate surface.

摺面が形成される前の面(被摺面)は、予め鏡面仕上げをしている必要はないが、被摺面も光学膜が形成される面(被成膜面)も平面状態を基準として湾曲量を制御するという点で、被摺面は被成膜面と同様に鏡面仕上げをすることが好ましい。つまり、湾曲量の基準を一致させておくことが好ましい。   The surface before the sliding surface is formed (the surface to be slid) does not need to be mirror-finished in advance, but the surface to be slid and the surface on which the optical film is formed (the surface to be formed) are based on the plane state. The surface to be slid is preferably mirror-finished in the same manner as the film formation surface in that the amount of bending is controlled. That is, it is preferable to match the criteria of the bending amount.

また、基本的には、基板の形状は平板状であるが、平板状以外の他の形状であってもよい。光学膜の膜応力を摺面がキャンセルするという意味では、被摺面と被成膜面とが平行であれば、四角形の平板状の形状だけではなく、円形、三角形等任意の板状の基板に適用することができる。ここで、成膜面は所定の光学的機能を発揮するために平面化の度合いを高くしなくてはならないが、反対の面である摺面は基本的には光学的機能を発揮しないため、その形状は任意にすることができる。従って、光学膜の膜応力をキャンセルして、光学膜を平面化できれば、摺面は平面でなくても多少異形であってもよい。   Basically, the substrate has a flat plate shape, but may have a shape other than the flat plate shape. In the sense that the sliding surface cancels the film stress of the optical film, as long as the sliding surface and the film forming surface are parallel, not only a rectangular flat plate shape but also any plate-like substrate such as a circle or a triangle Can be applied to. Here, the film-forming surface must have a high degree of planarization in order to exhibit a predetermined optical function, but the sliding surface that is the opposite surface basically does not exhibit an optical function. Its shape can be arbitrary. Therefore, if the film stress of the optical film can be canceled and the optical film can be planarized, the sliding surface may be somewhat irregular even if it is not flat.

そして、本発明の請求項3の光学素子は、請求項2記載の光学素子であって、前記摺面は、前記光学膜が平面化されるような粒度で摺られていることを特徴とする。被摺面が形成されれば、膜応力を緩和することができるが、最適な粒度で摺面を形成することにより、光学膜を平面化に近づけることができる。摺面の形成を行うときの粒度は、粗ければ大きく応力を作用し、細かければ作用する応力が小さい。そこで、光学膜の膜応力に応じた最適な粒度を選択すれば、平面化に近づけることができる。   An optical element according to a third aspect of the present invention is the optical element according to the second aspect, wherein the sliding surface is slid with a particle size such that the optical film is planarized. . If the surface to be slid is formed, the film stress can be relieved, but the optical film can be made closer to flattening by forming the surface to be slid with an optimum particle size. When the sliding surface is formed, the particle size is large when the stress is large, and when it is fine, the stress is small. Therefore, if an optimum particle size corresponding to the film stress of the optical film is selected, it is possible to approach planarization.

本発明の請求項4の光学素子は、請求項1乃至3何れか1項に記載の光学素子であって、前記光学膜は、所定の波長域の光を反射する反射多層膜であることを特徴とする。基本的には、摺面は光学的に使用されない面となるため、種々の光学素子のうち、最も本発明を適用することができる光学素子は、反射ミラーとなる。   An optical element according to a fourth aspect of the present invention is the optical element according to any one of the first to third aspects, wherein the optical film is a reflective multilayer film that reflects light in a predetermined wavelength range. Features. Basically, since the sliding surface is a surface that is not used optically, the optical element to which the present invention can be applied most among various optical elements is a reflection mirror.

反射ミラーとして機能させる場合には、誘電体多層膜ではなく金属膜による反射多層膜であってもよい。ただし、金属膜は全ての波長域の光を反射させるものの、光吸収率が高いため、反射効率が若干低下する。従って、光量損失抑制の観点から誘電体多層膜による反射多層膜を適用することが好ましい。金属膜は単層膜でよいが、誘電体多層膜による反射多層膜は、所望の波長域で極めて高い反射率を得るために、比較的多くの膜層数を必要とする。そうすると、基板に対する膜応力が強力になるため、誘電体多層膜による反射多層膜の場合には、特に有利な効果を奏する。   When functioning as a reflection mirror, a reflective multilayer film made of a metal film may be used instead of the dielectric multilayer film. However, although the metal film reflects light in all wavelength regions, the reflection efficiency is slightly lowered because of the high light absorption rate. Therefore, it is preferable to apply a reflective multilayer film made of a dielectric multilayer film from the viewpoint of suppressing light loss. The metal film may be a single-layer film, but a reflective multilayer film made of a dielectric multilayer film requires a relatively large number of film layers in order to obtain an extremely high reflectance in a desired wavelength region. As a result, the film stress on the substrate becomes strong, so that a particularly advantageous effect is obtained in the case of a reflective multilayer film made of a dielectric multilayer film.

また、摺面を他の用途に使用することができる場合には、反射ミラー以外の光学素子としても本発明を適用することができる。摺面には微小凹凸が形成されているため、摺面に光を透過させることによって、光の散乱を利用して光分布の均一化を図ることができる。また、散乱光を利用して光の強度を測定する、例えばAPC(Auto Power Control)としても利用することができる。このような場合には、光学膜を反射多層膜とせず、例えば所定条件の光を透過させる透過特性を有する膜としても適用することができる。   In addition, when the sliding surface can be used for other purposes, the present invention can be applied as an optical element other than the reflection mirror. Since minute irregularities are formed on the sliding surface, the light distribution can be made uniform by utilizing light scattering by transmitting light to the sliding surface. Further, it can be used as, for example, APC (Auto Power Control) for measuring the intensity of light using scattered light. In such a case, the optical film is not a reflective multilayer film, but can be applied as a film having a transmission characteristic that transmits light of a predetermined condition, for example.

本発明の請求項5の光学膜平面化方法は、基板の少なくとも1面を鏡面研磨する鏡面研磨工程と、鏡面研磨した1面の反対の面を摺ることにより摺面を形成する摺面形成工程と、前記摺面形成工程の後に行われる工程であって、前記鏡面研磨された1面に光学膜を形成する光学膜形成工程と、を有し、前記基板に対する前記光学膜の応力を、前記摺面が緩和して、前記光学膜を平面化することを特徴とする。   The optical film planarization method according to claim 5 of the present invention includes a mirror polishing step of mirror polishing at least one surface of a substrate, and a sliding surface forming step of forming a sliding surface by sliding an opposite surface of the mirror polished surface. And an optical film forming step for forming an optical film on the mirror-polished one surface, and the stress of the optical film on the substrate is The sliding surface is relaxed, and the optical film is planarized.

本発明の請求項6の光学膜平面化方法は、基板の少なくとも1面を鏡面研磨する鏡面研磨工程と、鏡面研磨した1面に光学膜を形成する光学膜形成工程と、前記光学膜形成工程の後に行われる工程であって、前記光学膜が形成される面の反対の面を摺ることにより摺面を形成する摺面形成工程と、を有し、前記基板に対する前記光学膜の応力を、前記摺面が緩和して、前記光学膜を平面化することを特徴とする。   An optical film planarization method according to a sixth aspect of the present invention includes a mirror polishing step of mirror polishing at least one surface of a substrate, an optical film formation step of forming an optical film on the mirror polished surface, and the optical film formation step. A sliding surface forming step of forming a sliding surface by sliding the surface opposite to the surface on which the optical film is formed, and the stress of the optical film with respect to the substrate, The sliding surface is relaxed to planarize the optical film.

請求項5の光学膜平面化方法と請求項6の光学膜平面化方法とは、摺面を形成することにより光学膜の膜応力をキャンセルして光学膜の平面化を図るという点では一致しているが、請求項5の光学膜平面化方法では、摺面の形成工程を光学膜形成工程より先に行い(先摺り)、請求項6の光学膜平面化方法では、摺面の形成工程を光学膜形成工程より後に行う(後摺り)点で、相違する。   The optical film planarization method according to claim 5 and the optical film planarization method according to claim 6 are the same in that the film stress of the optical film is canceled to form the optical film by forming a sliding surface. However, in the optical film planarizing method of claim 5, the sliding surface forming step is performed before the optical film forming step (tip sliding), and in the optical film planarizing method of claim 6, the sliding surface forming step is performed. Is different after the optical film forming step (post-slip).

先摺りの場合には、予め光学膜を形成したときの基板の湾曲量に応じた粒度で被摺面を形成する。つまり、膜応力による基板の湾曲量を見越して、その分を摺面の形成による応力により事前に緩和しているものとなる。この場合は、画一的な粒度で事前に摺面の形成することができるため、大量生産に好適である。   In the case of tipping, the surface to be slid is formed with a particle size corresponding to the amount of curvature of the substrate when the optical film is formed in advance. That is, the amount of bending of the substrate due to the film stress is anticipated, and that amount is relaxed in advance by the stress due to the formation of the sliding surface. In this case, since the sliding surface can be formed in advance with a uniform particle size, it is suitable for mass production.

一方、後摺りの場合には、基板に光学膜を形成した時点で、光学膜の応力により基板は光学膜側の凸方向に湾曲することになる。そして、基板の湾曲状態に応じて、事後的に合わせて補正を行うための摺面を形成することができる。このため、夫々の基板の湾曲具合に応じて微細に光学膜の平面化を図ることができる。   On the other hand, in the case of rearing, when the optical film is formed on the substrate, the substrate is bent in the convex direction on the optical film side due to the stress of the optical film. And according to the curvature state of a board | substrate, the sliding surface for performing correction | amendment according to ex post facto can be formed. For this reason, it is possible to finely planarize the optical film according to the degree of curvature of each substrate.

ここで、先摺りの場合は、摺面を形成したときに、後摺りの場合は、光学膜を形成したときに、基板はトワイマン効果による応力又は光学膜の膜応力により湾曲する。この場合、基板を固定していない状態では、トワイマン効果による応力又は光学膜の膜応力により、基板は一方向に湾曲しようとする。このため、粘着剤等を用いて、平面状態が維持された固定治具等に基板を固着させておき、強制的に基板を平面状態に維持させる。この状態で光学膜の形成又は摺面の形成を行うことにより、正確に行うことができる。   Here, in the case of tip sliding, when the sliding surface is formed, in the case of rear sliding, when the optical film is formed, the substrate is bent by the stress due to the Twiman effect or the film stress of the optical film. In this case, in a state where the substrate is not fixed, the substrate tends to bend in one direction due to stress due to the Twiman effect or film stress of the optical film. For this reason, the substrate is fixed to a fixing jig or the like in which the planar state is maintained using an adhesive or the like, and the substrate is forcibly maintained in the planar state. By forming the optical film or the sliding surface in this state, it can be performed accurately.

また、本発明の請求項7の光学膜平面化方法は、請求項5又は6記載の光学膜平面化方法であって、前記摺面を形成するときには、前記基板が平面化されるような粒度で摺ることを特徴とする。最適な粒度で摺面を形成すれば、光学膜を平面に近づけることができる。   An optical film planarization method according to claim 7 of the present invention is the optical film planarization method according to claim 5 or 6, wherein the substrate is planarized when the sliding surface is formed. It is characterized by sliding. If the sliding surface is formed with an optimum particle size, the optical film can be brought close to a flat surface.

本発明の請求項8の光学膜平面化方法は、請求項7記載の光学膜平面化方法であって、 前記摺面形成工程で摺面を形成した粒度よりも粗い粒度又は細かい粒度で、前記摺面を摺ることにより、前記成膜面をさらに平面に近づけるような微調整を行う微調整工程を行うことを特徴とする。   The optical film planarization method according to claim 8 of the present invention is the optical film planarization method according to claim 7, wherein the particle size is coarser or finer than the particle size formed by the sliding surface forming step. A fine adjustment step is performed in which fine adjustment is performed to bring the film-forming surface closer to a flat surface by sliding the sliding surface.

摺面を形成した後に、再度摺面を摺ると、摺面を形成したときの粒度よりも粗い粒度で研磨した場合には、膜応力を緩和する応力を作用し、細かい粒度で研磨した場合には、トワイマン効果による応力を緩和する応力を作用する。つまり、より粗い粒度で再び摺面を研磨した場合には、摺面の方向に凸の歪みを生じさせる応力を作用し、より細かい粒度で再び摺面を研磨した場合には、成膜面の方向に凸の歪みを生じさせる応力を作用させる。そこで、後摺りの場合に、未だ成膜面の方向に凸の歪みが生じている場合には、より粗い粒度で再び摺面を研磨して、トワイマン効果による応力を作用させて光学膜の平面化を図る。   When the sliding surface is slid again after forming the sliding surface, when polishing with a grain size coarser than the grain size when the sliding surface is formed, a stress that relaxes the film stress acts, and when polishing with a fine grain size Acts to relieve stress due to the Twiman effect. That is, when the sliding surface is polished again with a coarser grain size, stress that causes convex distortion in the direction of the sliding surface acts, and when the sliding surface is polished again with a finer grain size, A stress causing a convex distortion in the direction is applied. Therefore, in the case of post-sliding, if convex distortion still occurs in the direction of the film formation surface, the sliding surface is polished again with a coarser grain size, and stress due to the Twiman effect is applied to the plane of the optical film. Plan

一方、摺面を形成したことによる応力が膜応力を超えて、粗い方の面(成膜面の反対の面)に凸の歪みを生じている場合には、より細かい粒度で再び摺面を研磨して、摺面の形成による応力を軽減させて光学膜の平面化を図る。摺面を形成することによる応力が不足している場合又は過剰に作用させた場合には、摺面を形成した後に、再び粗い粒度又は細かい粒度で摺面を研磨することにより、きめ細かい微調整の補正をすることができ、光学膜の平面化を図ることができる。つまり、摺面形成後に粗い粒度又は細かい粒度で摺面を研磨するということは、応力の過不足分を微調整して補正を行っていることになる。   On the other hand, if the stress due to the formation of the sliding surface exceeds the film stress and the convex surface is distorted on the rough surface (opposite to the film forming surface), the sliding surface is re-adjusted with a finer particle size. Polishing is performed to reduce the stress due to the formation of the sliding surface and to flatten the optical film. If the stress due to the formation of the sliding surface is insufficient or excessively applied, after the sliding surface is formed, the surface is again polished with a coarse particle size or a fine particle size so that fine fine adjustment is possible. Correction can be performed, and planarization of the optical film can be achieved. That is, polishing the sliding surface with a coarse particle size or a fine particle size after forming the sliding surface means that the excess or deficiency of the stress is finely adjusted and corrected.

また、本発明の請求項9〜12の光学素子の製造方法は、前記の光学膜平面化方法を適用して、前記の光学素子を製造することを特徴とする。   The optical element manufacturing method according to claims 9 to 12 of the present invention is characterized in that the optical element is manufactured by applying the optical film planarization method.

基板の素材としては、主に透明性のガラス素材が対象となるが、透明性のプラスチック素材にも適用することができる。また、反射ミラーとして用いる場合には、基板内部を光が透過しないため、非透明性の素材にも適用することができる。   The substrate material is mainly a transparent glass material, but it can also be applied to a transparent plastic material. Further, when used as a reflection mirror, since light does not pass through the substrate, it can be applied to non-transparent materials.

光学膜としては、複数層の誘電体膜から構成される誘電体多層膜、単層の誘電体膜から構成される誘電体単層膜、金属膜等を適用することができる。これらのうち、誘電体多層膜、特に膜層数の多い誘電体多層膜は膜応力が強くなるため、このような誘電体多層膜に対して本発明は特に効果を奏する。   As the optical film, a dielectric multilayer film composed of a plurality of dielectric films, a dielectric single layer film composed of a single dielectric film, a metal film, or the like can be applied. Among these, the dielectric multilayer film, particularly the dielectric multilayer film having a large number of film layers, has a strong film stress. Therefore, the present invention is particularly effective for such a dielectric multilayer film.

基板に光学膜を形成する手段としては、真空蒸着法、イオンプレーティング法、イオンアシスト法、スパッタ法、CVD(化学気相成長法:Chemical Vapor Deposition)、スプレー、印刷等の種々の手法を適用することができる。   Various methods such as vacuum deposition, ion plating, ion assist, sputtering, CVD (Chemical Vapor Deposition), spraying, and printing are applied as means for forming an optical film on the substrate. can do.

本発明の光学素子を反射ミラーとして適用する場合には、当該光学素子を構成部品とする光学装置として、例えば光ピックアップや液晶プロジェクタ(投射型表示装置)等を適用することができる。   When the optical element of the present invention is applied as a reflection mirror, for example, an optical pickup, a liquid crystal projector (projection display apparatus), or the like can be applied as an optical apparatus having the optical element as a component.

本発明は、光学膜が形成される面の反対の面に摺面を形成することにより、光学膜の膜応力を摺面の形成による応力がキャンセルし、特別な修正用の薄膜を形成しなくても、光学膜の平面化を図ることができる。特に、基板が薄い場合には、膜応力は強力になる傾向にあり、光学膜を大きく歪ませることになるが、膜応力が強くなっても反対の面に摺面を形成することにより光学膜の平面化を図ることができるため、この場合に特に有利な効果を奏する。   By forming a sliding surface on the surface opposite to the surface on which the optical film is formed, the present invention cancels the film stress of the optical film due to the formation of the sliding surface, and does not form a special correction thin film. However, the planarization of the optical film can be achieved. In particular, when the substrate is thin, the film stress tends to be strong, and the optical film is greatly distorted. Even if the film stress is increased, the optical film is formed by forming a sliding surface on the opposite surface. In this case, a particularly advantageous effect can be obtained.

以下、図面を参照して本発明の実施形態について説明する。ここでは、光学素子として光を反射させる反射ミラーについて説明する。図1において、反射ミラー1は、主にガラス板等の平板状の透明基板10から構成される。透明基板10の一面(被成膜面10S)には光学膜として反射多層膜12が形成されている。被成膜面10Sは反射多層膜12の光学的精度を保証するという観点から、厳格に平面性を維持している必要がある。このため、被成膜面10Sは予め鏡面研磨が行われている。そして、透明基板10の被成膜面10Sの反対の面は摺面13となっている。ここでは、粒度の粗い研磨剤により摺面の形成されているものとする。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, a reflection mirror that reflects light as an optical element will be described. In FIG. 1, the reflecting mirror 1 is mainly composed of a flat transparent substrate 10 such as a glass plate. A reflective multilayer film 12 is formed as an optical film on one surface of the transparent substrate 10 (deposition surface 10S). From the viewpoint of guaranteeing the optical accuracy of the reflective multilayer film 12, the film formation surface 10 </ b> S needs to maintain strictly flatness. For this reason, the film-forming surface 10S is mirror-polished in advance. The surface opposite to the film formation surface 10 </ b> S of the transparent substrate 10 is a sliding surface 13. Here, it is assumed that the sliding surface is formed by a coarse abrasive.

反射多層膜12は内部応力(膜応力)を有していることから、透明基板10に反射多層膜12が形成されると、凸方向(反射多層膜12側に凸となる方向)に湾曲する力が透明基板10に作用する。しかし、反射多層膜12が形成されている面の反対の面(被摺面10R)には、摺面13が形成されている。   Since the reflective multilayer film 12 has internal stress (film stress), when the reflective multilayer film 12 is formed on the transparent substrate 10, the reflective multilayer film 12 is curved in a convex direction (a direction in which the reflective multilayer film 12 is convex). A force acts on the transparent substrate 10. However, the slidable surface 13 is formed on the surface (the slid surface 10R) opposite to the surface on which the reflective multilayer film 12 is formed.

薄型の透明基板10の一面(被摺面10R)を研磨剤で摺ると、透明基板10は凸方向(摺面13側に凸となる方向:透明基板10に反射多層膜12を形成したときに湾曲しようとする方向とは逆の方向)に湾曲しようとする。この湾曲する応力は、トワイマン効果と呼ばれる。特に、透明基板10が薄いときに、湾曲しようとする応力(摺面の形成応力)は大きくなる。反射ミラー1は、コンパクト化の要請から、極めて薄型の光学素子となるため、透明基板10の板厚も極めて薄いものが使用される。そうすると、膜応力と摺面の形成応力とが相互に逆の方向の応力であるため、両者の応力をキャンセルすることができる。   When one surface of the thin transparent substrate 10 (the surface to be slid 10R) is slid with an abrasive, the transparent substrate 10 protrudes in the convex direction (the direction in which the transparent substrate 10 protrudes toward the sliding surface 13: when the reflective multilayer film 12 is formed on the transparent substrate 10). It tries to bend in a direction opposite to the direction to bend). This bending stress is called the Twiman effect. In particular, when the transparent substrate 10 is thin, the stress (sliding surface formation stress) that tends to bend increases. Since the reflecting mirror 1 is an extremely thin optical element due to a demand for compactness, the transparent substrate 10 having a very thin plate thickness is used. Then, since the film stress and the formation stress of the sliding surface are in opposite directions, both stresses can be canceled.

ここで、最終的な目的となるのは、透明基板10全体の形状を元の形状にすることではなく、反射多層膜12を平面化することにある。従って、反射多層膜12とは異なり、摺面13の形状は多少いびつな形状であってもよい。なお、反射多層膜12は被成膜面10Sに形成されているため、反射多層膜12が平面化されれば、当然に被成膜面10Sも平面化されることになる。   Here, the final purpose is not to make the shape of the entire transparent substrate 10 the original shape, but to planarize the reflective multilayer film 12. Therefore, unlike the reflective multilayer film 12, the shape of the sliding surface 13 may be somewhat distorted. Since the reflective multilayer film 12 is formed on the film formation surface 10S, if the reflective multilayer film 12 is planarized, the film deposition surface 10S is naturally planarized.

被摺面10Rは、予め被成膜面10Sと同様に鏡面研磨を行うことにより、被摺面10Rを被成膜面10Sとが平行になるようにする。反射多層膜12の膜応力による湾曲量は平面を基準としているため、被摺面10Rも平面を基準とすることにより、両者の基準を一致させる。これにより、湾曲量の測定を容易にすることができる。   The sliding surface 10R is mirror-polished in advance in the same manner as the film formation surface 10S so that the surface 10R is parallel to the film formation surface 10S. Since the amount of curvature due to the film stress of the reflective multilayer film 12 is based on the plane, the slidable surface 10R is also based on the plane, thereby matching the two standards. Thereby, the measurement of the amount of bending can be facilitated.

次に、膜応力について説明する。膜応力は、透明基板10に形成される反射多層膜12の膜厚、膜層数、材料等の膜自体の要因の他に、透明基板10の材料、板厚等によっても変化する。ここでは、透明基板10の板厚が「1.5mm」、そして反射多層膜12は真空蒸着法によって透明基板10に形成される場合について説明する。例えば、反射多層膜12が、3波長対応(CDの波長域の光(波長780nm近傍の光)、DVDの波長域の光(波長650nm近傍の光)、大容量光ディスクの光(波長405nm近傍の光)の3つの波長域の光の反射率を高くした反射多層膜)の場合は、2波長対応(CD及びDVDの波長域の光の反射率を高くした反射多層膜)の場合や1波長対応(CDの波長域の光の反射率を高くした反射多層膜)の場合と比べて膜応力が強くなる傾向にある。   Next, the film stress will be described. The film stress varies depending on the material, plate thickness, and the like of the transparent substrate 10 as well as the factors of the film itself such as the film thickness, the number of film layers, and the material of the reflective multilayer film 12 formed on the transparent substrate 10. Here, a case where the thickness of the transparent substrate 10 is “1.5 mm” and the reflective multilayer film 12 is formed on the transparent substrate 10 by vacuum deposition will be described. For example, the reflective multilayer film 12 is compatible with three wavelengths (light in the wavelength range of CD (light near the wavelength of 780 nm), light in the wavelength range of DVD (light near the wavelength of 650 nm), and light of the large-capacity optical disc (wavelength near 405 nm). In the case of a reflective multilayer film in which the reflectance of light in the three wavelength regions of light is increased), the case of two wavelengths (a reflective multilayer film in which the reflectance of light in the wavelength range of CD and DVD is increased) or one wavelength The film stress tends to be stronger than in the case of the correspondence (reflective multilayer film in which the reflectance of light in the CD wavelength region is increased).

一方、摺面を形成することにより透明基板10に作用する応力(トワイマン効果による応力)は、研磨剤を用いている場合には、研磨剤の粒度によって異なる。ここでは研磨剤の粒度の一例として、粒径7μm、粒径16μm、粒径23μmの3つを用いている。摺面の形成による応力は研磨剤の粒度が粗くなるほど(粒径が大きくなるほど)強くなるため、粒径23μmで研磨した場合に最も強い応力を作用し、粒度が細かくなるほど(粒径が小さくなるほど)弱くなるため、粒径7μmで研磨した場合に最も応力が弱くなる。   On the other hand, the stress acting on the transparent substrate 10 by forming the sliding surface (stress due to the Twiman effect) varies depending on the particle size of the abrasive when an abrasive is used. Here, as an example of the particle size of the abrasive, three particles having a particle size of 7 μm, a particle size of 16 μm, and a particle size of 23 μm are used. Since the stress due to the formation of the sliding surface becomes stronger as the particle size of the abrasive becomes coarser (as the particle size becomes larger), the strongest stress acts when polishing with a particle size of 23 μm, and as the particle size becomes smaller (as the particle size becomes smaller). ) Since it becomes weak, the stress becomes the weakest when polished with a particle size of 7 μm.

そこで、反射多層膜12が透明基板10に作用する膜応力と釣り合った粒度で摺面を形成すれば、両者の応力は相互に反対方向に湾曲しようとする応力であるため、相互に応力を完全にキャンセルすることができる。また、膜応力と釣り合っていない粒度を用いる場合でも、膜応力を完全にキャンセルすることができないまでも、膜応力の緩和機能を発揮している。このため、摺面を形成した後に、反射多層膜12の平面化の度合いが許容誤差範囲内であれば、任意の粒度を用いることができる。   Therefore, if the reflective multilayer film 12 forms a sliding surface with a grain size that is balanced with the film stress acting on the transparent substrate 10, the stresses of the two are stresses that tend to bend in opposite directions. Can be canceled. Even when a particle size that is not balanced with the film stress is used, the film stress relaxation function is exhibited until the film stress cannot be completely canceled. For this reason, after forming a sliding surface, if the degree of planarization of the reflective multilayer film 12 is within an allowable error range, an arbitrary particle size can be used.

次に、透明基板10の板厚、研磨剤の粒度、摺面の形成後の反射多層膜12の平面化の度合いの関係について図2のグラフを用いて説明する。同図は、反射多層膜12を透明基板10に形成した後に、異なる粒度で摺面を形成したときの反射多層膜12の平面化の度合いを示しているグラフである。同図において、平面化の度合いを中心変位(μm)で示し、図中の横軸が板厚、縦軸が中心変位を示している。   Next, the relationship between the thickness of the transparent substrate 10, the grain size of the abrasive, and the degree of planarization of the reflective multilayer film 12 after the formation of the sliding surface will be described with reference to the graph of FIG. The figure is a graph showing the degree of planarization of the reflective multilayer film 12 when the sliding surface is formed with different particle sizes after the reflective multilayer film 12 is formed on the transparent substrate 10. In the figure, the degree of planarization is indicated by center displacement (μm), the horizontal axis in the figure indicates the plate thickness, and the vertical axis indicates the center displacement.

なお、中心変位が0μmの場合に、反射多層膜12は理想的に平面状態となり、中心変位の値が0μmから離れるほど、反射多層膜12の湾曲量は大きくなる。値が正の場合と負の場合とでは湾曲方向が反対になる。また、反射多層膜12としては、酸化チタンと二酸化珪素とのおおよそ30層程度の交互積層の多層膜、膜厚はおおよそ3.5nm程度であるものとする。   When the center displacement is 0 μm, the reflective multilayer film 12 is ideally in a planar state, and the amount of curvature of the reflective multilayer film 12 increases as the value of the center displacement increases from 0 μm. The bending direction is opposite between a positive value and a negative value. Further, as the reflective multilayer film 12, an approximately laminated multilayer film of about 30 layers of titanium oxide and silicon dioxide is assumed, and the film thickness is about 3.5 nm.

図中で示すグラフのうち通常状態が、全く摺面が形成されていない場合である。つまり、純粋に膜応力による湾曲量を示している。この場合、板厚が1.5mmのときには、中心変位が3μmとなり、板厚1mmのときには、中心変位がおおよそ7.5μmとなる。従って、板厚が薄いほど、反射多層膜12の膜応力によって透明基板10は大きく湾曲することになる。   The normal state among the graphs shown in the figure is a case where no sliding surface is formed. That is, the amount of bending due to the film stress is purely shown. In this case, when the plate thickness is 1.5 mm, the center displacement is 3 μm, and when the plate thickness is 1 mm, the center displacement is approximately 7.5 μm. Accordingly, as the plate thickness is thinner, the transparent substrate 10 is more greatly curved by the film stress of the reflective multilayer film 12.

次に、粒径7μmの研磨剤で摺面13を形成した場合には、図中に示されるように、板厚が1.5mmのときには、中心変位がおおよそ1μmとなり、板厚が1mmのときには、中心変位がおおよそ3μmとなる。従って、反射多層膜12の膜応力を緩和することができるため、摺面13が形成されていない場合と比較して、被成膜面10Sの湾曲量を小さくすることができる。つまり、平面化を図ることができている。   Next, when the sliding surface 13 is formed with an abrasive having a particle size of 7 μm, as shown in the figure, when the plate thickness is 1.5 mm, the center displacement is approximately 1 μm, and when the plate thickness is 1 mm. The center displacement is approximately 3 μm. Accordingly, since the film stress of the reflective multilayer film 12 can be relaxed, the amount of curvature of the film formation surface 10S can be reduced as compared with the case where the sliding surface 13 is not formed. That is, planarization can be achieved.

一方、粒径16μmの研磨剤で摺面13を形成した場合には、板厚が1.5mmのときには、中心変位がおおよそ0.7μmとなる。従って、粒度が粗い研磨剤で摺面13を形成する方が、さらに被成膜面10Sを平面化させることができる。   On the other hand, when the sliding surface 13 is formed with an abrasive having a particle diameter of 16 μm, the center displacement is approximately 0.7 μm when the plate thickness is 1.5 mm. Therefore, it is possible to further planarize the film formation surface 10S by forming the sliding surface 13 with an abrasive having a coarse particle size.

そして、粒径23μmの研磨剤で摺面13を形成した場合には、板厚が1mmのときには、中心変位がおおよそ−0.5μmとなっている。一方、板厚を0.3mm程度にまで極めて薄くした場合には、摺面の形成による応力よりも膜応力の方が勝るため、中心変位がおおよそ−2μmとなる。そして、同図から明らかなように、粒径23μmの研磨剤を用いて、板厚0.7mm程度の透明基板10に摺面を形成したときには、摺面13による応力と膜応力とがちょうど釣り合うため、反射多層膜12を完全に平面化することができる。   When the sliding surface 13 is formed with an abrasive having a particle diameter of 23 μm, the center displacement is approximately −0.5 μm when the plate thickness is 1 mm. On the other hand, when the plate thickness is extremely reduced to about 0.3 mm, the film stress is superior to the stress due to the formation of the sliding surface, so the center displacement is approximately -2 μm. As is apparent from the figure, when a sliding surface is formed on the transparent substrate 10 having a plate thickness of about 0.7 mm using an abrasive having a particle size of 23 μm, the stress due to the sliding surface 13 and the film stress are just balanced. Therefore, the reflective multilayer film 12 can be completely planarized.

以上のようにして、反射ミラー1の1面(被成膜面10S)に反射多層膜12を形成し、反対の面(被摺面10R)に摺面13を形成することにより、膜応力を緩和して、反射多層膜12を平面化することができる。ここで、反射多層膜12の形成と摺面13の形成とのうち何れを先に行うかによって、膜応力の緩和量が異なる。   As described above, the reflective multilayer film 12 is formed on one surface (deposition surface 10S) of the reflection mirror 1, and the slid surface 13 is formed on the opposite surface (the slid surface 10R). The reflective multilayer film 12 can be planarized by relaxing. Here, the amount of relaxation of the film stress differs depending on which of the formation of the reflective multilayer film 12 and the formation of the sliding surface 13 is performed first.

まず、先に摺面13を形成した後に反射多層膜12の形成を行うものについて説明する。図3に示されるように、最初に、同図(a)に示されるように、透明基板10の両面を鏡面研磨して、被成膜面10S及び被摺面10Rの両面を平面状態にする(鏡面研磨工程)。そして、同図(b)のように、被摺面10Rを摺ることにより摺面13を形成する(摺面の形成工程)。この時点では、前記のトワイマン効果により、摺面13側に透明基板10は湾曲する。最後に、同図(c)に示されるように、光学膜としての反射多層膜12を透明基板10に形成することにより(光学膜形成工程)、反射多層膜12の膜応力と摺面の形成による応力とが釣り合って、被成膜面10Sが平面化し、反射多層膜12が平面化される。   First, a description will be given of the case where the reflective multilayer film 12 is formed after the sliding surface 13 is formed first. As shown in FIG. 3, first, as shown in FIG. 3A, both surfaces of the transparent substrate 10 are mirror-polished so that both the film formation surface 10S and the sliding surface 10R are in a planar state. (Mirror polishing process). Then, as shown in FIG. 6B, the sliding surface 13 is formed by sliding the sliding surface 10R (sliding surface forming step). At this point, the transparent substrate 10 is curved toward the sliding surface 13 due to the Twiman effect. Finally, as shown in FIG. 5C, by forming the reflective multilayer film 12 as an optical film on the transparent substrate 10 (optical film forming step), the film stress and the sliding surface of the reflective multilayer film 12 are formed. The film-forming surface 10S is planarized, and the reflective multilayer film 12 is planarized.

この方法を採用した場合、予め反射多層膜12を透明基板10に形成することによる湾曲量を把握しておく必要がある。予め膜応力を見越して、その分反対方向に透明基板10を湾曲させておくことによって、反射多層膜12を形成したときに平面化を図っている。この場合、画一的に透明基板10に一定の粒度の研磨剤を用いて摺面の形成することができるため、多数の透明基板10を予め一定の粒度で摺面の形成をしておき、後に反射多層膜12を形成して反射ミラーを製造することができるため、大量生産に好適である。   When this method is employed, it is necessary to grasp in advance the amount of bending caused by forming the reflective multilayer film 12 on the transparent substrate 10. In anticipation of the film stress in advance, the transparent substrate 10 is curved in the opposite direction, thereby flattening when the reflective multilayer film 12 is formed. In this case, since the sliding surface can be uniformly formed on the transparent substrate 10 using an abrasive having a certain particle size, a number of transparent substrates 10 are previously formed with a certain particle size, Since the reflective multilayer film 12 can be formed later to manufacture a reflective mirror, it is suitable for mass production.

次に、先に反射多層膜12を形成して、後に摺面13を形成する方法について説明する。この場合も、最初に透明基板10の両面を鏡面研磨する(鏡面研磨工程)。そして、図3(d)に示されるように、被成膜面10Sに光学膜としての反射多層膜12を形成し(光学膜形成工程)、同図(e)に示されるように、被摺面10Rに摺面13を形成する(摺面の形成工程)。この場合、反射多層膜12を形成したことによって膜応力の作用を、事後的に摺面13を形成することによって緩和を図っている。そうすると、固体によって膜応力による湾曲量が異なっている場合でも、実際の湾曲量に合わせた粒度で摺面13を形成することができるため、きめ細かい精度で平面化を実現することができる。   Next, a method for forming the reflective multilayer film 12 first and then forming the sliding surface 13 will be described. Also in this case, first, both surfaces of the transparent substrate 10 are mirror-polished (mirror-polishing step). Then, as shown in FIG. 3D, a reflective multilayer film 12 as an optical film is formed on the film formation surface 10S (optical film forming step), and as shown in FIG. The sliding surface 13 is formed on the surface 10R (sliding surface forming step). In this case, the action of the film stress is achieved by forming the reflective multilayer film 12, and the sliding surface 13 is formed later to alleviate the effect. As a result, even when the amount of bending due to the film stress differs depending on the solid, the sliding surface 13 can be formed with a particle size matched to the actual amount of bending, so that planarization can be realized with fine accuracy.

図4に示されるように、摺面13を形成しない場合(摺面なし)に比べて、先摺り(先に摺面13を形成して、後に反射多層膜12を形成する方法)による場合は、中心変位を0μmに近づけることができ、平面化精度を高めている。しかし、後摺り(先に反射多層膜12を形成して、後に摺面13を形成する方法)は、先摺りに比べてさらに中心変位を0に近づけることができ、最も平面化精度を高めている。つまり、先摺り又は後摺りの何れの方法を採用するかは、大量生産を重視するか、平面化精度を重視するか、によって適宜選択することになる。   As shown in FIG. 4, compared to the case where the sliding surface 13 is not formed (without the sliding surface), the case where the sliding surface 13 is formed (the method in which the sliding surface 13 is formed first and the reflective multilayer film 12 is formed later) is used. The center displacement can be brought close to 0 μm, and the planarization accuracy is improved. However, post-slip (a method in which the reflective multilayer film 12 is first formed and the slide surface 13 is formed later) can further bring the center displacement closer to 0 compared to the front-slip, and the highest planarization accuracy is achieved. Yes. In other words, whether to use the front or rear sliding method is appropriately selected depending on whether mass production is important or flattening accuracy is important.

また、先摺りの方法又は後摺りの方法の何れの方法を採用した場合においても、摺面13を形成したときの粒度よりも粗い粒度の研磨剤又は細かい粒度の研磨剤で、再度摺面13をすることにより、反射多層膜12の平面化を図ることができる。摺面13を形成した後に、より粗い粒度の研磨剤で再度摺面13を摺ると、前記のトワイマン効果による応力が作用し、反射多層膜12の膜応力とは反対方向の応力を作用する。一方、摺面13を形成した後に、より細かい粒度の研磨剤で再度摺面13を摺ると、前記のトワイマン効果による応力を軽減し、反射多層膜12の膜応力と同じ方向の応力を作用する。   In addition, in the case of adopting any of the tip sliding method or the post-sliding method, the sliding surface 13 is again formed with an abrasive having a coarser particle size or an abrasive having a finer particle size than that when the sliding surface 13 is formed. By doing so, the reflective multilayer film 12 can be planarized. After the sliding surface 13 is formed, when the sliding surface 13 is slid again with an abrasive having a coarser particle size, stress due to the Twiman effect acts, and stress in the direction opposite to the film stress of the reflective multilayer film 12 acts. On the other hand, after the sliding surface 13 is formed, if the sliding surface 13 is slid again with a finer grain abrasive, stress due to the Twiman effect is reduced, and stress in the same direction as the film stress of the reflective multilayer film 12 acts. .

つまり、先摺りの場合であれば反射多層膜12を形成したときに、後摺りの場合であれば摺面13を形成したときに、反射多層膜12の膜応力が未だ勝っているときには、より粗い粒度で再度摺面13を摺り、トワイマン効果による応力が反射多層膜12の膜応力よりも勝っているときには、より細かい粒度で再度摺面13を摺ることにより、平面化の微調整を行うことができる(微調整工程)。この微調整工程を行うことにより、反射多層膜12の平面化を図ることができる。この微調整工程は、反射多層膜12の膜応力を摺面13の形成による応力で緩和するときに、過不足が生じている場合には、この過不足分を調整する工程となる。   That is, when the reflective multi-layer film 12 is formed in the case of tipping, when the sliding surface 13 is formed in the case of post-slip, when the film stress of the reflective multi-layer film 12 is still prevailing, When the sliding surface 13 is slid again with a coarse particle size, and the stress due to the Twiman effect is greater than the film stress of the reflective multilayer film 12, the sliding surface 13 is slid again with a finer particle size to finely adjust the planarization. (Fine adjustment process). By performing this fine adjustment step, the reflective multilayer film 12 can be planarized. This fine adjustment step is a step of adjusting the excess / deficiency when excess or deficiency occurs when the film stress of the reflective multilayer film 12 is relaxed by the stress due to the formation of the sliding surface 13.

以上、説明したように、光学膜が形成された被成膜面の反対の面に摺面を形成することによって、光学膜の膜応力によって被成膜面が湾曲しても、摺面の形成による応力が緩和して、光学膜の平面化を図ることができる。   As described above, by forming the sliding surface on the surface opposite to the film formation surface on which the optical film is formed, even if the film formation surface is curved due to the film stress of the optical film, the formation of the sliding surface is achieved. The stress due to the above can be relaxed, and the optical film can be planarized.

光学素子の外観図である。It is an external view of an optical element. 板厚、粒度、中心変位の関係を示すグラフである。It is a graph which shows the relationship between board thickness, a particle size, and center displacement. 摺面の形成工程を先に行った場合、及び光学膜形成工程を先に行った場合の、夫々の製造工程の流れを示す図である。It is a figure which shows the flow of each manufacturing process when the formation process of a sliding surface is performed previously, and when an optical film formation process is performed previously. 先摺り、後摺りによる中心変位の関係を示す他のグラフである。It is another graph which shows the relationship of the center displacement by a front sliding and a rear sliding.

符号の説明Explanation of symbols

1 反射ミラー 10 透明基板
10R 被摺面 10S 被成膜面
12 反射多層膜 13 摺面
DESCRIPTION OF SYMBOLS 1 Reflection mirror 10 Transparent substrate 10R Sliding surface 10S Film forming surface 12 Reflecting multilayer film 13 Sliding surface

Claims (12)

基板の表面と裏面とで面の粗さに差を持たせて、前記表面又は前記裏面のうち粗さの細かい方の面に光学膜を形成し、前記光学膜の応力を緩和させることを特徴とする光学素子。   A difference in surface roughness is provided between the front surface and the back surface of the substrate, an optical film is formed on the surface with the finer roughness of the front surface or the back surface, and the stress of the optical film is relieved. An optical element. 請求項1記載の光学素子であって、
前記粗さの細かい方の面は鏡面研磨により仕上げて成膜面となし、この成膜面とは反対の面を摺面に形成することを特徴とする光学素子。
The optical element according to claim 1,
The optical element is characterized in that the surface with finer roughness is finished by mirror polishing to form a film-forming surface, and a surface opposite to the film-forming surface is formed as a sliding surface.
請求項2記載の光学素子であって、
前記摺面は、前記光学膜が平面化されるような粒度で摺られていることを特徴とする光学素子。
The optical element according to claim 2,
The slidable surface is slid with a particle size such that the optical film is planarized.
請求項1乃至3何れか1項に記載の光学素子であって、
前記光学膜は、所定の波長域の光を反射する反射多層膜であることを特徴とする光学素子。
The optical element according to any one of claims 1 to 3,
The optical element is a reflective multilayer film that reflects light in a predetermined wavelength range.
基板の少なくとも1面を鏡面研磨する鏡面研磨工程と、
鏡面研磨した1面の反対の面を摺ることにより摺面を形成する摺面形成工程と、
前記摺面形成工程の後に行われる工程であって、前記鏡面研磨された1面に光学膜を形成する光学膜形成工程と、を有し、
前記基板に対する前記光学膜の応力を、前記摺面が緩和して、前記光学膜を平面化することを特徴とする光学膜平面化方法。
A mirror polishing step of mirror polishing at least one surface of the substrate;
A sliding surface forming step of forming a sliding surface by sliding the surface opposite to the mirror-polished one surface;
An optical film forming step for forming an optical film on the mirror-polished one surface, which is a step performed after the sliding surface forming step,
A method of planarizing an optical film, wherein the sliding surface relaxes the stress of the optical film with respect to the substrate to planarize the optical film.
基板の少なくとも1面を鏡面研磨する鏡面研磨工程と、
鏡面研磨した1面に光学膜を形成する光学膜形成工程と、
前記光学膜形成工程の後に行われる工程であって、前記光学膜が形成される面の反対の面を摺ることにより摺面を形成する摺面形成工程と、を有し、
前記基板に対する前記光学膜の応力を、前記摺面が緩和して、前記光学膜を平面化することを特徴とする光学膜平面化方法。
A mirror polishing step of mirror polishing at least one surface of the substrate;
An optical film forming step of forming an optical film on one mirror-polished surface;
A step performed after the optical film forming step, and a sliding surface forming step of forming a sliding surface by sliding the surface opposite to the surface on which the optical film is formed, and
A method of planarizing an optical film, wherein the sliding surface relaxes the stress of the optical film with respect to the substrate to planarize the optical film.
請求項5又は6記載の光学膜平面化方法であって、
前記摺面を形成するときには、前記基板が平面化されるような粒度で摺ることを特徴とする光学膜平面化方法。
An optical film planarization method according to claim 5 or 6,
An optical film planarization method, wherein the sliding surface is formed with a particle size such that the substrate is planarized.
請求項7記載の光学膜平面化方法であって、
前記摺面形成工程で摺面を形成した粒度よりも粗い粒度又は細かい粒度で、前記摺面を摺ることにより、前記成膜面をさらに平面に近づけるような微調整を行う微調整工程を行うことを特徴とする光学膜平面化方法。
The optical film planarization method according to claim 7,
Performing a fine adjustment step of finely adjusting the film-forming surface to be closer to a flat surface by rubbing the sliding surface with a particle size coarser or finer than the particle size of the sliding surface formed in the sliding surface forming step. An optical film planarization method characterized by the above.
基板の鏡面研磨された1面に光学膜が形成され、この光学膜が形成された面の反対の面に摺面を形成することにより前記光学膜の応力を緩和した光学素子を製造する光学素子の製造方法であって、
前記基板の少なくとも1面を鏡面研磨する鏡面研磨工程と、
鏡面研磨した1面の反対の面に摺面を形成する摺面形成工程と、
前記摺面形成工程の後に行われる工程であって、前記鏡面研磨された1面に光学膜を形成する光学膜形成工程と、を有することを特徴とする光学素子の製造方法。
An optical element for manufacturing an optical element in which an optical film is formed on one surface of a substrate that has been mirror-polished, and a sliding surface is formed on a surface opposite to the surface on which the optical film is formed, thereby reducing the stress of the optical film A manufacturing method of
A mirror polishing step of mirror polishing at least one surface of the substrate;
A sliding surface forming step of forming a sliding surface on the opposite surface of the mirror-polished one surface;
An optical element manufacturing method comprising: an optical film forming step for forming an optical film on the one mirror-polished surface, the step being performed after the sliding surface forming step.
基板の鏡面研磨された1面に光学膜が形成され、この光学膜が形成された面の反対の面を摺ることにより摺面を形成することにより前記光学膜の応力を緩和した光学素子を製造する光学素子の製造方法であって、
基板の少なくとも1面を鏡面研磨する鏡面研磨工程と、
鏡面研磨した1面に光学膜を形成する光学膜形成工程と、
前記光学膜形成工程の後に行われる工程であって、前記光学膜が形成される面の反対の面に摺面を形成する摺面形成工程と、を有し、
前記基板に対する前記光学膜の応力を、前記摺面が緩和して、前記光学膜を平面化することを特徴とする光学素子の製造方法。
An optical film is formed on a mirror-polished surface of a substrate, and a sliding surface is formed by sliding the surface opposite to the surface on which the optical film is formed, thereby producing an optical element that relieves stress on the optical film. A method of manufacturing an optical element,
A mirror polishing step of mirror polishing at least one surface of the substrate;
An optical film forming step of forming an optical film on one mirror-polished surface;
A step that is performed after the optical film forming step, and includes a sliding surface forming step of forming a sliding surface on a surface opposite to a surface on which the optical film is formed, and
The method of manufacturing an optical element, wherein the sliding surface relaxes the stress of the optical film with respect to the substrate to planarize the optical film.
請求項9又は10記載の光学素子の製造方法であって、
前記摺面を形成するときには、前記基板が平面化されるような粒度で摺ることを特徴とする光学素子の製造方法。
It is a manufacturing method of the optical element according to claim 9 or 10,
When forming the sliding surface, the substrate is slid with a particle size such that the substrate is planarized.
請求項11記載の光学素子の製造方法であって、
前記摺面形成工程で摺面を形成した粒度よりも粗い粒度又は細かい粒度で、前記摺面を摺ることにより、前記光学膜による応力を緩和して、前記成膜面をさらに平面に近づけるような微調整を行う微調整工程を行うことを特徴とする光学素子の製造方法。
It is a manufacturing method of the optical element according to claim 11,
By sliding the sliding surface with a particle size coarser or finer than the particle size that formed the sliding surface in the sliding surface forming step, the stress due to the optical film is relieved and the film-forming surface is made closer to a flat surface. A method of manufacturing an optical element, comprising performing a fine adjustment step of performing fine adjustment.
JP2007067901A 2007-03-16 2007-03-16 Optical element, optical film planarization method, and optical element manufacturing method Active JP4269189B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007067901A JP4269189B2 (en) 2007-03-16 2007-03-16 Optical element, optical film planarization method, and optical element manufacturing method
KR1020080020277A KR100998500B1 (en) 2007-03-16 2008-03-05 Optical element, method of planarizing optical film and method of manufacturing the optical element
CN200810082989XA CN101266308B (en) 2007-03-16 2008-03-17 Optical element, optical film complanation method and method for manufacturing optical element
TW097109321A TW200909884A (en) 2007-03-16 2008-03-17 Optical element, optical film complanation method and method for manufacturing optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067901A JP4269189B2 (en) 2007-03-16 2007-03-16 Optical element, optical film planarization method, and optical element manufacturing method

Publications (2)

Publication Number Publication Date
JP2008225421A JP2008225421A (en) 2008-09-25
JP4269189B2 true JP4269189B2 (en) 2009-05-27

Family

ID=39844065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067901A Active JP4269189B2 (en) 2007-03-16 2007-03-16 Optical element, optical film planarization method, and optical element manufacturing method

Country Status (4)

Country Link
JP (1) JP4269189B2 (en)
KR (1) KR100998500B1 (en)
CN (1) CN101266308B (en)
TW (1) TW200909884A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014201622A1 (en) 2014-01-30 2015-08-20 Carl Zeiss Smt Gmbh Method for producing a mirror element
JP6862154B2 (en) * 2016-11-22 2021-04-21 キヤノン株式会社 Manufacturing methods for optics, exposure equipment, and articles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113901A (en) 1981-12-26 1983-07-07 Nippon Kogaku Kk <Nikon> Laminated optical structural body
CN86211077U (en) * 1986-12-31 1987-12-16 长春光学精密机械研究所 Optical reflector with stone substrate
US6964880B2 (en) * 2003-06-27 2005-11-15 Intel Corporation Methods for the control of flatness and electron mobility of diamond coated silicon and structures formed thereby

Also Published As

Publication number Publication date
KR20080084611A (en) 2008-09-19
KR100998500B1 (en) 2010-12-06
TW200909884A (en) 2009-03-01
TWI377372B (en) 2012-11-21
CN101266308A (en) 2008-09-17
CN101266308B (en) 2012-06-06
JP2008225421A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP5070209B2 (en) High-yield bonding process for producing polycarbonate polarizing lenses
JP4664277B2 (en) High precision mirror and manufacturing method thereof
KR101867192B1 (en) Wire grid polarizing plate and projection-type image display device
TWI654151B (en) Glass ceramic for ultraviolet lithography and manufacturing method thereof
TWI599445B (en) Method of manufacturing a composite substrate
WO2006016086A1 (en) Method for making an ophthalmic lens designed to produce an optical display
US20070211339A1 (en) Polarized light splitting device and method for manufacturing the same
JP2010276940A (en) Method for joining glass substrate, and glass joined body
JPS59172624A (en) Optical deflecting scanner
JP4269189B2 (en) Optical element, optical film planarization method, and optical element manufacturing method
JP4692486B2 (en) Optical filter and optical filter manufacturing method
WO2021235067A1 (en) Substrate wafer production method and substrate wafer
JPH035702A (en) Cemented lens or the like and its manufacture
CN212965498U (en) Adhesive wave plate
US11567253B2 (en) Patterned optical retarders and methods for making thereof
JP6948988B2 (en) Photomask substrate and its manufacturing method
EP1525947B1 (en) Method for finish-polishing
US20200270174A1 (en) Method for manufacturing disk-shaped glass substrate, method for manufacturing thin glass substrate, method for manufacturing light-guiding plate, and disk-shaped glass substrate
JP2016191805A (en) Polarizer, manufacturing method of the polarizer, and liquid crystal display device
TWI259293B (en) Surface-form-adjustable reflection lens
CN116460667B (en) Processing method of calcium fluoride optical part
US20220019001A1 (en) Visible quality mirror finishing
CN117826431A (en) Preparation method of depolarization film system optical film element and fixing device
JP2006010813A (en) Shape variable mirror element and its manufacturing method
CN117388974A (en) True zero-order half-wave plate applied to 266nm and processing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4269189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250