JP2007079249A - Optical modulator - Google Patents

Optical modulator Download PDF

Info

Publication number
JP2007079249A
JP2007079249A JP2005268493A JP2005268493A JP2007079249A JP 2007079249 A JP2007079249 A JP 2007079249A JP 2005268493 A JP2005268493 A JP 2005268493A JP 2005268493 A JP2005268493 A JP 2005268493A JP 2007079249 A JP2007079249 A JP 2007079249A
Authority
JP
Japan
Prior art keywords
substrate
optical modulator
optical
optical waveguide
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005268493A
Other languages
Japanese (ja)
Inventor
Kenji Kono
健治 河野
Yuji Sato
勇治 佐藤
Masaya Nanami
雅也 名波
Yasuji Uchida
靖二 内田
Nobuhiro Igarashi
信弘 五十嵐
Toru Nakahira
中平  徹
Hiroaki Senda
宏明 仙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2005268493A priority Critical patent/JP2007079249A/en
Publication of JP2007079249A publication Critical patent/JP2007079249A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical modulator which is enabled to suppress a temperature drift and has a long life and high reliability. <P>SOLUTION: The optical modulator has a substrate 1 with electrooptical effect, an optical waveguide 3 which is formed on the substrate 1 and guides light, an electrode 4 which applies a voltage for modulating the light and comprises a center conductor 4a and ground conductors 4b and 4c formed on one surface side of the substrate 1, and optical waveguides 3a and 3b for interaction which modulate the phase of the light by applying the voltage between the ground conductors 4b and 4c by the optical waveguide 3, and the substrate 1 has substrate-side surfaces 1a and 1b having electric charges induced by pyroelectric effect on the outermost sides of sections perpendicular to the lengths of the optical waveguides 3a and 3b for interaction. The optical modulator has a conductive film 5 formed directly on the substrate-side surfaces 1a and 1b. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は光変調器に係り、特に、高速で駆動電圧が低く、かつDCドリフトと温度ドリフトが小さく、製作の歩留まりが良い光変調器に関する。   The present invention relates to an optical modulator, and more particularly to an optical modulator that has a high driving speed, a low driving voltage, a low DC drift and a low temperature drift, and a good manufacturing yield.

周知のように、光変調器において、リチウムナイオベート(LiNbO)のように電界を印加することにより屈折率が変化する、いわゆる電気光学効果を有する基板(以下、リチウムナイオベート基板をLN基板と略す)に光導波路と進行波電極を形成した進行波電極型リチウムナイオベート光変調器(以下、LN光変調器と略す)は、その優れたチャーピング特性から2.5Gbit/s、10Gbit/sの大容量光伝送システムに適用されている。 As is well known, in an optical modulator, a substrate having a so-called electro-optic effect in which a refractive index is changed by applying an electric field, such as lithium niobate (LiNbO 3 ) (hereinafter, a lithium niobate substrate is referred to as an LN substrate). A traveling wave electrode type lithium niobate optical modulator (hereinafter abbreviated as an LN optical modulator) in which an optical waveguide and a traveling wave electrode are formed is 2.5 Gbit / s, 10 Gbit / s because of its excellent chirping characteristics. It is applied to large-capacity optical transmission systems.

このようなLN光変調器は、最近ではさらに40Gbit/sの超大容量光伝送システムにも適用が検討されており、大容量光伝送システムにおけるキーデバイスとして期待されている。   Such an LN optical modulator has recently been studied for application to an ultra large capacity optical transmission system of 40 Gbit / s, and is expected as a key device in the large capacity optical transmission system.

[従来技術]
図5は、従来技術によるx−カットLN基板を用いて構成したLN光変調器の構成を示す斜視図である。図6は図5のA−A’における断面図である。
[Conventional technology]
FIG. 5 is a perspective view showing a configuration of an LN optical modulator configured using an x-cut LN substrate according to the prior art. 6 is a cross-sectional view taken along the line AA ′ of FIG.

図中、1はx−カットLN基板、2はSiOバッファ層、3はTiを1050℃で約10時間熱拡散して形成した光導波路であり、マッハツェンダ干渉系(あるいは、マッハツェンダ光導波路)を構成している。 In the figure, 1 is an x-cut LN substrate, 2 is a SiO 2 buffer layer, 3 is an optical waveguide formed by thermally diffusing Ti at 1050 ° C. for about 10 hours, and a Mach-Zehnder interference system (or Mach-Zehnder optical waveguide) is formed. It is composed.

なお、図中、3a、3bは電気信号と光が相互作用する部位(相互作用部と言う)における光導波路(あるいは、相互作用光導波路)、つまりマッハツェンダ光導波路の2本のアームであり、不図示のY分岐光導波路などによって光導波路3を分岐したものである。   In the figure, reference numerals 3a and 3b denote optical waveguides (or interactive optical waveguides) in a portion where an electrical signal and light interact (referred to as an interaction portion), that is, two arms of a Mach-Zehnder optical waveguide. The optical waveguide 3 is branched by the illustrated Y-branch optical waveguide.

また、図中、4は進行波電極であり、この進行波電極4としては、1つの中心導体4aと2つの接地導体4b、4cを有するコプレーナウェーブガイド(CPW)を用いることを想定する。このCPW型の進行波電極4は中心導体4aの両側に接地導体4b、4cを持つ対称構造である。   In the figure, reference numeral 4 denotes a traveling wave electrode. As the traveling wave electrode 4, it is assumed that a coplanar waveguide (CPW) having one central conductor 4a and two ground conductors 4b and 4c is used. The CPW traveling wave electrode 4 has a symmetrical structure having ground conductors 4b and 4c on both sides of the center conductor 4a.

光導波路3を導波する光が進行波電極である金属(一般に、Auを用いる)から受ける吸収損を抑え、また中心導体4aと接地導体4b、4cからなる進行波電極4を導波する電気信号のマイクロ波等価屈折率(あるいは、進行波電極のマイクロ波等価屈折率)nを低減し相互作用光導波路3a、3bを導波する光の等価屈折率(あるいは、光導波路の等価屈折率)nに近づけ、さらに特性インピーダンスをなるべく50Ωに近づけるために、進行波電極4とx−カットLN基板1との間には、通常、400nm〜1μm程度の厚いSiOバッファ層2が堆積される。 Electricity which suppresses the absorption loss which the light which guides the optical waveguide 3 receives from the metal (generally using Au) which is a traveling wave electrode, and guides the traveling wave electrode 4 which consists of the center conductor 4a and the grounding conductors 4b and 4c. Reducing the microwave equivalent refractive index of the signal (or the microwave equivalent refractive index of the traveling wave electrode) nm and the equivalent refractive index of the light guided through the interaction optical waveguides 3a and 3b (or the equivalent refractive index of the optical waveguide) ) closer to n o, in order to further approximate the characteristic impedance as possible to 50 [Omega, between the traveling wave electrode 4 and the x- cut LN substrate 1, usually thick SiO 2 buffer layer 2 of about 400nm~1μm is deposited The

このSiOバッファ層2は電気信号即ちマイクロ波の等価屈折率nを相互作用光導波路3a、3bを伝搬する光の等価屈折率nに近づけることにより、光変調帯域を拡大するという重要な働きをしている。 The SiO 2 buffer layer 2 is an electrical signal or microwave equivalent refractive index n m of the interaction optical waveguides 3a, 3b by approximating the effective refractive index n o of the light propagating the important of expanding the optical modulation band Working.

次に、このように構成されるLN光変調器の動作について説明すると、このLN光変調器を動作させるには、中心導体4aと接地導体4b、4c間に直流バイアス(以下、DCバイアスという)と高周波電気信号(以下、RF電気信号という)とを印加する必要がある。   Next, the operation of the LN optical modulator configured as described above will be described. To operate the LN optical modulator, a direct current bias (hereinafter referred to as a DC bias) is provided between the center conductor 4a and the ground conductors 4b and 4c. And a high-frequency electrical signal (hereinafter referred to as an RF electrical signal) need to be applied.

図5に示した従来技術の光変調器において、進行波電極の中心導体4aと接地導体4b、4c間にバイアス電圧による電界が印加された際における望ましい電気力線の分布をDEFとして図7に示している。   In the prior art optical modulator shown in FIG. 5, the distribution of the desired lines of electric force when an electric field by a bias voltage is applied between the central conductor 4a and the ground conductors 4b and 4c of the traveling wave electrode is shown as DEF in FIG. Show.

この図7からわかるように、2本の相互作用光導波路3a、3bを横切る電気力線の向きは逆向きであるため、マッハツェンダ光導波路3では2本の相互作用光導波路3a、3bを導波する光の位相をπずらすことにより、光のOFF状態を実現するのがマッハツェンダ光導波路を用いる光変調器の原理である。   As can be seen from FIG. 7, since the direction of the electric lines of force crossing the two interactive optical waveguides 3a and 3b are opposite, the Mach-Zehnder optical waveguide 3 guides the two interactive optical waveguides 3a and 3b. The principle of the optical modulator using the Mach-Zehnder optical waveguide is to realize the OFF state of the light by shifting the phase of the light to be shifted by π.

次に、図8を用いて上記従来技術によるLN光変調器の温度ドリフトの問題点について考察する。x−カットLN基板1の基板側面1aや1b(あるいは、z面1a、1b)は焦電効果を有する+z面と−z面なので、基板の温度が変化するとその表面に電荷TECが誘起される。   Next, the problem of temperature drift of the conventional LN optical modulator will be discussed with reference to FIG. Since the substrate side surfaces 1a and 1b (or z surfaces 1a and 1b) of the x-cut LN substrate 1 are a + z surface and a −z surface having a pyroelectric effect, a charge TEC is induced on the surface when the temperature of the substrate changes. .

この従来技術によるLN光変調器で使用しているx−カットLN基板1の基板側面1aや1bに誘起される電荷TECの量は温度とともにランダムに変化するので、基板側面1a、1bに誘起された電荷TECのためにx−カットLN基板1内にランダムな電気力線EFが生じる。   Since the amount of charge TEC induced on the substrate side surfaces 1a and 1b of the x-cut LN substrate 1 used in this conventional LN optical modulator varies randomly with temperature, it is induced on the substrate side surfaces 1a and 1b. Random electric lines of force EF are generated in the x-cut LN substrate 1 due to the generated electric charge TEC.

このランダムな電気力線EFの発生により、LN光変調器を動作させるために中心導体4aと接地導体4b、4cの間に印加したバイアス電圧による電気力線DEFがランダムに打ち消されてしまう。   Due to the generation of the random electric lines of force EF, the electric lines of force DEF due to the bias voltage applied between the center conductor 4a and the ground conductors 4b and 4c to operate the LN optical modulator are randomly canceled.

さて、LN光変調器を動作させるには、中心導体4aと接地導体4b、4c間にDCバイアス電圧とRF電気信号とを印加する必要がある。   In order to operate the LN optical modulator, it is necessary to apply a DC bias voltage and an RF electrical signal between the center conductor 4a and the ground conductors 4b and 4c.

図9に示す電圧−光出力特性において、実線の曲線はある状態でのLN光変調器の電圧−光出力特性であり、Vはその際のDCバイアス電圧である。 In the voltage-light output characteristics shown in FIG. 9, the solid curve is the voltage-light output characteristics of the LN optical modulator in a certain state, and Vb is the DC bias voltage at that time.

この図9に示すように、通常、DCバイアス電圧Vは光出力特性の山と底の中点に設定される。 As shown in FIG. 9, the DC bias voltage Vb is normally set at the midpoint between the peak and bottom of the light output characteristic.

ところが上で述べた温度の変化により発生したランダムな電気力線EFのために、中心導体4aと接地導体4b、4cの間に印加したバイアス電圧による電気力線DEFがランダムに打ち消されてしまい、この最適バイアス電圧VはV’へと大きく変化することになる。 However, due to the random electric lines of force EF generated by the temperature change described above, the electric lines of force DEF due to the bias voltage applied between the center conductor 4a and the ground conductors 4b and 4c are randomly canceled. This optimum bias voltage V b greatly changes to V b ′.

従って、温度に対して安定といわれるx−カットLN基板1を用いた光変調器においても、この温度の変化によるDCバイアス電圧のシフト、つまり温度ドリフトが生じる結果となる。このことはx−カットLN基板1の基板側面1aや1bと相互作用光導波路3a、3bの距離が比較的近いと顕著になる。   Therefore, even in the optical modulator using the x-cut LN substrate 1 that is said to be stable with respect to temperature, a shift of the DC bias voltage due to the change in temperature, that is, a temperature drift occurs. This becomes remarkable when the distance between the substrate side surfaces 1a and 1b of the x-cut LN substrate 1 and the interaction optical waveguides 3a and 3b is relatively short.

以上のように、従来技術では基板側面に焦電効果を発生する面を有するLN基板を用いて製作された光変調器においては、焦電効果に起因して誘起された電荷のためにLN基板の中にランダムな電界が生じ、その結果温度ドリフトが生じるという問題があった。   As described above, in an optical modulator manufactured using an LN substrate having a surface that generates the pyroelectric effect on the side surface of the substrate in the prior art, the LN substrate is caused by charges induced due to the pyroelectric effect. There was a problem that a random electric field was generated in the glass, resulting in temperature drift.

そこで、本発明は、以上のような従来技術が持つ温度ドリフトの問題点を解消することにより、小型で高速、かつ安定な強度光変調器、位相変調器あるいは偏波スクランブラー等に好適する光変調器を提供することを目的としている。   Therefore, the present invention eliminates the temperature drift problem of the conventional technology as described above, and is suitable for a compact, high-speed and stable intensity optical modulator, phase modulator, or polarization scrambler. The object is to provide a modulator.

上記課題を解決するために、本発明の請求項1の光変調器は、電気光学効果を有する基板と、該基板に形成された光を導波するための光導波路と、前記光を変調するための電圧を印加する、前記基板の一方の面側に形成された中心導体及び接地導体からなる電極と、前記光導波路が前記中心導体と前記接地導体との間に前記電圧を印加することにより前記光の位相を変調するための相互作用光導波路とを具備し、前記基板は前記相互作用光導波路の長手方向に垂直な断面の最も外側に焦電効果により電荷が誘起される基板側面を有する光変調器において、前記基板側面上に導電性膜を直接に形成したことを特徴とする。   In order to solve the above problems, an optical modulator according to claim 1 of the present invention modulates the light, a substrate having an electro-optic effect, an optical waveguide for guiding light formed on the substrate, and the light. An electrode composed of a center conductor and a ground conductor formed on one surface side of the substrate, and the optical waveguide applies the voltage between the center conductor and the ground conductor. An interaction optical waveguide for modulating the phase of the light, and the substrate has a substrate side surface on which charges are induced by a pyroelectric effect on the outermost side of a cross section perpendicular to the longitudinal direction of the interaction optical waveguide In the optical modulator, a conductive film is formed directly on the side surface of the substrate.

本発明の請求項2の光変調器は、請求項1に記載の光変調器において、前記導電性膜は半導体膜からなることを特徴とする。   An optical modulator according to a second aspect of the present invention is the optical modulator according to the first aspect, wherein the conductive film is made of a semiconductor film.

本発明の請求項3の光変調器は、請求項1に記載の光変調器において、前記導電性膜は導電性接着剤からなることを特徴とする。   The optical modulator according to claim 3 of the present invention is the optical modulator according to claim 1, wherein the conductive film is made of a conductive adhesive.

本発明の請求項4の光変調器は、請求項1乃至3に記載の光変調器において、前記導電性膜は前記接地導体に電気的に接続されていることを特徴とする。   According to a fourth aspect of the present invention, in the optical modulator according to the first to third aspects, the conductive film is electrically connected to the ground conductor.

本発明の請求項5の光変調器は、請求項1乃至4に記載の光変調器において、前記接地導体は、前記相互作用光導波路の上方において、前記中心導体の長手方向に延びる中心線に対してほぼ対称な形状を有していることを特徴とする。   An optical modulator according to a fifth aspect of the present invention is the optical modulator according to any one of the first to fourth aspects, wherein the ground conductor is disposed above a center line extending in a longitudinal direction of the central conductor above the interaction optical waveguide. It has a substantially symmetric shape.

本発明の請求項6の光変調器は、請求項1乃至4に記載の光変調器において、前記接地導体は、前記相互作用光導波路の上方において、前記中心導体の長手方向に延びる中心線に対して非対称な形状を有していることを特徴とする。   An optical modulator according to a sixth aspect of the present invention is the optical modulator according to any one of the first to fourth aspects, wherein the ground conductor is disposed above a center line extending in a longitudinal direction of the central conductor above the interaction optical waveguide. It is characterized by having an asymmetric shape.

請求項1に記載の光変調器では、相互作用光導波路の長手方向に垂直な断面の最も外側に焦電効果により電荷が誘起される基板側面があり、この基板側面に電気的に接続するように導電性の膜を形成することにより、基板側面の電位を安定化できるので温度ドリフトを抑圧できる。   In the optical modulator according to claim 1, a substrate side surface on which electric charges are induced by a pyroelectric effect is provided on the outermost side of a cross section perpendicular to the longitudinal direction of the interaction optical waveguide, and is electrically connected to the substrate side surface. By forming a conductive film on the substrate, the potential on the side surface of the substrate can be stabilized, so that temperature drift can be suppressed.

請求項2に記載の光変調器では、導電性膜は半導体膜からなるので、光変調器製作工程の中で導電性膜を形成できる。   In the optical modulator of the second aspect, since the conductive film is made of a semiconductor film, the conductive film can be formed in the optical modulator manufacturing process.

請求項3に記載の光変調器では、導電性膜が一般により導電率の高い導電性接着剤からなるので、より効果的に温度ドリフトを抑圧できる。   In the optical modulator according to claim 3, since the conductive film is generally made of a conductive adhesive having a higher conductivity, temperature drift can be more effectively suppressed.

請求項4に記載の光変調器では、導電性膜は接地導体に電気的に接続されているので、基板側面の電位の安定化が確かなものになる。   In the optical modulator according to the fourth aspect, since the conductive film is electrically connected to the ground conductor, the potential on the side surface of the substrate is surely stabilized.

請求項5に記載の光変調器では、電極が接地導体を中心導体の両側に有する対称電極であるため導電性膜と接地導体との電気的接続をとることが容易であり、基板側面の電位の安定化に効果が高い。   In the optical modulator according to claim 5, since the electrode is a symmetric electrode having a ground conductor on both sides of the center conductor, it is easy to make electrical connection between the conductive film and the ground conductor. Highly effective in stabilizing

請求項6に記載の光変調器では、電極が接地導体を片側に有する非対称電極ではあるものの導電性膜と接地導体との電気的接続をとることにより基板側面の電位の安定化が可能となる。   In the optical modulator according to claim 6, although the electrode is an asymmetric electrode having a ground conductor on one side, the potential on the side surface of the substrate can be stabilized by electrically connecting the conductive film and the ground conductor. .

以下、本発明の実施形態について説明するが、図5乃至図9に示した従来技術と同一の符号は同一機能部に対応しているため、ここでは同一の符号を持つ機能部の説明を省略する。   Hereinafter, embodiments of the present invention will be described. However, since the same reference numerals as those in the prior art shown in FIGS. To do.

[第1実施形態]
図1に本発明における第1実施形態の光変調器について、図5に示した従来技術のA−A’に相当する位置における断面図を示す。本実施形態では焦電効果により電荷TECが励起されるx−カットLN基板1の基板側面1a、1bにSiやSiOxのような導電性膜5を形成している。さらに、本実施形態ではこれらの導電性膜5を接地導体4b、4cに電気的に接続している。このCPW型の進行波電極(電極)4は中心導体4aの両側に接地導体4b、4cを持つ対称構造であるので、導電性膜5と接地導体4b、4cとの電気的な接続が容易である。
[First Embodiment]
FIG. 1 shows a cross-sectional view of the optical modulator according to the first embodiment of the present invention at a position corresponding to AA ′ of the prior art shown in FIG. In this embodiment, the conductive film 5 such as Si or SiOx is formed on the substrate side surfaces 1a and 1b of the x-cut LN substrate 1 in which the charge TEC is excited by the pyroelectric effect. Further, in the present embodiment, these conductive films 5 are electrically connected to the ground conductors 4b and 4c. Since this CPW type traveling wave electrode (electrode) 4 has a symmetrical structure having ground conductors 4b and 4c on both sides of the center conductor 4a, the electrical connection between the conductive film 5 and the ground conductors 4b and 4c is easy. is there.

このように、基板側面1a、1bに導電性膜5を形成することにより、基板側面1a、1bの電位が安定になるので、従来技術として示した図8のランダムな電気力線EFは発生しない。   In this way, by forming the conductive film 5 on the substrate side surfaces 1a and 1b, the potentials of the substrate side surfaces 1a and 1b become stable, so that the random electric lines of force EF shown in FIG. .

なお、基板側面1a、1bの両方に導電性膜5を形成するとともに、導電性膜5を接地導体4b、4cに電気的に接続するのが効果的であるが、やや効果は落ちるものの基板側面1a、1bの片方のみ、あるいは導電性膜5を接地導体4b(及び接地導体4c)に電気的に接続しないなど各種の組み合わせがある。   Although it is effective to form the conductive film 5 on both the substrate side surfaces 1a and 1b and to electrically connect the conductive film 5 to the ground conductors 4b and 4c, the substrate side surface is slightly less effective. There are various combinations such as only one of 1a and 1b or the conductive film 5 not being electrically connected to the ground conductor 4b (and the ground conductor 4c).

[第2実施形態]
図2に本発明における第2実施形態の光変調器について、図5に示した従来技術のA−A’に相当する位置における断面図を示す。図1に示した第1実施形態の構造に加えて、本実施形態ではSiやSiOxのような導電性膜5をx−カットLN基板1の基板側面1a、1bの他にx−カットLN基板1の底面1cにも形成している。こうすることにより基板側面1a、1bの電位をより安定化することが可能となる。
[Second Embodiment]
FIG. 2 shows a cross-sectional view of the optical modulator according to the second embodiment of the present invention at a position corresponding to AA ′ of the prior art shown in FIG. In addition to the structure of the first embodiment shown in FIG. 1, in this embodiment, a conductive film 5 such as Si or SiOx is used in addition to the substrate side surfaces 1a and 1b of the x-cut LN substrate 1 and an x-cut LN substrate. 1 is also formed on the bottom surface 1c. By doing so, it becomes possible to further stabilize the potential of the substrate side surfaces 1a and 1b.

[第3実施形態]
図3に本発明における第3実施形態の光変調器について、図5に示した従来技術のA−A’に相当する位置における断面図を示す。本実施形態では焦電効果により電荷TECが励起されるx−カットLN基板1の基板側面1a、1bに、第1実施形態や第2実施形態で使用したSiやSiOxのような導電性膜5よりも導電率の高い導電ペーストなどの導電性接着剤6を用いて光変調器としての金属筐体7に固定している。さらに、本実施形態ではこれらの導電性接着剤6を接地導体4b、4cに電気的に接続している。
[Third Embodiment]
FIG. 3 shows a cross-sectional view of the optical modulator according to the third embodiment of the present invention at a position corresponding to AA ′ of the prior art shown in FIG. In the present embodiment, the conductive film 5 such as Si or SiOx used in the first or second embodiment is applied to the substrate side surfaces 1a and 1b of the x-cut LN substrate 1 in which the charge TEC is excited by the pyroelectric effect. It is fixed to a metal casing 7 as an optical modulator using a conductive adhesive 6 such as a conductive paste having higher conductivity. Furthermore, in this embodiment, these conductive adhesives 6 are electrically connected to the ground conductors 4b and 4c.

このように、基板側面1a、1bに導電性接着剤6を塗布することにより、基板側面1a、1bの電位が極めて安定になるので、従来技術として示した図8のランダムな電気力線EFは発生しない。このCPW型の進行波電極4は中心導体4aの両側に接地導体4b、4cを持つ対称構造であるので、導電性接着剤6と接地導体4b、4cとの電気的な接続が容易である。   Thus, by applying the conductive adhesive 6 to the substrate side surfaces 1a and 1b, the potential of the substrate side surfaces 1a and 1b becomes extremely stable. Therefore, the random electric lines of force EF shown in FIG. Does not occur. Since the CPW traveling wave electrode 4 has a symmetrical structure having the ground conductors 4b and 4c on both sides of the center conductor 4a, the electrical connection between the conductive adhesive 6 and the ground conductors 4b and 4c is easy.

なお、基板側面1a、1bの両方に導電性接着剤6を形成するとともに導電性接着剤6を接地導体4b、4cに電気的に接続するのが効果的であるが、やや効果は落ちるものの基板側面1a、1bの片方のみ、あるいは導電性接着剤6を接地導体4b(及び接地導体4c)に電気的に接続しないなど各種の組み合わせがある。   Although it is effective to form the conductive adhesive 6 on both the substrate side surfaces 1a and 1b and to electrically connect the conductive adhesive 6 to the ground conductors 4b and 4c, the substrate is somewhat less effective. There are various combinations such as only one of the side surfaces 1a and 1b or the electrically conductive adhesive 6 not being electrically connected to the ground conductor 4b (and the ground conductor 4c).

[第4実施形態]
図4に本発明における第4実施形態の光変調器について、図5に示した従来技術のA−A’に相当する位置における断面図を示す。図3に示した第3実施形態の構造に加えて、本実施形態では導電性接着剤6をx−カットLN基板1の基板側面1a、1bの他にx−カットLN基板1の底面1cにも形成している。こうすることにより基板側面1a、1bの電位をより安定化することが可能となるとともに、x−カットLN基板1を金属筐体7により強固に固定できる利点もある。
[Fourth Embodiment]
FIG. 4 shows a cross-sectional view of the optical modulator according to the fourth embodiment of the present invention at a position corresponding to AA ′ of the prior art shown in FIG. In addition to the structure of the third embodiment shown in FIG. 3, in this embodiment, the conductive adhesive 6 is applied to the bottom surface 1 c of the x-cut LN substrate 1 in addition to the substrate side surfaces 1 a and 1 b of the x-cut LN substrate 1. Has also formed. This makes it possible to further stabilize the potential of the substrate side surfaces 1a and 1b, and also has an advantage that the x-cut LN substrate 1 can be firmly fixed to the metal housing 7.

[各実施形態について]
導電性膜5や導電性接着剤6を形成する基板側面1a、1bの領域としてはx−カットLN基板1の側面全体でも良いが一部でも良い。なお、相互作用光導波路3a、3bの領域に対応するx−カットLN基板1の側面に形成することが好適である。
[About each embodiment]
The regions of the substrate side surfaces 1a and 1b on which the conductive film 5 and the conductive adhesive 6 are formed may be the entire side surface of the x-cut LN substrate 1 or a part thereof. In addition, it is preferable to form on the side surface of the x-cut LN substrate 1 corresponding to the region of the interaction optical waveguides 3a and 3b.

ここで、本発明の目的について再度確認をしておく。x−カットLN基板1の厚みL、相互作用光導波路3a、3bに沿った方向の長さL、これに垂直な方向の幅Lの中で最も小さな値をLとおくと、x−カットLN基板1における高周波電気信号の共振周波数fは近似的に
=(c/2)・{p/(n・L)} (1)
と決定される。ここで、cは真空中の光速、pは正の整数、nはLの方向におけるx−カットLN基板1の屈折率である。
Here, the purpose of the present invention will be confirmed again. When the smallest value among the thickness L H of the x-cut LN substrate 1, the length L L in the direction along the interaction optical waveguides 3 a and 3 b, and the width L W in the direction perpendicular thereto is set to L, x - resonant frequency f r of the high-frequency electric signal in the cut LN substrate 1 is approximately f r = (c 0/2 ) · {p / (n L · L)} (1)
Is determined. Here, c 0 is the speed of light in vacuum, p is a positive integer, and n L is the refractive index of the x-cut LN substrate 1 in the L direction.

一般に、x−カットLN基板1の厚みL、長さL、幅Lの中では、厚みLが最も小さいので、共振周波数fは基板の厚みLで決定される。従って、本発明において、基板側面1aや1bに導電性膜5あるいは導電性接着剤6を形成するのはx−カットLN基板1の共振周波数についての対策ではなく、あくまで焦電効果のために基板側面1a、1bに誘起される電荷についての対策である。 Generally, the thickness L H is the smallest among the thickness L H , the length L L , and the width L W of the x-cut LN substrate 1, and therefore the resonance frequency fr is determined by the substrate thickness L H. Therefore, in the present invention, the formation of the conductive film 5 or the conductive adhesive 6 on the substrate side surfaces 1a and 1b is not a measure for the resonance frequency of the x-cut LN substrate 1, but only for the pyroelectric effect. This is a countermeasure for the charges induced on the side surfaces 1a and 1b.

また、本発明による光変調器において用いる基板としてはLN基板を例に用いて説明したが、リチウムタンタレートなど、電気光学効果を有するその他の各種基板でも良い。   The substrate used in the optical modulator according to the present invention has been described using the LN substrate as an example. However, other various substrates having an electro-optic effect such as lithium tantalate may be used.

また、本発明による光変調器における導電性膜はSiやSiOxとして説明したが、金属の酸化物を含め、これ以外の材料でも良いことは言うまでもない。   Further, although the conductive film in the optical modulator according to the present invention has been described as Si or SiOx, it goes without saying that other materials including metal oxides may be used.

上でも説明したが、基板側面1a、1bの両方に導電性膜5や導電性接着剤6を形成するとともに導電性膜5や導電性接着剤6を接地導体4b、4cに電気的に接続するのが効果的ではあるが、やや効果は落ちるものの基板側面1a、1bの片方のみ、あるいは導電性膜5や導電性接着剤6を接地導体4b(及び接地導体4c)に電気的に接続しないなど各種の組み合わせがある。   As described above, the conductive film 5 and the conductive adhesive 6 are formed on both the substrate side surfaces 1a and 1b, and the conductive film 5 and the conductive adhesive 6 are electrically connected to the ground conductors 4b and 4c. Although this is effective, the effect is somewhat reduced, but only one of the substrate side surfaces 1a and 1b, or the conductive film 5 and the conductive adhesive 6 are not electrically connected to the ground conductor 4b (and the ground conductor 4c). There are various combinations.

また、先に述べたように、各実施形態を説明する際の導電層や光導波路の構造として中心導体の中心に左右対称な構造として主に説明したが、勿論、左右対称でなくても良いことは言うまでもない。   Further, as described above, the structure of the conductive layer and the optical waveguide in describing each embodiment has been mainly described as a structure that is symmetric with respect to the center of the center conductor. Needless to say.

さらに、進行波電極としてはCPW電極を例にとり説明したが、非対称コプレーナストリップ(ACPS)や対称コプレーナストリップ(CPS)などの各種進行波電極、あるいは集中定数型の電極でも良いことは言うまでもない。   Furthermore, although the CPW electrode has been described as an example of the traveling wave electrode, it goes without saying that various traveling wave electrodes such as an asymmetric coplanar strip (ACPS) and a symmetric coplanar strip (CPS), or a lumped constant type electrode may be used.

また、光導波路としてはマッハツェンダ光導波路の他に、方向性結合器や直線など、その他の光導波路でも良いことは言うまでもない。   In addition to the Mach-Zehnder optical waveguide, it goes without saying that other optical waveguides such as directional couplers and straight lines may be used as the optical waveguide.

また、以上の各実施形態においては、x−カットの面方位を持つ基板としたが、以上に述べた各実施形態での面方位を主たる面方位とし、これらに他の面方位が副たる面方位として混在しても良いことは言うまでもないし、z−カットやy−カットの面方位を(あるいは混在して)持つ基板でも良いことは言うまでもない。   Further, in each of the above embodiments, the substrate has an x-cut surface orientation. However, the surface orientation in each of the above-described embodiments is a main surface orientation, and other surface orientations are subordinate thereto. It goes without saying that the orientation may be mixed, and it is needless to say that the substrate may have a z-cut or y-cut plane orientation (or a mixture).

以上のように、本発明にかかる光変調器は温度ドリフトを抑圧することを可能とし、長寿命で信頼性の高い光変調器として有用である。   As described above, the optical modulator according to the present invention can suppress the temperature drift, and is useful as a long-life and highly reliable optical modulator.

本発明の第1実施形態に係る光変調器の断面図Sectional drawing of the optical modulator which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る光変調器の断面図Sectional drawing of the optical modulator which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る光変調器の断面図Sectional drawing of the optical modulator which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る光変調器の断面図Sectional drawing of the optical modulator which concerns on 4th Embodiment of this invention. 従来技術によるx−カットLN基板を用いて構成したLN光変調器の斜視図A perspective view of an LN optical modulator constructed using an x-cut LN substrate according to the prior art. 図5のA−A’における断面図Sectional view along A-A 'in FIG. 従来技術による光変調器の動作原理を説明する図The figure explaining the operation principle of the optical modulator by a prior art 従来技術による光変調器の問題点を説明する図The figure explaining the problem of the optical modulator by a prior art 第1の従来技術の温度ドリフトを説明する図The figure explaining the temperature drift of 1st prior art

符号の説明Explanation of symbols

1:x−カットLN基板
1a、1b:x−カットLN基板1の側面
1c:x−カットLN基板1の底面
2:SiOバッファ層
3:光導波路
3a、3b:相互作用光導波路
4:進行波電極
4a:中心導体
4b、4c:接地導体
5:導電性膜
6:導電性接着剤
7:金属筐体
DEF:印加電圧による電気力線
TEC:焦電効果により誘起された電荷
EF:焦電効果により誘起された電荷による電気力線
1: x-cut LN substrate 1a, 1b: side surface of x-cut LN substrate 1 1c: bottom surface of x-cut LN substrate 1 2: SiO 2 buffer layer 3: optical waveguide 3a, 3b: interaction optical waveguide 4: progression Wave electrode 4a: Center conductor 4b, 4c: Ground conductor 5: Conductive film 6: Conductive adhesive 7: Metal casing DEF: Electric field lines due to applied voltage TEC: Charge induced by pyroelectric effect EF: Pyroelectric Electric field lines due to the charge induced by the effect

Claims (6)

電気光学効果を有する基板と、該基板に形成された光を導波するための光導波路と、前記光を変調するための電圧を印加する、前記基板の一方の面側に形成された中心導体及び接地導体からなる電極と、前記光導波路が前記中心導体と前記接地導体との間に前記電圧を印加することにより前記光の位相を変調するための相互作用光導波路とを具備し、前記基板は前記相互作用光導波路の長手方向に垂直な断面の最も外側に焦電効果により電荷が誘起される基板側面を有する光変調器において、
前記基板側面上に導電性膜を直接に形成したことを特徴とする光変調器。
A substrate having an electro-optic effect, an optical waveguide for guiding light formed on the substrate, and a central conductor formed on one surface side of the substrate for applying a voltage for modulating the light And an electrode made of a ground conductor, and the optical waveguide has an interactive optical waveguide for modulating the phase of the light by applying the voltage between the center conductor and the ground conductor, and the substrate Is an optical modulator having a substrate side surface in which electric charges are induced by a pyroelectric effect on the outermost side of a cross section perpendicular to the longitudinal direction of the interaction optical waveguide,
An optical modulator comprising a conductive film formed directly on the side surface of the substrate.
前記導電性膜は半導体膜からなることを特徴とする請求項1に記載の光変調器。   The optical modulator according to claim 1, wherein the conductive film is made of a semiconductor film. 前記導電性膜は導電性接着剤からなることを特徴とする請求項1に記載の光変調器。   The optical modulator according to claim 1, wherein the conductive film is made of a conductive adhesive. 前記導電性膜は前記接地導体に電気的に接続されていることを特徴とする請求項1乃至3に記載の光変調器。   4. The optical modulator according to claim 1, wherein the conductive film is electrically connected to the ground conductor. 前記接地導体は、前記相互作用光導波路の上方において、前記中心導体の長手方向に延びる中心線に対してほぼ対称な形状を有していることを特徴とする請求項1乃至4に記載の光変調器。   5. The light according to claim 1, wherein the ground conductor has a substantially symmetric shape with respect to a center line extending in a longitudinal direction of the center conductor above the interaction optical waveguide. Modulator. 前記接地導体は、前記相互作用光導波路の上方において、前記中心導体の長手方向に延びる中心線に対して非対称な形状を有していることを特徴とする請求項1乃至4に記載の光変調器。   5. The light modulation according to claim 1, wherein the ground conductor has an asymmetric shape with respect to a center line extending in a longitudinal direction of the center conductor above the interaction optical waveguide. vessel.
JP2005268493A 2005-09-15 2005-09-15 Optical modulator Pending JP2007079249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005268493A JP2007079249A (en) 2005-09-15 2005-09-15 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005268493A JP2007079249A (en) 2005-09-15 2005-09-15 Optical modulator

Publications (1)

Publication Number Publication Date
JP2007079249A true JP2007079249A (en) 2007-03-29

Family

ID=37939610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005268493A Pending JP2007079249A (en) 2005-09-15 2005-09-15 Optical modulator

Country Status (1)

Country Link
JP (1) JP2007079249A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192953A (en) * 2008-02-15 2009-08-27 Tokyo Keiki Inc Optical function element
JP2012078407A (en) * 2010-09-30 2012-04-19 Sumitomo Osaka Cement Co Ltd Optical waveguide element and method for manufacturing optical waveguide element
JP2013037243A (en) * 2011-08-09 2013-02-21 Fujitsu Optical Components Ltd Optical modulator
WO2013147129A1 (en) * 2012-03-30 2013-10-03 住友大阪セメント株式会社 Optical waveguide element
CN110703467A (en) * 2019-10-15 2020-01-17 中国电力科学研究院有限公司 Crystal heat dissipation structure for temperature drift suppression of electro-optic modulator and manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214526A (en) * 1990-12-13 1992-08-05 Japan Aviation Electron Ind Ltd Waveguide type optical device
JPH05142505A (en) * 1991-11-25 1993-06-11 Sumitomo Cement Co Ltd Optical waveguide module
JPH10133159A (en) * 1996-09-06 1998-05-22 Ngk Insulators Ltd Optical waveguide device, progressive waveform optical modulator and production of optical waveguide device
JP2001059951A (en) * 1999-06-15 2001-03-06 Ngk Insulators Ltd Optical waveguide element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214526A (en) * 1990-12-13 1992-08-05 Japan Aviation Electron Ind Ltd Waveguide type optical device
JPH05142505A (en) * 1991-11-25 1993-06-11 Sumitomo Cement Co Ltd Optical waveguide module
JPH10133159A (en) * 1996-09-06 1998-05-22 Ngk Insulators Ltd Optical waveguide device, progressive waveform optical modulator and production of optical waveguide device
JP2001059951A (en) * 1999-06-15 2001-03-06 Ngk Insulators Ltd Optical waveguide element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192953A (en) * 2008-02-15 2009-08-27 Tokyo Keiki Inc Optical function element
JP2012078407A (en) * 2010-09-30 2012-04-19 Sumitomo Osaka Cement Co Ltd Optical waveguide element and method for manufacturing optical waveguide element
JP2013037243A (en) * 2011-08-09 2013-02-21 Fujitsu Optical Components Ltd Optical modulator
WO2013147129A1 (en) * 2012-03-30 2013-10-03 住友大阪セメント株式会社 Optical waveguide element
JP2013210484A (en) * 2012-03-30 2013-10-10 Sumitomo Osaka Cement Co Ltd Optical waveguide element
CN104204917A (en) * 2012-03-30 2014-12-10 住友大阪水泥股份有限公司 Optical waveguide element
US20150078701A1 (en) * 2012-03-30 2015-03-19 Sumitomo Osaka Cement Co., Ltd. Optical waveguide element
CN104204917B (en) * 2012-03-30 2015-11-25 住友大阪水泥股份有限公司 Optical waveguide components
US9291838B2 (en) 2012-03-30 2016-03-22 Sumitomo Osaka Cement Co., Ltd. Optical waveguide element
CN110703467A (en) * 2019-10-15 2020-01-17 中国电力科学研究院有限公司 Crystal heat dissipation structure for temperature drift suppression of electro-optic modulator and manufacturing method

Similar Documents

Publication Publication Date Title
JP4234117B2 (en) Light modulator
EP1335238B1 (en) Optical phase modulator with electrode arrangement having a wideband transmission response
JP4151798B2 (en) Light modulator
JP2015518979A (en) Method for improving the efficiency of an optical modulator
JP2007079249A (en) Optical modulator
JP2006317550A (en) Optical modulator
JP2014123032A (en) Optical modulator
JP4926423B2 (en) Light modulator
JP5010559B2 (en) Light modulator
JP4920212B2 (en) Light modulator
JP5145402B2 (en) Light modulator
JP2013054134A (en) Optical modulator module
JP2007093742A (en) Optical modulator
JP4754608B2 (en) Light modulator
JP5075055B2 (en) Light modulator
JP2008139554A (en) Optical modulator
JP2007025369A (en) Optical modulator
JP5421963B2 (en) Optical modulator module
JP5416658B2 (en) Optical modulator and optical modulator module
JP4170376B1 (en) Light modulator
JP5033084B2 (en) Light modulator
JP5162196B2 (en) Light modulator
JP2014153537A (en) Optical modulator
JP2008052103A (en) Optical modulator
JP2013068917A (en) Optical modulator module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323