JP2005107229A - Optical waveguide element - Google Patents

Optical waveguide element Download PDF

Info

Publication number
JP2005107229A
JP2005107229A JP2003341370A JP2003341370A JP2005107229A JP 2005107229 A JP2005107229 A JP 2005107229A JP 2003341370 A JP2003341370 A JP 2003341370A JP 2003341370 A JP2003341370 A JP 2003341370A JP 2005107229 A JP2005107229 A JP 2005107229A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
waveguides
waveguide
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003341370A
Other languages
Japanese (ja)
Other versions
JP4128510B2 (en
Inventor
Tokuichi Miyazaki
徳一 宮崎
Takahisa Fujita
貴久 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2003341370A priority Critical patent/JP4128510B2/en
Publication of JP2005107229A publication Critical patent/JP2005107229A/en
Application granted granted Critical
Publication of JP4128510B2 publication Critical patent/JP4128510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical waveguide element which prevents optical cross talk between closely arranged optical waveguides and suppresses the generation of a wavelength chirping due to the reduction in driving voltage and a modulation . <P>SOLUTION: In the optical waveguide element which has a substrate having an electrooptical effect and a plurality of optical waveguides formed on the substrate, at least two closely arranged optical waveguides are so formed that the widths of the respective optical waveguides in the close region are different from each other. Preferably, the plurality of waveguides have a Mach-Zehnder type optical waveguide 10 having two branched waveguides and the respective optical waveguides in the close region are the two branched waveguides 11 and 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本件発明は、光導波路素子に関し、特に、電気光学効果を有する基板上に形成された複数の光導波路を備えた光導波路素子に関する。   The present invention relates to an optical waveguide device, and more particularly to an optical waveguide device including a plurality of optical waveguides formed on a substrate having an electro-optic effect.

光通信又は光計測の分野においては、LiNbO(以下、LNという)などの電気光学効果を有する基板上に複数の光導波路を形成する光導波路素子が利用されている。
以下の特許文献1には、光導波路素子の一種であるマッハ・ツェンダー型の光導波路を有する光変調器の例が開示されている。
このような光変調器のように、複数の光導波路が近接して配置されることにより、各光導波路内を伝播する光波が、他の光導波路内を伝播する光波へ影響を及ぼし、光クロストークと呼ばれる光波の混線状態が発生する可能性がある。
従来はこのような光クロストークを防止するため、光導波路間の距離を一定以上に離すことが行われてきた。
特開平2−196212号公報
In the field of optical communication or optical measurement, an optical waveguide element is used that forms a plurality of optical waveguides on a substrate having an electrooptic effect such as LiNbO 3 (hereinafter referred to as LN).
The following Patent Document 1 discloses an example of an optical modulator having a Mach-Zehnder type optical waveguide, which is a kind of optical waveguide element.
As in such an optical modulator, a plurality of optical waveguides are arranged close to each other, so that light waves propagating in each optical waveguide affect light waves propagating in other optical waveguides, and optical cross There is a possibility that a crosstalk state of light waves called talk will occur.
Conventionally, in order to prevent such optical crosstalk, the distance between optical waveguides has been increased to a certain level or more.
JP-A-2-196212

また、光導波路素子においては、電気光学効果により最も効率的に屈折率を変更できる結晶方向が、基板の表面に平行な方向である基板(「Xカット基板」という。)又は該方向が基板の表面に垂直な方向である基板(「Zカット基板」という。)が、それぞれの用途に応じて利用されている。
光導波路内を伝播する光波を変調する場合、信号電極及び接地電極から構成される制御用電極が、該光導波路の近傍に配置される。
変調による波長チャーピングの発生を抑制するためには、マッハ・ツェンダー型変調器の各分岐導波路の変調による位相変化量を等しくする必要があり、該光導波路を挟むように信号電極と接地電極を配置するXカット基板の構成、あるいは光導波路の真上に信号電極が配置される2電極型のZカット基板の構成を用いるのが、一般的である。
In the optical waveguide element, the crystal direction in which the refractive index can be changed most efficiently by the electro-optic effect is a direction parallel to the surface of the substrate (referred to as “X-cut substrate”) or the direction is the direction of the substrate. A substrate that is perpendicular to the surface (referred to as a “Z-cut substrate”) is used for each application.
When modulating a light wave propagating in the optical waveguide, a control electrode composed of a signal electrode and a ground electrode is disposed in the vicinity of the optical waveguide.
In order to suppress the occurrence of wavelength chirping due to modulation, it is necessary to equalize the amount of phase change due to the modulation of each branch waveguide of the Mach-Zehnder type modulator, and the signal electrode and the ground electrode sandwich the optical waveguide. It is common to use a configuration of an X-cut substrate in which a signal electrode is disposed or a configuration of a two-electrode type Z-cut substrate in which a signal electrode is disposed immediately above an optical waveguide.

このため、Xカット基板の場合には、近接する光導波路の間に必ず信号電極または接地電極が存在するため、光導波路間の距離が一定以上に保持され、光クロストークを発生する危険性が少ないが、Zカット基板の場合には、光導波路の真上に信号電極が配置されるため、複数の光導波路が互いに近接して配置される場合もあり、光クロストークを発生する原因にもなっていた。
特に、Xカットの基板構成の場合には、光導波路素子の小型化や、制御用電極に印加する駆動電圧の低減が求められており、これらに伴い変調効率を上げるため、信号電極と光導波路とをより近接して配置する必要が生じている。一方、制御用電極は、高周波における反射抑制と変調効率を上げるため、インピーダンスの制御と、光波と電気信号との速度整合をとる必要があり、信号電極の幅や信号電極と接地電極との間隔がある数値に限定される。一般的な高速LN変調器では、信号電極の幅は数μmから10μm程度となり、このとき信号電極と光導波路とを近接させると、光導波路間隔が狭くなる傾向にあり、光クロストークの発生による光変調の特性劣化が問題となっている。
For this reason, in the case of an X-cut substrate, since a signal electrode or a ground electrode always exists between adjacent optical waveguides, the distance between the optical waveguides is maintained at a certain level or more, and there is a risk of causing optical crosstalk. However, in the case of a Z-cut substrate, since the signal electrode is arranged directly above the optical waveguide, a plurality of optical waveguides may be arranged close to each other, which may cause optical crosstalk. It was.
In particular, in the case of an X-cut substrate configuration, there is a demand for miniaturization of the optical waveguide element and reduction of the drive voltage applied to the control electrode, and accordingly, in order to increase the modulation efficiency, the signal electrode and the optical waveguide are required. Need to be placed closer together. On the other hand, in order to suppress reflection at high frequencies and increase modulation efficiency, the control electrode needs to control impedance and match the speed between the light wave and the electric signal, and the width of the signal electrode and the distance between the signal electrode and the ground electrode Is limited to a certain number. In a general high-speed LN modulator, the width of the signal electrode is about several μm to 10 μm, and if the signal electrode and the optical waveguide are brought close to each other at this time, the optical waveguide interval tends to be narrowed, resulting in occurrence of optical crosstalk. Deterioration of light modulation characteristics is a problem.

本発明の目的は、上述した問題を解決し、近接配置される光導波路間の光クロストークを防止すると共に、駆動電圧の低減並びに変調による波長チャーピングの発生を抑制する光導波路素子を提供することである。   An object of the present invention is to provide an optical waveguide device that solves the above-described problems, prevents optical crosstalk between optical waveguides arranged close to each other, and suppresses generation of wavelength chirping due to reduction in driving voltage and modulation. That is.

上記課題を解決するために、請求項1に係る発明では、電気光学効果を有する基板と、該基板上に形成された複数の光導波路とを有する光導波路素子において、近接配置された少なくとも2つの光導波路は、近接した領域における各光導波路の幅が、互いに異なるよう形成されていることを特徴とする。   In order to solve the above-mentioned problem, in the invention according to claim 1, in an optical waveguide element having a substrate having an electro-optic effect and a plurality of optical waveguides formed on the substrate, at least two of them arranged close to each other The optical waveguides are characterized in that the widths of the respective optical waveguides in adjacent regions are different from each other.

また、請求項2に係る発明では、請求項1に記載の光導波路素子において、前記複数の光導波路は、2つの分岐導波路を有するマッハ・ツェンダー型の光導波路を有し、近接する領域における各光導波路が前記2つの分岐導波路であることを特徴とする。   According to a second aspect of the present invention, in the optical waveguide device according to the first aspect, the plurality of optical waveguides include a Mach-Zehnder type optical waveguide having two branching waveguides, and in an adjacent region. Each optical waveguide is the two branch waveguides.

また、請求項3に係る発明では、請求項2に記載の光導波路素子において、該分岐導波路を伝播する光波を変調するための制御用電極を有し、該制御用電極の電極損による変調効率の低下を補償し、各分岐導波路の位相変化量が互いにほぼ等しくなるように、各分岐導波路の幅を調整することを特徴とする。   According to a third aspect of the present invention, in the optical waveguide device according to the second aspect of the present invention, the optical waveguide element has a control electrode for modulating the light wave propagating through the branch waveguide, and the modulation due to the electrode loss of the control electrode It is characterized by adjusting the width of each branch waveguide so that the decrease in efficiency is compensated and the amount of phase change of each branch waveguide becomes substantially equal to each other.

また、請求項4に係る発明では、請求項3に記載の光導波路素子において、一方の分岐導波路の幅が、光波の入力側から出力側にかけて、他方の分岐導波路の幅より太い部分と、途中から他方の分岐導波路の幅より細い部分とからなるよう構成されると共に、該太い部分の長さより該細い部分の長さがより長くなるよう構成されていることを特徴とする。   Further, in the invention according to claim 4, in the optical waveguide device according to claim 3, the width of one branch waveguide is larger from the input side to the output side of the light wave than the width of the other branch waveguide, It is characterized in that it is composed of a part thinner than the width of the other branch waveguide from the middle, and the length of the narrow part is longer than the length of the thick part.

また、請求項5に係る発明では、請求項3又は4に記載の光導波路素子において、前記制御用電極は信号電極及び該信号電極の両側に配置された接地電極とからなり、該接地電極は、該信号電極に対する両側の接地電極の距離が等しくなるように構成されていることを特徴とする。   Further, in the invention according to claim 5, in the optical waveguide device according to claim 3 or 4, the control electrode includes a signal electrode and ground electrodes arranged on both sides of the signal electrode, The distance between the ground electrodes on both sides with respect to the signal electrode is equal.

請求項1に係る発明により、光導波路が近接する領域においては、各光導波路の幅が互いに異なるため、光クロストークの発生が抑制可能となる。これにより、光導波路素子内に光導波路を近接して配置することが可能となり、光導波路素子の小型化並びに駆動電圧の低減を図ることが可能となる。   According to the first aspect of the present invention, in the region where the optical waveguides are close to each other, the widths of the optical waveguides are different from each other, so that the occurrence of optical crosstalk can be suppressed. As a result, the optical waveguide can be disposed close to the optical waveguide element, and the optical waveguide element can be reduced in size and the driving voltage can be reduced.

請求項2に係る発明により、光通信又は光計測分野において多用されているマッハ・ツェンダー型の光導波路を有する光導波路素子においても、光クロストークを防止することが可能となり、光導波路素子を含む装置全体の小型化を達成できると共に、光導波路素子の駆動電圧が低減され、該光導波路素子の高速駆動も可能となる。   The invention according to claim 2 can prevent optical crosstalk even in an optical waveguide element having a Mach-Zehnder type optical waveguide that is widely used in the field of optical communication or optical measurement, and includes an optical waveguide element. The overall size of the apparatus can be reduced, the driving voltage of the optical waveguide element is reduced, and the optical waveguide element can be driven at high speed.

各分岐導波路の幅を変更することに起因して、光導波路のモード径が異なり、断面当たりの変調効率が、各分岐導波路間で非対称となるため、波長チャーピングを発生する。請求項3に係る発明により、分岐導波路を伝播する光波を変調する各制御用電極の電極損を補償し、各分岐導波路の位相変化量が互いにほぼ等しくなるように、各分岐導波路の幅を設定することにより、チャーピングの発生も併せて抑制することが可能となる。   Due to the change of the width of each branching waveguide, the mode diameter of the optical waveguide is different, and the modulation efficiency per cross section is asymmetric between the branching waveguides, so that wavelength chirping occurs. According to the invention of claim 3, the electrode loss of each control electrode that modulates the light wave propagating through the branch waveguide is compensated, and the phase change amount of each branch waveguide is made substantially equal to each other. By setting the width, it is possible to suppress the occurrence of chirping.

請求項4に係る発明により、一方の分岐導波路の幅が、光波の入力側から出力側にかけて、他方の分岐導波路の幅より太い部分と、途中から他方の分岐導波路の幅より細い部分とからなるよう構成されると共に、該太い部分の長さより該細い部分の長さがより長くなるよう構成し、分岐導波路間の光クロストークを防止するだけでなく、制御用電極の電極損を等しくすることが可能となり、チャーピングの発生を防止することが可能となる。   According to the invention of claim 4, the width of one branch waveguide is wider from the input side to the output side of the light wave than the width of the other branch waveguide, and the portion narrower than the width of the other branch waveguide from the middle In addition to preventing the optical crosstalk between the branched waveguides, the electrode loss of the control electrode can be reduced. Can be made equal, and the occurrence of chirping can be prevented.

請求項5に係る発明により、制御用電極を構成する信号電極と接地電極とを、該信号電極に対する両側に接地電極を配置し、信号電極と接地電極との距離が両側で等しくなるように構成することで、チャーピングの発生をさらに抑制することが可能となる。特に、Xカット基板を利用して、該信号電極と該接地電極との間に各分岐導波路を配置する場合に、チャーピングの防止が効果的となる。   According to the invention of claim 5, the signal electrode and the ground electrode constituting the control electrode are arranged on both sides of the signal electrode, and the distance between the signal electrode and the ground electrode is equal on both sides. By doing so, it is possible to further suppress the occurrence of chirping. In particular, when each branch waveguide is disposed between the signal electrode and the ground electrode using an X-cut substrate, chirping prevention is effective.

以下、本発明を好適例を用いて詳細に説明する。以下では、光導波路素子の例として、マッハ・ツェンダー型の光導波路を有する光変調器を中心に説明するが、本発明はこれに限られるものではない。
図1は、Xカット基板1を用いた従来の光変調器の例を示す。
基板1は、電気光学効果を有する基板であり、例えば、例えば、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)、PLZT(ジルコン酸チタン酸鉛ランタン)から構成され、特に、光導波路素子として構成しやすく、かつ異方性が大きいという理由から、LiNbO結晶、LiTaO結晶、又はLiNbO及びLiTaOからなる固溶体結晶を用いることが好ましい。
Hereinafter, the present invention will be described in detail using preferred examples. In the following, an optical modulator having a Mach-Zehnder type optical waveguide will be mainly described as an example of the optical waveguide device, but the present invention is not limited to this.
FIG. 1 shows an example of a conventional optical modulator using an X-cut substrate 1.
The substrate 1 is a substrate having an electrooptic effect, and is made of, for example, lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), or PLZT (lead lanthanum zirconate titanate), and in particular, an optical waveguide It is preferable to use a LiNbO 3 crystal, a LiTaO 3 crystal, or a solid solution crystal composed of LiNbO 3 and LiTaO 3 because it is easy to configure as an element and has high anisotropy.

基板1の表面には、マッハ・ツェンダー型の光導波路2が形成される。光導波路の形成方法としては、Ti熱拡散法、エピタキシャル成長法、及びイオン注入法などいずれの方法をも用いることができる。
マッハ・ツェンダー型光導波路は、入射した光波を2つに分岐する分岐部と、分岐した光波を伝播する分岐導波路3,4と、さらに2つに分かれた光波を合波する合波部とから構成される。
A Mach-Zehnder type optical waveguide 2 is formed on the surface of the substrate 1. As a method for forming the optical waveguide, any method such as a Ti thermal diffusion method, an epitaxial growth method, and an ion implantation method can be used.
The Mach-Zehnder type optical waveguide includes a branching portion that branches an incident light wave into two, branching waveguides 3 and 4 that propagate the branched light wave, and a combining portion that combines the two separated light waves. Consists of

分岐導波路3,4の近傍には、信号電極5及び接地電極6,7からなる制御用電極が配置され、これらの電極は、Auなどの導電性材料から蒸着法並びにメッキ法、又は両者を併用することで形成されている。
さらに、図1では図示していないが、光導波路中の光の伝播損失を低減させるために、基板1上に誘電体SiO等のバッファ層を設けることも可能である。バッファ層は、SiOなどの公知の材料から、蒸着法、スパッタリング法、イオンプレーティング法、CVD法など公知の成膜法により形成することができる。
In the vicinity of the branching waveguides 3 and 4, control electrodes made up of the signal electrode 5 and the ground electrodes 6 and 7 are disposed. These electrodes are made of a conductive material such as Au by vapor deposition and plating, or both. It is formed by using together.
Further, although not shown in FIG. 1, it is possible to provide a buffer layer such as a dielectric SiO 2 on the substrate 1 in order to reduce the propagation loss of light in the optical waveguide. The buffer layer can be formed from a known material such as SiO 2 by a known film forming method such as an evaporation method, a sputtering method, an ion plating method, or a CVD method.

図1(b)は、図1(a)の一点鎖線Aにおける断面図を示すものである。通常は、信号電極5を中心に、分岐導波路3,4や接地電極6,7は、対称に配置されている。また、分岐導波路3,4の幅は同じである。
しかしながら、分岐導波路3,4の間隔を狭くすると、光クロストークが発生するため、分岐導波路3,4の間隔は、従来は分岐導波路の幅Wの約3倍以上の距離をとる必要があった。
このため、信号電極5から分岐導波路3,4位置が離れるため、電気光学効果による屈折率変化量が小さくなり、光変調器の駆動電圧が高くなるという問題を生じていた。
FIG. 1B is a cross-sectional view taken along one-dot chain line A in FIG. Normally, the branch waveguides 3 and 4 and the ground electrodes 6 and 7 are arranged symmetrically with the signal electrode 5 as the center. The widths of the branching waveguides 3 and 4 are the same.
However, if the distance between the branching waveguides 3 and 4 is reduced, optical crosstalk occurs. Therefore, the distance between the branching waveguides 3 and 4 needs to be at least about three times the width W of the branching waveguide conventionally. was there.
For this reason, the branch waveguides 3 and 4 are separated from the signal electrode 5, so that the refractive index change amount due to the electro-optic effect is reduced and the drive voltage of the optical modulator is increased.

本発明に係る光導波路素子においては、図2に示すように、分岐光導波路11,12の幅を異ならせることにより、分岐導波路の間隔を従来より近接させても、光クロストークの発生を抑制することを可能としたものである。
図2において、10は、基板1上に形成されたマッハ・ツェンダー型光導波路であり、分岐導波路12の幅W1は、分岐導波路11の幅W2より太くなるよう構成されている。また、制御用電極として、信号電極13と接地電極14,15が配置されている。図2(b)は、図2(a)の一点鎖線Bにおける断面図を示すものである。
In the optical waveguide device according to the present invention, as shown in FIG. 2, by making the widths of the branched optical waveguides 11 and 12 different, even if the distance between the branched waveguides is made closer than before, optical crosstalk is generated. It is possible to suppress it.
In FIG. 2, reference numeral 10 denotes a Mach-Zehnder type optical waveguide formed on the substrate 1, and the width W <b> 1 of the branch waveguide 12 is configured to be larger than the width W <b> 2 of the branch waveguide 11. Further, a signal electrode 13 and ground electrodes 14 and 15 are arranged as control electrodes. FIG. 2B is a cross-sectional view taken along the alternate long and short dash line B in FIG.

しかしながら、分岐導波路の幅を変更することに起因して、各分岐導波路のモード径が異なり、断面当たりの変調効率が、各分岐導波路間で非対称となるため、分岐した2つの光波を合波した際に、波長チャーピングを発生するという、新たな問題が生じる。   However, due to the change in the width of the branching waveguide, the mode diameter of each branching waveguide is different, and the modulation efficiency per cross section is asymmetric between the branching waveguides. When multiplexed, a new problem of generating wavelength chirping arises.

本発明では、さらに、このようなチャーピングの発生を抑制するため、図3,4に示すような、分岐導波路の途中で分岐導波路の幅を変更する構成を採用している。
より詳細には、分岐導波路の各断面構造を変化させる回数や分岐導波路の幅及び各幅毎の長さ(「作用長」という)を適宜組合わせることにより、駆動信号が制御用電極を伝搬する際の電極損による位相変化量の低下分を、補償するように設定している。
The present invention further employs a configuration in which the width of the branching waveguide is changed in the middle of the branching waveguide as shown in FIGS.
More specifically, by appropriately combining the number of times each cross-sectional structure of the branching waveguide is changed, the width of the branching waveguide, and the length of each width (referred to as “action length”), the drive signal is used to control the control electrode. It is set so as to compensate for a decrease in the amount of phase change due to electrode loss during propagation.

図3においては、各分岐導波路の幅を2回変更し、各分岐導波路を2つの区分(31と32、または33と34)に分けている。
そして、光波の入力側の区分31,33の作用長L1を短く、出射側の区分32,34の作用長L2を長く設定し、信号伝搬による電極損を補償している。
これにより、調整した電極損の周波数においては、完全に分岐導波路間の位相変化量の絶対値が等しくなり、チャーピングを防止することが可能となる。
In FIG. 3, the width of each branch waveguide is changed twice, and each branch waveguide is divided into two sections (31 and 32, or 33 and 34).
The action length L1 of the light wave input side sections 31 and 33 is set short and the action length L2 of the output side sections 32 and 34 is set long to compensate for electrode loss due to signal propagation.
Thereby, at the adjusted frequency of the electrode loss, the absolute value of the phase change amount between the branched waveguides becomes completely equal, and chirping can be prevented.

図4においては、各分岐導波路の幅を3回変更し、各分岐導波路を3つの区分(41と42と42、または44と45と46)に分けている。
そして、第1区分(41,44)と第3区分(43,46)とを同じ断面構造とし、第2区分(42,45)を、第1及び3区分の導波路幅の大小関係と逆にした構造とする。
このような場合には、各区分の作用長の関係は、ほぼL1+L3=L2の関係となる。ただし、L1の長さにより、この関係は変化する。
このような構成により、広い周波数範囲に渡って低電圧駆動でかつ非常に低チャープの光変調器を構成することが可能となる。
In FIG. 4, the width of each branch waveguide is changed three times, and each branch waveguide is divided into three sections (41 and 42 and 42 or 44 and 45 and 46).
Then, the first section (41, 44) and the third section (43, 46) have the same cross-sectional structure, and the second section (42, 45) is opposite to the relationship between the waveguide widths of the first and third sections. The structure is as follows.
In such a case, the relationship between the action lengths of the respective sections is approximately L1 + L3 = L2. However, this relationship changes depending on the length of L1.
With such a configuration, it is possible to configure an optical modulator that is driven at a low voltage and has a very low chirp over a wide frequency range.

また、分岐導波路の幅を変更する際に、図5(a)に示すように、太い部分50と細い部分51との接続部52を不連続的に変化させた場合、光導波路中を伝播する光波の一部が反射したり、光導波路外へ漏出する場合がある。
このような問題を防ぐため、図5(b)に示すように、太い部分60と細い部分61との接続部62を連続的に変化させることも可能であれる。
Further, when the width of the branching waveguide is changed, as shown in FIG. 5A, when the connection portion 52 between the thick portion 50 and the thin portion 51 is changed discontinuously, the light propagates through the optical waveguide. In some cases, a part of the light wave is reflected or leaks outside the optical waveguide.
In order to prevent such a problem, it is also possible to continuously change the connecting portion 62 between the thick portion 60 and the thin portion 61 as shown in FIG.

以上、説明したように、本発明によれば、近接配置される光導波路間の光クロストークを防止すると共に、駆動電圧の低減並びに変調による波長チャーピングの発生を抑制する光導波路素子を提供することが可能となる。   As described above, according to the present invention, there is provided an optical waveguide device that prevents optical crosstalk between optical waveguides arranged close to each other, and suppresses generation of wavelength chirping due to reduction in driving voltage and modulation. It becomes possible.

従来の光変調器の概略を示す図であり、(a)は上面図、(b)は断面図である。It is a figure which shows the outline of the conventional optical modulator, (a) is a top view, (b) is sectional drawing. 本発明に係る光変調器の例を示す図であり、(a)は上面図、(b)は断面図である。It is a figure which shows the example of the optical modulator which concerns on this invention, (a) is a top view, (b) is sectional drawing. 導波路幅を変更する区分を2つ設けた場合の例を示す図である。It is a figure which shows the example at the time of providing two divisions which change waveguide width. 導波路幅を変更する区分を3つ設けた場合の例を示す図である。It is a figure which shows the example at the time of providing three divisions which change waveguide width. 導波路幅を変更する際の接続部の状態を示す図であり、(a)は不連続接続、(b)は連続接続を示す。It is a figure which shows the state of the connection part at the time of changing waveguide width, (a) shows discontinuous connection, (b) shows continuous connection.

符号の説明Explanation of symbols

1 基板
2,10,20,40 マッハ・ツェンダー型光導波路
3,4,11,12 分岐導波路
5,13,35,47 信号電極
6,7,14,15,36,37,48,49 接地電極
1 Substrate 2,10,20,40 Mach-Zehnder type optical waveguide 3,4,11,12 Branched waveguide 5,13,35,47 Signal electrode 6,7,14,15,36,37,48,49 Ground electrode

Claims (5)

電気光学効果を有する基板と、該基板上に形成された複数の光導波路とを有する光導波路素子において、
近接配置された少なくとも2つの光導波路は、近接した領域における各光導波路の幅が、互いに異なるよう形成されていることを特徴とする光導波路素子。
In an optical waveguide device having a substrate having an electro-optic effect and a plurality of optical waveguides formed on the substrate,
An optical waveguide element characterized in that at least two optical waveguides arranged close to each other are formed such that the widths of the respective optical waveguides in the adjacent regions are different from each other.
請求項1に記載の光導波路素子において、前記複数の光導波路は、2つの分岐導波路を有するマッハ・ツェンダー型の光導波路を有し、
近接する領域における各光導波路が前記2つの分岐導波路であることを特徴とする光導波路素子。
The optical waveguide device according to claim 1, wherein the plurality of optical waveguides include Mach-Zehnder type optical waveguides having two branching waveguides,
An optical waveguide element characterized in that each optical waveguide in the adjacent region is the two branched waveguides.
請求項2に記載の光導波路素子において、該分岐導波路を伝播する光波を変調するための制御用電極を有し、
該制御用電極の電極損による変調効率の低下を補償し、各分岐導波路の位相変化量が互いにほぼ等しくなるように、各分岐導波路の幅を調整することを特徴とする光導波路素子。
The optical waveguide device according to claim 2, further comprising a control electrode for modulating a light wave propagating through the branch waveguide,
An optical waveguide element characterized in that a decrease in modulation efficiency due to an electrode loss of the control electrode is compensated, and a width of each branch waveguide is adjusted so that a phase change amount of each branch waveguide becomes substantially equal to each other.
請求項3に記載の光導波路素子において、一方の分岐導波路の幅が、光波の入力側から出力側にかけて、他方の分岐導波路の幅より太い部分と、途中から他方の分岐導波路の幅より細い部分とからなるよう構成されると共に、該太い部分の長さより該細い部分の長さがより長くなるよう構成されていることを特徴とする光導波路素子。   4. The optical waveguide device according to claim 3, wherein a width of one branching waveguide is wider than the width of the other branching waveguide from the light wave input side to the output side, and a width of the other branching waveguide from the middle. An optical waveguide device characterized in that it is composed of a thinner portion, and the length of the narrower portion is longer than the length of the thicker portion. 請求項3又は4に記載の光導波路素子において、前記制御用電極は信号電極及び該信号電極の両側に配置された接地電極とからなり、該接地電極は、該信号電極に対する両側の接地電極の距離が等しくなるように構成されていることを特徴とする光導波路素子。
5. The optical waveguide device according to claim 3, wherein the control electrode includes a signal electrode and a ground electrode disposed on both sides of the signal electrode, and the ground electrode is provided on both sides of the ground electrode with respect to the signal electrode. An optical waveguide device characterized in that the distances are equal.
JP2003341370A 2003-09-30 2003-09-30 Optical waveguide device Expired - Fee Related JP4128510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003341370A JP4128510B2 (en) 2003-09-30 2003-09-30 Optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003341370A JP4128510B2 (en) 2003-09-30 2003-09-30 Optical waveguide device

Publications (2)

Publication Number Publication Date
JP2005107229A true JP2005107229A (en) 2005-04-21
JP4128510B2 JP4128510B2 (en) 2008-07-30

Family

ID=34535991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003341370A Expired - Fee Related JP4128510B2 (en) 2003-09-30 2003-09-30 Optical waveguide device

Country Status (1)

Country Link
JP (1) JP4128510B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025369A (en) * 2005-07-19 2007-02-01 Anritsu Corp Optical modulator
JP2007033894A (en) * 2005-07-27 2007-02-08 Anritsu Corp Optical modulator
WO2007020924A1 (en) * 2005-08-19 2007-02-22 Anritsu Corporation Optical modulator
JP2008052103A (en) * 2006-08-25 2008-03-06 Anritsu Corp Optical modulator
JP2009301023A (en) * 2008-05-14 2009-12-24 Seikoh Giken Co Ltd Optical modulator
JP2011118055A (en) * 2009-12-01 2011-06-16 Fujitsu Ltd Optical device, optical hybrid circuit and optical receiver
JP2013007910A (en) * 2011-06-24 2013-01-10 Advantest Corp Optical device or optical modulation device
WO2013184899A1 (en) * 2012-06-06 2013-12-12 Eospace Inc. Advanced techniques for improving high-efficiency optical modulators
US9158137B1 (en) 2011-09-02 2015-10-13 Eospace Inc. Spread-spectrum bias control
US9250496B1 (en) 2011-09-22 2016-02-02 Eospace Inc. High-RF frequency analog fiber-optic links using optical signal processing techniques
CN110308573A (en) * 2019-07-16 2019-10-08 东南大学 One kind being based on silicon/PLZT hybrid waveguide mach zhender electrooptic modulator
WO2020145257A1 (en) * 2019-01-10 2020-07-16 日本電信電話株式会社 Optical signal processing device
WO2021117358A1 (en) * 2019-12-12 2021-06-17 Tdk株式会社 Optical modulator

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025369A (en) * 2005-07-19 2007-02-01 Anritsu Corp Optical modulator
JP2007033894A (en) * 2005-07-27 2007-02-08 Anritsu Corp Optical modulator
EP1916563A1 (en) * 2005-08-19 2008-04-30 Anritsu Corporation Optical modulator
WO2007020924A1 (en) * 2005-08-19 2007-02-22 Anritsu Corporation Optical modulator
US7916981B2 (en) 2005-08-19 2011-03-29 Anritsu Corporation Optical modulator
EP1916563A4 (en) * 2005-08-19 2008-08-27 Anritsu Corp Optical modulator
JPWO2007020924A1 (en) * 2005-08-19 2009-03-26 アンリツ株式会社 Light modulator
JP2008052103A (en) * 2006-08-25 2008-03-06 Anritsu Corp Optical modulator
JP2009301023A (en) * 2008-05-14 2009-12-24 Seikoh Giken Co Ltd Optical modulator
JP2011118055A (en) * 2009-12-01 2011-06-16 Fujitsu Ltd Optical device, optical hybrid circuit and optical receiver
US8787713B2 (en) 2009-12-01 2014-07-22 Fujitsu Limited Optical device, optical hybrid circuit, and optical receiver
JP2013007910A (en) * 2011-06-24 2013-01-10 Advantest Corp Optical device or optical modulation device
US8565559B2 (en) 2011-06-24 2013-10-22 Advantest Corporation Optical device and optical modulation apparatus
US9705603B1 (en) 2011-09-02 2017-07-11 Eospace Inc. Spread-spectrum bias control
US9158137B1 (en) 2011-09-02 2015-10-13 Eospace Inc. Spread-spectrum bias control
US9250496B1 (en) 2011-09-22 2016-02-02 Eospace Inc. High-RF frequency analog fiber-optic links using optical signal processing techniques
WO2013184899A1 (en) * 2012-06-06 2013-12-12 Eospace Inc. Advanced techniques for improving high-efficiency optical modulators
JP2015518979A (en) * 2012-06-06 2015-07-06 イーオースペース,インコーポレイテッド Method for improving the efficiency of an optical modulator
US10018888B2 (en) 2012-06-06 2018-07-10 Eospace, Inc. Advanced techniques for improving high-efficiency optical modulators
WO2020145257A1 (en) * 2019-01-10 2020-07-16 日本電信電話株式会社 Optical signal processing device
JP2020112666A (en) * 2019-01-10 2020-07-27 日本電信電話株式会社 Optical signal processing device
JP7189432B2 (en) 2019-01-10 2022-12-14 日本電信電話株式会社 optical signal processor
US12007665B2 (en) 2019-01-10 2024-06-11 Nippon Telegraph And Telephone Corporation Optical signal processing apparatus
CN110308573A (en) * 2019-07-16 2019-10-08 东南大学 One kind being based on silicon/PLZT hybrid waveguide mach zhender electrooptic modulator
WO2021117358A1 (en) * 2019-12-12 2021-06-17 Tdk株式会社 Optical modulator

Also Published As

Publication number Publication date
JP4128510B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP2603437B2 (en) Periodic domain inversion electro-optic modulator
EP1542063B1 (en) Mechanical stress reduction in an electro-optical optical modulator
US6584240B2 (en) Optical modulator having ridge and associated structure on substrate
JP3929814B2 (en) Mach-Zehnder electro-optic modulator
JP5007629B2 (en) Optical waveguide device
JP4151798B2 (en) Light modulator
JP4128510B2 (en) Optical waveguide device
JP4599434B2 (en) Optical waveguide device module
JP4958771B2 (en) Light control element
JP2012098744A (en) Optical waveguide element
US8270777B2 (en) Optical modulator
JP3669999B2 (en) Light modulation element
US7088874B2 (en) Electro-optic devices, including modulators and switches
CN110824731A (en) Distributed light intensity modulator
EP1895357B1 (en) Optical modulator and optical transmitter
JP2012068679A (en) Optical waveguide element
JP4064564B2 (en) Optical waveguide device
JP4112111B2 (en) Optical waveguide device
JP4354464B2 (en) Optical waveguide device
JP2005077987A (en) Optical modulator
JP4544479B2 (en) Optical waveguide modulator
JP2012215678A (en) Progressive wave type optical modulation element
WO2021103294A1 (en) Distributed light intensity modulator
JP4951176B2 (en) Light modulator
JPH06250131A (en) Optical control element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4128510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees