JP4267544B2 - Light modulator - Google Patents

Light modulator Download PDF

Info

Publication number
JP4267544B2
JP4267544B2 JP2004248306A JP2004248306A JP4267544B2 JP 4267544 B2 JP4267544 B2 JP 4267544B2 JP 2004248306 A JP2004248306 A JP 2004248306A JP 2004248306 A JP2004248306 A JP 2004248306A JP 4267544 B2 JP4267544 B2 JP 4267544B2
Authority
JP
Japan
Prior art keywords
substrate
dielectric constant
adhesive layer
optical waveguide
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004248306A
Other languages
Japanese (ja)
Other versions
JP2006065044A (en
Inventor
健治 河野
雅也 名波
勇治 佐藤
中平  徹
靖二 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2004248306A priority Critical patent/JP4267544B2/en
Publication of JP2006065044A publication Critical patent/JP2006065044A/en
Application granted granted Critical
Publication of JP4267544B2 publication Critical patent/JP4267544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は高速で駆動電圧が低く、かつ製作の歩留まりの良い光変調器の分野に属する。   The present invention belongs to the field of optical modulators that are high in speed, low in driving voltage, and good in production yield.

リチウムナイオベート(LiNbO3)のように電界を印加することにより屈折率が変化する、いわゆる電気光学効果を有する基板(以下、リチウムナイオベート基板をLN基板と略す)に光導波路と進行波電極を形成した進行波電極型リチウムナイオベート光変調器(以下、LN光変調器と略す)は、その優れたチャーピング特性から2.5Gbit/s、10Gbit/sの大容量光伝送システムに適用されている。最近はさらに40Gbit/sの超大容量光伝送システムにも適用が検討されており、キーデバイスとして期待されている。 An optical waveguide and a traveling wave electrode are formed on a substrate having a so-called electrooptic effect (hereinafter, the lithium niobate substrate is abbreviated as an LN substrate) whose refractive index is changed by applying an electric field, such as lithium niobate (LiNbO 3 ). The formed traveling wave electrode type lithium niobate optical modulator (hereinafter abbreviated as LN optical modulator) is applied to a 2.5 Gbit / s, 10 Gbit / s large capacity optical transmission system because of its excellent chirping characteristics. Yes. Recently, application to an ultra large capacity optical transmission system of 40 Gbit / s is also being studied, and it is expected as a key device.

このLN光変調器では進行波電極を伝搬する電気信号の等価屈折率nmと光導波路を伝搬する光の等価屈折率noおよび、電気信号の伝搬損失が光変調の応答帯域に決定的な役割を果たすが、その中でも、電気信号の等価屈折率nmと光の等価屈折率noとはその値が大きく異なっており、光変調の応答帯域を制限する決定的な要因となっている。そこで、これらを一致させる(電気信号と光の速度整合、あるいは簡単に速度整合と言う)ために、研究・開発が進められている。 The LN optical modulator light equivalent refractive index n o and propagating the equivalent refractive index n m and the optical waveguide of the electric signal propagated through traveling wave electrode, the propagation loss of electric signal is decisive response band of the optical modulator play a role, among them, the equivalent refractive index n m and the light of the equivalent refractive index n o of the electric signal and its value is significantly different, it has become a decisive factor that limits the response band of the optical modulator . Therefore, research and development are underway to match these (speed matching between electrical signals and light, or simply speed matching).

z−cutLN基板についてはリッジ構造が考案されるとともにその有効性を実証されている(例えば、特許文献1参照)。しかしながら、x−cutLN基板についてはまだ決定的に優れた構造がないのが実情である。   As for the z-cutLN substrate, a ridge structure has been devised and its effectiveness has been demonstrated (for example, see Patent Document 1). However, the actual situation is that the x-cutLN substrate does not yet have a decisively excellent structure.

このx−cutLN基板において電気信号と光の速度整合を達成するための技術が、特許文献2に開示されている。その1実施形態の斜視図を図5に、図5中のA−A’線における断面図を図6及び図7に示す。図6及び図7は電気信号と光が相互作用する、いわゆる相互作用部の断面図に対応する。なお、図7は図6に電気力線等を追記したものである。   A technique for achieving speed matching between an electric signal and light in this x-cut LN substrate is disclosed in Patent Document 2. FIG. 5 is a perspective view of the first embodiment, and FIGS. 6 and 7 are sectional views taken along line A-A ′ in FIG. 5. 6 and 7 correspond to cross-sectional views of a so-called interaction portion in which an electrical signal and light interact. FIG. 7 is obtained by adding electric lines of force and the like to FIG.

図中、1はx-cutLN基板、2は接着材からなる低誘電率接着層、3は保持基体である。4はx-cutLN基板1にTiを蒸着後、1050℃で約10時間熱拡散して形成した光導波路であり、マッハツェンダ干渉系(あるいは、マッハツェンダ光導波路)を構成している。また、4a、4bは電気信号と光が相互作用する部位(相互作用部と言う)における光導波路、つまりマッハツェンダ光導波路の2本のアームである。進行波電極5は中心導体5a、接地導体5b、5cからなっている。6aと6bは電気信号の電気力線であり、これらの電気力線6a、6bと光導波路4a、4bを伝搬する光のパワーの重なり積分が半波長電圧Vπと相互作用長Lとの積Vπ・Lを決定する。   In the figure, 1 is an x-cut LN substrate, 2 is a low dielectric constant adhesive layer made of an adhesive, and 3 is a holding substrate. An optical waveguide 4 is formed by thermally diffusing Ti at 1050 ° C. for about 10 hours after depositing Ti on the x-cutLN substrate 1, and constitutes a Mach-Zehnder interference system (or Mach-Zehnder optical waveguide). Reference numerals 4a and 4b denote optical waveguides in a portion where an electrical signal and light interact (referred to as an interaction portion), that is, two arms of a Mach-Zehnder optical waveguide. The traveling wave electrode 5 includes a central conductor 5a and ground conductors 5b and 5c. 6a and 6b are electric lines of force of the electric signal, and the overlap integral of the power of the light propagating through these electric lines of force 6a and 6b and the optical waveguides 4a and 4b is the product Vπ of the half-wave voltage Vπ and the interaction length L.・ L is determined.

図6から分かるように、x-cutLN基板1はその一方の面1aに光導波路4と進行波電極5の中心導体5aと接地導体5b、5cが形成されており、主基板としての機能を果たしている。低誘電率接着層2はx-cutLN基板1の他方の面1bに、十分な機械的強度を有する保持基体3の一方の面3aを固定する役割をする。   As can be seen from FIG. 6, the x-cutLN substrate 1 has the optical waveguide 4, the central conductor 5a of the traveling wave electrode 5, and the ground conductors 5b and 5c formed on one surface 1a thereof, and functions as a main substrate. Yes. The low dielectric constant adhesive layer 2 serves to fix the one surface 3a of the holding base 3 having sufficient mechanical strength to the other surface 1b of the x-cutLN substrate 1.

さて、図7に示すようにx−cutLN基板1の一方の面1aに平行な方向をx方向、垂直な方向をy方向とすると、x方向の比誘電率εrxとy方向の比誘電率εryは各々28、43と大変大きい。そのため、通常、電気信号の等価屈折率nmは3.0〜4.2程度と、光の等価屈折率no(約2.15)よりも大きな値となる。 Now, as shown in FIG. 7, when the direction parallel to one surface 1a of the x-cutLN substrate 1 is the x direction and the perpendicular direction is the y direction, the relative permittivity ε rx in the x direction and the relative permittivity in the y direction ε ry is very large at 28 and 43, respectively. Therefore, usually, it made equivalent refractive index n m of the electric signal and degree from 3.0 to 4.2, a value larger than the light of the equivalent refractive index n o (approximately 2.15).

そこで、この従来の実施形態においては、低誘電率接着層2の比誘電率は3〜5と低いことを利用し、電気力線6a、6bにこの低誘電率接着層2の領域を通過させることにより電気信号の等価屈折率nmを下げ、光の等価屈折率noに近づけるようにしている。なお、説明を簡単にするために図7においては空気中に存在する電気力線の図示を省略している。 Therefore, in this conventional embodiment, the low dielectric constant adhesive layer 2 has a low relative dielectric constant of 3 to 5, and the electric lines of force 6a and 6b are passed through the region of the low dielectric constant adhesive layer 2. lowering the effective refractive index n m of the electric signals by, and to approach the optical equivalent refractive index n o. In order to simplify the explanation, the lines of electric force existing in the air are not shown in FIG.

電気力線6a、6bにこの低誘電率接着層2の領域を通過させるためには、x-cutLN基板1の厚みT1を10μm程度まで薄くする必要がある。しかしながら、その程度の厚みのx-cutLN基板1のみでは機械的な強度が極めて弱くなってしまい、不図示のパッケージ筺体にx-cutLN基板1をそのまま固定し、光変調器として使用することは事実上不可能となる。 In order to pass the region of the low dielectric constant adhesive layer 2 through the electric lines of force 6a and 6b, it is necessary to reduce the thickness T 1 of the x-cutLN substrate 1 to about 10 μm. However, the mechanical strength becomes extremely weak only with the x-cutLN substrate 1 having such a thickness, and it is a fact that the x-cutLN substrate 1 is fixed to a package housing (not shown) and used as an optical modulator. It becomes impossible.

この問題を回避するには機械的強度を高める必要がある。そのため、前述のようにx-cutLN基板1の光導波路4や進行波電極5を形成していない他方の面1bに、低誘電率接着層2を用いて十分な機械的強度を有する保持基体3の面3aを固定することにより、LN光変調器全体としての機械的強度を高めている。さらに保持基体3の他方の面3bを不図示のパッケージ筺体に固定することにより、通信に使用できる形態とする。なお、特許文献2によれば保持基体3としてx-cutLN基板そのものを用いている。   To avoid this problem, it is necessary to increase the mechanical strength. Therefore, as described above, the holding substrate 3 having sufficient mechanical strength using the low dielectric constant adhesive layer 2 on the other surface 1b of the x-cutLN substrate 1 where the optical waveguide 4 and the traveling wave electrode 5 are not formed. By fixing the surface 3a, the mechanical strength of the entire LN optical modulator is increased. Further, the other surface 3b of the holding base 3 is fixed to a package housing (not shown) so that it can be used for communication. According to Patent Document 2, the x-cutLN substrate itself is used as the holding base 3.

特開平4−288518号公報JP-A-4-288518 特開2003−215519号公報JP 2003-215519 A

しかしながら、この特許文献2に示される従来技術は、次に示す解決すべき課題を有している。前述のように、低誘電率接着層2の比誘電率は3〜5と低く、電気力線6a、6bにこの低誘電率接着層2の領域を通過させることにより電気信号の等価屈折率nmを下げ、光の等価屈折率noに近づけるようにしている。しかし、この電気力線6a、6bは厚みT2が通常30μm程度の低誘電率接着層2を突き抜け、保持基体3に達してしまう。 However, the prior art disclosed in Patent Document 2 has the following problems to be solved. As described above, the dielectric constant of the low dielectric constant adhesive layer 2 is as low as 3 to 5, and the equivalent refractive index n of the electric signal is obtained by passing the electric lines of force 6a and 6b through the region of the low dielectric constant adhesive layer 2. lowering m, so that close to the light of the equivalent refractive index n o. However, the electric lines of force 6 a and 6 b penetrate through the low dielectric constant adhesive layer 2 having a thickness T 2 of usually about 30 μm and reach the holding base 3.

前述のように、この保持基体3の材料としてはx−cutLN基板を用いている。つまり保持基体3の比誘電率は光導波路4と進行波電極5が形成されているx−cutLN基板1と同様に大きいので、電気信号の等価屈折率nmは光の等価屈折率noよりも大きくなりやすい。特に進行波電極5の中心導体5aの幅Sや、中心導体5aと接地導体5b、5cの間のギャップWが数十μmと大きい場合には、電気力線6a、6bの広がり方がさらに大きくなり、低誘電率接着層2を突き抜け、保持基体3に達してしまう。このように進行波電極のサイズが大きい場合には、電気信号の等価屈折率nmがより一層大きくなり、光の等価屈折率noから大きく外れてしまうという問題点があった。 As described above, an x-cutLN substrate is used as the material of the holding base 3. Since that is the dielectric constant of the supporting body 3, like the x-cutLN substrate 1 whose traveling wave electrode 5 and the light guide 4 is formed larger, the equivalent refractive index n m of the electric signal from the equivalent refractive index n o of the light Also tends to be large. In particular, when the width S of the central conductor 5a of the traveling wave electrode 5 and the gap W between the central conductor 5a and the ground conductors 5b and 5c are as large as several tens of μm, the way in which the electric lines of force 6a and 6b spread is further increased. Thus, the low dielectric constant adhesive layer 2 is penetrated and reaches the holding base 3. In this case the size of the traveling wave electrode is large, the equivalent refractive index n m of the electrical signal is more increased, there is a problem that deviates greatly from the light of the equivalent refractive index n o.

なお、保持基体3として比誘電率の大きなx−cutLN基板の代わりに、アルミナ基板や石英基板を用いることも考えられる。しかしながら、これらは比誘電率が3〜5である低誘電率接着層2に比べて比誘電率が高く(約10前後)、やはり電気信号の等価屈折率nmが大きくなる傾向は免れ得ない。 Note that an alumina substrate or a quartz substrate may be used as the holding substrate 3 instead of the x-cutLN substrate having a large relative dielectric constant. However, they have a high relative dielectric constant is low dielectric constant as compared to the adhesive layer 2 relative dielectric constant is 3 to 5 (about 10 back and forth), is inevitable also tends equivalent refractive index n m of the electrical signal increases .

さらに、アルミナ基板や石英基板基板はx−cutLN基板1と比較して熱膨張係数が数桁大きい。従って、これらを保持基体3として用いた場合には温度の変化とともにLN基板にストレスが発生し、電気信号に重畳するバイアス電圧がドリフトする、あるいは最悪の場合にはx−cutLN基板1その物が破壊される場合もある。   Furthermore, an alumina substrate or a quartz substrate substrate has a thermal expansion coefficient several orders of magnitude larger than that of the x-cutLN substrate 1. Therefore, when these are used as the holding substrate 3, stress is generated in the LN substrate with a change in temperature, and the bias voltage superimposed on the electric signal drifts, or in the worst case, the x-cut LN substrate 1 itself is It can be destroyed.

また、図5から図7に示した従来の実施形態では、光導波路4と進行波電極5が形成されているx−cutLN基板1の他に、別途、保持基体3を使用するので、当然のことながら保持基体3の部材費とその形状に加工するための加工費が必要となる。さらに、保持基体3の一方の面3aと、光導波路と進行波電極が形成されているLN基板1の他方の面1bとの接着固定するための工程が必要となり、結果的にコスト上昇につながってしまっていた。   Further, in the conventional embodiment shown in FIGS. 5 to 7, since the holding base 3 is separately used in addition to the x-cut LN substrate 1 on which the optical waveguide 4 and the traveling wave electrode 5 are formed, it is natural that In particular, the member cost of the holding base 3 and the processing cost for processing into the shape are required. Furthermore, a process for bonding and fixing the one surface 3a of the holding base 3 to the other surface 1b of the LN substrate 1 on which the optical waveguide and the traveling wave electrode are formed is required, resulting in an increase in cost. It was.

さらに重要な問題として、この接着固定の際に、低誘電率接着層2と保持基体3の一方の面3aとの間に空気が入りやすいという問題点があった。低誘電率接着層2と保持基体3の一方の面3aとの間に空気が入った場合には、その後の高温試験の際に、保持基体3の一方の面3aとの間に入った空気が熱膨張し、厚みが10μm程度と薄くて機械的な強度が低いx−cutLN基板1を破裂・破壊し、歩留まりが低下する原因となっていた。   Further, as an important problem, there is a problem that air easily enters between the low dielectric constant adhesive layer 2 and the one surface 3a of the holding base 3 during the adhesive fixing. When air enters between the low dielectric constant adhesive layer 2 and the one surface 3a of the holding substrate 3, the air that has entered between the one surface 3a of the holding substrate 3 during the subsequent high temperature test. Was thermally expanded, and the x-cutLN substrate 1 having a thickness as thin as about 10 μm and low mechanical strength was ruptured and destroyed, resulting in a decrease in yield.

上記課題を解決するために、本発明の請求項1の光変調器では、
電気光学効果を有する基板と、該基板に形成された光を導波するための光導波路と、前記光を変調するための電圧を印加する、前記基板の一方の面側に形成された中心導体及び接地導体からなる進行波電極と、前記基板の他方の面側で前記基板に接着して形成され、前記基板の比誘電率より低い材料から成る低誘電率接着層とを具備し、前記光導波路が、前記光を入射するための入力光導波路と、前記中心導体と前記接地導体との間に前記電圧を印加することにより前記光の位相を変調するための相互作用光導波路と、前記相互作用光導波路において変調された結果生成された信号光を出射する出力光導波路からなる光変調器において、
前記低誘電率接着層は、前記相互作用光導波路の近傍を伝搬する電気信号の電気力線のうち、空気中以外に存在する電気力線が前記基板と前記低誘電率接着層を通過することにより該電気信号の等価屈折率が下がり、前記光導波路を伝搬する前記光の等価屈折率に近づくように厚が所定厚さに設定されているとともに、当該低誘電率接着層の前記基板が接着している面と逆側の面である逆面に何も接着されていない状態で当該低誘電率接着層のみで前記基板の破損を抑える機械的強度を持ち、
また、当該低誘電率接着層の熱膨張係数が0.5×10 -5 /K〜3×10 -5 /Kでなり、
さらに、当該低誘電率接着層の前記逆面は略平坦でなり、当該逆面でパッケージ筐体に固定されることを特徴としている。
In order to solve the above problems, in the optical modulator according to claim 1 of the present invention,
A substrate having an electro-optic effect, an optical waveguide for guiding light formed on the substrate, and a central conductor formed on one surface side of the substrate for applying a voltage for modulating the light And a traveling wave electrode made of a ground conductor, and a low dielectric constant adhesive layer formed by bonding to the substrate on the other surface side of the substrate and made of a material having a dielectric constant lower than that of the substrate. A waveguide, an input optical waveguide for entering the light, an interactive optical waveguide for modulating the phase of the light by applying the voltage between the center conductor and the ground conductor, and the mutual In an optical modulator comprising an output optical waveguide that emits signal light generated as a result of modulation in the working optical waveguide,
The low dielectric constant adhesive layer is configured such that electric lines of force other than in the air pass through the substrate and the low dielectric constant adhesive layer among electric lines of electric signal propagating in the vicinity of the interaction optical waveguide. the lower the equivalent refractive index of the electrical signals, together with the thickness to approach the equivalent refractive index of the light propagating through the optical waveguide is set to a predetermined thickness, said substrate of said low-dielectric adhesive layer With mechanical strength to suppress damage to the substrate only with the low dielectric constant adhesive layer in a state where nothing is bonded to the reverse surface that is the surface opposite to the bonded surface ,
The thermal expansion coefficient of the low-dielectric adhesive layer is at 0.5 × 10 -5 / K~3 × 10 -5 / K,
Further, the opposite surface of the low dielectric constant adhesive layer is substantially flat and is fixed to the package housing on the opposite surface .

本発明の請求項2の光変調器では、
電気光学効果を有する基板と、該基板に形成された光を導波するための光導波路と、前記光を変調するための電圧を印加する、前記基板の一方の面側に形成された中心導体及び接地導体からなる進行波電極と、前記基板の他方の面側で前記基板に接着して形成され、前記基板の比誘電率より低い材料から成る低誘電率接着層とを具備し、前記光導波路が、前記光を入射するための入力光導波路と、前記中心導体と前記接地導体との間に前記電圧を印加することにより前記光の位相を変調するための相互作用光導波路と、前記相互作用光導波路において変調された結果生成された信号光を出射する出力光導波路からなる光変調器において、
前記低誘電率接着層は、前記相互作用光導波路の近傍を伝搬する電気信号の電気力線のうち、空気中以外に存在する電気力線が前記基板と前記低誘電率接着層のみを通過することにより該電気信号の等価屈折率が下がり、前記光導波路を伝搬する前記光の等価屈折率に近づくように厚が所定厚さに設定されているとともに、当該低誘電率接着層の前記基板が接着している面と逆側の面である逆面に何も接着されていない状態で当該低誘電率接着層のみで前記基板の破損を抑える機械的強度を持ち、
また、当該低誘電率接着層の熱膨張係数が0.5×10 -5 /K〜3×10 -5 /Kでなり、
さらに、当該低誘電率接着層の前記逆面は略平坦でなり、当該逆面でパッケージ筐体に固定されることを特徴としている。
In the optical modulator according to claim 2 of the present invention,
A substrate having an electro-optic effect, an optical waveguide for guiding light formed on the substrate, and a central conductor formed on one surface side of the substrate for applying a voltage for modulating the light And a traveling wave electrode made of a ground conductor, and a low dielectric constant adhesive layer formed by bonding to the substrate on the other surface side of the substrate and made of a material having a dielectric constant lower than that of the substrate. A waveguide, an input optical waveguide for entering the light, an interactive optical waveguide for modulating the phase of the light by applying the voltage between the center conductor and the ground conductor, and the mutual In an optical modulator comprising an output optical waveguide that emits signal light generated as a result of modulation in the working optical waveguide,
In the low dielectric constant adhesive layer, the electric lines of force other than in the air pass through only the substrate and the low dielectric constant adhesive layer among the electric force lines of the electric signal propagating in the vicinity of the interaction optical waveguide. electric equivalent refractive index of the air signal is lowered, together with the thickness to approach the equivalent refractive index of the light propagating through the optical waveguide is set to a predetermined thickness, the substrate of the low-dielectric adhesive layer by Has a mechanical strength that suppresses damage to the substrate only with the low dielectric constant adhesive layer in a state where nothing is adhered to the opposite surface that is the surface opposite to the surface to which the material is adhered ,
The thermal expansion coefficient of the low-dielectric adhesive layer is at 0.5 × 10 -5 / K~3 × 10 -5 / K,
Further, the opposite surface of the low dielectric constant adhesive layer is substantially flat and is fixed to the package housing on the opposite surface .

本発明の請求項3の光変調器では、
請求項1および2に記載の光変調器において、前記基板の厚みが50μm以下であることを特徴としている。
In the optical modulator according to claim 3 of the present invention,
3. The optical modulator according to claim 1, wherein the thickness of the substrate is 50 [mu] m or less.

本発明の請求項4の光変調器では、
請求項1から3に記載の光変調器において、前記基板の前記他方の面が略平坦であることを特徴としている。
In the optical modulator according to claim 4 of the present invention,
4. The optical modulator according to claim 1, wherein the other surface of the substrate is substantially flat.

本発明の請求項5の光変調器では、
請求項1から4に記載の光変調器において、前記基板がx−cutリチウムナイオベート基板であることを特徴としている。
In the optical modulator according to claim 5 of the present invention,
5. The optical modulator according to claim 1, wherein the substrate is an x-cut lithium niobate substrate.

本発明の請求項6の光変調器では、
請求項1から4に記載の光変調器において、前記基板がz−cutリチウムナイオベート基板であることを特徴としている。
In the optical modulator according to claim 6 of the present invention,
5. The optical modulator according to claim 1, wherein the substrate is a z-cut lithium niobate substrate.

本発明の請求項7の光変調器では、
請求項1から5に記載の光変調器において、前記基板の厚み、前記低誘電率接着層の比誘電率、前記中心導体の幅と厚み、前記接地導体の厚み、及び前記中心導体と前記接地導体との間のギャップを、前記進行波電極を伝搬する電気信号の等価屈折率と前記光導波路を伝搬する前記光の等価屈折率が近くなるように、それぞれの値を設定したことを特徴としている。
In the optical modulator according to claim 7 of the present invention,
6. The optical modulator according to claim 1, wherein the thickness of the substrate, the relative dielectric constant of the low dielectric constant adhesive layer, the width and thickness of the center conductor, the thickness of the ground conductor, and the center conductor and the ground The gap between the conductor and the conductor is characterized in that each value is set so that the equivalent refractive index of the electric signal propagating through the traveling wave electrode is close to the equivalent refractive index of the light propagating through the optical waveguide. Yes.

本発明の請求項8の光変調器では、
請求項6に記載の光変調器において、前記基板の厚み、前記低誘電率接着層の比誘電率、前記中心導体の幅と厚み、前記接地導体の厚み、前記中心導体と前記接地導体との間のギャップ、及びバッファ層の厚みを、前記進行波電極を伝搬する電気信号の等価屈折率と前記光導波路を伝搬する前記光の等価屈折率とが近くなるように、それぞれの値を設定したことを特徴としている。
In the optical modulator according to claim 8 of the present invention,
The optical modulator according to claim 6, wherein the thickness of the substrate, the relative dielectric constant of the low dielectric constant adhesive layer, the width and thickness of the center conductor, the thickness of the ground conductor, and the center conductor and the ground conductor The gap between them and the thickness of the buffer layer were set so that the equivalent refractive index of the electric signal propagating through the traveling wave electrode was close to the equivalent refractive index of the light propagating through the optical waveguide. It is characterized by that.

本発明においては従来接着層と考えられていた低誘電率接着層を厚く、また強度の強い材料を使用して保持基台とすることにより、従来技術の保持基体の機能を持つようにしたので、光導波路や進行波電極を形成した基板の下に保持基体の役割をする比誘電率が3〜5程度と低い低誘電率接着層が厚く存在する。その結果、電気信号の等価屈折率nmを下げ、光の等価屈折率noに近づけることが容易になるばかりでなく、電気信号の等価屈折率nmの設定にばらつきがなくなり、光変調帯域についての歩留まりが著しく向上する。
また、従来はx−cutLN基板により製作していた保持基体その物が不要となるため、部品点数が減ることによる光変調器のコスト低減を実現できるばかりでなく、LN基板の他方の面1bとを低誘電率接着層2を介して保持基体を接着固定する工程が不要となり、一層のコスト低減を図ることができる。さらに、特にこの接着工程その物がないので、接着固定する際に問題となっていた低誘電率接着層2と保持基体3の一方の面3aとの間に空気が入ることによる歩留まりの低下を完全に解決できるという利点がある。本発明はx−cutLN基板のみでなく、z−cutLN基板にも適用可能であるという利点もある。
In the present invention, the low dielectric constant adhesive layer, which has been considered as a conventional adhesive layer, is made thick and a holding base is made of a strong material so that it has the function of a conventional holding substrate. A low dielectric constant adhesive layer having a low relative dielectric constant of about 3 to 5 serving as a holding base exists thickly under the substrate on which the optical waveguide and traveling wave electrode are formed. As a result, lowering the effective refractive index n m of the electric signals, not only it is easy to approach the light of the equivalent refractive index n o, there is no variation in the setting of the equivalent refractive index n m of the electrical signal, the optical modulation band The yield about is significantly improved.
In addition, since the holding substrate which is conventionally manufactured by the x-cut LN substrate is not necessary, not only can the cost of the optical modulator be reduced by reducing the number of components, but also the other surface 1b of the LN substrate can be realized. The step of adhering and fixing the holding substrate through the low dielectric constant adhesive layer 2 becomes unnecessary, and the cost can be further reduced. Furthermore, since there is no particular bonding process, the yield is reduced by the entry of air between the low dielectric constant adhesive layer 2 and the one surface 3a of the holding base 3 which has been a problem when bonding and fixing. There is an advantage that it can be solved completely. The present invention has an advantage that it can be applied not only to an x-cut LN substrate but also to a z-cut LN substrate.

以下、本発明の実施形態について説明するが、図5から図7に示した従来の実施形態と同一番号は同一機能部に対応しているため、ここでは同一番号を持つ機能部の説明を省略する。
[第1実施形態]
Hereinafter, embodiments of the present invention will be described. However, since the same numbers as those in the conventional embodiments shown in FIGS. 5 to 7 correspond to the same function units, the description of the function units having the same numbers is omitted here. To do.
[First Embodiment]

図1に本発明の第1実施形態における光変調器の斜視図を、図2に図1のB−B’における断面図を示す。図1と図2から分かるように、本実施形態では従来の実施形態である図5から図7に示した高い比誘電率を有するx−cutLN基板からなる保持基体3が存在しない。その代わりに、保持基台7がx−cutLN基板1の下方に設けられている。x−cutLN基板1の他方の面1bに保持基台7の一方の面7aが接着して形成されている。この保持基台7は、図5から図7に示した従来技術の低誘電率接着層2と同様、誘電率が低い接着材から形成されている。しかし、従来技術とは異なり、強度の高い材料で形成されるとともに、その厚みが厚く形成されている。これにより、接着の機能に加え、従来技術の保持基体3が有していた十分な機械的強度の機能も有している。   FIG. 1 is a perspective view of the optical modulator according to the first embodiment of the present invention, and FIG. 2 is a sectional view taken along line B-B ′ of FIG. 1. As can be seen from FIGS. 1 and 2, in this embodiment, there is no holding substrate 3 made of an x-cut LN substrate having a high relative dielectric constant shown in FIGS. 5 to 7, which is a conventional embodiment. Instead, the holding base 7 is provided below the x-cutLN substrate 1. One surface 7 a of the holding base 7 is bonded to the other surface 1 b of the x-cutLN substrate 1. The holding base 7 is made of an adhesive having a low dielectric constant, like the conventional low dielectric constant adhesive layer 2 shown in FIGS. However, unlike the prior art, it is made of a material having high strength and is thick. Thereby, in addition to the function of adhesion, it also has a function of sufficient mechanical strength that the holding substrate 3 of the prior art has.

ここで、x−cutLN基板1の厚みT1と低誘電率接着材からなる保持基台7の厚みT7は各々約10μm、約500μmとし、進行波電極の厚みT5は20μmとした。なお、保持基台7は紫外線硬化接着材をスピナーでスピンコートしたのち、紫外線を照射し固化した。スピナーでスピンコートすることにより重ね塗りが可能であり、容易に300μm程度の保持基台7を製作することができた。 Here, x-cutLN each about 10μm thickness T 7 of the holding base 7 of the thickness T 1 of the substrate 1 made of a low dielectric constant adhesive, of about 500 [mu] m, the thickness T 5 of the traveling-wave electrodes was 20 [mu] m. The holding base 7 was solidified by irradiating with ultraviolet rays after spin-coating an ultraviolet curable adhesive with a spinner. It was possible to perform overcoating by spin coating with a spinner, and the holding base 7 of about 300 μm could be easily manufactured.

本発明では、保持基台7としてエポキシ系やアクリル系等の接着材を使用している。接着材の固化の方法としては、紫外線硬化、加熱あるいはそれらを併用しても良い。注意すべきことは、低誘電率接着層を保持基台7として用いているので、熱膨張係数や特に機械的強度等、つまり従来技術の保持基体3において要求される条件を満たすことができる接着材を使用することが重要である。なお、接着材は、固化時の収縮率が2%以下と小さいことが望ましく、かつ熱膨張係数としては0.5×10-5/K〜3×10-5/Kでの範囲で選ぶと良い。 In the present invention, an epoxy or acrylic adhesive is used as the holding base 7. As a method for solidifying the adhesive, ultraviolet curing, heating, or a combination thereof may be used. It should be noted that since the low dielectric constant adhesive layer is used as the holding base 7, the thermal expansion coefficient, particularly the mechanical strength, etc., that is, the adhesive that can satisfy the conditions required for the holding substrate 3 of the prior art. It is important to use materials. The adhesive material is desirably shrinkage during solidification and less than 2%, and a thermal expansion coefficient of the selected in the range of at 0.5 × 10 -5 / K~3 × 10 -5 / K good.

なお、x−cutLN基板1の他方の面1bは、研磨により略平坦とした。これは主基板としてz−cutあるいはy−cutなどその他の方位の基板でも同じである。ここで、この略平坦とは研磨など加工の範囲内における凹凸や湾曲などを含んで平坦という意味である。また、保持基台7の他方の面7bを不図示のパッケージ筺体に固定することにより、通信に使用できる形態とする。   The other surface 1b of the x-cutLN substrate 1 was made substantially flat by polishing. The same applies to substrates of other orientations such as z-cut or y-cut as the main substrate. Here, the term “substantially flat” means flat including unevenness and curvature within the range of processing such as polishing. Moreover, it is set as the form which can be used for communication by fixing the other surface 7b of the holding base 7 to a package housing not shown.

図7と同様に、図2には電気力線6a、6bを示している。なお、説明を簡単にするために、図2においては空気中に存在する電気力線の図示を省略している。
図2から分かるように電気力線6a、6bは比誘電率の高いx−cutLN基板1を突き抜けた後、低い比誘電率を持つ保持基台7の内部に全て分布している。従って、電気力線6a、6bがx−cutLN基板1を突き抜けた後、比誘電率が大きなx−cutLN基板からなる保持基体3に入射する図5から図7に示した従来の実施形態とは異なり、電気信号の等価屈折率nmを下げ、光の等価屈折率noに近づけることが容易になるばかりでなく、電気信号の等価屈折率nmの設定にばらつきがなくなり、光変調帯域についての歩留まりを著しく向上できる。
Like FIG. 7, FIG. 2 shows electric lines of force 6a and 6b. In order to simplify the description, the lines of electric force existing in the air are not shown in FIG.
As can be seen from FIG. 2, the electric lines of force 6a and 6b are all distributed inside the holding base 7 having a low relative dielectric constant after penetrating the x-cutLN substrate 1 having a high relative dielectric constant. Therefore, after the electric lines of force 6a and 6b penetrate through the x-cutLN substrate 1, they are incident on the holding base 3 made of the x-cutLN substrate having a large relative dielectric constant. On the other hand, not only is it easy to lower the equivalent refractive index n m of the electric signal and bring it closer to the equivalent refractive index n o of the light, but there is no variation in the setting of the equivalent refractive index n m of the electric signal. Yield can be significantly improved.

さらに、前述のように進行波電極5の中心導体5aの幅Sや、中心導体5aと接地導体5b、5cの間のギャップWが大きい場合には、電気力線6a、6bの広がり方が大きくなるが、電気力線6a、6bはx−cutLN基板1を突き抜けた後、低い比誘電率を持つ保持基台7に全てが入っているので、電気信号の等価屈折率nmを低く抑え、光の等価屈折率noに近くすることが可能である。つまり、進行波電極5の寸法が大きい場合に、電気信号の等価屈折率nmが大きくなりやすいという従来の実施形態が有していた問題を顕著に解決することができる。 Furthermore, when the width S of the central conductor 5a of the traveling wave electrode 5 and the gap W between the central conductor 5a and the ground conductors 5b and 5c are large as described above, the electric lines of force 6a and 6b are greatly spread. made, but the electric force lines 6a, 6b after penetration of x-cutLN substrate 1, since all are in the holding base 7 having a low dielectric constant, suppressing the equivalent refractive index n m of the electric signal, It is possible to approach the equivalent refractive index no of light. That is, when the size of the traveling wave electrode 5 is large, the conventional embodiment of an equivalent refractive index n m of the electric signal tends to increase had problems can be significantly solved.

前述のように、本実施形態では図5から図7に示した高い比誘電率を有するx−cutLN基板からなる保持基体3が存在しないので、これを準備するための部材費や加工費、さらには従来必要であったx−cutLN基板1とx−cutLN基板からなる保持基体3との接着の工程が不要となり、人件費に起因するコストを低減できる。   As described above, in the present embodiment, since the holding base 3 made of the x-cutLN substrate having a high relative dielectric constant shown in FIGS. 5 to 7 does not exist, the member cost and the processing cost for preparing this are further increased. Can eliminate the process of adhering the x-cutLN substrate 1 and the holding base 3 made of the x-cutLN substrate, which has been conventionally required, and can reduce the cost due to the labor cost.

また、一般に誘電体基板の熱膨張係数はx−cutLN基板1の値より数桁大きいが、接着材は各種の材料を混ぜて製作されているため、x−cutLN基板1と同程度の製品もある。そうした接着材を保持基台7として用いることにより、x−cutLN基板1と保持基台7との熱膨張係数差を小さくすることができるので、使用環境温度が大きく変化しても熱膨張係数差のためにDCドリフトが生じる、あるいは素子が破壊されるという心配もない。   In general, the thermal expansion coefficient of the dielectric substrate is several orders of magnitude larger than the value of the x-cutLN substrate 1, but since the adhesive is manufactured by mixing various materials, products similar to the x-cutLN substrate 1 are also available. is there. By using such an adhesive as the holding base 7, the difference in thermal expansion coefficient between the x-cutLN substrate 1 and the holding base 7 can be reduced. Therefore, there is no worry that a DC drift occurs or the element is destroyed.

さらに重要なことに、従来の実施形態図5から図7において、x−cutLN基板1と保持基体3との接着固定の際に問題となっていた低誘電率接着層2と保持基体3の一方の面3aとの間に空気が入りやすいという問題も、本発明では保持基体3が存在しないので、当然のことながら解決できる。   More importantly, one of the low dielectric constant adhesive layer 2 and the holding substrate 3 which has been a problem when the x-cutLN substrate 1 and the holding substrate 3 are bonded to each other in FIGS. The problem that air easily enters between the surface 3a and the surface 3a of the present invention can be naturally solved since the holding substrate 3 does not exist in the present invention.

また、x−cutLN基板1の厚みが10μm程度と薄いので電気力線6a、6bはx−cutLN基板1に閉じこもる傾向がある。その結果、光導波路4a、4bを伝搬する光との相互作用の効率が上昇するので、半波長電圧Vπと相互作用長Lとの積Vπ・Lを小さくすることができ、結果的に駆動電圧を低減することが可能となる。
[第2実施形態]
Further, since the thickness of the x-cut LN substrate 1 is as thin as about 10 μm, the electric lines of force 6 a and 6 b tend to be confined to the x-cut LN substrate 1. As a result, the efficiency of interaction with the light propagating through the optical waveguides 4a and 4b increases, so that the product Vπ · L of the half-wave voltage Vπ and the interaction length L can be reduced, resulting in a drive voltage. Can be reduced.
[Second Embodiment]

図3に本発明の第2実施形態における光変調器の断面図を示す。図中、8は保持基台7と異なる比誘電率を持つ媒質であり、例えば保持基台7より低い比誘電率を有する接着材でも良いし、逆に高い比誘電率を有する接着材でも良い。さらには空気でも良い。
[第3実施形態]
FIG. 3 is a sectional view of an optical modulator according to the second embodiment of the present invention. In the figure, reference numeral 8 denotes a medium having a relative dielectric constant different from that of the holding base 7. For example, an adhesive having a lower relative dielectric constant than that of the holding base 7 may be used, or an adhesive having a higher relative dielectric constant may be used. . Furthermore, air may be used.
[Third Embodiment]

図4には本発明をz−cut基板に適用した第3実施形態における光変調器の断面図を示す。本実施形態では、光導波路4a、4bを形成したz−cutLN基板10の一方の面10aと進行波電極5の間に比誘電率が3〜5と低いSiO2などの低誘電率材料からなるバッファ層9を挿入している。z−cutLN基板10の他方の面10bは本発明のその他の実施形態と同様に、低誘電率接着材からなる保持基台7に接着固定されている。 FIG. 4 is a cross-sectional view of an optical modulator according to a third embodiment in which the present invention is applied to a z-cut substrate. In this embodiment, it is made of a low dielectric constant material such as SiO 2 having a low relative dielectric constant of 3 to 5 between one surface 10a of the z-cutLN substrate 10 on which the optical waveguides 4a and 4b are formed and the traveling wave electrode 5. A buffer layer 9 is inserted. The other surface 10b of the z-cutLN substrate 10 is bonded and fixed to the holding base 7 made of a low dielectric constant adhesive, as in the other embodiments of the present invention.

このバッファ層9は光導波路4a、4bを伝搬する光が進行波電極5に吸収されるのを防ぐ効果と、電気信号の等価屈折率nmを低減する効果を併せ持つ。従って、このバッファ層9の厚みを最適化することにより、z−cutLN基板10の厚みT10を10μm以上、例えば30μm程度、あるいは50μm程度にでも設定することが可能となり、LN光変調器の製作性が向上することになる。 The buffer layer 9 both the effect of reducing the effect of preventing the light propagating the optical waveguide 4a, and 4b is absorbed in the traveling wave electrode 5, the equivalent refractive index n m of the electric signal. Therefore, by optimizing the thickness of the buffer layer 9, z-cutLN substrate 10 and the thickness T 10 10 [mu] m or more, for example 30μm approximately, or it is possible to set any time about 50 [mu] m, the fabrication of the LN optical modulator Will be improved.

さらに、電気力線がz−cutLN基板10の中に閉じこもるので、駆動電圧を低減できることにもなる。また、バッファ層が厚いとVπ・Lが大きくなるが、本実施形態には電気信号の等価屈折率nmを低減する効果があるので、バッファ層9の厚みを薄くでき、この観点からも駆動電圧を低減できることになる。 Furthermore, since the electric lines of force are confined in the z-cutLN substrate 10, the driving voltage can be reduced. Although V [pi · L and the buffer layer is thick is increased, since the present embodiment has an effect of reducing the equivalent refractive index n m of the electrical signals, can reduce the thickness of the buffer layer 9, the drive from this point of view The voltage can be reduced.

なお、z−cutLN基板10の他方の面10bは略平坦である。この略平坦とは研磨など加工の範囲内における凹凸や湾曲などを含んで平坦という意味である。
[各実施形態について]
The other surface 10b of the z-cutLN substrate 10 is substantially flat. The term “substantially flat” means that the surface is flat including unevenness and curvature within a processing range such as polishing.
[About each embodiment]

なお、本発明の実施形態としてx−cutLN基板1やz−cutLN基板10など主基板の厚みとして10μm程度を好適な例として上げたが、進行波電極5の中心導体5aの幅や中心導体5aと接地導体5b、5cとのギャップ、さらにはこれらの厚みやバッファ層9の材料や厚みなどによっては、LN基板の厚みとしてその他の厚みでも良いことは言うまでもない。つまり、20μm、30μmあるいは50μmなど厚くても良い。さらに、低誘電率接着層からなる保持基台7の厚みT7として、500μmを例にとり説明をしたが、進行波電極の寸法に応じてさらに薄くても良いし、厚くても良いことは言うまでもない。 In the embodiment of the present invention, the preferred thickness of the main substrate such as the x-cutLN substrate 1 or the z-cutLN substrate 10 is about 10 μm. However, the width of the central conductor 5a of the traveling wave electrode 5 and the central conductor 5a Needless to say, other thicknesses may be used for the LN substrate depending on the gap between the first and second conductors 5b and 5c, the thickness thereof, and the material and thickness of the buffer layer 9. That is, the thickness may be 20 μm, 30 μm, 50 μm, or the like. Furthermore, the thickness T 7 of the holding base 7 made of the low dielectric constant adhesive layer has been described by taking 500 μm as an example, but it goes without saying that it may be thinner or thicker depending on the dimensions of the traveling wave electrode. Yes.

以上の実施形態に示したx−cutLN変調器ではSiO2などのバッファ層が無いとして説明したが、もちろんバッファ層はあっても良い。バッファ層は電気信号の等価屈折率nmを低減する効果を有するので、ない場合と比較してx−cut基板1の厚みは厚くても高速光変調を実現できることになる。 The x-cutLN modulator shown in the above embodiment has been described as having no buffer layer such as SiO 2 , but of course there may be a buffer layer. Since the buffer layer has the effect of reducing the equivalent refractive index n m of the electric signals, the thickness of the x-cut substrate 1 as compared with the case without will be possible to realize a high-speed light modulation be thicker.

また、上方の空気の部分以外における電気信号の電気力線は、x−cutLN基板1と保持基台7、もしくはz−cutLN基板10、バッファ層9、及び保持基台7の中に全て入っていても良いし、一部がそれらの下に突き抜けていても良い。   Further, the electric lines of force of the electric signal other than the upper air portion are all contained in the x-cutLN substrate 1 and the holding base 7, or the z-cutLN substrate 10, the buffer layer 9, and the holding base 7. It is also possible to have a part that penetrates under them.

なお、進行波電極5を構成する金などの金属は光を吸収し、光の挿入損失を増加させてしまう。そのため、中心導体5aのエッジ付近にのみバッファ層を形成し、その上中心導体4aのエッジを形成しておけば光導波路4a、4bを中心導体5aのエッジ付近に近づけることが可能となる。また、図1からわかるように、本発明においては接地導体5bの下に光導波路4が配置されるとともに、進行波電極5の中心導体5aが電気信号と光の相互作用部付近において光導波路を横切るので、これらの部分にバッファ層を形成しておけば光の挿入損失を低減できることになる。   A metal such as gold constituting the traveling wave electrode 5 absorbs light and increases the insertion loss of light. Therefore, if the buffer layer is formed only near the edge of the central conductor 5a and the edge of the central conductor 4a is formed on the buffer layer, the optical waveguides 4a and 4b can be brought close to the edge of the central conductor 5a. Further, as can be seen from FIG. 1, in the present invention, the optical waveguide 4 is disposed under the ground conductor 5b, and the central conductor 5a of the traveling wave electrode 5 is disposed near the interaction portion between the electric signal and the light. Therefore, if a buffer layer is formed in these portions, light insertion loss can be reduced.

さらに、電極としてコプレーナウェーブガイド(CPW)型の進行波電極を想定したが、非対称コプレーナストリップ(ACPS)など、他の構造の進行波電極でも良いし、請求項においては、進行波電極と述べているが、本発明はもちろんキャパシタンスを低減するために集中定数型電極にも適用できる。また、基板としてLN基板を想定したがリチウムタンタレートなどその他の誘電体基板、さらには半導体基板でも良い。また、本発明では低誘電接着層からなる充分に厚い保持基台7を形成しているので、製作したLN光変調器のチップを固定するパッケージの表面は平坦であっても良いが、平坦でなくても良い。   Furthermore, although a coplanar waveguide (CPW) type traveling wave electrode is assumed as an electrode, a traveling wave electrode of another structure such as an asymmetric coplanar strip (ACPS) may be used, and in the claims, a traveling wave electrode is described. However, the present invention can of course be applied to a lumped electrode in order to reduce the capacitance. Further, although an LN substrate is assumed as a substrate, other dielectric substrates such as lithium tantalate, and further a semiconductor substrate may be used. In the present invention, since the sufficiently thick holding base 7 made of the low dielectric adhesive layer is formed, the surface of the package for fixing the manufactured LN optical modulator chip may be flat. It is not necessary.

また、通常、LN光変調器に光を入射させる際には穴のあいたガラスビーズを用い、そ
の穴の中に単一モード光ファイバを通してLN基板に形成した光導波路4の端面に固定する。ガラスビーズとLN基板に形成した光導波路端面との接着面積が不足する場合には、LN基板の上面によく使われる補強板の他に、LN基板の下側の一部もしくは下部全体に、光導波路4の端面においてガラスビーズとの接着面積を増加させるための補強板を設置し、光導波路の端面付近を紫外線硬化接着材などで固定しておけば良い。なおこの場合において、電気信号と光とが相互作用する相互作用部近辺にて、この補強板と保持基台7とは互いに接着固定されている必要はない。
Usually, when light enters the LN optical modulator, glass beads with holes are used, and fixed to the end face of the optical waveguide 4 formed on the LN substrate through the single mode optical fiber in the holes. In the case where the adhesion area between the glass beads and the end face of the optical waveguide formed on the LN substrate is insufficient, in addition to the reinforcing plate often used on the top surface of the LN substrate, A reinforcing plate for increasing the bonding area with the glass beads may be installed on the end face of the waveguide 4 and the vicinity of the end face of the optical waveguide may be fixed with an ultraviolet curable adhesive or the like. In this case, the reinforcing plate and the holding base 7 do not need to be bonded and fixed to each other in the vicinity of the interaction portion where the electrical signal and light interact.

さらに、この場合、LN基板の下側に置く補強板の表面は略平坦でなくても良い。この場合にも、本発明では薄いLN基板と低誘電率接着材からなる厚い保持基台7の効果により電気信号の等価屈折率nmを低減できることは言うまでもない。光導波路4の端面付近が固定された補強板がLN基板の下側にあっても、そのまま光変調器をパッケージに固定できる。なお、その際、この光変調器を固定するパッケージの表面は略平坦でも良いし、平坦でなくても良い。 Furthermore, in this case, the surface of the reinforcing plate placed on the lower side of the LN substrate may not be substantially flat. In this case, it goes without saying that the thin LN substrate and a thick holding base 7 of the effect of a low dielectric constant adhesive in the present invention can reduce the effective refractive index n m of the electric signal. Even if the reinforcing plate to which the vicinity of the end face of the optical waveguide 4 is fixed is below the LN substrate, the optical modulator can be fixed to the package as it is. At this time, the surface of the package for fixing the optical modulator may be substantially flat or may not be flat.

本発明の光変調器の第1実施形態の斜視図The perspective view of 1st Embodiment of the optical modulator of this invention. 図1のB−B’線における断面図Sectional view taken along line B-B 'in FIG. 本発明の第2実施形態の断面図Sectional drawing of 2nd Embodiment of this invention 本発明の第3実施形態の断面図Sectional drawing of 3rd Embodiment of this invention 従来の光変調器の斜視図A perspective view of a conventional optical modulator 図5のA−A’線における断面図Sectional drawing in the A-A 'line of FIG. 図5のA−A’線における断面図で動作原理を説明する図FIG. 5 is a cross-sectional view taken along line A-A ′ in FIG. 5 to explain the operation principle.

符号の説明Explanation of symbols

1:x−cutLN基板、2:低誘電率接着層、3:保持基体、4:Ti熱拡散光導波路、4a、4b:マッハツェンダ光導波路4の2本のアーム、5:進行波電極、5a:進行波電極5の中心導体、5b、5c:進行波電極5の接地導体、6a、6b:電気信号の電気力線、7:低誘電率接着層からなる保持基台、8:低誘電率接着層からなる保持基台7と異なる比誘電率の媒質、9:バッファ層、10:z−cutLN基板
1: x-cut LN substrate, 2: low dielectric constant adhesive layer, 3: holding substrate, 4: Ti thermal diffusion optical waveguide, 4a, 4b: two arms of Mach-Zehnder optical waveguide 4, 5: traveling wave electrode, 5a: Center conductor of traveling wave electrode 5, 5b, 5c: Ground conductor of traveling wave electrode 5, 6a, 6b: Electric field lines of electric signal, 7: Holding base made of low dielectric constant adhesive layer, 8: Low dielectric constant adhesion Medium having a relative dielectric constant different from the holding base 7 composed of layers, 9: buffer layer, 10: z-cutLN substrate

Claims (8)

電気光学効果を有する基板と、該基板に形成された光を導波するための光導波路と、前記光を変調するための電圧を印加する、前記基板の一方の面側に形成された中心導体及び接地導体からなる進行波電極と、前記基板の他方の面側で前記基板に接着して形成され、前記基板の比誘電率より低い材料から成る低誘電率接着層とを具備し、前記光導波路が、前記光を入射するための入力光導波路と、前記中心導体と前記接地導体との間に前記電圧を印加することにより前記光の位相を変調するための相互作用光導波路と、前記相互作用光導波路において変調された結果生成された信号光を出射する出力光導波路からなる光変調器において、
前記低誘電率接着層は、前記相互作用光導波路の近傍を伝搬する電気信号の電気力線のうち、空気中以外に存在する電気力線が前記基板と前記低誘電率接着層を通過することにより該電気信号の等価屈折率が下がり、前記光導波路を伝搬する前記光の等価屈折率に近づくように厚が所定厚さに設定されているとともに、当該低誘電率接着層の前記基板が接着している面と逆側の面である逆面に何も接着されていない状態で当該低誘電率接着層のみで前記基板の破損を抑える機械的強度を持ち、
また、当該低誘電率接着層の熱膨張係数が0.5×10 -5 /K〜3×10 -5 /Kでなり、
さらに、当該低誘電率接着層の前記逆面は略平坦でなり、当該逆面でパッケージ筐体に固定されることを特徴とする光変調器。
A substrate having an electro-optic effect, an optical waveguide for guiding light formed on the substrate, and a central conductor formed on one surface side of the substrate for applying a voltage for modulating the light And a traveling wave electrode made of a ground conductor, and a low dielectric constant adhesive layer formed by bonding to the substrate on the other surface side of the substrate and made of a material having a dielectric constant lower than that of the substrate. A waveguide, an input optical waveguide for entering the light, an interactive optical waveguide for modulating the phase of the light by applying the voltage between the center conductor and the ground conductor, and the mutual In an optical modulator comprising an output optical waveguide that emits signal light generated as a result of modulation in the working optical waveguide,
The low dielectric constant adhesive layer is configured such that electric lines of force other than in the air pass through the substrate and the low dielectric constant adhesive layer among electric force lines of an electric signal propagating in the vicinity of the interaction optical waveguide. the lower the equivalent refractive index of the electrical signals, together with the thickness to approach the equivalent refractive index of the light propagating through the optical waveguide is set to a predetermined thickness, said substrate of said low-dielectric adhesive layer With mechanical strength to suppress damage to the substrate only with the low dielectric constant adhesive layer in a state where nothing is bonded to the reverse surface that is the surface opposite to the bonded surface ,
The thermal expansion coefficient of the low-dielectric adhesive layer is at 0.5 × 10 -5 / K~3 × 10 -5 / K,
Further, the light modulator is characterized in that the opposite surface of the low dielectric constant adhesive layer is substantially flat, and is fixed to the package housing on the opposite surface .
電気光学効果を有する基板と、該基板に形成された光を導波するための光導波路と、前記光を変調するための電圧を印加する、前記基板の一方の面側に形成された中心導体及び接地導体からなる進行波電極と、前記基板の他方の面側で前記基板に接着して形成され、前記基板の比誘電率より低い材料から成る低誘電率接着層とを具備し、前記光導波路が、前記光を入射するための入力光導波路と、前記中心導体と前記接地導体との間に前記電圧を印加することにより前記光の位相を変調するための相互作用光導波路と、前記相互作用光導波路において変調された結果生成された信号光を出射する出力光導波路からなる光変調器において、
前記低誘電率接着層は、前記相互作用光導波路の近傍を伝搬する電気信号の電気力線のうち、空気中以外に存在する電気力線が前記基板と前記低誘電率接着層のみを通過することにより該電気信号の等価屈折率が下がり、前記光導波路を伝搬する前記光の等価屈折率に近づくように厚が所定厚さに設定されているとともに、当該低誘電率接着層の前記基板が接着している面と逆側の面である逆面に何も接着されていない状態で当該低誘電率接着層のみで前記基板の破損を抑える機械的強度を持ち、
また、当該低誘電率接着層の熱膨張係数が0.5×10 -5 /K〜3×10 -5 /Kでなり、
さらに、当該低誘電率接着層の前記逆面は略平坦でなり、当該逆面でパッケージ筐体に固定されることを特徴とする光変調器。
A substrate having an electro-optic effect, an optical waveguide for guiding light formed on the substrate, and a central conductor formed on one surface side of the substrate for applying a voltage for modulating the light And a traveling wave electrode made of a ground conductor, and a low dielectric constant adhesive layer formed by bonding to the substrate on the other surface side of the substrate and made of a material having a dielectric constant lower than that of the substrate. A waveguide, an input optical waveguide for entering the light, an interactive optical waveguide for modulating the phase of the light by applying the voltage between the center conductor and the ground conductor, and the mutual In an optical modulator comprising an output optical waveguide that emits signal light generated as a result of modulation in the working optical waveguide,
In the low dielectric constant adhesive layer, the electric lines of force other than in the air pass through only the substrate and the low dielectric constant adhesive layer among the electric force lines of the electric signal propagating in the vicinity of the interaction optical waveguide. electric equivalent refractive index of the air signal is lowered, together with the thickness to approach the equivalent refractive index of the light propagating through the optical waveguide is set to a predetermined thickness, the substrate of the low-dielectric adhesive layer by Has a mechanical strength that suppresses damage to the substrate only with the low dielectric constant adhesive layer in a state where nothing is adhered to the opposite surface that is the surface opposite to the surface to which the material is adhered ,
The thermal expansion coefficient of the low-dielectric adhesive layer is at 0.5 × 10 -5 / K~3 × 10 -5 / K,
Further, the light modulator is characterized in that the opposite surface of the low dielectric constant adhesive layer is substantially flat, and is fixed to the package housing on the opposite surface .
前記基板の厚みが50μm以下であることを特徴とする請求項1および2に記載の光変調器。   3. The optical modulator according to claim 1, wherein the thickness of the substrate is 50 μm or less. 前記基板の前記他方の面が略平坦であることを特徴とする請求項1から3に記載の光変調器。   4. The optical modulator according to claim 1, wherein the other surface of the substrate is substantially flat. 前記基板がx−cutリチウムナイオベート基板であることを特徴とする請求項1から4に記載の光変調器。   5. The optical modulator according to claim 1, wherein the substrate is an x-cut lithium niobate substrate. 前記基板がz−cutリチウムナイオベート基板であることを特徴とする請求項1から4に記載の光変調器。   5. The optical modulator according to claim 1, wherein the substrate is a z-cut lithium niobate substrate. 前記基板の厚み、前記低誘電率接着層の比誘電率、前記中心導体の幅と厚み、前記接地導体の厚み、及び前記中心導体と前記接地導体との間のギャップを、前記進行波電極を伝搬する電気信号の等価屈折率と前記光導波路を伝搬する前記光の等価屈折率が近くなるように、それぞれの値を設定したことを特徴とする請求項1から5に記載の光変調器。   The thickness of the substrate, the relative dielectric constant of the low dielectric constant adhesive layer, the width and thickness of the center conductor, the thickness of the ground conductor, and the gap between the center conductor and the ground conductor, 6. The optical modulator according to claim 1, wherein each value is set so that an equivalent refractive index of the propagating electric signal and an equivalent refractive index of the light propagating through the optical waveguide are close to each other. 前記基板の厚み、前記低誘電率接着層の比誘電率、前記中心導体の幅と厚み、前記接地導体の厚み、前記中心導体と前記接地導体との間のギャップ、及びバッファ層の厚みを、前記進行波電極を伝搬する電気信号の等価屈折率と前記光導波路を伝搬する前記光の等価屈折率とが近くなるように、それぞれの値を設定したことを特徴とする請求項6に記載の光変調器。
The thickness of the substrate, the relative dielectric constant of the low dielectric constant adhesive layer, the width and thickness of the center conductor, the thickness of the ground conductor, the gap between the center conductor and the ground conductor, and the thickness of the buffer layer, The respective values are set so that the equivalent refractive index of the electric signal propagating through the traveling wave electrode and the equivalent refractive index of the light propagating through the optical waveguide are close to each other. Light modulator.
JP2004248306A 2004-08-27 2004-08-27 Light modulator Expired - Fee Related JP4267544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004248306A JP4267544B2 (en) 2004-08-27 2004-08-27 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004248306A JP4267544B2 (en) 2004-08-27 2004-08-27 Light modulator

Publications (2)

Publication Number Publication Date
JP2006065044A JP2006065044A (en) 2006-03-09
JP4267544B2 true JP4267544B2 (en) 2009-05-27

Family

ID=36111593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004248306A Expired - Fee Related JP4267544B2 (en) 2004-08-27 2004-08-27 Light modulator

Country Status (1)

Country Link
JP (1) JP4267544B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6137023B2 (en) 2014-03-31 2017-05-31 住友大阪セメント株式会社 Optical waveguide device
CN107305297A (en) * 2016-04-18 2017-10-31 天津领芯科技发展有限公司 Broadband travelling-wave electrooptic modulator based on lithium niobate monocrystal film
US10538881B2 (en) 2016-10-25 2020-01-21 The Procter & Gamble Company Fibrous structures
WO2018081189A1 (en) 2016-10-25 2018-05-03 The Procter & Gamble Company Fibrous structures
CN107065232A (en) * 2016-12-12 2017-08-18 天津津航技术物理研究所 Broadband travelling-wave electrooptic modulator based on LiNbO_3 film and preparation method thereof
CN108732795A (en) * 2017-04-14 2018-11-02 天津领芯科技发展有限公司 A kind of silicon substrate lithium niobate high-speed optical modulator and preparation method thereof
JP7031437B2 (en) * 2018-03-29 2022-03-08 住友大阪セメント株式会社 Optical modulator
WO2021108323A1 (en) * 2019-11-27 2021-06-03 HyperLight Corporation Electro-optic devices having engineered electrodes
JP7526610B2 (en) * 2020-08-13 2024-08-01 富士通オプティカルコンポーネンツ株式会社 Optical Waveguide Devices

Also Published As

Publication number Publication date
JP2006065044A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
US7502530B2 (en) Optical waveguide devices and traveling wave type optical modulators
US8923658B2 (en) Optical waveguide device
JP4899730B2 (en) Light modulator
US7447389B2 (en) Optical modulator
EP2133733B1 (en) Optical Modulator based on the electro-optic effect
EP2136241B1 (en) Optical modulator device based on the electro-optic effect
US20050175271A1 (en) Optical modulator
JP4151798B2 (en) Light modulator
JP2001290115A (en) Bias stability reinforced electrooptical modulator
US20020106141A1 (en) Low-loss electrode designs for high-speed optical modulators
JP4267544B2 (en) Light modulator
JP4265806B2 (en) Light modulator
JP2005091698A (en) Optical modulator
WO2007058366A1 (en) Optical waveguide device
US6768570B2 (en) Optical modulator
JP4544474B2 (en) Light modulator
JP4453894B2 (en) Optical waveguide device and traveling wave optical modulator
JP2001174766A (en) Waveguide type optical modulator
JPH0675256A (en) Waveguide type optical modulator
US7409114B2 (en) Optical modulator
JPH10142567A (en) Waveguide type optical device
JP5244869B2 (en) Optical modulator module
JP2013125217A (en) Optical modulator
JP2004245991A (en) Optical waveguide device and structure combining the same and optical transmission member
JP2007033894A (en) Optical modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080709

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees