JP2007033894A - Optical modulator - Google Patents

Optical modulator Download PDF

Info

Publication number
JP2007033894A
JP2007033894A JP2005217450A JP2005217450A JP2007033894A JP 2007033894 A JP2007033894 A JP 2007033894A JP 2005217450 A JP2005217450 A JP 2005217450A JP 2005217450 A JP2005217450 A JP 2005217450A JP 2007033894 A JP2007033894 A JP 2007033894A
Authority
JP
Japan
Prior art keywords
optical
light
interaction
substrate
optical modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005217450A
Other languages
Japanese (ja)
Other versions
JP4926423B2 (en
Inventor
Kenji Kono
健治 河野
Masaya Nanami
雅也 名波
Yuji Sato
勇治 佐藤
Yasuji Uchida
靖二 内田
Nobuhiro Igarashi
信弘 五十嵐
Takeshi Hondo
武 本藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2005217450A priority Critical patent/JP4926423B2/en
Publication of JP2007033894A publication Critical patent/JP2007033894A/en
Application granted granted Critical
Publication of JP4926423B2 publication Critical patent/JP4926423B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical modulator having a large extinction ratio and having small drive voltage and small DC bias voltage. <P>SOLUTION: The optical modulator comprises a substrate 1 having at least one face azimuth of an x-cut and a y-cut by possessing electro-optical effect, a light guide 5 for guiding light formed on the substrate 1, and a Mach-Zehnder light guide formed on one face side of the substrate 1, having an interaction part provided with a traveling wave electrode 6 comprising a center conductor and a contact conductor for a high frequency electric signal for applying the high-frequency electric signal for modulating light and including at least two interaction light guides 5a and 5b for modulating an optical phase by allowing the light guide 5 to apply the high-frequency electric signal on the traveling wave electrode 6. The center conductor of the traveling wave electrode is branched in an interaction part, the branched center conductors 6a and 6b are separated at a distance where coupling of light propagating the two interaction light guides 5a and 5b respectively is non-dense. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は高速で消光比が大きく、また駆動電圧とDCバイアス電圧が小さい光変調器の分野に属する。   The present invention belongs to the field of optical modulators that are high in speed, have a high extinction ratio, and have a low driving voltage and a small DC bias voltage.

リチウムナイオベート(LiNbO)のように電界を印加することにより屈折率が変化する、いわゆる電気光学効果を有する基板(以下、リチウムナイオベート基板をLN基板と略す)に光導波路と進行波電極を形成した進行波電極型リチウムナイオベート光変調器(以下、LN光変調器と略す)は、その優れたチャーピング特性から2.5Gbit/s、10Gbit/sの大容量光伝送システムに適用されている。最近はさらに40Gbit/sの超大容量光伝送システムにも適用が検討されており、キーデバイスとして期待されている。 An optical waveguide and a traveling wave electrode are provided on a substrate having a so-called electro-optic effect (hereinafter, the lithium niobate substrate is abbreviated as an LN substrate) such as lithium niobate (LiNbO 3 ) whose refractive index is changed by applying an electric field. The formed traveling wave electrode type lithium niobate optical modulator (hereinafter abbreviated as LN optical modulator) is applied to a 2.5 Gbit / s, 10 Gbit / s large capacity optical transmission system because of its excellent chirping characteristics. Yes. Recently, application to an ultra large capacity optical transmission system of 40 Gbit / s is also being studied, and it is expected as a key device.

[従来技術]
このLN光変調器にはz−カット基板を使用するタイプとx−カット基板(あるいはy−カット基板)を使用するタイプがある。ここでは、従来技術としてx−カットLN基板とコプレーナウェーブガイド(CPW)進行波電極を使用したx−カット基板LN光変調器をとり上げ、その斜視図を図5に示す。図6は図5のA−A’における断面図である。
[Conventional technology]
This LN optical modulator includes a type using a z-cut substrate and a type using an x-cut substrate (or y-cut substrate). Here, an x-cut substrate LN optical modulator using an x-cut LN substrate and a coplanar waveguide (CPW) traveling wave electrode is taken up as a prior art, and a perspective view thereof is shown in FIG. 6 is a cross-sectional view taken along the line AA ′ of FIG.

図中、1はx−カットLN基板、2は1.3μm、あるいは1.55μmなど光通信において使用する波長領域では透明な200nmから1μm程度の厚みのSiOバッファ層、3はx−カットLN基板1にTiを蒸着後、1050℃で約10時間熱拡散して形成した光導波路であり、マッハツェンダ干渉系(あるいは、マッハツェンダ光導波路)を構成している。なお、3a、3bは電気信号と光が相互作用する部位(相互作用部と言う)における光導波路(あるいは、相互作用光導波路)、つまりマッハツェンダ光導波路の2本のアームである。CPW型の進行波電極4は中心導体4a、接地導体4b、4cからなっている。 In the figure, 1 is an x-cut LN substrate, 2 is a transparent SiO 2 buffer layer having a thickness of about 200 nm to 1 μm in the wavelength region used in optical communication such as 1.3 μm or 1.55 μm, and 3 is an x-cut LN. This is an optical waveguide formed by thermally diffusing Ti at 1050 ° C. for about 10 hours after depositing Ti on the substrate 1, and constitutes a Mach-Zehnder interference system (or Mach-Zehnder optical waveguide). Reference numerals 3a and 3b denote optical waveguides (or interactive optical waveguides) in a portion where an electrical signal and light interact (referred to as an interaction portion), that is, two arms of a Mach-Zehnder optical waveguide. The CPW traveling wave electrode 4 includes a central conductor 4a and ground conductors 4b and 4c.

図6において、WとWは相互作用光導波路3aと3bの幅で、この従来技術では2本の相互作用光導波路3aと3bの幅は等しい(つまり、W=Wで、例えばW、Wとも9μm)。Gwgは相互作用光導波路3aと3bの間の距離(導波路ギャップとも言う)であり、例えば16μmである。また、Swgは相互作用光導波路3aと3bの中心間の距離である(この例の場合には25μmとなる)。Δは中心導体4aのエッジと相互作用光導波路3a、もしくは3bの中心との距離である(この図では中心導体4aのエッジと相互作用光導波路3bの中心との距離としている)。 In FIG. 6, W a and W b are the widths of the interaction optical waveguides 3a and 3b. In this prior art, the widths of the two interaction optical waveguides 3a and 3b are equal (that is, W a = W b , for example, W a and W b are both 9 μm). G wg is a distance (also referred to as a waveguide gap) between the interactive optical waveguides 3a and 3b, and is, for example, 16 μm. Further, S wg is the distance between the centers of the interactive optical waveguides 3a and 3b (in this example, it is 25 μm). Δ is the distance between the edge of the center conductor 4a and the center of the interaction optical waveguide 3a or 3b (in this figure, the distance between the edge of the center conductor 4a and the center of the interaction optical waveguide 3b).

図7には光導波路3についてのみの上面図を示している。ここで、相互作用光導波路3a、3bの長さをLとする。なお、この図7は光導波路のみではあるが、図5の斜視図におけるA−A’に対応する位置にA−A’と記している。   FIG. 7 shows a top view of only the optical waveguide 3. Here, let L be the length of the interaction optical waveguides 3a and 3b. Although FIG. 7 shows only the optical waveguide, A-A ′ is indicated at a position corresponding to A-A ′ in the perspective view of FIG. 5.

この従来技術では、中心導体4aと接地導体4b、4c間にバイアス電圧(通常はDCバイアス電圧)と高周波電気信号(RF電気信号とも言う)を重畳して印加するので、相互作用光導波路においてはRF電気信号のみならず、DCバイアス電圧も光の位相を変える。また、バッファ層2は電気信号のマイクロ波実効屈折率nを相互作用光導波路3a、3bを伝搬する光の実効屈折率nに近づけることにより、光変調帯域を拡大するという重要な働きをしている。 In this prior art, a bias voltage (usually a DC bias voltage) and a high-frequency electric signal (also referred to as RF electric signal) are superimposed and applied between the center conductor 4a and the ground conductors 4b and 4c. Not only the RF electrical signal but also the DC bias voltage changes the phase of the light. Further, the microwave effective index n m of the interaction optical waveguides 3a of the buffer layer 2 is an electrical signal, by approximating the effective refractive index n o of the light propagating the 3b, and important function of expanding the optical modulation band is doing.

次に、このように構成されるLN光変調器の動作について説明する。このLN光変調器を動作させるには、中心導体4aと接地導体4b、4c間にDCバイアス電圧とRF電気信号とを印加する。   Next, the operation of the LN optical modulator configured as described above will be described. In order to operate this LN optical modulator, a DC bias voltage and an RF electric signal are applied between the center conductor 4a and the ground conductors 4b and 4c.

図8は、ある状態でのLN光変調器の電圧−光出力特性の一例を示す特性図であり、進行波電極4に印加される電圧と、LN光変調器から出力される光の強度との関係を表している。ここで、Vbは動作時におけるDCバイアス電圧である。この図8に示すように、通常、DCバイアス電圧Vbは光出力特性の山と底の中点に設定される。   FIG. 8 is a characteristic diagram showing an example of the voltage-light output characteristic of the LN optical modulator in a certain state, and the voltage applied to the traveling wave electrode 4 and the intensity of light output from the LN optical modulator. Represents the relationship. Here, Vb is a DC bias voltage during operation. As shown in FIG. 8, the DC bias voltage Vb is normally set at the midpoint between the peak and bottom of the light output characteristic.

図9には、半波長電圧Vπと相互作用光導波路の長さLとの積(Vπ・Lと呼ばれ、駆動電圧を考える上で尺度となる)と中心導体4aのエッジと相互作用光導波路3bの中心との距離Δとの関係を示す。この計算では、光導波路3a、3b間のギャップGwgを変化させることによりΔの値を決定している。図9から、中心導体4aのエッジと相互作用光導波路3bの中心との距離Δはある程度小さいほうが良く、さらには最適値が存在することがわかる。 FIG. 9 shows the product of the half-wave voltage Vπ and the length L of the interactive optical waveguide (referred to as Vπ · L, which is a measure for considering the driving voltage), the edge of the center conductor 4a, and the interactive optical waveguide. The relationship with the distance Δ from the center of 3b is shown. In this calculation, the value of Δ is determined by changing the gap Gwg between the optical waveguides 3a and 3b. From FIG. 9, it can be seen that the distance Δ between the edge of the center conductor 4a and the center of the interaction optical waveguide 3b should be small to some extent, and there is an optimum value.

そこで、駆動電圧を下げるために、中心導体4aのエッジと相互作用光導波路3b(及び3a)の中心との距離Δを小さくしようとすると、相互作用光導波路3a、3b間のギャップGwgが小さくなる。ところが、図10に示すように、相互作用光導波路3a、3b間のギャップGwgが小さくなると、相互作用光導波路3a、3b間の結合度が著しく大きくなり、光をON/OFFした際のパワー、即ち消光比の劣化を生じるという問題があった。 Therefore, when the distance Δ between the edge of the center conductor 4a and the center of the interaction optical waveguide 3b (and 3a) is decreased in order to reduce the drive voltage, the gap Gwg between the interaction optical waveguides 3a and 3b is decreased. Become. However, as shown in FIG. 10, when the gap Gwg between the interaction optical waveguides 3a and 3b decreases, the degree of coupling between the interaction optical waveguides 3a and 3b increases remarkably, and the power when the light is turned on / off is increased. That is, there is a problem that the extinction ratio is deteriorated.

以上のように、駆動電圧を下げるために、従来技術のように、2本の相互作用光導波路を中心導体に近づけると、2本の相互作用光導波路が互いに近づく。そのため、光が結合し、結果的に消光比の劣化を生じてしまうという問題があった。   As described above, when the two interactive optical waveguides are brought close to the central conductor as in the prior art in order to lower the drive voltage, the two interactive optical waveguides approach each other. For this reason, there is a problem that light is combined, resulting in deterioration of the extinction ratio.

上記課題を解決するために、本発明の請求項1の光変調器は、電気光学効果を有しx−カットもしくはy−カットの少なくとも一方の面方位を有する基板と、該基板に形成された光を導波するための光導波路と、前記基板の一方の面側に形成され、前記光を変調するための高周波電気信号を印加するための高周波電気信号用の中心導体及び接地導体からなる進行波電極を備えた相互作用部を有し、前記光導波路は前記進行波電極に前記高周波電気信号を印加することにより前記光の位相を変調するための少なくとも2本の相互作用光導波路を含むマッハツェンダ光導波路を具備する光変調器において、前記進行波電極の中心導体が、前記相互作用部において分岐されており、前記分岐された中心導体が、前記2本の相互作用光導波路をそれぞれ伝搬する前記光の結合が疎となる距離に隔置されることを特徴とする。   In order to solve the above-mentioned problem, an optical modulator according to claim 1 of the present invention is formed on a substrate having an electro-optic effect and having at least one surface orientation of x-cut or y-cut, and the substrate. Progression comprising an optical waveguide for guiding light and a central conductor and a ground conductor for high-frequency electrical signals formed on one surface side of the substrate for applying a high-frequency electrical signal for modulating the light A Mach-Zehnder including an interaction portion having a wave electrode, wherein the optical waveguide includes at least two interaction optical waveguides for modulating the phase of the light by applying the high-frequency electrical signal to the traveling wave electrode In the optical modulator provided with the optical waveguide, a central conductor of the traveling wave electrode is branched at the interaction portion, and the branched central conductors respectively pass the two interactive optical waveguides. Wherein the coupling of said light propagating are spaced a distance which becomes sparse.

本発明の請求項2の光変調器は、請求項1に記載の光変調器において、前記2本の相互作用光導波路間のギャップが18μm以上であることを特徴とする。   According to a second aspect of the present invention, there is provided the optical modulator according to the first aspect, wherein a gap between the two interactive optical waveguides is 18 μm or more.

本発明の請求項3の光変調器は、請求項1または2に記載の光変調器において、分岐された前記中心導体が、前記相互作用部の前後において一体化されていることを特徴とする。   An optical modulator according to a third aspect of the present invention is the optical modulator according to the first or second aspect, wherein the branched central conductor is integrated before and after the interaction portion. .

請求項1および2の発明では、進行波電極を伝搬するRF電気信号と、マッハツェンダ光導波路を伝搬する光が互いに相互作用する相互作用領域において、中心導体を2分割するとともにそれらを隔置している。そのため相互作用領域の2本の相互作用光導波路も隔置できるので、2本の相互作用光導波路が方向性結合器を成すことを抑制できる。その結果、2本の相互作用光導波路が方向性結合器を構成することに起因する光変調器としての消光比を含めた特性劣化を抑えることが可能となる。さらに、2分割した中心導体の近くに相互作用光導波路の各々を配置できるので、光変調器としての駆動電圧を低減できる利点もある。   According to the first and second aspects of the present invention, in the interaction region where the RF electric signal propagating through the traveling wave electrode and the light propagating through the Mach-Zehnder optical waveguide interact with each other, the central conductor is divided into two and spaced apart. Yes. Therefore, the two interaction optical waveguides in the interaction region can also be spaced apart, so that the two interaction optical waveguides can be prevented from forming a directional coupler. As a result, it is possible to suppress deterioration of characteristics including an extinction ratio as an optical modulator caused by the two interactive optical waveguides constituting a directional coupler. Further, since each of the interaction optical waveguides can be disposed near the center conductor divided into two, there is an advantage that the driving voltage as the optical modulator can be reduced.

請求項3の発明では、2分割した中心導体が相互作用領域の長手方向における前後において一体化しているので、相互作用部において光と相互作用したRF電気信号を電気的終端で処理する、あるいはコネクタで外部に出力することを容易としている。   In the invention according to claim 3, since the central conductor divided into two is integrated before and after in the longitudinal direction of the interaction region, the RF electrical signal interacting with the light in the interaction portion is processed by the electrical termination, or the connector It is easy to output to the outside.

以下、本発明の実施形態について説明するが、図5に示した従来技術と同一番号は同一機能部に対応しているため、ここでは同一番号を持つ機能部の説明を省略する。   Hereinafter, embodiments of the present invention will be described. Since the same reference numerals as those in the prior art shown in FIG. 5 correspond to the same function units, the description of the function units having the same numbers is omitted here.

[第1の実施形態]
図1に本発明における第1の実施形態の上面図を示す。そのB−B’における断面図を図2に示す。なお、本発明による光変調器の製作手順は図5に示した従来技術と同様である。
[First Embodiment]
FIG. 1 shows a top view of a first embodiment of the present invention. A cross-sectional view at BB ′ is shown in FIG. The manufacturing procedure of the optical modulator according to the present invention is the same as that of the prior art shown in FIG.

図中、5はマッハツェンダ光導波路で、5a、5bはマッハツェンダ光導波路のアームを構成する2本の相互作用光導波路である。6a、6bは中心導体、6c、6d、及び6eは接地導体である。7a、7b、7c、7dは電気信号の電気力線である。   In the figure, reference numeral 5 denotes a Mach-Zehnder optical waveguide, and reference numerals 5a and 5b denote two interactive optical waveguides that constitute the arms of the Mach-Zehnder optical waveguide. 6a and 6b are center conductors, and 6c, 6d and 6e are ground conductors. Reference numerals 7a, 7b, 7c and 7d denote electric lines of force of the electric signal.

本実施形態の動作原理について説明する。まずマッハツェンダ光導波路5に入射した光は、2本の相互作用光導波路5a、5bに2分岐される。一方、中心導体6も6a、6bに2分岐されている。電気信号の電気力線は図2に示すように分布しており、従来のx−カットLN光変調器と同様にプッシュプル動作が可能となる。   The operation principle of this embodiment will be described. First, light incident on the Mach-Zehnder optical waveguide 5 is branched into two interactive optical waveguides 5a and 5b. On the other hand, the center conductor 6 is also bifurcated into 6a and 6b. The electric lines of force of the electric signal are distributed as shown in FIG. 2, and a push-pull operation is possible as in the conventional x-cut LN optical modulator.

中心導体6は6a、6bに2分岐されているので、相互作用光導波路5a、5bが互いに結合しないように充分な距離で隔置することができる。この相互作用光導波路5a、5bの間の距離は図10から決定できるが、図のGwg’として一般に18μmかそれ以上あれば充分である。 Since the center conductor 6 is bifurcated into 6a and 6b, it can be separated at a sufficient distance so that the interactive optical waveguides 5a and 5b are not coupled to each other. Although the distance between the interactive optical waveguides 5a and 5b can be determined from FIG. 10, it is generally sufficient if Gwg ′ in the figure is 18 μm or more.

さてここで重要なことがある。従来技術について図9を用いて説明したように、従来技術の中心導体4aのエッジと光導波路3b(3aも同様である)の中央の間の距離Δには駆動電圧を低減する観点から最適値があった。しかしながら、従来技術においてこの最適値を実現しようとすると、相互作用光導波路3aと3bが方向性結合器として動作してしまい、それぞれの相互作用光導波路3a、3bを導波する光が互いに結合してしまう。その結果、消光比劣化や光変調器としてのその他の特性を劣化させてしまっていた。   Now there is something important here. As described with reference to FIG. 9 for the prior art, the distance Δ between the edge of the center conductor 4a of the prior art and the center of the optical waveguide 3b (3a is the same) is an optimum value from the viewpoint of reducing the drive voltage. was there. However, if this optimum value is to be realized in the prior art, the interaction optical waveguides 3a and 3b operate as directional couplers, and the light guided through the respective interaction optical waveguides 3a and 3b is coupled to each other. End up. As a result, extinction ratio degradation and other characteristics as an optical modulator have been degraded.

ところが、本発明では光導波路5a、5bが方向性結合器として動作しない程度の距離になるように中心導体6を6a、6bと分岐し、隔置できる。従って、2本の相互作用光導波路が方向性結合器として動作し、光変調器としての特性を劣化させることはない。   However, according to the present invention, the central conductor 6 can be branched from and separated from the central conductor 6 so that the optical waveguides 5a and 5b have a distance that does not operate as a directional coupler. Accordingly, the two interactive optical waveguides operate as a directional coupler, and the characteristics as the optical modulator are not deteriorated.

なお、図2において光導波路5a、5bは、電気力線7a、7dが光導波路5a、5bを横切るように配置したが、電気力線7b、7cが横切るように配置しても良い。   In FIG. 2, the optical waveguides 5a and 5b are arranged so that the electric lines of force 7a and 7d cross the optical waveguides 5a and 5b, but may be arranged so that the electric lines of force 7b and 7c cross.

[第2の実施形態]
図3は本発明の第2の実施形態である。本実施形態では第1の実施形態における接地導体6dを省略することにより、進行波電極をCPW型から非対称コプレーナストリップ(ACPS)型としている。
[Second Embodiment]
FIG. 3 shows a second embodiment of the present invention. In this embodiment, the grounding conductor 6d in the first embodiment is omitted, so that the traveling wave electrode is changed from a CPW type to an asymmetric coplanar strip (ACPS) type.

[第3の実施形態]
図4は本発明の第3の実施形態である。本実施形態では中心導体8を8a、8bに分割して、相互作用光導波路5a、5bを伝搬する光との相互作用を終えたRF電気信号を再度一体化した中心導体に伝搬させている。その後は、コネクタから光変調器の外部へ取り出しても良いし、電気的終端器により消費しても良い。
[Third Embodiment]
FIG. 4 shows a third embodiment of the present invention. In this embodiment, the central conductor 8 is divided into 8a and 8b, and the RF electrical signal that has finished the interaction with the light propagating through the interaction optical waveguides 5a and 5b is propagated to the integrated central conductor again. Thereafter, it may be taken out of the optical modulator from the connector or may be consumed by an electrical terminator.

なお、本発明は上述した各実施形態に限定されるものではない。   The present invention is not limited to the above-described embodiments.

[各実施形態について]
以上においては、進行波電極としてはCPW電極とACPSを用いて説明したが、その他の対称コプレーナストリップ(CPS)などの各種進行波電極、あるいは集中定数型の電極でも良いことは言うまでもない。
[About each embodiment]
In the above description, the CPW electrode and the ACPS are used as the traveling wave electrode. However, it goes without saying that other traveling wave electrodes such as other symmetric coplanar strips (CPS) or lumped constant type electrodes may be used.

また、本発明を実施する上で、相互作用部における2本の光導波路の一部もしくは全部の幅を互いに異ならしめてもよい。相互作用部における2本の相互作用光導波路の幅を異ならしめ、かつその大小関係を相互作用部の長手方向において入れ替える場合には、電極の伝搬損失を考えて入れ替える長さを決定すると、変調された光のチャーピングを極めて小さくするのに有用である。   In carrying out the present invention, the widths of some or all of the two optical waveguides in the interaction portion may be different from each other. When the widths of the two interaction optical waveguides in the interaction part are made different and the magnitude relationship is changed in the longitudinal direction of the interaction part, the length is changed by determining the replacement length in consideration of the propagation loss of the electrode. This is useful for extremely reducing the chirping of light.

さらに、以上の実施形態においては、x−カットもしくはy−カットの面方位、即ち、基板表面(カット面)に対して垂直な方向に結晶のx軸、もしくはy軸を持つ基板でも良いし、以上に述べた各実施形態での面方位を主たる面方位とし、これらに他の面方位が副たる面方位として混在しても良いし、LN基板のみでなく、リチウムタンタレートや半導体などその他の基板でも良いことは言うまでもない。   Furthermore, in the above embodiment, the substrate may have an x-cut or y-cut plane orientation, that is, a crystal x-axis or y-axis in a direction perpendicular to the substrate surface (cut surface). The plane orientation in each of the embodiments described above may be the main plane orientation, and other plane orientations may be mixed as sub-plane orientations, and not only the LN substrate but also other elements such as lithium tantalate and semiconductors. Needless to say, a substrate may be used.

以上のように、本発明に係る光変調器は、高速で消光比が大きく、また駆動電圧とDCバイアス電圧が小さい光変調器として有用である。   As described above, the optical modulator according to the present invention is useful as an optical modulator having a high extinction ratio at a high speed and a small driving voltage and DC bias voltage.

本発明の第1の実施形態によるLN光変調器の上面図1 is a top view of an LN optical modulator according to a first embodiment of the present invention. 本発明の第1の実施形態のB−B’線における断面図Sectional drawing in the B-B 'line of the 1st Embodiment of this invention 本発明の第2の実施形態によるLN光変調器の上面図Top view of an LN optical modulator according to a second embodiment of the invention 本発明の第3の実施形態によるLN光変調器の上面図Top view of an LN optical modulator according to a third embodiment of the invention 従来技術によるLN光変調器の斜視図Perspective view of a conventional LN optical modulator 従来技術によるLN光変調器のA−A’線における断面図Sectional view taken along line A-A 'of a conventional LN optical modulator 従来技術の光導波路の上面図Top view of prior art optical waveguide 従来技術によるLN光変調器の動作を説明する図The figure explaining operation | movement of the LN optical modulator by a prior art. Vπ・LとΔとの関係を示す図Diagram showing the relationship between Vπ · L and Δ 光の結合度とGwgとの関係を示す図The figure which shows the relationship between the coupling | bonding degree of light and Gwg

符号の説明Explanation of symbols

1:x−カットLN基板(基板)
2:SiOバッファ層(バッファ層)
3、5:光導波路
3a、3b、5a、5b:相互作用光導波路
4、6:進行波電極
4a、6a、6b、8a、8b:中心導体
4b、4c、6c、6d、6e、8c、8e:接地導体
7a、7b、7c、7d:電気力線
1: x-cut LN substrate (substrate)
2: SiO 2 buffer layer (buffer layer)
3, 5: Optical waveguide 3a, 3b, 5a, 5b: Interaction optical waveguide 4, 6: Traveling wave electrode 4a, 6a, 6b, 8a, 8b: Central conductor 4b, 4c, 6c, 6d, 6e, 8c, 8e : Ground conductors 7a, 7b, 7c, 7d: Electric field lines

Claims (3)

電気光学効果を有しx−カットもしくはy−カットの少なくとも一方の面方位を有する基板と、該基板に形成された光を導波するための光導波路と、前記基板の一方の面側に形成され、前記光を変調するための高周波電気信号を印加するための高周波電気信号用の中心導体及び接地導体からなる進行波電極を備えた相互作用部を有し、前記光導波路は前記進行波電極に前記高周波電気信号を印加することにより前記光の位相を変調するための少なくとも2本の相互作用光導波路を含むマッハツェンダ光導波路を具備する光変調器において、
前記進行波電極の中心導体が、前記相互作用部において分岐されており、
前記分岐された中心導体が、前記2本の相互作用光導波路をそれぞれ伝搬する前記光の結合が疎となる距離に隔置されることを特徴とする光変調器。
A substrate having an electro-optic effect and having at least one surface orientation of x-cut or y-cut, an optical waveguide for guiding light formed on the substrate, and formed on one surface side of the substrate And an interaction portion comprising a traveling wave electrode comprising a center conductor and a ground conductor for a high frequency electrical signal for applying a high frequency electrical signal for modulating the light, wherein the optical waveguide is the traveling wave electrode An optical modulator comprising a Mach-Zehnder optical waveguide including at least two interactive optical waveguides for modulating the phase of the light by applying the high-frequency electrical signal to
A central conductor of the traveling wave electrode is branched at the interaction portion;
The optical modulator, wherein the branched central conductors are spaced apart by a distance at which the coupling of the light propagating through the two interactive optical waveguides is sparse.
前記2本の相互作用光導波路間のギャップが18μm以上であることを特徴とする請求項1に記載の光変調器。   The optical modulator according to claim 1, wherein a gap between the two interactive optical waveguides is 18 μm or more. 分岐された前記中心導体が、前記相互作用部の前後において一体化されていることを特徴とする請求項1または2に記載の光変調器。   The optical modulator according to claim 1, wherein the branched central conductor is integrated before and after the interaction portion.
JP2005217450A 2005-07-27 2005-07-27 Light modulator Expired - Fee Related JP4926423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005217450A JP4926423B2 (en) 2005-07-27 2005-07-27 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005217450A JP4926423B2 (en) 2005-07-27 2005-07-27 Light modulator

Publications (2)

Publication Number Publication Date
JP2007033894A true JP2007033894A (en) 2007-02-08
JP4926423B2 JP4926423B2 (en) 2012-05-09

Family

ID=37793230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005217450A Expired - Fee Related JP4926423B2 (en) 2005-07-27 2005-07-27 Light modulator

Country Status (1)

Country Link
JP (1) JP4926423B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009001294T5 (en) 2008-05-30 2011-04-14 Toshiba Kikai Kabushiki Kaisha Cast iron with high strength and high damping capacity
US9746741B2 (en) 2013-03-26 2017-08-29 Sumitomo Osaka Cement Co., Ltd. Optical modulator
US10678114B2 (en) 2016-07-01 2020-06-09 Lumentum Technology Uk Limited Ground structure in RF waveguide array
US10684528B2 (en) 2016-07-01 2020-06-16 Lumentum Technology Uk Limited Ground structure in RF waveguide array

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515463A (en) * 1995-03-10 1996-05-07 Hewlett-Packard Company Multi-branch microwave line for electro-optical devices
JPH10274758A (en) * 1997-03-31 1998-10-13 Sumitomo Osaka Cement Co Ltd Waveguide type optical modulator
JP2003228033A (en) * 2002-02-04 2003-08-15 Sumitomo Osaka Cement Co Ltd Optical modulator
JP2005107229A (en) * 2003-09-30 2005-04-21 Sumitomo Osaka Cement Co Ltd Optical waveguide element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515463A (en) * 1995-03-10 1996-05-07 Hewlett-Packard Company Multi-branch microwave line for electro-optical devices
JPH10274758A (en) * 1997-03-31 1998-10-13 Sumitomo Osaka Cement Co Ltd Waveguide type optical modulator
JP2003228033A (en) * 2002-02-04 2003-08-15 Sumitomo Osaka Cement Co Ltd Optical modulator
JP2005107229A (en) * 2003-09-30 2005-04-21 Sumitomo Osaka Cement Co Ltd Optical waveguide element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009001294T5 (en) 2008-05-30 2011-04-14 Toshiba Kikai Kabushiki Kaisha Cast iron with high strength and high damping capacity
DE112009001294B4 (en) * 2008-05-30 2013-10-31 Toshiba Kikai Kabushiki Kaisha Cast iron with high strength and high damping capacity
US9746741B2 (en) 2013-03-26 2017-08-29 Sumitomo Osaka Cement Co., Ltd. Optical modulator
US10678114B2 (en) 2016-07-01 2020-06-09 Lumentum Technology Uk Limited Ground structure in RF waveguide array
US10684528B2 (en) 2016-07-01 2020-06-16 Lumentum Technology Uk Limited Ground structure in RF waveguide array

Also Published As

Publication number Publication date
JP4926423B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4234117B2 (en) Light modulator
US7088875B2 (en) Optical modulator
US7394950B2 (en) Optical modulator
JP4151798B2 (en) Light modulator
US7447389B2 (en) Optical modulator
US20020106141A1 (en) Low-loss electrode designs for high-speed optical modulators
JP2006189773A (en) Low-voltage optical modulator having symmetric structure
US20100158428A1 (en) Optical modulator
JP5320042B2 (en) Light modulator
JP2806425B2 (en) Waveguide type optical device
JPH1172760A (en) Optical waveguide module
JP4926423B2 (en) Light modulator
JP3043614B2 (en) Waveguide type optical device
JP2007079249A (en) Optical modulator
US6950218B2 (en) Optical modulator
JP4920212B2 (en) Light modulator
JP4138760B2 (en) Light modulator
JP2007072369A (en) Optical modulator
JP4754608B2 (en) Light modulator
JP2007093742A (en) Optical modulator
JP2007025369A (en) Optical modulator
JP5075055B2 (en) Light modulator
JP2008139554A (en) Optical modulator
JP2008152206A (en) Optical modulator
JP2008052103A (en) Optical modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees