JP2006010813A - Shape variable mirror element and its manufacturing method - Google Patents
Shape variable mirror element and its manufacturing method Download PDFInfo
- Publication number
- JP2006010813A JP2006010813A JP2004184735A JP2004184735A JP2006010813A JP 2006010813 A JP2006010813 A JP 2006010813A JP 2004184735 A JP2004184735 A JP 2004184735A JP 2004184735 A JP2004184735 A JP 2004184735A JP 2006010813 A JP2006010813 A JP 2006010813A
- Authority
- JP
- Japan
- Prior art keywords
- film
- shape
- mirror
- mirror element
- variable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 239000010408 film Substances 0.000 claims abstract description 148
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 239000010409 thin film Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims description 32
- 238000005498 polishing Methods 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 239000005368 silicate glass Substances 0.000 claims description 3
- 238000002310 reflectometry Methods 0.000 abstract description 10
- 230000001788 irregular Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 16
- 230000003746 surface roughness Effects 0.000 description 13
- 238000005259 measurement Methods 0.000 description 12
- 239000005304 optical glass Substances 0.000 description 8
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 7
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000003754 machining Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Landscapes
- Mechanical Light Control Or Optical Switches (AREA)
- Micromachines (AREA)
Abstract
Description
本発明は、圧電膜に所定の電圧を印加して形状を可変する形状可変ミラー素子及びその製造方法に関する。 The present invention relates to a deformable mirror element that changes its shape by applying a predetermined voltage to a piezoelectric film, and a manufacturing method thereof.
形状可変ミラー素子としては、セラミックスの圧電材料の上面に、反射ミラー面および電極にリード線が半田付けされた素子が開示されている(例えば、特許文献1参照。)。 As the deformable mirror element, an element in which a lead wire is soldered to a reflection mirror surface and an electrode on an upper surface of a ceramic piezoelectric material is disclosed (for example, see Patent Document 1).
微小サイズの形状可変ミラー素子としては、圧電膜を反射ミラー板に貼り付けた素子が開示されている(例えば、特許文献2参照。)。反射ミラー板には、例えばガラス反射鏡、反射ミラー膜、シリコンウェハー等を使用している。 As a micro-sized variable shape mirror element, an element in which a piezoelectric film is attached to a reflection mirror plate is disclosed (for example, see Patent Document 2). As the reflection mirror plate, for example, a glass reflection mirror, a reflection mirror film, a silicon wafer or the like is used.
低い加電圧で大きな形状変化が可能な形状可変ミラー素子として、形状可変部が基板の中空部分の開口部に薄膜ダイヤフラムを有する素子がある(例えば、本出願人による特願2003−143027。)。薄膜ダイヤフラムを利用した形状可変ミラー素子の場合、素子の膜厚が10μm以下の構成が可能なので、低電圧で大きな形状変化が可能である。 As a deformable mirror element capable of a large shape change with a low applied voltage, there is an element in which the shape variable portion has a thin film diaphragm in an opening of a hollow portion of a substrate (for example, Japanese Patent Application No. 2003-143027 by the present applicant). In the case of a deformable mirror element using a thin film diaphragm, since the film thickness of the element can be 10 μm or less, it is possible to change the shape at a low voltage.
この形状可変ミラー素子は圧電膜、電極膜や弾性板膜等の薄膜を順次積層し、最後に反射ミラー膜を形成する。一般に、薄膜は形成方法や形成時の基板温度やガス圧力等の条件により結晶構造が異なる(例えば、非特許文献1参照)。例えば、スパッタの場合は、基板温度が大きくなると結晶粒が大きくなる。また、膜厚が厚くなると結晶は大きく成長していく。
前記の(特許文献1)に開示された形状可変ミラー素子は、圧電材料にバルク材料を使用しているために、圧電材料の厚みが非常に厚くなっている。その結果、形状を大きく可変するためには非常に高い印加電圧が必要となることが容易に推察される。 Since the deformable mirror element disclosed in the above (Patent Document 1) uses a bulk material for the piezoelectric material, the thickness of the piezoelectric material is very large. As a result, it is easily guessed that a very high applied voltage is required to greatly change the shape.
また、(特許文献2)に開示された形状可変ミラー素子の場合も、非常に高い印加電圧が必要であることが容易に推察される。つまり、圧電膜と反射ミラー板を接着しただけの構成の素子では接着強度が弱く、それ自体で自立することができず実用に適さないので、ある程度の厚みを要するからである。 Also, in the case of the deformable mirror element disclosed in (Patent Document 2), it is easily guessed that a very high applied voltage is required. That is, an element having a structure in which the piezoelectric film and the reflection mirror plate are simply bonded has a low adhesive strength, and cannot be self-supported by itself and is not suitable for practical use.
特願2003−143027による形状可変ミラー素子では、結晶構造や結晶粒の大きさが、表面形状に大きく反映し、しかも薄膜特有の表面形状を有することになる。従って、この形状可変ミラー素子もまた、表面の粗さが少しずつ大きくなっていき、反射ミラー膜表面の表面粗さは非常に大きなものになる。この大きな表面粗さのために、反射ミラー膜は乱反射が大きくなり、その結果反射率が低くなる。そこで、更なる改善が望まれている。 In the variable shape mirror element according to Japanese Patent Application No. 2003-143027, the crystal structure and the size of the crystal grains are greatly reflected in the surface shape, and the surface shape is unique to the thin film. Therefore, the surface roughness of the deformable mirror element also increases gradually, and the surface roughness of the reflecting mirror film surface becomes very large. Due to this large surface roughness, the reflection mirror film has a large irregular reflection, resulting in a low reflectance. Therefore, further improvement is desired.
本発明は上記従来の問題点を解決するものであり、積層薄膜上に反射ミラー膜を形成しても高い反射率を有する形状可変ミラー素子を提供することを第1の目的とする。 SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and a first object thereof is to provide a variable shape mirror element having a high reflectance even when a reflective mirror film is formed on a laminated thin film.
また本発明は、高い反射率を有する形状可変ミラー素子を安定して作製できる製造方法を提供することを第2の目的とする。 A second object of the present invention is to provide a manufacturing method capable of stably producing a deformable mirror element having a high reflectance.
前記第1の目的を達成するため、本発明の形状可変ミラー素子は、反射ミラー膜表面の算術平均粗さRaが10nm以下、凹部の平均間隔が130nm以下となるように規定することを主な特徴とする。 In order to achieve the first object, the deformable mirror element of the present invention is mainly defined so that the arithmetic average roughness Ra of the reflecting mirror film surface is 10 nm or less and the average interval between the recesses is 130 nm or less. Features.
また、第2の目的を達成するため、形状可変ミラー素子を製造する方法は、反射ミラー膜表面の表面形状調整工程として、反射ミラー膜を形成する面に対して機械的研磨を行うことを主な特徴とする。 Further, in order to achieve the second object, the method of manufacturing the deformable mirror element mainly performs mechanical polishing on the surface on which the reflecting mirror film is formed as the surface shape adjusting step of the reflecting mirror film surface. Features.
本発明の形状可変ミラー素子によれば、積層薄膜上に形成された反射ミラー膜においても、鏡面研磨された基板上に反射ミラー膜を形成した場合と同等の高い反射率を有する形状可変ミラー素子を提供できるという優れた効果が得られる。 According to the variable shape mirror element of the present invention, even in the reflective mirror film formed on the laminated thin film, the variable shape mirror element having a high reflectance equivalent to that when the reflective mirror film is formed on the mirror-polished substrate. It is possible to obtain an excellent effect that can be provided.
また、本発明の形状可変ミラー素子の製造方法によれば、鏡面研磨された基板上に反射ミラー膜を形成した場合と同等の高い反射率を有する形状可変ミラー素子を安定して作製できるという優れた効果が得られる。 Further, according to the method for manufacturing a deformable mirror element of the present invention, it is possible to stably produce a deformable mirror element having a high reflectance equivalent to that when a reflecting mirror film is formed on a mirror-polished substrate. Effect.
本発明は、積層薄膜上に反射ミラー膜を形成しても高い反射率を有する形状可変ミラー素子を提供するという目的を、反射ミラー膜表面の算術平均粗さRaが10nm以下、凹部の平均間隔が130nm以下となるように規定することにより実現した。 An object of the present invention is to provide a variable shape mirror element having a high reflectance even when a reflecting mirror film is formed on a laminated thin film. The arithmetic average roughness Ra of the reflecting mirror film surface is 10 nm or less, and the average interval between recesses. This is realized by defining the value to be 130 nm or less.
上記課題を解決するためになされた第1の発明は、少なくとも圧電膜と、圧電膜に電圧を供給する第1電極膜及び第2電極膜と、圧電膜上に設けられた反射ミラー膜からなる積層薄膜を備えた形状可変部と、形状可変部を支持する基板とを備えた可視光領域で使用する形状可変ミラー素子であって、反射ミラー膜表面の算術平均粗さRaが10nm以下であり且つ、反射ミラー膜表面の凹部の平均間隔が130nm以下である形状可変ミラー素子としたものであり、積層薄膜上に形成された反射ミラー膜においても、鏡面研磨された基板上に反射ミラー膜を形成した場合と同等の高い反射率を有する形状可変ミラー素子を得ることができる。 A first invention made to solve the above problems comprises at least a piezoelectric film, a first electrode film and a second electrode film for supplying a voltage to the piezoelectric film, and a reflection mirror film provided on the piezoelectric film. A variable shape mirror element used in a visible light region including a variable shape portion including a laminated thin film and a substrate that supports the variable shape portion, and the arithmetic average roughness Ra of the surface of the reflective mirror film is 10 nm or less In addition, a variable shape mirror element in which the average interval between the concave portions on the surface of the reflective mirror film is 130 nm or less is used. In the reflective mirror film formed on the laminated thin film, the reflective mirror film is formed on the mirror-polished substrate. A deformable mirror element having a high reflectance equivalent to that of the formed case can be obtained.
ここで、表面形状は例えば原子間力顕微鏡により測定され、測定面積は5μm×5μm、算術平均粗さRaと凹部の平均間隔は任意の測定場所10ヶ所の平均値により決定される。 Here, the surface shape is measured by, for example, an atomic force microscope, the measurement area is 5 μm × 5 μm, and the arithmetic average roughness Ra and the average interval between the recesses are determined by an average value at 10 arbitrary measurement locations.
一般に薄膜は柱状構造をしており、この柱状構造に起因する表面起伏や微細且つ急峻な粒界間段差等の表面形状により光が吸収されたり、乱反射が発生したりして、反射率が低下する。従って、薄膜の厚みや積層薄膜の層数が増すと、顕著に反射率は低下していく。また、薄膜表面は厳密には平面では無く、傾きの多いジグザグ構造という特徴があり、この微細な傾斜面に光線が入射した場合、乱反射が発生する。表面の傾斜面の角度が大きいほど光線の反射角は大きくずれ、反射率は低下することになる。従って、積層薄膜上に反射ミラー機能を有する反射ミラー膜の反射率を決定する表面形状の要因は2つあり、表面粗さと凹部の平均間隔である。第1の発明では、JIS表面粗さ(B0601)の規定の粗さ形状パラメーターである表面の粗さと傾斜角を定量化した算術平均粗さRaと凹部の平均間隔を規定するものである。算術平均粗さRaとは粗さ曲線から、その平均線の方向
に基準長さLだけ抜き取り、この抜き取り部分の平均線から測定曲線までの偏差の絶対値を合計し平均した値である。
Generally, a thin film has a columnar structure, and light is absorbed or irregular reflection occurs due to surface shapes such as surface undulations and fine and steep steps between grain boundaries, resulting in a decrease in reflectivity. To do. Therefore, as the thickness of the thin film and the number of layers of the laminated thin film increase, the reflectance decreases remarkably. Strictly speaking, the thin film surface is not a flat surface but has a zigzag structure with many inclinations. When a light ray enters this fine inclined surface, irregular reflection occurs. As the angle of the inclined surface is larger, the reflection angle of the light beam is greatly shifted, and the reflectance is lowered. Therefore, there are two factors of the surface shape that determine the reflectivity of the reflecting mirror film having the reflecting mirror function on the laminated thin film, the surface roughness and the average interval between the recesses. In the first invention, the arithmetic mean roughness Ra quantifying the surface roughness and the inclination angle, which are the prescribed roughness shape parameters of the JIS surface roughness (B0601), and the average interval between the recesses are specified. The arithmetic average roughness Ra is a value obtained by extracting the reference length L from the roughness curve in the direction of the average line, and summing and averaging the absolute values of deviations from the average line of the extracted portion to the measurement curve.
凹部の平均間隔とは、図14に示すように、粗さ曲線からその平均線の方向に基準長さLだけ抜き取り、1つの凹部(谷)に対応する平均線の和を求め、その平均値を求めたものである。 As shown in FIG. 14, the average interval between the recesses is the sum of the average lines corresponding to one recess (valley) obtained by extracting only the reference length L from the roughness curve in the direction of the average line. Is what we asked for.
この抜き取り部分の平均線から測定曲線までの偏差の絶対値を合計し平均した値である測定曲線を一定間隔ΔXで横方向に区切り、各区間内における測定曲線の終始点を結ぶ線分の傾き(角度)の絶対値を求め、その値を平均したものである。 The absolute value of the deviation from the average line of the sampling part to the measurement curve is summed and averaged. The measurement curve is divided horizontally at a fixed interval ΔX, and the slope of the line segment connecting the starting points of the measurement curve in each section. The absolute value of (angle) is obtained and averaged.
反射ミラー膜表面の算術平均粗さRaが10nm以下であり且つ、凹部の平均間隔が130nm以下の場合、鏡面研磨された基板上に反射ミラー膜を形成した場合と同等の高い反射率を有する。 When the arithmetic average roughness Ra of the reflecting mirror film surface is 10 nm or less and the average interval between the recesses is 130 nm or less, the reflectance is as high as when the reflecting mirror film is formed on the mirror-polished substrate.
上記課題を解決するためになされた第2の発明は、少なくとも圧電膜と、圧電膜に電圧を供給する第1電極膜及び第2電極膜と、圧電膜上に設けられた反射ミラー膜からなる積層薄膜を備えた形状可変部と、形状可変部を支持する基板とを備えた可視光領域で使用する形状可変ミラー素子の製造方法であって、反射ミラー膜表面の算術平均粗さRaが10nm以下となるように且つ、反射ミラー膜表面の凹部の平均間隔が130nm以下となるように表面形状調整を行う表面形状調整工程を有し、かつ表面形状調整工程として、反射ミラー膜を形成する面に対して機械的研磨を行う形状可変ミラー素子としたものであり、予め機械的研磨により表面粗さ原因となる突起や凸部を研磨することにより表面形状の調整を行うので、鏡面研磨された基板上に反射ミラー膜を形成した場合と同等の高い反射率を有する形状可変ミラー素子を安定して作製できる。 A second invention made to solve the above-described problem comprises at least a piezoelectric film, a first electrode film and a second electrode film for supplying a voltage to the piezoelectric film, and a reflection mirror film provided on the piezoelectric film. A method of manufacturing a variable shape mirror element for use in the visible light region having a variable shape portion including a laminated thin film and a substrate that supports the variable shape portion, wherein the arithmetic average roughness Ra of the surface of the reflective mirror film is 10 nm. A surface on which the reflection mirror film is formed as a surface shape adjustment step, and has a surface shape adjustment step for adjusting the surface shape so that the average distance between the concave portions on the surface of the reflection mirror film is 130 nm or less. The surface shape is adjusted by polishing the projections and projections that cause surface roughness by mechanical polishing in advance, so that the surface is mirror-polished. The variable shape mirror element having a same high reflectance in the case of forming the reflective mirror film on the plate can be stably produced.
上記課題を解決するためになされた第3の発明は、表面形状調整工程として、反射ミラー膜を形成する面に対して常温において液体の硬化樹脂を塗布する形状可変ミラー素子の製造方法としたものであり、予め液体樹脂を薄く塗布し表面粗さ原因となる突起や凸部を被覆することにより表面の表面形状調整工程を行うので、優れた反射率を有する形状可変ミラー素子を安定して製造できる。 3rd invention made | formed in order to solve the said subject was made into the manufacturing method of the variable shape mirror element which apply | coats liquid curable resin at normal temperature with respect to the surface which forms a reflective mirror film | membrane as a surface shape adjustment process Since the surface shape adjustment process is performed by applying a thin liquid resin in advance and covering the protrusions and projections that cause the surface roughness, it is possible to stably produce variable shape mirror elements with excellent reflectivity. it can.
上記課題を解決するためになされた第4の発明は、表面形状調整工程として、反射ミラー膜を形成する面に対して不純物として燐またはホウ素を含んだシリケートガラスを形成し熱処理を行う形状可変ミラー素子の製造方法としたものであり、予め表面粗さ原因となる突起や凸部を被覆することにより表面形状の調整を行うので、優れた反射率を有する形状可変ミラー素子を安定して製造できる。 According to a fourth aspect of the present invention, there is provided a variable shape mirror for forming a silicate glass containing phosphorus or boron as an impurity on a surface on which a reflecting mirror film is formed and performing a heat treatment as a surface shape adjusting step. This is an element manufacturing method, and the surface shape is adjusted by previously covering projections and projections that cause surface roughness, so that a deformable mirror element having excellent reflectivity can be stably manufactured. .
上記課題を解決するためになされた第5の発明は、反射ミラー膜面の反射率を測定することにより、表面形状調整工程の評価を行う形状可変ミラー素子の製造方法としたものであり予め反射ミラー膜表面の粗さと傾斜角と反射率との相関を求めることで、表面形状調整工程の良否の判断を反射率の測定で行うことができるので、簡単で良質な形状可変ミラー素子を安定に製造できる。 A fifth invention made to solve the above-mentioned problem is a method for manufacturing a deformable mirror element that evaluates the surface shape adjustment step by measuring the reflectance of the reflecting mirror film surface. By obtaining the correlation between the roughness of the mirror film surface, the tilt angle, and the reflectance, the quality of the surface shape adjustment process can be judged by measuring the reflectance, so that a simple and high-quality deformable mirror element can be stably used. Can be manufactured.
(実施の形態1)
以下、本発明の形状可変ミラー素子の実施の形態について説明する。まず、本発明の実施の形態の形状可変ミラー素子の構成について、図面を参照して説明する。図面中の膜厚や基板の厚み、形状可変量等は理解を容易にする目的のために、実際の寸法とは異なる。以下、全ての図面において同様である。
(Embodiment 1)
Hereinafter, embodiments of the deformable mirror element of the present invention will be described. First, the configuration of the deformable mirror element according to the embodiment of the present invention will be described with reference to the drawings. For the purpose of facilitating understanding, the film thickness, the substrate thickness, the shape variable amount, etc. in the drawings are different from the actual dimensions. Hereinafter, the same applies to all drawings.
図1は本発明の実施の形態の形状可変ミラー素子の表面から見た斜視図である。図2は本発明の実施の形態の形状可変ミラー素子の裏面から見た斜視図である。図3は本発明の実施の形態の形状可変ミラー素子の要部断面図である。 FIG. 1 is a perspective view seen from the surface of a deformable mirror element according to an embodiment of the present invention. FIG. 2 is a perspective view seen from the back surface of the deformable mirror element according to the embodiment of the present invention. FIG. 3 is a cross-sectional view of a main part of the deformable mirror element according to the embodiment of the present invention.
形状可変ミラー素子1は、基板2と、ダイヤフラム部分と基板2に一体連結した部分とからなる形状可変部3と、形状可変部3に電圧を印加するための電極パッド4とからなる。形状可変部3は圧電動作部5と反射ミラー膜6とからなる。圧電動作部5は下部より圧電膜8に電圧を印加するための第1電極膜7、伸縮により形状可変部3を変形させる圧電膜8、圧電膜8に電圧を印加するためのもう一方の第2電極膜9からなる。また、変形方向や変形形状等を決定する弾性板膜も必要に応じ付加するが、本発明の実施の形態の形状可変ミラー素子1においては、反射ミラー膜6が弾性板膜の機能を有している。従って、弾性板機能のみ有する薄膜は無い。なお、形状可変部3と圧電動作部5は同一部材同一構成となっている。
The
以上のように構成された形状可変ミラー素子の動作を図面とともに説明する。図10〜図12は形状可変ミラー素子1の動作を示す側断面図である。形状可変ミラー素子1の第1電極膜7と第2電極膜9に電圧を印加すると、例えば図11で示す断面形状になる。逆の極性の電圧をそれぞれの個別電極に印加した場合、図12で示す断面形状となる。圧電膜8は電圧が印加されると伸び縮みする。そのため、第1電極膜7にプラス極性の電圧を印加した場合に電圧印加部分の圧電膜が伸びるとした場合、マイナス極性の電圧を印加した場合には電圧印加部分の圧電膜は縮む。その結果、第1電極膜7にプラス極性の電圧を印加した場合、図11のように反射ミラー面は凸面となる。逆に、第1電極膜7にマイナス極性の電圧を印加した場合、図12のように反射ミラー面は凹面となる。
The operation of the deformable mirror element configured as described above will be described with reference to the drawings. 10 to 12 are side sectional views showing the operation of the
次に、本発明の実施の形態の形状可変ミラー素子の製造方法について、図4〜図9を参照して説明する。図4〜図9は形状可変ミラー素子の製造工程を示す形状可変ミラー素子の要部断面図である。 Next, a method for manufacturing the deformable mirror element according to the embodiment of the present invention will be described with reference to FIGS. 4 to 9 are cross-sectional views of the main part of the deformable mirror element showing the manufacturing process of the deformable mirror element.
基板の材料としては、SiやMgO等の単結晶材料が圧電膜8の圧電特性が良好になりやすいために好適に使用されるが、特に制限されるものではない。しかし、形状可変ミラー素子1を作製する工程で高温処理をする工程が必要な場合には、耐熱性の良好な基板材料が選択される場合がある。また、ダイヤフラム形成のため、基板のエッチングを行うので、比較的薄い基板が好適に使用される。
As a substrate material, a single crystal material such as Si or MgO is preferably used because the piezoelectric characteristics of the
第1電極膜7の材料にはIr−Ti合金を使用し、膜厚は0.1μmとした。圧電膜8の材料にはPZT(チタン酸ジルコン酸鉛)を使用し、膜厚は3μmとした。Ir−Ti合金とPZTの形成は共にスパッタ法で行い、Ir−Ti形成時の基板温度は400℃、PZT形成時の基板温度は600℃とした。第1電極膜7の材料としては導電性の高い金属が好適に使用される。形状可変ミラー素子1を作製する工程で高温処理をする工程を用いる場合には、PtやIrもしくはその合金など高温に強い材料が望ましい。圧電膜8の材料としては、PZTやPZTと同系のPbを含むペロブスカイト酸化物などの圧電定数が高く変位の大きい材料が好適に使用される。また、電極膜や圧電膜8の形成方法は、例えば、スパッタ法、CVD(Chemical Vapor Deposition)、またはゾルゲル法と多くあるが、膜を形成できる技術であれば特に制限されることはない。
An Ir—Ti alloy was used as the material of the
圧電膜8を形成後に積層膜表面を鏡面化する。本発明の実施の形態では鏡面化する工程として、機械加工である研磨を行った。圧電膜表面を厚さ100nm程度研磨し、微小な凹凸を低減して、所定の表面粗さにする。その後、純水により超音波洗浄して、圧電膜表面を清浄な状態にする。研磨に使用するスラリーは粒径が1μm以下の酸化セリウム砥粒を使用し、濃度15%とした。また、研磨後の超音波洗浄を行った。
After forming the
次に、第2電極膜9を形成する。材料にはTiを使用し、Tiの形成はスパッタ法で行った。Ti膜厚は0.1μmとし、Ti形成時の基板温度は常温とした。Ti膜厚は0.1μmとしたのでTi形成後の表面の粗さはPZT研磨後の表面粗さと同程度である。
Next, the
次に、反射ミラー膜6を形成する。反射ミラー膜6にはSiO2とTa2O5からなる反射ミラー膜を使用した。なお、本発明の実施の形態の反射ミラー膜6は弾性板膜を兼備しているので、膜厚は反射ミラー膜6の特性を考慮し、0.8μmとした。なお、反射ミラー膜6の構成は位相差厚みλ/4で14層を蒸着法で形成した。反射ミラー膜6の材料としては、ミラーの使用目的により異なるが、例えば、AuやAgなどの金属や、SiO2/Ta2O5などの低屈折率誘電体/高屈折率誘電体のλ/4多層膜が好適に使用される。反射ミラー膜6の形成方法も、圧電膜8の形成方法と同様、例えば、スパッタ法または蒸着法と多くあるが、膜を形成できる技術であれば特に制限されることはない。
Next, the
本発明の実施の形態では反射ミラー膜に弾性板膜機能を持たしたが、本来の弾性板膜の材料としては、樹脂、金属、セラミック等の材料が使用できる。弾性板膜の形成方法も、圧電膜8の形成方法と同様、例えば、スパッタ法、CVD、または蒸着法と多くあるが、膜を形成できる技術であれば特に制限されることはない。
In the embodiment of the present invention, the reflection mirror film has an elastic plate film function. However, as the material of the original elastic plate film, materials such as resin, metal, and ceramic can be used. There are many elastic plate film forming methods, such as sputtering, CVD, or vapor deposition, as in the
最後に、図9に示すようにダイヤフラムからなる形状可変部を形成する。本発明の実施の形態では、Si基板10の裏面からリアクティブイオンエッチング技術を利用して所望の厚みまでエッチング加工することにより、直径1.5mmの形状可変部3を形成した。なお、ダイヤフラムの形成方法はウェットエッチング法、ドライエッチング法や機械加工等多くあるが、ダイヤフラムを形成できる技術であれば特に制限されることはない。
Finally, as shown in FIG. 9, a shape variable portion made of a diaphragm is formed. In the embodiment of the present invention, the shape
以上の製造方法において、研磨時間と研磨時の基板荷重を変更することにより、算術平均粗さRaと算術平均傾斜Δaの異なった形状可変ミラー素子を作製した。(表1)に、研磨条件と反射ミラー膜表面の算術平均粗さRaと凹部の平均間隔および反射率を示した。なお、表面形状はデジタルインスツルメンタル社製原子間力顕微鏡SPI−3700を使用した。表面形状の測定面積は5μm×5μmであり、測定分解能は面内0.01μm、垂直0.1nmである。算術平均粗さRaと凹部の平均間隔は任意の測定場所10ヶ所の平均値である。 In the above manufacturing method, variable shape mirror elements having different arithmetic average roughness Ra and arithmetic average inclination Δa were manufactured by changing the polishing time and the substrate load at the time of polishing. Table 1 shows the polishing conditions, the arithmetic average roughness Ra of the reflecting mirror film surface, the average interval between the recesses, and the reflectance. The surface shape used was an atomic force microscope SPI-3700 manufactured by Digital Instrumental. The measurement area of the surface shape is 5 μm × 5 μm, and the measurement resolution is in-plane 0.01 μm and vertical 0.1 nm. The arithmetic average roughness Ra and the average interval between the recesses are average values at 10 arbitrary measurement locations.
また、反射率は日本分光(株)製分光光度計V−550を使用した。反射率の測定波長λは400nmである。 The reflectance used was a spectrophotometer V-550 manufactured by JASCO Corporation. The measurement wavelength λ of the reflectance is 400 nm.
(表1)には記していないが、鏡面研磨された光学ガラス基板として使用されるホウ珪酸ガラス上に形成した反射ミラー膜の算術平均粗さRaは0.5nm、凹部の平均間隔は10nm程度あり、反射率は99%であった。 Although not shown in (Table 1), the arithmetic average roughness Ra of the reflective mirror film formed on the borosilicate glass used as the mirror-polished optical glass substrate is 0.5 nm, and the average interval between the recesses is about 10 nm. Yes, the reflectivity was 99%.
(表1)の結果より、算術平均粗さRaが10nm以上または凹部の平均間隔は130nmを超えるときは、反射率が80%程度となり鏡面研磨された光学ガラス基板の反射ミラー膜よりかなり低いことが分かった。同時に、算術平均粗さRaが10nm以下であり且つ凹部の平均間隔は130nm以下であれば、反射率が98%となり鏡面研磨された光学ガラス基板の反射ミラー膜と同等の反射率を有することが分かった。 From the results of (Table 1), when the arithmetic average roughness Ra is 10 nm or more or the average interval between the recesses exceeds 130 nm, the reflectivity is about 80%, which is considerably lower than that of the mirror mirror polished optical glass substrate. I understood. At the same time, when the arithmetic average roughness Ra is 10 nm or less and the average interval between the recesses is 130 nm or less, the reflectivity is 98%, and the reflectivity is equivalent to that of the reflection mirror film of the mirror-polished optical glass substrate. I understood.
また、400nmを超える可視光領域の波長の測定においても、算術平均粗さRaが10nm以下であり且つ凹部の平均間隔は130nm以下であれば、反射率が98%となり鏡面研磨された光学ガラス基板の反射ミラー膜と同等の反射率を有することが確認された。 Further, even in the measurement of wavelengths in the visible light region exceeding 400 nm, if the arithmetic average roughness Ra is 10 nm or less and the average interval between the recesses is 130 nm or less, the optical glass substrate is mirror-polished with a reflectance of 98%. It was confirmed to have a reflectance equivalent to that of the reflective mirror film.
上記のような結果となる理由としては以下のようなことが考えられる。 The following can be considered as the reason for the above results.
図13は算術平均粗さRaが8nmであり凹部の平均間隔は100nmのときの原子間力顕微鏡による反射ミラー膜の表面形状である。図13は表面を研磨しても未だ厳密に見ると表面は非常に粗く、算術平均粗さRaは光学ガラス基板の10倍以上あるが、反射率は光学ガラス基板と同等である。この理由としては、反射ミラー膜6の表面形状は薄膜特有の柱状構造を反映した凸凹形状であるが、その凸凹間隔が可視光領域の光の波長λ(400〜800nm)と比較して小さいので、回折限界により凸凹の隙間に光が進入することなく、全反射することが考えられる。鏡面研磨された光学ガラス基板の反射ミラー膜6と反射率を比較した場合、積層薄膜上に形成された反射ミラー膜6の表面形状の算術平均粗さRaが10nm以下であり且つ凹部の平均間隔は130nm以下のとき、鏡面研磨された光学ガラス基板の反射ミラー膜6と同等の反射率となることが考えられる。
FIG. 13 shows the surface shape of the reflection mirror film obtained by an atomic force microscope when the arithmetic average roughness Ra is 8 nm and the average interval between the recesses is 100 nm. In FIG. 13, even if the surface is polished, the surface is still very rough when viewed strictly. The arithmetic average roughness Ra is 10 times or more that of the optical glass substrate, but the reflectance is the same as that of the optical glass substrate. The reason for this is that although the surface shape of the
本発明の実施の形態の形状可変ミラー素子1によれば、積層薄膜上に形成された反射ミラー膜6においても、鏡面研磨された基板上に反射ミラー膜6を形成した場合と同等の高い反射率を有する形状可変ミラー素子1を実現できることが明らかとなった。また、本発明の実施の形態の形状可変ミラー素子1の製造方法によれば、鏡面研磨された基板上に反射ミラー膜6を形成した場合と同等の高い反射率を有する形状可変ミラー素子1を安定して作製できることが明らかとなった。
According to the variable
一方、表面形状調整工程がある場合、表面の検査工程も同時に必要となる。原子間力顕微鏡による表面形状の測定は時間がかかるし熟練が必要なので、検査工程には不向きである。予め薄膜の表面形状と反射率の測定値との相関を求め、その結果を反射ミラー膜6の成膜工程にフィードバックすることによって、簡単で良質な形状可変ミラー素子1を安定に製造できる。
On the other hand, when there is a surface shape adjustment step, a surface inspection step is also required. Measurement of the surface shape with an atomic force microscope takes time and requires skill, so it is not suitable for the inspection process. The correlation between the surface shape of the thin film and the measured value of the reflectance is obtained in advance, and the result is fed back to the film forming process of the reflecting
なお、本発明の実施の形態では鏡面化する工程として機械加工である研磨を使用したが、鏡面化できる手段を制限するものではない。例えば、第2電極形成後に常温で液体であり熱硬化性のポリイミド樹脂を0.01〜1μm程度の厚みでスピンコート塗布をしても、鏡面化できる。すなわち、非常に凸凹した表面に液体を塗布すれば、凹部に液体樹脂が入り込み表面が平滑化され、表面を平坦にすることにより、鏡面化が達成される。また、紫外線硬化樹脂を使用しても同様の硬化を得ることができる。 In the embodiment of the present invention, polishing which is machining is used as the mirroring process, but the means capable of mirroring is not limited. For example, even if spin coating is applied to a thickness of about 0.01 to 1 μm with a thermosetting polyimide resin that is liquid at room temperature after forming the second electrode, it can be mirror-finished. That is, if a liquid is applied to a very uneven surface, a liquid resin enters the recess, the surface is smoothed, and the surface is flattened to achieve a mirror surface. Further, similar curing can be obtained even when an ultraviolet curable resin is used.
他に、表面形状調整工程として、不純物として燐またはホウ素を含んだシリケートガラスをCVD法等の気相成長法により表面粗さの程度の厚み、例えば50nm程度の厚みを形成し、その後熱処理を行うことで平坦化処理を行っても、鏡面化が達成される。 In addition, as a surface shape adjusting step, a silicate glass containing phosphorus or boron as an impurity is formed to have a surface roughness thickness, for example, a thickness of about 50 nm, by a vapor phase growth method such as a CVD method, and then heat treatment is performed. Thus, even if the flattening process is performed, mirroring is achieved.
本発明の形状可変ミラー素子によれば、低電圧で形状可変量の大きい形状可変ミラー素子を提供できるので、可変光学素子を含む光学系を備えた、例えばビデオプロジェクター、デジタルカメラ、光ディスク装置の光学ピックアップ部品等の用途にも適用可能である。 According to the deformable mirror element of the present invention, it is possible to provide a deformable mirror element having a large shape variable amount at a low voltage. Therefore, for example, a video projector, a digital camera, or an optical disc apparatus having an optical system including the variable optical element. It can also be applied to applications such as pickup parts.
1 形状可変ミラー素子
2 基板
3 形状可変部
4 電極パッド
5 圧電動作部
6 反射ミラー膜
7 第1電極膜
8 圧電膜
9 第2電極膜
10 Si基板
DESCRIPTION OF
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004184735A JP2006010813A (en) | 2004-06-23 | 2004-06-23 | Shape variable mirror element and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004184735A JP2006010813A (en) | 2004-06-23 | 2004-06-23 | Shape variable mirror element and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006010813A true JP2006010813A (en) | 2006-01-12 |
Family
ID=35778179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004184735A Pending JP2006010813A (en) | 2004-06-23 | 2004-06-23 | Shape variable mirror element and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006010813A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100454080C (en) * | 2006-12-09 | 2009-01-21 | 中国科学技术大学 | Piezoelectric thick diaphragm driving micro deformable mirror and producing method thereof |
CN102728533A (en) * | 2011-04-06 | 2012-10-17 | 佳能株式会社 | Electromechanical transducer and method of producing the same |
JP2014053480A (en) * | 2012-09-07 | 2014-03-20 | Ricoh Co Ltd | Piezoelectric thin film element and manufacturing method therefor, piezoelectric actuator using the same, droplet discharge head and droplet discharge device |
-
2004
- 2004-06-23 JP JP2004184735A patent/JP2006010813A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100454080C (en) * | 2006-12-09 | 2009-01-21 | 中国科学技术大学 | Piezoelectric thick diaphragm driving micro deformable mirror and producing method thereof |
CN102728533A (en) * | 2011-04-06 | 2012-10-17 | 佳能株式会社 | Electromechanical transducer and method of producing the same |
US9510069B2 (en) | 2011-04-06 | 2016-11-29 | Canon Kabushiki Kaisha | Electromechanical transducer and method of producing the same |
JP2014053480A (en) * | 2012-09-07 | 2014-03-20 | Ricoh Co Ltd | Piezoelectric thin film element and manufacturing method therefor, piezoelectric actuator using the same, droplet discharge head and droplet discharge device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI276847B (en) | Wavelength-variable filter and method of manufacturing the same | |
WO2017092378A1 (en) | Single-crystal film bonding body and manufacturing method therefor | |
US20040125472A1 (en) | Actuated deformable membrane mirror | |
JP4664277B2 (en) | High precision mirror and manufacturing method thereof | |
JP3770158B2 (en) | Manufacturing method of MEMS element | |
WO2012160972A1 (en) | Lower electrode for piezoelectric element, and piezoelectric element provided with lower electrode | |
JP4006535B2 (en) | Semiconductor or liquid crystal manufacturing apparatus member and manufacturing method thereof | |
JPWO2016031167A1 (en) | Antireflection film and optical member provided with antireflection film | |
CN103547700A (en) | Method for producing a thin film made of lead zirconate titanate | |
US20100128347A1 (en) | Polarizing cube and method of fabricating the same | |
JP2006010813A (en) | Shape variable mirror element and its manufacturing method | |
JP2021501477A (en) | A method for producing a film on a support having a non-flat surface | |
JP5307139B2 (en) | Method for manufacturing a silicon carbide mirror | |
JPH06112543A (en) | Piezoelectric body, ferroelectric thin film element, and its manufacture | |
US11865580B2 (en) | Method of manufacturing an integrated capacitor structure using a donor substrate for transferring layers to a receiver substrate | |
JP4419958B2 (en) | Multilayer optical element manufacturing method | |
JP4299214B2 (en) | Manufacturing method of electronic device, electronic device, and piezoelectric device | |
JP7015411B2 (en) | Piezoelectric vibration substrate and piezoelectric vibration element | |
JP2013225546A (en) | Piezo electric element and process of manufacturing the same | |
JPH1184273A (en) | Thin-film actuated mirror array and its production | |
WO2020066428A1 (en) | Antireflection film, optical element, method for producing antireflection film, and method for producing fine relief structure | |
JP6307253B2 (en) | Optical deflector and manufacturing method thereof | |
KR100998500B1 (en) | Optical element, method of planarizing optical film and method of manufacturing the optical element | |
US20120132349A1 (en) | Method for producing tunable interference filter | |
JP4931302B2 (en) | Piezoelectric element |