JP5033084B2 - Light modulator - Google Patents

Light modulator Download PDF

Info

Publication number
JP5033084B2
JP5033084B2 JP2008213936A JP2008213936A JP5033084B2 JP 5033084 B2 JP5033084 B2 JP 5033084B2 JP 2008213936 A JP2008213936 A JP 2008213936A JP 2008213936 A JP2008213936 A JP 2008213936A JP 5033084 B2 JP5033084 B2 JP 5033084B2
Authority
JP
Japan
Prior art keywords
ground conductor
conductor
recess
substrate
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008213936A
Other languages
Japanese (ja)
Other versions
JP2010049073A (en
Inventor
健治 河野
英司 川面
勇治 佐藤
雅也 名波
靖二 内田
信弘 五十嵐
中平  徹
松本  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2008213936A priority Critical patent/JP5033084B2/en
Priority to US12/678,534 priority patent/US8170381B2/en
Priority to PCT/JP2008/002589 priority patent/WO2009037849A1/en
Publication of JP2010049073A publication Critical patent/JP2010049073A/en
Application granted granted Critical
Publication of JP5033084B2 publication Critical patent/JP5033084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気光学効果を利用して、光導波路に入射した光を高周波電気信号で変調して光信号パルスとして出射する光変調器に関する。   The present invention relates to an optical modulator that uses an electro-optic effect to modulate light incident on an optical waveguide with a high-frequency electrical signal and emit it as an optical signal pulse.

近年、高速、大容量の光通信システムが実用化されている。このような高速、大容量の光通信システムに組込むための高速、小型、低価格、かつ高安定な光変調器の開発が求められている。   In recent years, high-speed and large-capacity optical communication systems have been put into practical use. There is a demand for the development of a high-speed, small, low-cost, and highly stable optical modulator for incorporation into such a high-speed, large-capacity optical communication system.

このような要望に応える光変調器として、リチウムナイオベート(LiNbO)のように電界を印加することにより屈折率が変化する、いわゆる電気光学効果を有する基板(以下、LN基板と略す)に光導波路と進行波電極を形成した進行波電極型リチウムナイオベート光変調器(以下、LN光変調器と略す)がある。このLN光変調器は、その優れたチャーピング特性から2.5Gbit/s、10Gbit/sの大容量光通信システムに適用されている。最近はさらに40Gbit/sの超大容量光通信システムにも適用が検討されている。 As an optical modulator that meets such demands, a light modulator such as lithium niobate (LiNbO 3 ) is used for a substrate having a so-called electro-optical effect (hereinafter abbreviated as an LN substrate) whose refractive index changes by applying an electric field. There is a traveling wave electrode type lithium niobate optical modulator (hereinafter abbreviated as an LN optical modulator) in which a waveguide and a traveling wave electrode are formed. This LN optical modulator is applied to a large capacity optical communication system of 2.5 Gbit / s and 10 Gbit / s because of its excellent chirping characteristics. Recently, application to a 40 Gbit / s ultra-high capacity optical communication system is also being studied.

以下、従来、実用化され、又は提唱されてきたリチウムナイオベートの電気光学効果を利用したLN光変調器について説明する。   Hereinafter, an LN optical modulator using the electro-optic effect of lithium niobate that has been put to practical use or has been proposed will be described.

(第1の従来技術)
特許文献1に開示された、z−カットLN基板を用いて構成した、いわゆるリッジ型LN光変調器を第1の従来技術の光変調器として図15にその斜視図を示す。なお、図16は図15のA−A´線における断面図である。
(First prior art)
FIG. 15 shows a perspective view of a so-called ridge-type LN optical modulator disclosed in Patent Document 1, which is configured using a z-cut LN substrate, as a first conventional optical modulator. 16 is a cross-sectional view taken along the line AA ′ of FIG.

z−カットLN基板1上に光導波路3が形成されている。この光導波路3は、金属Tiを1050℃で約10時間熱拡散して形成した光導波路であり、マッハツェンダ干渉系(あるいは、マッハツェンダ光導波路)を構成している。したがって、光導波路3の電気信号と光が相互作用する部位(相互作用部と言う)には2本の相互作用光導波路3a、3b、つまりマッハツェンダ光導波路の2本のアームが形成されている。   An optical waveguide 3 is formed on the z-cut LN substrate 1. The optical waveguide 3 is an optical waveguide formed by thermally diffusing metal Ti at 1050 ° C. for about 10 hours, and constitutes a Mach-Zehnder interference system (or Mach-Zehnder optical waveguide). Accordingly, two interaction optical waveguides 3a and 3b, that is, two arms of the Mach-Zehnder optical waveguide are formed at a portion where the electrical signal and light of the optical waveguide 3 interact (referred to as an interaction portion).

この光導波路3の上面にSiOバッファ層2が形成され、このSiOバッファ層2の上面に進行波電極4が形成されている。進行波電極4としては、1つの中心導体4aと2つの接地導体4b、4cを有するコプレーナウェーブガイド(CPW)を用いている。なお、通常、進行波電極4は高価な貴金属材料であるAuにより形成されている。5はz−カットLN基板1を用いて製作したLN光変調器に特有の焦電効果に起因する温度ドリフトを抑圧するための導電層であり、通常はSi導電層を用いる。中心導体4aの幅Sは7μm程度で、中心導体4aと接地導体4b、4cの間のギャップWは15μm程度である。なお、説明を簡単にするために、図15では図示した温度ドリフト抑圧のためのSi導電層5を図16においては省略している。また、以下においてもSi導電層5は省略して議論する。 An SiO 2 buffer layer 2 is formed on the upper surface of the optical waveguide 3, and a traveling wave electrode 4 is formed on the upper surface of the SiO 2 buffer layer 2. As the traveling wave electrode 4, a coplanar waveguide (CPW) having one central conductor 4a and two ground conductors 4b and 4c is used. Normally, the traveling wave electrode 4 is made of Au, which is an expensive noble metal material. Reference numeral 5 denotes a conductive layer for suppressing temperature drift caused by a pyroelectric effect peculiar to the LN optical modulator manufactured using the z-cut LN substrate 1, and usually a Si conductive layer is used. The width S of the center conductor 4a is about 7 μm, and the gap W between the center conductor 4a and the ground conductors 4b and 4c is about 15 μm. In order to simplify the description, the Si conductive layer 5 for suppressing temperature drift shown in FIG. 15 is omitted in FIG. In the following, the Si conductive layer 5 is omitted and discussed.

この第1の従来技術では、z−カットLN基板1をエッチングなどで掘り込むことにより、凹部9a、9b、及び9c(あるいは、リッジ部8a、8bとも言える)を形成している。ここで、10a、10bは接地導体において高周波電信号の電磁界が小さくなった領域あるいは部位であり、外周部と呼ぶ。なお、リッジ部8a、8bを各々中心導体用リッジ部、接地導体用リッジ部とも呼ぶ。   In the first prior art, the recesses 9a, 9b and 9c (or ridges 8a and 8b) are formed by digging the z-cut LN substrate 1 by etching or the like. Here, 10a and 10b are regions or portions where the electromagnetic field of the high-frequency electric signal is reduced in the ground conductor, and are referred to as outer peripheral portions. The ridge portions 8a and 8b are also referred to as a central conductor ridge portion and a ground conductor ridge portion, respectively.

このリッジ構造をとることにより、高周波電気信号の実効屈折率(あるいは、マイクロ波実効屈折率)、特性インピーダンス、変調帯域、駆動電圧などにおいて優れた特性を実現することができる。なお、図16では凹部9a、9b、及び9cの深さ(あるいはリッジ部8a、8bの高さ)を強調して描いているが、実際には2〜5μm程度であり、中心導体4aや接地導体4b、4cの厚み約20μmに比較するとその値は小さい。   By adopting this ridge structure, it is possible to realize excellent characteristics in the effective refractive index (or microwave effective refractive index), characteristic impedance, modulation band, driving voltage, and the like of a high-frequency electric signal. In FIG. 16, the depth of the recesses 9a, 9b, and 9c (or the height of the ridges 8a and 8b) is emphasized, but is actually about 2 to 5 μm, and the center conductor 4a and the ground The value is small compared to the thickness of the conductors 4b and 4c of about 20 μm.

さて、この第1の従来技術はLN光変調器としての変調特性は高いものの、安定性について問題があることがわかった。即ち、Si導電層5を使用しているにもかかわらず、温度ドリフト特性が悪いことが判明した。その原因は高い変調性能を生み出すリッジ構造に起因していると考えられる。   Now, it has been found that although the first prior art has high modulation characteristics as an LN optical modulator, there is a problem with stability. That is, it has been found that the temperature drift characteristic is poor despite the use of the Si conductive layer 5. The cause is thought to be due to the ridge structure that produces high modulation performance.

以下にその原因について詳しく説明する。図16からわかるように、中心導体4aの直下のリッジ部8aについては、接地導体4b、4cとは独立しているので、z−カットLN基板1の表面に平行な方向にリッジ部8aを引っ張る力は存在しない。   The cause will be described in detail below. As can be seen from FIG. 16, the ridge portion 8a immediately below the central conductor 4a is independent of the ground conductors 4b and 4c, and therefore the ridge portion 8a is pulled in a direction parallel to the surface of the z-cut LN substrate 1. There is no power.

ところが、リッジ部8bについては、前述のように約20μmの厚い接地導体4bが凹部9c、外周部10bとともに形成されている。そして、SiOバッファ層2上の接地導体4bのAuとz−カットLN基板1の熱膨張係数は互いに大きく異なる。さらに、z−カットLN基板1の幅は数ミリメートル(例えば、1mm〜5mm)と広い。一方、相互作用光導波路3a、3bのギャップは約15μm程度と狭いので、接地導体4bや4cの幅は各々z−カットLN基板1の幅の約半分と言えるくらいに広い(換言すると、外周部10aや10bが広い)。つまり、図16の接地導体4bの幅も広いので環境変化に起因する熱膨張や熱収縮などの応力が積み重なり、リッジ部8bへかなり大きな応力(あるいは厚みが厚いことに起因するモーメント)がかかる。さらに、リッジ部8bは突起しているので、応力(特にモーメントによる応力)の影響を受けやすい。なお、実際には接地導体4cの幅も広く、その影響もある。 However, in the ridge portion 8b, as described above, the thick ground conductor 4b having a thickness of about 20 μm is formed together with the concave portion 9c and the outer peripheral portion 10b. The Au of the ground conductor 4b on the SiO 2 buffer layer 2 and the thermal expansion coefficient of the z-cut LN substrate 1 are greatly different from each other. Furthermore, the width of the z-cut LN substrate 1 is as wide as several millimeters (for example, 1 mm to 5 mm). On the other hand, since the gap between the interaction optical waveguides 3a and 3b is as narrow as about 15 μm, the width of the ground conductors 4b and 4c is so wide that it can be said to be about half the width of the z-cut LN substrate 1 (in other words, the outer peripheral portion). 10a and 10b are wide). That is, since the width of the ground conductor 4b in FIG. 16 is wide, stresses such as thermal expansion and thermal contraction due to environmental changes accumulate, and a considerably large stress (or a moment due to a large thickness) is applied to the ridge portion 8b. Furthermore, since the ridge portion 8b protrudes, it is easily affected by stress (especially stress due to moment). Actually, the width of the ground conductor 4c is wide, and this is also affected.

ところが、z−カットLN基板1に応力がかかるとその屈折率が変化する(応力複屈折)ので、結果的に相互作用光導波路3aの屈折率が変化することになり、LN光変調器を動作させる際のDCバイアス点が変わってしまう。これがリッジ構造特有の温度ドリフト現象であり、LN光変調器としての安定性を損なう結果となる。ちなみに、LN光変調器の環境温度を室温から80℃まで変化させた際に、この第1の従来技術でのDCバイアス点の変化は6Vと大きかった。   However, when a stress is applied to the z-cut LN substrate 1, its refractive index changes (stress birefringence). As a result, the refractive index of the interactive optical waveguide 3a changes, and the LN optical modulator operates. The DC bias point when changing is changed. This is a temperature drift phenomenon peculiar to the ridge structure, and results in impairing the stability as the LN optical modulator. Incidentally, when the environmental temperature of the LN optical modulator was changed from room temperature to 80 ° C., the change of the DC bias point in the first prior art was as large as 6V.

(第2の従来技術)
この第1の従来技術の問題点を解決するために、特許文献2に開示された第2の従来技術の相互作用部における断面図を図17に示す。この図17からわかるように、リッジ部8bの上に形成された接地導体4b´と外周部10bの上に形成された接地導体4b´´の厚みは厚いが、凹部9cに形成された接地導体4b´´´の厚みを例えば約300nm以下と薄くしている。このように凹部9cにおける接地導体4b´´´の厚みを薄くすることにより、広い面積を有する接地導体4b´´がリッジ部8bへ与える応力を小さくすることができるので、温度安定性を改善できるという考え方である。
(Second prior art)
In order to solve the problem of the first prior art, a cross-sectional view of the interaction portion of the second prior art disclosed in Patent Document 2 is shown in FIG. As can be seen from FIG. 17, the ground conductor 4b ′ formed on the ridge portion 8b and the ground conductor 4b ″ formed on the outer peripheral portion 10b are thick, but the ground conductor formed in the recess 9c. The thickness of 4b "" is reduced to, for example, about 300 nm or less. Thus, by reducing the thickness of the ground conductor 4b ″ in the concave portion 9c, the stress applied to the ridge portion 8b by the ground conductor 4b ″ having a large area can be reduced, so that the temperature stability can be improved. This is the idea.

以下において、温度ドリフトと高周波電気信号の伝搬の観点から議論する。この第2の従来技術ではリッジ部8aと8bを形成する凹部9a、9b、9cと光導波路3aと3bはそれらの中間に設けた中心線Iに対して対称な構造である。さて、リッジ部8aや8bの側面は傾斜している(よって、傾斜面あるいは傾斜部とも言う)。こうした傾斜面は−z面でないため焦電効果による電荷の発生が−z面であるz−カットLN基板1の上面や凹部9a、9b、及び9cと異なっている。   In the following, discussion will be made from the viewpoint of temperature drift and propagation of high-frequency electrical signals. In the second prior art, the recesses 9a, 9b, 9c and the optical waveguides 3a, 3b forming the ridges 8a, 8b are symmetrical with respect to the center line I provided between them. Now, the side surfaces of the ridge portions 8a and 8b are inclined (hence, also referred to as inclined surfaces or inclined portions). Since such an inclined surface is not a −z plane, the generation of charges due to the pyroelectric effect is different from the upper surface of the z-cut LN substrate 1 and the recesses 9a, 9b, and 9c, which are the −z plane.

そのため、優れた温度ドリフト特性を実現するためには、凹部9a、9b、及び9cを光導波路3aと3bの中間に設けることのできる中心線Iに対してほぼ対称な(あるいは、光導波路3aと3bを含むz−カットLN基板1の構造がその中間に設けた中心線Iに対してほぼ対称な)構造が望ましい。つまり、この第2の従来技術は温度ドリフト抑圧に適した構造と言える。なお、マッハツェンダ光導波路のように、相互作用光導波路が2本(光導波路3aと3b)の場合に、光導波路3aと3bがそれらの中間の中心線に対して対称となる構造では、実質的な凹部(9a、9b、9c)の数が奇数となる。   Therefore, in order to realize excellent temperature drift characteristics, the recesses 9a, 9b, and 9c are substantially symmetrical with respect to the center line I that can be provided between the optical waveguides 3a and 3b (or with the optical waveguide 3a). The structure of the z-cut LN substrate 1 including 3b is substantially symmetric with respect to the center line I provided in the middle thereof. That is, the second prior art can be said to be a structure suitable for temperature drift suppression. In the case of two interaction optical waveguides (optical waveguides 3a and 3b) such as a Mach-Zehnder optical waveguide, the structure in which the optical waveguides 3a and 3b are symmetric with respect to the center line between them is substantially The number of concave portions (9a, 9b, 9c) is an odd number.

ところが、高周波電気信号の低損失で安定な伝搬の観点からこの第2の従来技術は以下のように問題を有していることがわかる。図15に示すように、マイクロ波である高周波電気信号は高周波電気信号給電線6や不図示のコネクタを伝搬した後、進行波電極4に印加されるが、高周波電気信号給電線6と不図示のコネクタの電磁界分布は各々の中心導体に対して軸対称である。また、高周波電気信号給電線6に接続される不図示のコネクタと進行波電極4との接続部(入力用フィードスルー部と呼ばれる)においても高周波電磁界の電磁界分布は進行波電極4の中心導体(相互作用部の中心導体4aを不図示のコネクタの芯線との接続部まで延長した部位)に対して左右対称(つまり、基板表面方向に対して対称)である。   However, it can be seen that the second prior art has the following problems from the viewpoint of low-loss and stable propagation of high-frequency electrical signals. As shown in FIG. 15, the high-frequency electric signal that is a microwave propagates through the high-frequency electric signal feed line 6 and a connector (not shown) and is then applied to the traveling wave electrode 4. The electromagnetic field distribution of this connector is axisymmetric with respect to each central conductor. In addition, the electromagnetic field distribution of the high-frequency electromagnetic field is the center of the traveling-wave electrode 4 even at a connection portion (called an input feed-through portion) between a connector (not shown) connected to the high-frequency electric signal feeder 6 and the traveling-wave electrode 4. It is bilaterally symmetric (that is, symmetric with respect to the substrate surface direction) with respect to the conductor (the portion where the central conductor 4a of the interaction portion extends to the connection portion with the core wire of the connector not shown).

しかしながら、この第2の従来技術では図17の中心導体4aの中央に引いた線IIに対して進行波電極が構造的に左右非対称である。構造が左右非対称ということは電磁界分布も左右非対称となるので、入力用フィードスルー部における左右対称な電磁界分布と整合性が良くない。その結果、高周波電気信号が中心導体4a、接地導体4b´、4b´´´、4b´´、4cで構成される進行波電極4を伝搬する際に、対称な電磁界分布から非対称な電磁界分布に変換せねばならず、電磁界分布が安定しない、あるいは放射損失(または伝搬損失)が生じるなどの不都合が生じてしまう。   However, in this second prior art, the traveling wave electrode is structurally asymmetric with respect to the line II drawn in the center of the center conductor 4a in FIG. When the structure is asymmetrical, the electromagnetic field distribution is also asymmetrical, so that the matching with the symmetrical electromagnetic field distribution in the input feedthrough portion is not good. As a result, when a high-frequency electric signal propagates through the traveling wave electrode 4 composed of the central conductor 4a, the ground conductors 4b ′, 4b ″, 4b ″, and 4c, an asymmetric electromagnetic field from a symmetric electromagnetic field distribution. It must be converted into a distribution, which causes inconveniences such as unstable electromagnetic field distribution or radiation loss (or propagation loss).

(第3の従来技術)
図18に特許文献3に開示された第3の従来技術の上面図を示す。なお、z−カットLN基板1の幅は数ミリメートルあり、相互作用光導波路3aと3bのギャップは15μm程度である。またz−カットLN基板1の長さは5cm〜7cm程度である。
(Third prior art)
FIG. 18 shows a top view of the third prior art disclosed in Patent Document 3. As shown in FIG. The width of the z-cut LN substrate 1 is several millimeters, and the gap between the interaction optical waveguides 3a and 3b is about 15 μm. The length of the z-cut LN substrate 1 is about 5 cm to 7 cm.

ここで、B−B´とC−C´における断面図を図19と図20に示す。なお、11a、11b、11c、及び11dは凹部9a、9b、9c及び9dがあることによる空隙部であり、4b(4)、4b(5)、4b(6)、4c(4)、4c(5)、4c(6)は接地導体である。ここで、接地導体4b(5)は接地導体4b(4)と4b(6)を接続している。また、10cは外周部である。8a、8b、8cはリッジ部である。空隙部11aと11dは接地導体において導体が欠落した部位(あるいは、接地導体に開けた窓)とも言える。また、13a、13dは空隙部11aと11dを接地導体4b(5)と4c(5)で埋めた埋め込み部である。図19と図20において、IVは中心導体4aの中心線であり、進行波電極はこの中心線IVに対して対称となっている。 Here, FIG. 19 and FIG. 20 show sectional views taken along the lines BB ′ and CC ′. In addition, 11a, 11b, 11c, and 11d are void portions due to the presence of the recesses 9a, 9b, 9c, and 9d, and 4b (4) , 4b (5) , 4b (6) , 4c (4) , 4c ( 5) and 4c (6) are ground conductors. Here, the ground conductor 4b (5) connects the ground conductors 4b (4) and 4b (6) . Reference numeral 10c denotes an outer peripheral portion. Reference numerals 8a, 8b, and 8c denote ridge portions. It can be said that the gaps 11a and 11d are portions where the conductor is missing in the ground conductor (or windows opened in the ground conductor). Reference numerals 13a and 13d denote embedded portions in which the gap portions 11a and 11d are filled with the ground conductors 4b (5) and 4c (5) . 19 and 20, IV is a center line of the center conductor 4a, and the traveling wave electrode is symmetrical with respect to the center line IV.

図からわかるように、接地導体4b(4)と4c(4)の幅は図17に示した第2の従来技術の接地導体4b´や中心導体4aと同程度に狭い。また、接地導体4b(6)、4c(6)は図17に示した第2の従来技術の接地導体4b´´のように広い。そして、この第3の従来技術において接地導体4b(4)と4b(6)を接続する接地導体4b(5)と、接地導体4c(4)と4c(6)を接続する接地導体4c(5)の厚みは、図17に示した第2の従来技術の接地導体4b´´´よりも厚く設定している。 As can be seen, the widths of the ground conductors 4b (4) and 4c (4) are as narrow as the ground conductor 4b 'and the center conductor 4a of the second prior art shown in FIG. The ground conductors 4b (6) and 4c (6) are as wide as the ground conductor 4b '' of the second prior art shown in FIG. Then, this third in the prior art to connect the ground conductor 4b and (4) 4b (6) the ground conductor 4b (5), the ground conductor 4c for connecting with 4c (6) the ground conductor 4c (4) (5 ) Is set to be thicker than the ground conductor 4b "" of the second prior art shown in FIG.

ところが、この第3の従来技術を実際に製作したところ、この構造ではリッジ構造に起因する温度ドリフトを抑圧することができないという重要な問題があることがわかった。以下、その問題点を焦電効果の観点から説明する。   However, when the third prior art was actually manufactured, it was found that this structure has an important problem that the temperature drift due to the ridge structure cannot be suppressed. The problem will be described below from the viewpoint of the pyroelectric effect.

光導波路3aと3bの中間の中心線IIIに対して、リッジ8a、8b、8c(あるいは凹部9a、9b、9c、9d)が非対称に配置されている。リッジ8a、8b、8cの側面である傾斜面は−z面ではないので、環境温度の変化に伴う焦電効果による電荷の分布はこれらの凹部やz−カットLN基板1の上面と異なっている。そのため、環境温度の変化とともに刻々と変化する不均一な電荷分布(即ち、不均一な電界分布)が生じるので光導波路3aと3bに不均一な電圧が印加される。これらの不均一な電界分布を打ち消すように外部回路からDCバイアスを印加する必要があるので、結果的に温度ドリフトを生じてしまうと結論できる。
特開平4−288518号公報 特開2004−157500号公報 特開2006−84537号公報
Ridges 8a, 8b, and 8c (or recesses 9a, 9b, 9c, and 9d) are arranged asymmetrically with respect to the center line III between the optical waveguides 3a and 3b. Since the inclined surfaces that are the side surfaces of the ridges 8a, 8b, and 8c are not the -z plane, the distribution of charges due to the pyroelectric effect accompanying the change in environmental temperature is different from those of the concave portions and the upper surface of the z-cut LN substrate 1. . Therefore, a non-uniform charge distribution (that is, a non-uniform electric field distribution) that changes every moment with a change in the environmental temperature is generated, so that a non-uniform voltage is applied to the optical waveguides 3a and 3b. Since it is necessary to apply a DC bias from an external circuit so as to cancel these non-uniform electric field distributions, it can be concluded that a temperature drift results.
JP-A-4-288518 JP 2004-157500 A JP 2006-84537 A

以上のように、リッジ型LN光変調器として提案された従来の第1技術では電極を構成するAuとz−カットLN基板との熱膨張係数の差に起因する接地導体からの応力(あるいは、モーメントによる応力)が温度とともに最適DCバイアス点を変化させる温度ドリフトを生じた。この温度特性を改善するために提案された第2の従来技術では、温度ドリフトは改善できるものの、進行波電極が中心導体に対して対称ではないため、高周波電気信号が対称モードから非対称モードへのモード変換における安定な伝搬と低損失な伝搬という観点から不利であった。また、第3の従来技術では進行波電極が中心導体に対して対称であるため、高周波電気信号の安定で低損失な伝搬という観点から有利であったが、リッジ部(あるいは凹部)の構成が2本の光導波路に対して非対称であったため、特にリッジの傾斜面における焦電効果の影響が強く、温度ドリフトの観点から問題があった。つまり、光変調器としての高速性・低駆動電圧性を犠牲にしないで温度安定化を実現できる光変調器の開発が急務となっている。   As described above, in the conventional first technique proposed as the ridge type LN optical modulator, the stress from the ground conductor (or alternatively, due to the difference in thermal expansion coefficient between Au and the z-cut LN substrate constituting the electrode) The stress due to moment) caused a temperature drift that changed the optimum DC bias point with temperature. In the second prior art proposed to improve this temperature characteristic, although the temperature drift can be improved, the traveling wave electrode is not symmetric with respect to the central conductor, so that the high frequency electric signal is changed from the symmetric mode to the asymmetric mode. It is disadvantageous from the viewpoint of stable propagation and low loss propagation in mode conversion. In the third prior art, the traveling wave electrode is symmetric with respect to the central conductor, which is advantageous from the viewpoint of stable and low-loss propagation of a high-frequency electrical signal. However, the configuration of the ridge (or recess) is advantageous. Since it was asymmetric with respect to the two optical waveguides, the influence of the pyroelectric effect particularly on the inclined surface of the ridge was strong, and there was a problem from the viewpoint of temperature drift. That is, there is an urgent need to develop an optical modulator that can achieve temperature stabilization without sacrificing high speed and low driving voltage as an optical modulator.

本発明はこのような事情に鑑みてなされたものであり、光変調特性が高性能であるとともに、安定性について改善された光変調器を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an optical modulator having high performance in light modulation characteristics and improved stability.

上記課題を解決するために、本発明の請求項1の光変調器は、電気光学効果を有する基板と、前記基板に形成された2本の光導波路と、前記基板の上に形成されたバッファ層と、該バッファ層の上方に配置された中心導体と接地導体からなる進行波電極と、前記進行波電極を伝搬する高周波電気信号の電界強度が強い領域における前記基板の少なくとも一部を掘り下げることにより形成した凹部により構成されるリッジ部とを具備し、該リッジ部は前記中心導体が上方に形成された中心導体用リッジ部と、前記接地導体が上方に形成された接地導体用リッジ部からなり、前記中心導体用リッジ部に前記2本の光導波路のうちの1本が形成され、前記接地導体用リッジ部にもう1本の光導波路が形成されている光変調器において、前記凹部は第1、第2及び第3の凹部でなり、前記第1の凹部の中心線に対して対称な位置に前記第2及び第3の凹部が形成されており、前記第1の凹部と前記第2の凹部との間に前記中心導体用リッジ部が形成され、前記第1の凹部と前記第3の凹部との間に前記接地導体用リッジ部が形成されており、前記第1の凹部及び前記第2の凹部の上方には前記接地導体が形成されておらず、前記第3の凹部の上方には、前記接地導体が形成された部分と形成されていない部分とが、第1の接続用接地導体と第1の空隙部として光導波路方向に交互に形成されており、前記第2の凹部に隣接する前記中心導体用リッジ部でない側の基板上に形成された接地導体には、前記中心導体の中心線に対して前記第3の凹部と対称となる位置に、前記接地導体が形成された部分と形成されていない部分とが、第2の接続用接地導体と第2の空隙部として前記光導波路の方向に交互に形成されており、前記接地導体の前記第1の空隙部と前記第2の空隙部の少なくとも一部について前記光導波路の方向における位置、長さ、もしくは幅の少なくとも1つが異なって形成されていることを特徴とする。   In order to solve the above problems, an optical modulator according to claim 1 of the present invention includes a substrate having an electro-optic effect, two optical waveguides formed on the substrate, and a buffer formed on the substrate. A layer, a traveling wave electrode comprising a central conductor and a ground conductor disposed above the buffer layer, and at least part of the substrate in a region where the electric field strength of a high-frequency electric signal propagating through the traveling wave electrode is strong A ridge portion constituted by a concave portion formed by a center conductor ridge portion having the center conductor formed upward and a ground conductor ridge portion having the ground conductor formed upward. In the optical modulator in which one of the two optical waveguides is formed in the ridge portion for the central conductor and another optical waveguide is formed in the ridge portion for the ground conductor, the concave portion is First The second and third recesses, and the second and third recesses are formed symmetrically with respect to the center line of the first recess, and the first recess and the second recess The center conductor ridge is formed between the first recess and the third recess, and the ground conductor ridge is formed between the first recess and the third recess. The ground conductor is not formed above the second recess, and the portion where the ground conductor is formed and the portion where the ground conductor is not formed are above the third recess. The ground conductor formed on the substrate on the side that is not the ridge portion for the central conductor adjacent to the second recess and is formed in the optical waveguide direction alternately as the conductor and the first gap portion includes the central conductor. The ground conductor is formed at a position symmetrical to the third recess with respect to the center line of The portion and the portion not formed are alternately formed in the direction of the optical waveguide as a second connecting ground conductor and a second gap, and the first gap and the first gap of the ground conductor are formed. At least one of the position, length, or width in the direction of the optical waveguide is formed differently for at least a part of the two gaps.

本発明の請求項2の光変調器は、電気光学効果を有する基板と、前記基板に形成された2本の光導波路と、前記基板の上に形成されたバッファ層と、該バッファ層の上方に配置された中心導体と接地導体からなる進行波電極と、前記進行波電極を伝搬する高周波電気信号の電界強度が強い領域における前記基板の少なくとも一部を掘り下げることにより形成した凹部により構成されるリッジ部とを具備し、該リッジ部は前記中心導体が上方に形成された中心導体用リッジ部と、前記接地導体が上方に形成された接地導体用リッジ部からなり、前記中心導体用リッジ部に前記2本の光導波路のうちの1本が形成され、前記接地導体用リッジ部にもう1本の光導波路が形成されている光変調器において、前記凹部は第1、第2及び第3の凹部でなり、前記第1の凹部の中心線に対して対称な位置に前記第2及び第3の凹部が形成されており、前記第1の凹部と前記第2の凹部との間に前記中心導体用リッジ部が形成され、前記第1の凹部と前記第3の凹部との間に前記接地導体用リッジ部が形成されており、前記第1の凹部及び前記第2の凹部の上方には前記接地導体が形成されておらず、前記第3の凹部の上方には、前記接地導体が形成された部分と形成されていない部分とが、第1の接続用接地導体と第1の空隙部として光導波路方向に交互に形成されており、前記第2の凹部に隣接する前記中心導体用リッジ部でない側の基板上に形成された接地導体には、前記中心導体の中心線に対して前記第3の凹部と対称となる位置に、前記接地導体が形成された部分と形成されていない部分とが、第2の接続用接地導体と第2の空隙部として前記光導波路の方向に交互に形成されており、前記第1の接続用接地導体と前記第2の接続用接地導体の少なくとも一部について前記光導波路の方向における位置、長さ、幅、もしくは厚みの少なくとも1つが異なって形成されていることを特徴とする。   An optical modulator according to a second aspect of the present invention includes a substrate having an electro-optic effect, two optical waveguides formed on the substrate, a buffer layer formed on the substrate, and an upper portion of the buffer layer. A traveling wave electrode composed of a central conductor and a ground conductor disposed on the substrate, and a recess formed by digging up at least a part of the substrate in a region where the electric field strength of a high-frequency electric signal propagating through the traveling wave electrode is strong A ridge portion, and the ridge portion includes a ridge portion for a central conductor in which the central conductor is formed upward, and a ridge portion for a ground conductor in which the ground conductor is formed upward. In the optical modulator in which one of the two optical waveguides is formed and another optical waveguide is formed in the ridge portion for the ground conductor, the concave portion has first, second and third portions. In the recess of The second conductor recess and the third recess are formed symmetrically with respect to the center line of the first recess, and the central conductor ridge is formed between the first recess and the second recess. And the ground conductor ridge is formed between the first recess and the third recess, and the ground conductor is disposed above the first recess and the second recess. The portion where the ground conductor is formed and the portion where the ground conductor is not formed are formed above the third recess as an optical waveguide as the first connection ground conductor and the first gap portion. The ground conductor formed on the substrate on the side that is not the ridge portion for the central conductor adjacent to the second recess and is alternately formed in the direction, the third conductor with respect to the center line of the central conductor The portion where the ground conductor is formed and the portion where it is not formed at a position symmetrical to the recess Are alternately formed in the direction of the optical waveguide as a second connecting ground conductor and a second gap, and at least one of the first connecting ground conductor and the second connecting ground conductor. It is characterized in that at least one of the position, the length, the width, or the thickness in the direction of the optical waveguide is different for each part.

本発明の請求項3の光変調器は、前記第1の接続用接地導体または前記第2の接続用接地導体が、前記中心導体もしくは前記接地導体の少なくとも一部とほぼ同じ厚みを持つことを特徴とする。   The optical modulator according to claim 3 of the present invention is such that the first connection ground conductor or the second connection ground conductor has substantially the same thickness as at least a part of the center conductor or the ground conductor. Features.

本発明の請求項4の光変調器は、前記第1の接続用接地導体または前記第2の接続用接地導体が、前記中心導体の厚みよりも薄いことを特徴とする。   The optical modulator according to claim 4 of the present invention is characterized in that the first connection ground conductor or the second connection ground conductor is thinner than the thickness of the center conductor.

本発明の請求項5の光変調器は、前記第3の凹部に隣接する前記接地導体用リッジ部でない側の基板上に形成された接地導体の、前記高周波電気信号の電磁界が小さくなった領域である前記第3の凹部から所定距離離れた領域における厚みを、当該領域以外の領域における接地導体の厚みよりも薄く構成したことを特徴とする。   In the optical modulator according to claim 5 of the present invention, the electromagnetic field of the high-frequency electric signal of the ground conductor formed on the non-ground conductor ridge portion adjacent to the third recess is reduced. The thickness in a region that is a predetermined distance away from the third recess, which is a region, is configured to be thinner than the thickness of the ground conductor in a region other than the region.

本発明の請求項6の光変調器は、前記第2の凹部に隣接する前記中心導体用リッジ部でない側の基板上に形成された接地導体の、前記高周波電気信号の電磁界が小さくなった領域である前記第2の凹部から所定距離離れた領域における厚みを、当該領域以外の領域における接地導体の厚みよりも薄く構成したことを特徴とする。   In the optical modulator according to claim 6 of the present invention, the electromagnetic field of the high-frequency electrical signal of the ground conductor formed on the substrate on the side not adjacent to the ridge portion for the central conductor adjacent to the second recess is reduced. The thickness in a region that is a predetermined distance away from the second concave portion that is a region is configured to be thinner than the thickness of the ground conductor in a region other than the region.

本発明の請求項7の光変調器は、前記基板がリチウムナイオベートからなることを特徴とする。   The optical modulator according to claim 7 of the present invention is characterized in that the substrate is made of lithium niobate.

本発明の請求項8の光変調器は、前記基板が半導体からなることを特徴とする。   An optical modulator according to an eighth aspect of the present invention is characterized in that the substrate is made of a semiconductor.

本発明に係る光変調器では、リッジやそれを構成する凹部は2本の光導波路の中間に設けた中心線に対して対称とする。これにより、環境温度の変化に対応して起こる焦電効果による電荷の分布(即ち、電界の分布)が2本の光導波路の中間に設けた中心線に対してほぼ対称となるので、温度ドリフトを解決することができる。また、進行波電極の基本的な構造を中心導体の中心線に対して対称とすることにより、高周波電気信号の安定で低損失な伝搬を可能とする。これらの結果、リッジ型光変調器の変調の観点からの高い性能を損なうことなく、熱ドリフトが小さなLN光変調器を提供することが可能となるという優れた効果がある。さらに、本発明には接地導体において高周波電気信号の電磁界分布が小さくなる領域(あるいは部位)である外周部の導体の厚みを薄くする構造も含んでいる。この外周部の導体の厚みを薄くする構造により、環境温度が変化する際に、SiOバッファ層2上の接地導体とz−カットLN基板の熱膨張係数の差に起因して生じる広い接地導体からの導体の応力を緩和することができるので、一層の温度ドリフト特性の改善に寄与するばかりでなく、高価な貴金属材料であるAuの使用量を減らすことができるので光変調器としてのコスト低減も可能となる。 In the optical modulator according to the present invention, the ridge and the concave portion constituting the ridge are symmetrical with respect to the center line provided in the middle of the two optical waveguides. As a result, the charge distribution (that is, the electric field distribution) due to the pyroelectric effect that occurs in response to a change in the environmental temperature is substantially symmetric with respect to the center line provided between the two optical waveguides. Can be solved. In addition, by making the basic structure of the traveling wave electrode symmetrical with respect to the center line of the central conductor, it is possible to propagate a high-frequency electric signal stably and with low loss. As a result, there is an excellent effect that it is possible to provide an LN optical modulator with a small thermal drift without impairing the high performance from the viewpoint of modulation of the ridge type optical modulator. Furthermore, the present invention includes a structure in which the thickness of the conductor in the outer peripheral portion, which is a region (or part) where the electromagnetic field distribution of the high-frequency electric signal is reduced in the ground conductor. Due to the structure in which the thickness of the conductor at the outer peripheral portion is reduced, when the environmental temperature changes, a wide ground conductor that is generated due to the difference in thermal expansion coefficient between the ground conductor on the SiO 2 buffer layer 2 and the z-cut LN substrate. Since the stress of the conductor from the metal can be relieved, it not only contributes to further improvement of the temperature drift characteristic, but also can reduce the amount of use of Au, which is an expensive noble metal material, thereby reducing the cost as an optical modulator. Is also possible.

以下、本発明の実施形態について説明するが、図15から図20に示した従来技術と同一の符号は同一機能部に対応しているため、ここでは同一の符号を持つ機能部の説明を省略する。   Hereinafter, embodiments of the present invention will be described. However, since the same reference numerals as those in the related art shown in FIGS. 15 to 20 correspond to the same functional units, description of the functional units having the same reference numerals is omitted here. To do.

(第1の実施形態)
図1に本発明の第1の実施形態についてその上面図を示す。また、D−D´、E−E´における断面図を各々図2と図3に示す。ここで、11a、11b、11c、及び11eは空隙部である。なお、4b(4)、4b(5)、4b(6)、4c(4)、4c(5)、4c(6)は接地導体である。接地導体4b(5)は接地導体4b(4)と4b(6)を、また接地導体4c(5)は接地導体4c(4)と4c(6)を接続している(接地導体4b(5)と接地導体4c(5)は接続用接地導体とも呼ばれる)。
(First embodiment)
FIG. 1 shows a top view of the first embodiment of the present invention. In addition, cross-sectional views taken along DD ′ and EE ′ are shown in FIGS. 2 and 3, respectively. Here, 11a, 11b, 11c, and 11e are gaps. 4b (4) , 4b (5) , 4b (6) , 4c (4) , 4c (5) , 4c (6) are ground conductors. The ground conductor 4b (5) connects the ground conductors 4b (4) and 4b (6) , and the ground conductor 4c (5) connects the ground conductors 4c (4) and 4c (6) (ground conductor 4b (5). ) And the ground conductor 4c (5) are also called connection ground conductors).

本実施形態では高周波電気信号としての表皮効果の影響を受けにくいように、接続用接地導体である接地導体4b(5)と4c(5)はそれらの厚みを厚くしている。また、10bと10dは接地導体において高周波電気信号の強度が小さくなった部位であり、外周部と呼ぶ。8aと8bはリッジ部である。空隙部11aと11eは接地導体において導体が欠落した部位(あるいは、接地導体に開けた窓)とも言える。また、13aは空隙部11aを接地導体4b(5)で埋めた埋め込み部である。 In this embodiment, the ground conductors 4b (5) and 4c (5), which are connection ground conductors, are made thick so that they are not easily affected by the skin effect as a high-frequency electrical signal. Reference numerals 10b and 10d are portions where the strength of the high-frequency electrical signal is reduced in the ground conductor, and are referred to as outer peripheral portions. 8a and 8b are ridge portions. It can be said that the gaps 11a and 11e are portions where the conductor is missing in the ground conductor (or windows opened in the ground conductor). Reference numeral 13a denotes a buried portion in which the gap portion 11a is filled with the ground conductor 4b (5) .

ここで、光導波路が形成されていない側の接地導体4c(5)と4c(6)の下には凹部を形成していない。図2においてVは光導波路3aと3bの中間に設けた中心線であり、光導波路3aと3b(あるいは、リッジ部8aと8b、もしくは凹部9a、9b、9c)はこの中心線Vに対して対称な構造となっている。従って、Vは光導波路についての対称軸と言える。前述のように、リッジ部8aと8bは焦電効果により発生する電荷の分布が凹部9a、9b、9cの底面やz−カットLN基板1の上面とは異なる傾斜部(前述のように、リッジ8aと8bの側面であり、傾斜面とも言う)を持っている。 Here, no recess is formed under the ground conductors 4c (5) and 4c (6) on the side where the optical waveguide is not formed. In FIG. 2, V is a center line provided between the optical waveguides 3a and 3b, and the optical waveguides 3a and 3b (or the ridges 8a and 8b or the recesses 9a, 9b, and 9c) are located with respect to the center line V. It has a symmetrical structure. Therefore, V can be said to be an axis of symmetry about the optical waveguide. As described above, the ridge portions 8a and 8b are inclined portions (as described above, the distribution of charges generated by the pyroelectric effect is different from the bottom surfaces of the recesses 9a, 9b, and 9c and the top surface of the z-cut LN substrate 1). 8a and 8b, also called inclined surfaces).

重要なことは第1の実施形態では光導波路3aと3bについてこの傾斜面を含め、凹部9a、9b、9cを中心線Vに対して対称な構造としていることである。これにより、焦電効果による電荷分布、即ち電界分布も中心線Vに対して対称となるので、環境変化に伴う温度ドリフトについては極めて安定な特性を実現できる。   What is important is that in the first embodiment, the concave portions 9a, 9b, 9c including the inclined surfaces of the optical waveguides 3a, 3b are symmetrical with respect to the center line V. As a result, the charge distribution due to the pyroelectric effect, that is, the electric field distribution is also symmetric with respect to the center line V, so that extremely stable characteristics can be realized with respect to the temperature drift accompanying the environmental change.

なお、各接地導体の下方において、温度ドリフトには影響のない箇所に凹部を作ることにより光導波路3aと3bについての対称性を壊しても、それは影響のない箇所の変更であるので本発明に属する。また、図2や図3における凹部の数は3個であるが、2本の光導波路の中間に設けた中心線に対して構造が対称でありさえすれば、これ以上の数の凹部を設けても本発明に属すると言える。そして、これらのことは本発明の全ての実施形態について成り立つことは言うまでもない。   It should be noted that even if the symmetry about the optical waveguides 3a and 3b is broken by forming a recess at a position that does not affect the temperature drift below each ground conductor, it is a change of the position that does not affect the present invention, and therefore the present invention. Belongs. 2 and 3, the number of recesses is three. However, as long as the structure is symmetrical with respect to the center line provided in the middle of the two optical waveguides, a larger number of recesses are provided. However, it can be said to belong to the present invention. Needless to say, these are true for all embodiments of the present invention.

図4には環境温度Tを20℃から80℃まで変化させた場合の本発明における第1の実施形態についての実験結果を示す。比較のために、図には第1の従来技術、第2の従来技術、及び第3の従来技術についての測定結果も示している。ここで、中心導体4aの幅Sは7μm、中心導体4aと接地導体4b(4)、もしくは接地導体4c(4)とのギャップWは15μmとした。また、空隙部11a幅のWwが15μmで、それらの長さLwと接地導体4b(5)の長さLeが各々1mmと100μmとした。図からわかるように、本実施形態を採用することにより、進行波電極が中心導体4aの中心線に対して対称であるため、高周波光変調の観点から有利ではあるものの、凹部11a、11b、11c、11dの配置が光導波路3a、3bについては対称ではない第3の従来技術よりも温度ドリフトを大幅に抑えることが可能となり、本発明の考え方が正しいことを実証できた。なお、温度ドリフトについては第2の従来技術も優れているが、先に述べたように第2の従来技術は高周波電気信号のモード変換の観点から問題がある。ここで、空隙部11aの長さLwと接地導体4b(5)の長さLeは各々30μm〜3mm、及び5μm〜500μm程度まで変化させても効率よく温度ドリフトを抑圧できた。なお、本発明はこれらの数値に限るものではないことは言うまでもない。 FIG. 4 shows the experimental results for the first embodiment of the present invention when the environmental temperature T is changed from 20 ° C. to 80 ° C. For comparison, the figure also shows the measurement results for the first prior art, the second prior art, and the third prior art. Here, the width S of the center conductor 4a is 7 μm, and the gap W between the center conductor 4a and the ground conductor 4b (4) or the ground conductor 4c (4) is 15 μm. Further, the width Ww of the gap portion 11a was 15 μm, and the length Lw thereof and the length Le of the ground conductor 4b (5) were 1 mm and 100 μm, respectively. As can be seen from the figure, by adopting this embodiment, the traveling wave electrode is symmetrical with respect to the center line of the center conductor 4a, which is advantageous from the viewpoint of high-frequency light modulation, but the recesses 11a, 11b, 11c. , 11d can be greatly suppressed in temperature drift as compared with the third prior art in which the optical waveguides 3a and 3b are not symmetric, and the idea of the present invention was proved to be correct. Note that the second conventional technique is excellent in terms of temperature drift, but as described above, the second conventional technique has a problem from the viewpoint of mode conversion of a high-frequency electric signal. Here, even when the length Lw of the gap 11a and the length Le of the ground conductor 4b (5) were changed to about 30 μm to 3 mm and about 5 μm to 500 μm, respectively, the temperature drift could be efficiently suppressed. Needless to say, the present invention is not limited to these numerical values.

以上の説明においては、本発明の原理の説明を簡単にするために、空隙部11aの幅Wwと長さLwが、空隙部11eの幅Ww´と長さLw´と各々等しく、また接地導体4b(5)の長さLeと接地導体4c(5)の長さLe´も等しいと仮定したが、本発明はこれに限るものではない。さらに、空隙部11aや接地導体4b(5)の個数と空隙部11eや接地導体4c(5)の個数が各々異なっていても良い。そして、このことは本発明の全ての実施形態について言える。なお、以上に述べた接地導体(接続用接地導体)や空隙部の長さや幅は相互作用光導波路3a、3bの長さ方向に対するものとする。 In the above description, in order to simplify the explanation of the principle of the present invention, the width Ww and the length Lw of the gap portion 11a are equal to the width Ww ′ and the length Lw ′ of the gap portion 11e, respectively. Although it is assumed that the length Le of 4b (5) and the length Le ′ of the ground conductor 4c (5) are equal, the present invention is not limited to this. Further, the number of the gap portions 11a and the ground conductors 4b (5) may be different from the number of the gap portions 11e and the ground conductors 4c (5) . This is true for all embodiments of the present invention. The length and width of the ground conductor (connection ground conductor) and the gap described above are assumed to be in the length direction of the interaction optical waveguides 3a and 3b.

次に、高周波電気信号の電磁界分布の観点から考察する。本発明におけるその他の全ての実施形態と同じく、図1〜図3における進行波電極としての基本的な構成要素は中心導体4aと接地導体4b(4)、4b(6)、4c(4)、4c(6)である。そして、図2と図3からわかるように、中心導体4aの中心に引いた中心線VIは中心導体4aと接地導体4b(4)、4b(6)、4c(4)、4c(6)からなる進行波電極の対称軸となっている。このように、本実施形態における進行波電極の基本的な構造について、中心導体4aの中心線を対称軸とする構造対称性を有している。進行波電極の構造が対称であるということは、進行波電極を伝搬する高周波電気信号の電磁界分布も対称であることを意味している。従って、図17に示した第2の従来技術では必要であったコネクタや入力用フィードスルー部の対称な高周波電気信号の対称モードから進行波電極の非対称モードへの変換が不要となるので、高周波電気信号を安定、そして低損失に伝搬することが可能となる。 Next, it considers from a viewpoint of electromagnetic field distribution of a high frequency electric signal. As in all other embodiments of the present invention, the basic components as traveling wave electrodes in FIGS. 1 to 3 are the center conductor 4a and the ground conductors 4b (4) , 4b (6) , 4c (4) , 4c (6) . As can be seen from FIGS. 2 and 3, the center line VI drawn to the center of the center conductor 4a is obtained from the center conductor 4a and the ground conductors 4b (4) , 4b (6) , 4c (4) , 4c (6). This is the axis of symmetry of the traveling wave electrode. Thus, the basic structure of the traveling wave electrode in the present embodiment has structural symmetry with the center line of the center conductor 4a as the axis of symmetry. That the structure of the traveling wave electrode is symmetric means that the electromagnetic field distribution of the high-frequency electrical signal propagating through the traveling wave electrode is also symmetric. Accordingly, the conversion from the symmetric mode of the symmetric high-frequency electrical signal of the connector and the input feedthrough portion to the asymmetric mode of the traveling-wave electrode, which is necessary in the second prior art shown in FIG. It is possible to propagate the electric signal stably and with low loss.

さて、凹部が光導波路3aと3bの中間に設けた中心線Vに対して厳密に対称でないと本発明の効果を発揮できないかというとそれは正しくない。接地導体4b(4)の幅は中心導体4aの幅と数μm程度異なっていても良く、これを含めて光導波路3a、3bの中間に設けた中心線Vに対して光導波路3a、3bの上にある中心導体と接地導体が対称である(あるいは、実質的にほぼ対称)としている。また、同様に進行波電極の構造が中心線VIに対して厳密に対称でなくても本発明の効果を発揮できる。そしてこれらのことは本発明の全ての実施形態について言える。 Now, it is not correct if the concave portion is not strictly symmetric with respect to the center line V provided between the optical waveguides 3a and 3b. The width of the ground conductor 4b (4) may be different from the width of the center conductor 4a by several μm. Including this, the center of the optical waveguides 3a and 3b with respect to the center line V provided in the middle of the optical waveguides 3a and 3b. The center conductor and the ground conductor on the top are symmetrical (or substantially symmetrical). Similarly, the effect of the present invention can be exhibited even if the structure of the traveling wave electrode is not strictly symmetrical with respect to the center line VI. These are true for all embodiments of the invention.

以上のように、本実施形態は光導波路に関する構造を2本の光導波路の中間に設けた中心線Vについて対称とするとともに、進行波電極に関する基本的な構造を中心導体の中心線VIについて対称とすることにより、それらの対称性を有しない場合と比較して、環境温度変化に伴う温度ドリフトを抑圧し、かつ高周波電気信号のモードを安定させ、そして低損失に伝搬させている。   As described above, in the present embodiment, the structure related to the optical waveguide is symmetric with respect to the center line V provided in the middle of the two optical waveguides, and the basic structure related to the traveling wave electrode is symmetric with respect to the center line VI of the central conductor. Thus, compared with the case where they do not have symmetry, the temperature drift associated with the environmental temperature change is suppressed, the mode of the high-frequency electric signal is stabilized, and the loss is propagated.

(第2の実施形態)
図5に本発明の第2の実施形態についてその上面図を示す。また、F−F´、G−G´における断面図を各々図6と図7に示す。ここで、11a、11b、11c、及び11fは空隙部である。なお、4b(7)、4b(8)、4b(9)、4c(7)、4c(8)、4c(9)は接地導体である。接地導体4b(8)は接地導体4b(7)と4b(9)を、また接地導体4c(8)は接地導体4c(7)と4c(9)を接続している(接地導体4b(8)と接地導体4c(8)は接続用接地導体とも呼ばれる)。また、10bと10dは外周部である。8aと8bはリッジ部である。空隙部11aと11fは接地導体において導体が欠落した部位(あるいは、接地導体に開けた窓)とも言える。
(Second Embodiment)
FIG. 5 shows a top view of the second embodiment of the present invention. In addition, cross-sectional views taken along lines FF ′ and GG ′ are shown in FIGS. 6 and 7, respectively. Here, 11a, 11b, 11c, and 11f are gaps. 4b (7) , 4b (8) , 4b (9) , 4c (7) , 4c (8) , 4c (9) are ground conductors. The ground conductor 4b (8) connects the ground conductors 4b (7) and 4b (9) , and the ground conductor 4c (8) connects the ground conductors 4c (7) and 4c (9) (the ground conductor 4b (8). ) And the ground conductor 4c (8) are also called connection ground conductors). Moreover, 10b and 10d are outer peripheral parts. 8a and 8b are ridge portions. It can be said that the air gap portions 11a and 11f are portions where the conductor is missing in the ground conductor (or windows opened in the ground conductor).

ここで、図6においてVは光導波路3aと3bの中間に設けた中心線であり、光導波路3aと3b(あるいは、リッジ部8aと8b、もしくは凹部9a、9b、9c)はこの中心線Vに対して対称な構造となっている。従って、第1の実施形態として示した図2において述べたように、Vは光導波路3aと3bについての対称軸と言える。前述のように、リッジ部8aと8bは焦電効果により発生する電荷の分布が凹部9a、9b、9cの底面やz−カットLN基板1の上面とは異なる傾斜部(リッジ8aと8bの側面、あるいは傾斜面)を持っている。本発明のこの第2の実施形態においても光導波路3aと3bについてはこの傾斜部を含め、凹部9a、9b、9cを中心線Vに対して対称な構造となっているので、焦電効果による電荷分布、即ち電界分布も中心線Vに対して対称となり、環境変化に伴う温度ドリフトについては極めて安定となる。   Here, in FIG. 6, V is a center line provided in the middle of the optical waveguides 3a and 3b, and the optical waveguides 3a and 3b (or the ridges 8a and 8b or the recesses 9a, 9b, and 9c) are the center lines V. It has a symmetrical structure. Therefore, as described in FIG. 2 shown as the first embodiment, V can be said to be an axis of symmetry with respect to the optical waveguides 3a and 3b. As described above, the ridge portions 8a and 8b are inclined portions (side surfaces of the ridges 8a and 8b) in which the distribution of charges generated by the pyroelectric effect is different from the bottom surfaces of the recesses 9a, 9b, and 9c and the top surface of the z-cut LN substrate 1. Or have an inclined surface). Also in this second embodiment of the present invention, the optical waveguides 3a and 3b have a structure in which the recesses 9a, 9b, and 9c are symmetrical with respect to the center line V including the inclined portion. The charge distribution, that is, the electric field distribution is also symmetric with respect to the center line V, and is extremely stable with respect to temperature drift accompanying environmental changes.

次に、第1の実施形態と同様に、高周波電気信号の電磁界分布の観点から考察する。本発明におけるその他の全ての実施形態と同じく、図5〜図7における進行波電極としての基本的な構成要素は中心導体4aと接地導体4b(7)、4b(9)、4c(7)、4c(9)である。そして、図6と図7からわかるように、中心導体4aの中心に引いた中心線VIIは中心導体4aと接地導体4b(7)、4b(9)、4c(7)、4c(9)からなる進行波電極の対称軸となっている。このように、本実施形態では進行波電極の基本的な構造について、中心導体4aの中心を対称軸とする構造対称性を有しているので、その構造対称性を有しない図16に示す第2の従来技術よりも、コネクタや入力用フィードスルー部の対称な電磁界を安定、かつ低損失に伝搬することができる。 Next, as in the first embodiment, consideration is given from the viewpoint of the electromagnetic field distribution of the high-frequency electric signal. As in all other embodiments of the present invention, the basic components as traveling wave electrodes in FIGS. 5 to 7 are the center conductor 4a and the ground conductors 4b (7) , 4b (9) , 4c (7) , 4c (9) . As can be seen from FIGS. 6 and 7, the center line VII drawn to the center of the center conductor 4a is derived from the center conductor 4a and the ground conductors 4b (7) , 4b (9) , 4c (7) , 4c (9). This is the axis of symmetry of the traveling wave electrode. As described above, in this embodiment, the basic structure of the traveling wave electrode has structural symmetry with the center of the center conductor 4a as the axis of symmetry, and therefore the first structure shown in FIG. As compared with the second prior art, the symmetrical electromagnetic fields of the connector and the input feedthrough portion can be propagated stably and with low loss.

以上のように、本実施形態においても光導波路に関する構造を2本の光導波路の中間に設けた中心線Vについて対称とするとともに、進行波電極に関する基本的な構造を中心導体の中心線VIIについて対称とすることにより、それらの対称性を有しない場合と比較して、環境温度変化に伴う温度ドリフトを抑圧し、かつ高周波電気信号のモードを安定させ、かつ低損失に伝搬させている。   As described above, also in this embodiment, the structure related to the optical waveguide is symmetric with respect to the center line V provided in the middle of the two optical waveguides, and the basic structure related to the traveling wave electrode is the center line VII of the central conductor. By making it symmetrical, the temperature drift accompanying the environmental temperature change is suppressed and the mode of the high-frequency electric signal is stabilized and propagated with low loss compared to the case where they are not symmetrical.

但し、図3と図7を比較すると、図7における接続用接地導体4b(8)と4c(8)は図3における接続用接地導体4b(5)と4c(5)よりも薄いので、表皮効果の観点から高速光変調にはやや不利になる。 However, when FIG. 3 is compared with FIG. 7, the connection ground conductors 4b (8) and 4c (8) in FIG. 7 are thinner than the connection ground conductors 4b (5) and 4c (5) in FIG. From the viewpoint of effect, it is somewhat disadvantageous for high-speed light modulation.

(第3の実施形態)
図8に本発明の第3の実施形態についてその上面図を示す。また、H−H´、I−I´における断面図を各々図9と図10に示す。ここで、11a、11b、11c、及び11eは空隙部である。なお、4b(10)、4b(12)、4b(13)、4c(10)、4c(12)、4c(13)は接地導体である。接地導体4b(11)は接地導体4b(10)と4b(12)を、また接地導体4c(11)は接地導体4c(10)と4c(12)を接続している(接地導体4b(11)と接地導体4c(11)は接続用接地導体とも呼ばれる)。また、10b、10dは高周波電気信号が小さくなった部位、つまり外周部である。8aと8bはリッジ部である。空隙部11aと11eは接地導体において導体が欠落した部位(あるいは、接地導体に開けた窓)とも言える。
(Third embodiment)
FIG. 8 shows a top view of the third embodiment of the present invention. 9 and 10 are sectional views taken along lines H-H 'and I-I', respectively. Here, 11a, 11b, 11c, and 11e are gaps. Note that 4b (10) , 4b (12) , 4b (13) , 4c (10) , 4c (12) , and 4c (13) are ground conductors. The ground conductor 4b (11) connects the ground conductors 4b (10) and 4b (12) , and the ground conductor 4c (11) connects the ground conductors 4c (10) and 4c (12) (the ground conductor 4b (11). ) And the ground conductor 4c (11) are also called connection ground conductors). Reference numerals 10b and 10d denote portions where the high-frequency electrical signal is reduced, that is, outer peripheral portions. 8a and 8b are ridge portions. It can be said that the air gap portions 11a and 11e are portions where the conductor is missing in the ground conductor (or windows opened in the ground conductor).

図9に示した本実施形態においても、光導波路に関する構造は2本の光導波路3aと3bの中間における中心線Vに対して凹部9a、9b、9cを対称に配置しており、このことは優れた温度ドリフト特性を有する上で重要な要素となる。また、中心導体4aの中心に引いた中心線VIは中心導体4aと接地導体4b(10)、4b(12)、4b(13)、4c(10)、4c(12)、4c(13)からなる進行波電極の対称軸となっている。このように、本実施形態も進行波電極の基本的な構造について、中心導体4aの中心を対称軸とする構造対称性を有しているので、進行波電極を伝搬する高周波電気信号は対称モードである。従って、コネクタや入力用フィードスルー部の対称な電磁界分布と整合性が良く、高周波電気信号を安定なモードで、かつ低損失に伝搬することが可能となる。 Also in the present embodiment shown in FIG. 9, the structure relating to the optical waveguide is such that the recesses 9a, 9b, 9c are arranged symmetrically with respect to the center line V in the middle between the two optical waveguides 3a and 3b. It is an important factor in having excellent temperature drift characteristics. The center line VI drawn to the center of the center conductor 4a is obtained from the center conductor 4a and the ground conductors 4b (10) , 4b (12) , 4b (13) , 4c (10) , 4c (12) , 4c (13). This is the axis of symmetry of the traveling wave electrode. Thus, the present embodiment also has a structural symmetry with respect to the basic structure of the traveling wave electrode, with the center of the center conductor 4a as the axis of symmetry, so that the high-frequency electrical signal propagating through the traveling wave electrode is in a symmetric mode. It is. Therefore, it is possible to propagate the high-frequency electric signal in a stable mode and with low loss, with good matching with the symmetrical electromagnetic field distribution of the connector and the input feed-through portion.

この本発明の第3の実施形態において注目すべきことは接地導体4b(13)と4c(13)の厚みが例えば300nmのように薄くなっていることである。接地導体の厚みが厚いと、てこの原理によりz−カットLN基板1、ひいてはリッジ部8aや8bに加わる応力(あるいは、モーメントによる応力)が大きくなる。そこで、まずこの実施形態では外周部10bの接地導体4b(13)の厚みを薄くすることにより、この応力を小さくしている。さらに、本発明の効果を一層顕著とするために、外周部10d上に形成した接地導体4c(13)の厚みも同じく薄くしている。この工夫をとり入れることにより、図11に示すように20℃から80℃の環境温度の変化に対するDCバイアスの温度ドリフトを第1の実施形態よりもさらに小さく抑えることができた。 What should be noted in the third embodiment of the present invention is that the thickness of the ground conductors 4b (13) and 4c (13) is as thin as 300 nm, for example. When the thickness of the grounding conductor is large, the stress (or stress due to moment) applied to the z-cut LN substrate 1 and eventually the ridges 8a and 8b by the lever principle increases. Therefore, in this embodiment, the stress is reduced by reducing the thickness of the ground conductor 4b (13) of the outer peripheral portion 10b. Furthermore, in order to make the effect of the present invention more remarkable, the thickness of the ground conductor 4c (13) formed on the outer peripheral portion 10d is also reduced. By adopting this device, as shown in FIG. 11, the temperature drift of the DC bias with respect to the change in the environmental temperature from 20 ° C. to 80 ° C. can be further suppressed as compared with the first embodiment.

先に述べたように、相互作用光導波路3aと3bのギャップが15μm程度であることを考慮すると、高周波電気信号と相互作用光導波路3a、3bを伝搬する光が相互作用する相互作用部の幅は、z−カットLN基板1の幅(約1mm〜5mm程度)と比較して著しく狭い。従って、接地導体4b(13)と4c(13)の厚みを薄くすることにより、高価なAuの使用量を著しく低減することができ、コスト削減に貢献できる。 As described above, considering that the gap between the interaction optical waveguides 3a and 3b is about 15 μm, the width of the interaction portion where the high-frequency electric signal interacts with the light propagating through the interaction optical waveguides 3a and 3b. Is significantly narrower than the width of the z-cut LN substrate 1 (about 1 mm to 5 mm). Therefore, by reducing the thickness of the ground conductors 4b (13) and 4c (13) , the amount of expensive Au used can be significantly reduced, which can contribute to cost reduction.

なお、厚みは薄いものの面積が広い接地導体4b(13)と4c(13)は高周波電気信号の観点からしっかりとした電気的アースの確立と電気的アースである筐体とのワイヤやリボンによる接続の観点から有用である。このことは本発明の全ての実施形態について言える。 The ground conductors 4b (13) and 4c (13) , which are thin but have a large area, establish a firm electrical ground from the viewpoint of high-frequency electrical signals and connect them to the casing that is the electrical ground by wires or ribbons. It is useful from the point of view. This is true for all embodiments of the invention.

このように、高周波電気信号が小さい外周部の接地導体の厚みを薄くすることにより、変調特性を損なわずに、かつ温度ドリフトを改善するという考え方は図5から図7に示した本発明の第2の実施形態にも適用可能であることは言うまでもない。また図9や図10において接地導体4b(13)と4c(13)の厚みのどちらかのみを薄くしてもある程度の効果がある。また、もともと高周波電気信号の電磁界は外周部では小さいので、非対称性がこの程度壊れても高周波電気信号の伝搬特性に影響を与えることは小さい。そしてこのことは本発明の全ての実施形態にあてはまる。 In this way, the idea of improving the temperature drift without reducing the modulation characteristics by reducing the thickness of the ground conductor in the outer peripheral portion where the high-frequency electrical signal is small is the first aspect of the present invention shown in FIGS. Needless to say, the present invention can also be applied to the second embodiment. 9 and 10, there is a certain effect even if only one of the thicknesses of the ground conductors 4b (13) and 4c (13) is reduced. Further, since the electromagnetic field of the high-frequency electric signal is originally small at the outer peripheral portion, even if the asymmetry is broken to this extent, the propagation characteristic of the high-frequency electric signal is hardly affected. This is true for all embodiments of the invention.

(第4の実施形態)
図12に本発明の第4の実施形態についてその上面図を示す。また、J−J´、K−K´における断面図を各々図13と図14に示す。ここで、11a、11b、11c、及び11eは空隙部である。なお、4b(14)、4b(15)、4b(16)、4c(14)、4c(15)、4c(16)は接地導体である。接地導体4b(15)は接地導体4b(14)と4b(16)を、また接地導体4c(15)は接地導体4c(14)と4c(16)を接続する接続用接地導体である。また、10bと10dは接地導体において高周波電気信号の強度が小さくなった部位であり、外周部と呼ぶ。8aと8bはリッジ部である。空隙部11aと11eは接地導体において導体が欠落した部位(あるいは、接地導体に開けた窓)とも言える。また、13aは空隙部11aを接地導体4b(15)で埋めた埋め込み部である。
(Fourth embodiment)
FIG. 12 shows a top view of the fourth embodiment of the present invention. Sectional views taken along lines JJ ′ and KK ′ are shown in FIGS. 13 and 14, respectively. Here, 11a, 11b, 11c, and 11e are gaps. Note that 4b (14) , 4b (15) , 4b (16) , 4c (14) , 4c (15) , and 4c (16) are ground conductors. The ground conductor 4b (15) is a ground conductor for connection that connects the ground conductors 4b (14) and 4b (16) , and the ground conductor 4c (15) is a ground conductor for connection that connects the ground conductors 4c (14) and 4c (16) . Reference numerals 10b and 10d are portions where the strength of the high-frequency electrical signal is reduced in the ground conductor, and are referred to as outer peripheral portions. 8a and 8b are ridge portions. It can be said that the air gap portions 11a and 11e are portions where the conductor is missing in the ground conductor (or windows opened in the ground conductor). Reference numeral 13a denotes a buried portion in which the gap portion 11a is filled with the ground conductor 4b (15) .

本実施形態において特徴的なことは、接続用接地導体である接地導体4b(15)と接地導体4c(15)の厚みが異なっていることである。つまり、接地導体4b(15)の厚みを接地導体4c(15)の厚みよりも厚くしている。これにより、接地導体4b(15)と接地導体4c(15)の両方の厚みを薄くするよりは高周波電気信号の表皮効果の影響を受けにくいという利点がある。なお、本実施形態では接地導体4b(15)の厚みを接地導体4c(15)の厚みよりも厚くしたが、逆に接地導体4c(15)の厚みを接地導体4b(15)の厚みよりも厚くしても良いことは言うまでもない。 What is characteristic in this embodiment is that the thicknesses of the ground conductor 4b (15) and the ground conductor 4c (15) , which are connection ground conductors, are different. That is, the thickness of the ground conductor 4b (15) is made larger than the thickness of the ground conductor 4c (15) . Thereby, there is an advantage that it is less susceptible to the skin effect of the high-frequency electrical signal than the thickness of both the ground conductor 4b (15) and the ground conductor 4c (15) is reduced. Although this embodiment was larger than the thickness of the ground conductor 4c and the thickness of the ground conductor 4b (15) (15), than the thickness of the reverse to ground thickness conductor 4b of the ground conductor 4c (15) (15) Needless to say, it may be thicker.

なお、空隙部11aの幅Wwと長さLwが、空隙部11eの幅Ww´と長さLw´と各々等しく、また接地導体4b(15)の長さLeと接地導体4c(15)の長さLe´も等しいとして図を描いているが、本発明はこれに限るものではない。さらに、空隙部11aや接地導体4b(15)の個数と空隙部11eや接地導体4c(15)の個数が各々異なっていても良い。そして、このことは本発明の全ての実施形態について言える。また、以上に述べた接地導体(接続用接地導体)や空隙部の長さや幅は相互作用光導波路3a、3bの長さ方向に対するものとする。なお、空隙部11aの幅Wwと、空隙部11eの幅Ww´は各々接続用接地導体4b(15)と接続用接地導体4c(15)の幅とも言える。 The width Ww and the length Lw of the gap 11a are equal to the width Ww ′ and the length Lw ′ of the gap 11e, respectively, and the length Le of the ground conductor 4b (15) and the length of the ground conductor 4c (15) . Although the figures are drawn assuming that the length Le ′ is also equal, the present invention is not limited to this. Further, the number of the gap portions 11a and the ground conductors 4b (15) may be different from the number of the gap portions 11e and the ground conductors 4c (15) . This is true for all embodiments of the present invention. The length and width of the ground conductor (connection ground conductor) and the gap described above are in the length direction of the interaction optical waveguides 3a and 3b. The width Ww of the gap 11a and the width Ww ′ of the gap 11e can be said to be the widths of the connection ground conductor 4b (15) and the connection ground conductor 4c (15) , respectively.

また、図1や図5に示した第1の実施形態や第2の実施形態と同様に、接続用接地導体である接地導体4b(15)と接地導体4c(15)を光導波路3aや3bの長手方向にずらしても良い。さらには、図8に示した第3の実施形態と同じく外周部の接地導体の厚みを薄くしても良いことは言うまでもない。 Similarly to the first and second embodiments shown in FIGS. 1 and 5, the ground conductor 4b (15) and the ground conductor 4c (15) , which are connection ground conductors, are connected to the optical waveguides 3a and 3b. It may be shifted in the longitudinal direction. Furthermore, it goes without saying that the thickness of the ground conductor on the outer peripheral portion may be reduced as in the third embodiment shown in FIG.

以上のように、本実施形態においても光導波路に関する構造を2本の光導波路の中間に設けた中心線Vについて対称とするとともに、進行波電極に関する基本的な構造を中心導体の中心線VIについて対称とすることにより、それらの対称性を有しない場合と比較して、環境温度変化に伴う温度ドリフトを抑圧し、かつ高周波電気信号のモードを安定させ、そして低損失に伝搬させている。   As described above, also in this embodiment, the structure related to the optical waveguide is symmetric about the center line V provided in the middle of the two optical waveguides, and the basic structure related to the traveling wave electrode is the center line VI of the center conductor. By making it symmetrical, compared with the case where there is no such symmetry, temperature drift due to environmental temperature changes is suppressed, and the mode of the high-frequency electric signal is stabilized and propagated with low loss.

(各実施形態)
なお、本明細書において、進行波電極が中心導体の中心線に対して左右対称であることが高周波電気信号の伝搬の観点から最も望ましいと述べてきたが、これは主要な構造についてのことである。つまり、図1、図5、図8において、接続用接地導体4b(5)と4c(5)、4b(8)と4c(8)、4b(11)と4c(11)が光導波路の長手方向において(図1、図5、図8の紙面では上下方向に)互いにずれているが、進行波電極の基本的な構造である中心導体4aや光導波路の長手方向に連続な接地導体(4b(4)と4c(4)、4b(6)と4c(6)、また4b(7)と4c(7)、4b(9)と4c(9)、そして4b(10)と4c(10)、4b(12)と4c(12))については中心導体4の中心軸に対して対称であるため、高周波電気信号にとってはほぼ左右対称な電極構造と感じる。なお、相互作用部の長手方向のぎりぎりまで空隙部11b、11cを形成しても良いことは言うまでもない。つまり、厳密には対称でない構造であっても主要な部位でほぼ対称であれば、それも本発明に属することは言うまでもない。
(Each embodiment)
In the present specification, it has been stated that the traveling wave electrode is symmetric with respect to the center line of the center conductor, which is most desirable from the viewpoint of propagation of a high-frequency electrical signal. is there. That is, in FIG. 1, FIG. 5, and FIG. 8, the connecting ground conductors 4b (5) and 4c (5) , 4b (8) and 4c (8) , 4b (11) and 4c (11) are the length of the optical waveguide. The center conductor 4a, which is the basic structure of the traveling wave electrode, and the ground conductor (4b) that is continuous in the longitudinal direction of the optical waveguide, are shifted from each other in the direction (up and down in the paper planes of FIGS. 1, 5, and 8). (4) and 4c (4) , 4b (6) and 4c (6) , 4b (7) and 4c (7) , 4b (9) and 4c (9) , and 4b (10) and 4c (10) 4b (12) and 4c (12) ) are symmetrical with respect to the central axis of the central conductor 4, so that the high-frequency electric signal feels an almost symmetrical electrode structure. Needless to say, the gaps 11b and 11c may be formed to the limit of the longitudinal direction of the interaction part. That is, it goes without saying that even if the structure is not strictly symmetrical, if it is almost symmetrical at the main part, it also belongs to the present invention.

そして、図12に示した本発明における第4の実施形態のように、中心線VIに対して対称な位置に接続用接地導体を配置した構造についても、接続用接地導体4b(15)と4c(15)が相互作用光導波路3a、3bの長手方向においてずれていても良い。 As in the fourth embodiment of the present invention shown in FIG. 12, the connection ground conductors 4b (15) and 4c are also provided in the structure in which the connection ground conductor is disposed at a position symmetrical to the center line VI. (15) may be shifted in the longitudinal direction of the interaction optical waveguides 3a and 3b.

分岐光導波路の例としてマッハツェンダ光導波路を用いたが、方向性結合器などその他の分岐合波型の光導波路にも本発明を適用可能であることは言うまでもなく、考え方は3本以上の光導波路にも適用可能であるし、光導波路が1本の位相変調器にも適用できる。なお、位相変調器の場合には、その1本の光導波路と進行波電極が中心導体の中心線に対して対称となる。また光導波路の形成法としてはTi熱拡散法の他に、プロトン交換法など光導波路の各種形成法を適用できるし、バッファ層としてAl等のSiO以外の各種材料も適用できる。 Although the Mach-Zehnder optical waveguide is used as an example of the branched optical waveguide, it goes without saying that the present invention can be applied to other branched / multiplexed optical waveguides such as directional couplers. The present invention is also applicable to a phase modulator having a single optical waveguide. In the case of the phase modulator, the one optical waveguide and the traveling wave electrode are symmetric with respect to the center line of the central conductor. As a method for forming the optical waveguide, various methods for forming the optical waveguide such as a proton exchange method can be applied in addition to the Ti thermal diffusion method, and various materials other than SiO 2 such as Al 2 O 3 can be applied as the buffer layer.

また、z−カットLN基板について説明したが、x−カットやy−カットなどその他の面方位のLN基板でも良いし、リチウムタンタレート基板、さらには半導体基板など異なる材料の基板でも良い。さらに、電極は進行波電極として説明してきたが、原理的には集中定数電極でも良いので、本明細書における進行波電極は集中定数電極も含むものとする。   Further, although the z-cut LN substrate has been described, an LN substrate having other plane orientation such as x-cut and y-cut may be used, or a lithium tantalate substrate or a substrate made of a different material such as a semiconductor substrate may be used. Furthermore, although the electrode has been described as a traveling wave electrode, in principle, a lumped constant electrode may be used. Therefore, the traveling wave electrode in this specification includes a lumped constant electrode.

また、通常、各凹部は同じ程度の幅で形成するが、外周部に近い凹部が極めて広くなるように(外周部が凹部の底部とほぼ同じ高さとなるように)エッチングしている場合には、その広くエッチングされた部分を事実上の外周部と考え、本発明を適用することが可能である。   Usually, each recess is formed with the same width, but when etching is performed so that the recess close to the outer periphery becomes very wide (the outer periphery is almost the same height as the bottom of the recess). It is possible to apply the present invention by considering the widely etched portion as the actual outer peripheral portion.

以上のように、本発明に係る光変調器は、高性能なリッジ型の光変調器において、基板に設ける凹部や光導波路に関する構造を2本の光導波路の中間に設けた中心線に対称とすることにより温度ドリフト特性を改善し、進行波電極の基本的な構造について、中心導体の中心線に対して構造対称とすることにより高周波電気信号の伝搬特性を改善し、かつ外周部のAuの厚みを薄くすることにより温度ドリフト特性のさらなる改善と、コストの低減を実現した光変調器として有用である。   As described above, in the optical modulator according to the present invention, in the high-performance ridge type optical modulator, the structure related to the recess and the optical waveguide provided in the substrate is symmetrical with respect to the center line provided in the middle of the two optical waveguides. To improve the temperature drift characteristics, improve the propagation characteristics of the high-frequency electrical signal by making the basic structure of the traveling wave electrode symmetrical with respect to the center line of the central conductor, and It is useful as an optical modulator that realizes further improvement in temperature drift characteristics and reduction in cost by reducing the thickness.

本発明の第1の実施形態に係わる光変調器の概略構成を示す上面図1 is a top view showing a schematic configuration of an optical modulator according to a first embodiment of the present invention. 図1のD−D´における断面図Sectional drawing in DD 'of FIG. 図1のE−E´における断面図Sectional view taken along line EE ′ of FIG. 本発明の第1の実施形態の特性を説明する図The figure explaining the characteristic of the 1st Embodiment of this invention 本発明の第2の実施形態に係わる光変調器の概略構成を示す上面図FIG. 5 is a top view showing a schematic configuration of an optical modulator according to a second embodiment of the present invention. 図5のF−F´における断面図Sectional drawing in FF 'of FIG. 図5のG−G´における断面図Sectional drawing in GG 'of FIG. 本発明の第3の実施形態に係わる光変調器の概略構成を示す上面図FIG. 6 is a top view showing a schematic configuration of an optical modulator according to a third embodiment of the present invention. 図8のH−H´における断面図Sectional drawing in HH 'of FIG. 図8のI−I´における断面図Sectional view taken along line II ′ of FIG. 本発明の第3の実施形態の特性を説明する図The figure explaining the characteristic of the 3rd Embodiment of this invention 本発明の第4の実施形態に係わる光変調器の概略構成を示す上面図The top view which shows schematic structure of the optical modulator concerning the 4th Embodiment of this invention. 図12のJ−J´における断面図Sectional drawing in JJ 'of FIG. 図12のK−K´における断面図Sectional drawing in KK 'of FIG. 第1の従来技術の光変調器についての概略構成を示す斜視図The perspective view which shows schematic structure about the optical modulator of 1st prior art 図15のA−A´における断面図Sectional view in AA 'of FIG. 第2の従来技術の光変調器についての概略構成を示す断面図Sectional drawing which shows schematic structure about the optical modulator of 2nd prior art 第3の従来技術の光変調器についての概略構成を示す上面図3 is a top view showing a schematic configuration of a third conventional optical modulator. FIG. 図18のB−B´における断面図Sectional view taken along the line BB 'in FIG. 図18のC−C´における断面図Sectional view along CC 'in FIG.

符号の説明Explanation of symbols

1:z−カットLN基板(LN基板)
2、14、15:SiOバッファ層(バッファ層)
3:マッハツェンダ光導波路(光導波路)
3a、3b:マッハツェンダ光導波路を構成する相互作用光導波路
4:進行波電極
4a:中心導体
4b、4b´、4b´´、4b´´´、4b(4)、4b(5)、4b(6)、4b(7)、4b(8)、4b(9)、4b(10)、4b(11)、4b(12)、4b(13)、4b(14)、4b(15)、4b(16)、4c、4c(4)、4c(5)、4c(6)、4c(7)、4c(8)、4c(9)、4c(10)、4c(11)、4c(12)、4c(13)、4c(14)、4c(15)、4c(16):接地導体
5:Si導電層
6:高周波(RF)電気信号給電線
7:高周波(RF)電気信号出力線
8a:リッジ部(中心導体用リッジ部)
8b、8c:リッジ部(接地導体用リッジ部)
9a、9b、9c、9d:凹部
10a、10b、10c、10d:外周部
11a、11b、11c、11d、11e、11f:空隙部(導体が欠落した部位)
13a:埋め込み部
1: z-cut LN substrate (LN substrate)
2, 14, 15: SiO 2 buffer layer (buffer layer)
3: Mach-Zehnder optical waveguide (optical waveguide)
3a, 3b: interaction optical waveguide constituting Mach-Zehnder optical waveguide 4: traveling wave electrode 4a: central conductor 4b, 4b ′, 4b ″, 4b ″, 4b (4) , 4b (5) , 4b (6 ) , 4b (7) , 4b (8) , 4b (9) , 4b (10) , 4b (11) , 4b (12) , 4b (13) , 4b (14) , 4b (15) , 4b (16 ) ) , 4c, 4c (4) , 4c (5) , 4c (6) , 4c (7) , 4c (8) , 4c (9) , 4c (10) , 4c (11) , 4c (12) , 4c (13) , 4c (14) , 4c (15) , 4c (16) : Ground conductor 5: Si conductive layer 6: High frequency (RF) electric signal feeder 7: High frequency (RF) electric signal output line 8a: Ridge portion (Ridge for central conductor)
8b, 8c: Ridge portion (ridge portion for grounding conductor)
9a, 9b, 9c, 9d: recessed portions 10a, 10b, 10c, 10d: outer peripheral portions 11a, 11b, 11c, 11d, 11e, 11f: void portions (portions where conductors are missing)
13a: embedded part

Claims (8)

電気光学効果を有する基板と、前記基板に形成された2本の光導波路と、前記基板の上に形成されたバッファ層と、該バッファ層の上方に配置された中心導体と接地導体からなる進行波電極と、前記進行波電極を伝搬する高周波電気信号の電界強度が強い領域における前記基板の少なくとも一部を掘り下げることにより形成した凹部により構成されるリッジ部とを具備し、該リッジ部は前記中心導体が上方に形成された中心導体用リッジ部と、前記接地導体が上方に形成された接地導体用リッジ部からなり、前記中心導体用リッジ部に前記2本の光導波路のうちの1本が形成され、前記接地導体用リッジ部にもう1本の光導波路が形成されている光変調器において、
前記凹部は第1、第2及び第3の凹部でなり、前記第1の凹部の中心線に対して対称な位置に前記第2及び第3の凹部が形成されており、前記第1の凹部と前記第2の凹部との間に前記中心導体用リッジ部が形成され、前記第1の凹部と前記第3の凹部との間に前記接地導体用リッジ部が形成されており、
前記第1の凹部及び前記第2の凹部の上方には前記接地導体が形成されておらず、
前記第3の凹部の上方には、前記接地導体が形成された部分と形成されていない部分とが、第1の接続用接地導体と第1の空隙部として光導波路方向に交互に形成されており、
前記第2の凹部に隣接する前記中心導体用リッジ部でない側の基板上に形成された接地導体には、前記中心導体の中心線に対して前記第3の凹部と対称となる位置に、前記接地導体が形成された部分と形成されていない部分とが、第2の接続用接地導体と第2の空隙部として前記光導波路の方向に交互に形成されており、
前記接地導体の前記第1の空隙部と前記第2の空隙部の少なくとも一部について前記光導波路の方向における位置、長さ、もしくは幅の少なくとも1つが異なって形成されていることを特徴とする光変調器。
Progression comprising a substrate having an electro-optic effect, two optical waveguides formed on the substrate, a buffer layer formed on the substrate, a central conductor disposed above the buffer layer, and a ground conductor A wave electrode, and a ridge portion formed by a recess formed by digging at least part of the substrate in a region where the electric field strength of the high-frequency electric signal propagating through the traveling wave electrode is strong, A center conductor ridge portion formed above the center conductor and a ground conductor ridge portion formed above the ground conductor, and one of the two optical waveguides on the center conductor ridge portion. In the optical modulator in which another optical waveguide is formed in the ridge portion for the ground conductor,
The concave portion includes first, second, and third concave portions, and the second concave portion and the third concave portion are formed at symmetrical positions with respect to the center line of the first concave portion, and the first concave portion is formed. The center conductor ridge portion is formed between the first recess and the second recess, and the ground conductor ridge portion is formed between the first recess and the third recess,
The ground conductor is not formed above the first recess and the second recess,
Above the third recess, a portion where the ground conductor is formed and a portion where the ground conductor is not formed are alternately formed in the direction of the optical waveguide as the first connection ground conductor and the first gap portion. And
The grounding conductor formed on the substrate on the side that is not the ridge portion for the central conductor adjacent to the second concave portion has a position that is symmetrical to the third concave portion with respect to the center line of the central conductor. The portion where the ground conductor is formed and the portion where the ground conductor is not formed are alternately formed in the direction of the optical waveguide as the second connection ground conductor and the second gap portion,
At least one of the position, the length, or the width in the direction of the optical waveguide is formed differently for at least a part of the first gap and the second gap of the ground conductor. Light modulator.
電気光学効果を有する基板と、前記基板に形成された2本の光導波路と、前記基板の上に形成されたバッファ層と、該バッファ層の上方に配置された中心導体と接地導体からなる進行波電極と、前記進行波電極を伝搬する高周波電気信号の電界強度が強い領域における前記基板の少なくとも一部を掘り下げることにより形成した凹部により構成されるリッジ部とを具備し、該リッジ部は前記中心導体が上方に形成された中心導体用リッジ部と、前記接地導体が上方に形成された接地導体用リッジ部からなり、前記中心導体用リッジ部に前記2本の光導波路のうちの1本が形成され、前記接地導体用リッジ部にもう1本の光導波路が形成されている光変調器において、
前記凹部は第1、第2及び第3の凹部でなり、前記第1の凹部の中心線に対して対称な位置に前記第2及び第3の凹部が形成されており、前記第1の凹部と前記第2の凹部との間に前記中心導体用リッジ部が形成され、前記第1の凹部と前記第3の凹部との間に前記接地導体用リッジ部が形成されており、
前記第1の凹部及び前記第2の凹部の上方には前記接地導体が形成されておらず、
前記第3の凹部の上方には、前記接地導体が形成された部分と形成されていない部分とが、第1の接続用接地導体と第1の空隙部として光導波路方向に交互に形成されており、
前記第2の凹部に隣接する前記中心導体用リッジ部でない側の基板上に形成された接地導体には、前記中心導体の中心線に対して前記第3の凹部と対称となる位置に、前記接地導体が形成された部分と形成されていない部分とが、第2の接続用接地導体と第2の空隙部として前記光導波路の方向に交互に形成されており、
前記第1の接続用接地導体と前記第2の接続用接地導体の少なくとも一部について前記光導波路の方向における位置、長さ、幅、もしくは厚みの少なくとも1つが異なって形成されていることを特徴とする光変調器。
Progression comprising a substrate having an electro-optic effect, two optical waveguides formed on the substrate, a buffer layer formed on the substrate, a central conductor disposed above the buffer layer, and a ground conductor A wave electrode, and a ridge portion formed by a recess formed by digging at least part of the substrate in a region where the electric field strength of the high-frequency electric signal propagating through the traveling wave electrode is strong, A center conductor ridge portion formed above the center conductor and a ground conductor ridge portion formed above the ground conductor, and one of the two optical waveguides on the center conductor ridge portion. In the optical modulator in which another optical waveguide is formed in the ridge portion for the ground conductor,
The concave portion includes first, second, and third concave portions, and the second concave portion and the third concave portion are formed at symmetrical positions with respect to the center line of the first concave portion, and the first concave portion is formed. The center conductor ridge portion is formed between the first recess and the second recess, and the ground conductor ridge portion is formed between the first recess and the third recess,
The ground conductor is not formed above the first recess and the second recess,
Above the third recess, a portion where the ground conductor is formed and a portion where the ground conductor is not formed are alternately formed in the direction of the optical waveguide as the first connection ground conductor and the first gap portion. And
The grounding conductor formed on the substrate on the side that is not the ridge portion for the central conductor adjacent to the second concave portion has a position that is symmetrical to the third concave portion with respect to the center line of the central conductor. The portion where the ground conductor is formed and the portion where the ground conductor is not formed are alternately formed in the direction of the optical waveguide as the second connection ground conductor and the second gap portion,
At least one of the first connecting ground conductor and the second connecting ground conductor is formed so that at least one of the position, length, width, or thickness in the direction of the optical waveguide is different. An optical modulator.
前記第1の接続用接地導体または前記第2の接続用接地導体が、前記中心導体もしくは前記接地導体の少なくとも一部とほぼ同じ厚みを持つことを特徴とする請求項1もしくは請求項2に記載の光変調器。   3. The first connection ground conductor or the second connection ground conductor has substantially the same thickness as at least a part of the center conductor or the ground conductor. Light modulator. 前記第1の接続用接地導体または前記第2の接続用接地導体が、前記中心導体の厚みよりも薄いことを特徴とする請求項1もしくは請求項2に記載の光変調器。   3. The optical modulator according to claim 1, wherein the first connection ground conductor or the second connection ground conductor is thinner than a thickness of the center conductor. 4. 前記第3の凹部に隣接する前記接地導体用リッジ部でない側の基板上に形成された接地導体の、前記高周波電気信号の電磁界が小さくなった領域である前記第3の凹部から所定距離離れた領域における厚みを、当該領域以外の領域における接地導体の厚みよりも薄く構成したことを特徴とする請求項1乃至請求項4の何れか1項に記載の光変調器。   A predetermined distance away from the third recess, which is a region where the electromagnetic field of the high-frequency electrical signal is reduced, on a ground conductor formed on the substrate that is not adjacent to the ridge portion for the ground conductor adjacent to the third recess. 5. The optical modulator according to claim 1, wherein a thickness in the region is smaller than a thickness of the ground conductor in a region other than the region. 前記第2の凹部に隣接する前記中心導体用リッジ部でない側の基板上に形成された接地導体の、前記高周波電気信号の電磁界が小さくなった領域である前記第2の凹部から所定距離離れた領域における厚みを、当該領域以外の領域における接地導体の厚みよりも薄く構成したことを特徴とする請求項1乃至請求項5の何れか1項に記載の光変調器。   A ground conductor formed on a substrate adjacent to the second recess and not the ridge portion for the central conductor is separated from the second recess, which is a region where the electromagnetic field of the high-frequency electric signal is reduced, by a predetermined distance. 6. The optical modulator according to claim 1, wherein a thickness in the region is smaller than a thickness of the ground conductor in a region other than the region. 前記基板がリチウムナイオベートからなることを特徴とする請求項1乃至請求項6の何れか1項に記載の光変調器。   The optical modulator according to any one of claims 1 to 6, wherein the substrate is made of lithium niobate. 前記基板が半導体からなることを特徴とする請求項1乃至請求項6の何れか1項に記載の光変調器。   The optical modulator according to any one of claims 1 to 6, wherein the substrate is made of a semiconductor.
JP2008213936A 2007-09-19 2008-08-22 Light modulator Expired - Fee Related JP5033084B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008213936A JP5033084B2 (en) 2008-08-22 2008-08-22 Light modulator
US12/678,534 US8170381B2 (en) 2007-09-19 2008-09-19 Optical modulator
PCT/JP2008/002589 WO2009037849A1 (en) 2007-09-19 2008-09-19 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008213936A JP5033084B2 (en) 2008-08-22 2008-08-22 Light modulator

Publications (2)

Publication Number Publication Date
JP2010049073A JP2010049073A (en) 2010-03-04
JP5033084B2 true JP5033084B2 (en) 2012-09-26

Family

ID=42066195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008213936A Expired - Fee Related JP5033084B2 (en) 2007-09-19 2008-08-22 Light modulator

Country Status (1)

Country Link
JP (1) JP5033084B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116953850B (en) * 2023-09-19 2024-01-19 济南量子技术研究院 Lithium niobate thin film waveguide device and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2728150B2 (en) * 1991-03-18 1998-03-18 日本電信電話株式会社 Light modulation element
JPH1090638A (en) * 1996-09-13 1998-04-10 Nippon Telegr & Teleph Corp <Ntt> Optical control element
JP3640390B2 (en) * 2002-09-12 2005-04-20 住友大阪セメント株式会社 Light modulator
JP4713866B2 (en) * 2004-09-14 2011-06-29 富士通オプティカルコンポーネンツ株式会社 Optical device

Also Published As

Publication number Publication date
JP2010049073A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP4151798B2 (en) Light modulator
JP5113102B2 (en) Light modulation device
US20100310206A1 (en) Optical modulator
JP5010559B2 (en) Light modulator
JP5162207B2 (en) Light modulator
JP4671993B2 (en) Light modulator
JP2007079249A (en) Optical modulator
JP5145402B2 (en) Light modulator
US8170381B2 (en) Optical modulator
JP5033084B2 (en) Light modulator
JP4170376B1 (en) Light modulator
JP5033083B2 (en) Light modulator
JP5025600B2 (en) Light modulator
JP5162196B2 (en) Light modulator
JP5075055B2 (en) Light modulator
JP4754608B2 (en) Light modulator
JP5010408B2 (en) Light modulator
JP2014153537A (en) Optical modulator
JP5162223B2 (en) Light modulator
JP4922086B2 (en) Light modulator
JP5145403B2 (en) Light modulator
JP5124382B2 (en) Light modulator
JP4149490B2 (en) Light modulator
JP2009015118A (en) Optical modulator
JP2011191346A (en) Optical modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees