JPH0659223A - Waveguide type optical modulator - Google Patents

Waveguide type optical modulator

Info

Publication number
JPH0659223A
JPH0659223A JP4229348A JP22934892A JPH0659223A JP H0659223 A JPH0659223 A JP H0659223A JP 4229348 A JP4229348 A JP 4229348A JP 22934892 A JP22934892 A JP 22934892A JP H0659223 A JPH0659223 A JP H0659223A
Authority
JP
Japan
Prior art keywords
waveguide
layer
electrode
refractive index
optical modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4229348A
Other languages
Japanese (ja)
Other versions
JP2805027B2 (en
Inventor
Yoshito Shudo
義人 首藤
Makoto Hikita
真 疋田
Michiyuki Amano
道之 天野
Haruki Ozawaguchi
治樹 小沢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4229348A priority Critical patent/JP2805027B2/en
Publication of JPH0659223A publication Critical patent/JPH0659223A/en
Application granted granted Critical
Publication of JP2805027B2 publication Critical patent/JP2805027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/061Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material
    • G02F1/065Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To provide the waveguide type optical modulator which exhibits a wide operation band of >=100GHz at a low loss by using an org. high-polymer material as the optical modulator which has a single mode waveguide structure effective for improvement of modulation efficiency and is optimized in electrode structure so as to attain the speed matching of microwaves and light. CONSTITUTION:The film thickness of the waveguide layer 9 is specified to 4 to 6mum, the film thickness combining the film thicknesses of the waveguide layer 9 and upper and lower clad layers 8, 10 to 10 to 25mum and the difference in the specific refractive index between the waveguide layer 9 and the clad layers 8, 10 in contact therewith to 0.4 to 1.0%. This optical modulator has boundary layers 7, 11 having the refractive index smaller than the refractive index of the lower clad layer 8 and the upper clad layer 10 and >=2% difference in the specific refractive index between the clad layers 8 and 10 in the part in contact with the lower grounding electrode 6 of the lower clad layer 8 and the microstrip electrode 12 of the upper clad layer 10. The width of the upper microstrip electrode 12 is set at about twice the film thickness combining the film thicknesses of the waveguide 9 and the upper and lower clad layers 8, 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気光学効果を応用する
導波路型光変調器に関し、特に動作速度が速い光変調器
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide type optical modulator applying the electro-optic effect, and more particularly to an optical modulator having a high operating speed.

【0002】[0002]

【従来の技術】電気光学効果は、光学媒体に電界を印加
した場合に、この媒体の屈折率が変化する現象であり、
二次の光非線形性に起因する線形電気光学効果(ポッケ
ルス効果)と、三次の光非線形性に起因する二次電気光
学効果(カー効果)とがある。実用的には、二次の非線
形定数の方が三次の非線形定数に比べて数桁も大きいた
め、二次の非線形性を利用した電気光学効果が多く用い
られている。この効果を利用した導波路型光変調器は光
集積回路に組み入れられ、半導体レーザなどの高速外部
変調に応用できるため、動作速度の速い(変調帯域の広
い)光変調器が強く求められている。この種の外部変調
器としては、光強度変調器、光位相変調器等がある。
The electro-optic effect is a phenomenon in which the refractive index of an optical medium changes when an electric field is applied to the medium.
There are a linear electro-optic effect (Pockels effect) caused by the second-order optical nonlinearity and a second-order electro-optic effect (Kerr effect) caused by the third-order optical nonlinearity. Practically, since the second-order nonlinear constant is several orders of magnitude larger than the third-order nonlinear constant, the electro-optic effect utilizing the second-order nonlinearity is often used. A waveguide type optical modulator utilizing this effect is incorporated in an optical integrated circuit and can be applied to high-speed external modulation of a semiconductor laser or the like. Therefore, an optical modulator having a high operation speed (wide modulation band) is strongly demanded. . Examples of this type of external modulator include a light intensity modulator and an optical phase modulator.

【0003】従来の外部変調器の例として、図11にそ
の斜視図を示す無機強誘電性結晶LiNbO3(LN)
を用いた光強度変調器(文献:井筒ら、電子通信学会論
文誌、J64-C巻、4号、264頁、1981年)がある。ここ
で、変調用電極1はAuもしくはCuなどの金属層から
なる進行波電極であり、対称もしくは非対称平面ストリ
ップ線路が使用されている。光導波路部分2は、適当な
方位で切り出されたLN結晶3に、Tiイオンなどを内
部拡散させて屈折率を増加させた部分である。入射光は
入口付近のY分岐で2つのポートに分岐され、片方のポ
ートを伝搬する光は電極1により印加されるマイクロ波
と相互作用して位相変化を起こす。この位相変化を生じ
た光波は他のポートを伝搬してきた(位相変化のない)
光波と出口付近のY分岐で合流し、重ね合わせられた光
波は位相変化に起因する強度変化を引き起こす。
As an example of a conventional external modulator, an inorganic ferroelectric crystal LiNbO 3 (LN) whose perspective view is shown in FIG. 11 is shown.
(Reference: Izutsu et al., Transactions of the Institute of Electronics and Communication Engineers, Volume J64-C, No. 4, 264, 1981). Here, the modulation electrode 1 is a traveling wave electrode made of a metal layer such as Au or Cu, and a symmetrical or asymmetrical flat strip line is used. The optical waveguide portion 2 is a portion in which Ti ions and the like are internally diffused in the LN crystal 3 cut out in an appropriate orientation to increase the refractive index. The incident light is branched into two ports by a Y branch near the entrance, and the light propagating through one port interacts with the microwave applied by the electrode 1 to cause a phase change. The light wave that caused this phase change propagated through another port (no phase change)
The light waves that merge with the light wave at the Y-branch near the exit and are superposed cause a change in intensity due to a phase change.

【0004】この光変調器の場合、電極1は進行波電極
として構成されているため、理想的には電気回路的な帯
域幅の制限はない。また、電極1を伝搬するマイクロ波
と光波の伝搬速度が一致する限りは、入射光が光導波路
2を走行する時間の影響による帯域幅の制限もないの
で、一般に高速動作の光変調器に使用される。
In the case of this optical modulator, since the electrode 1 is constructed as a traveling wave electrode, ideally, there is no limitation on the bandwidth of an electric circuit. Further, as long as the propagation speeds of the microwave propagating through the electrode 1 and the light wave are the same, there is no limitation on the bandwidth due to the influence of the time during which the incident light travels through the optical waveguide 2. To be done.

【0005】しかし、実際にはマイクロ波と光の速度差
があり、これによって帯域幅が制限される。マイクロ波
と光に対するLN結晶の等価屈折率をそれぞれnm
o、導波路上の電極の長さをlと表すと、この速度差
によって生じる帯域幅BWは、
In reality, however, there is a speed difference between the microwave and light, which limits the bandwidth. The equivalent refractive index of the LN crystal for microwave and light is n m ,
Assuming that n o is the length of the electrode on the waveguide and l is the bandwidth BW caused by this velocity difference,

【0006】 BW=1.4c/(πl|nm−no|) (1) ただし、cは光速BW = 1.4c / (πl | n m −n o |) (1) where c is the speed of light

【0007】となる。ここでnoは1.3μm帯で約
2.3であり、nmは近似的に次式で見積ることができ
約4.2である。
[0007] Here, n o is approximately 2.3 in the 1.3 μm band, and nm can be approximately estimated by the following equation and is approximately 4.2.

【0008】 nm=[(1+εg)/2]1/2 (2) ただし、εgは導波路を構成する結晶の誘電率Nm = [(1 + ε g ) / 2] 1/2 (2) where ε g is the dielectric constant of the crystal forming the waveguide.

【0009】このように従来の光変調器では導波路を構
成する結晶自体の誘電率(約34)が大きいために、マ
イクロ波の等価屈折率が結晶の屈折率を大きく上回り、
マイクロ波と光波の位相速度差による帯域制限を受け
る。また、この速度不整合を改善するには、(1)式か
らわかるように、マイクロ波と光波の相互作用長(電極
長)lを短くする必要がある。しかし、電極長lを短く
すると、駆動電圧が大きくなるため変調効率が低下する
という欠点を有していた。
As described above, in the conventional optical modulator, since the dielectric constant (about 34) of the crystal itself that constitutes the waveguide is large, the equivalent refractive index of the microwave greatly exceeds the refractive index of the crystal,
Bandwidth is limited by the phase velocity difference between microwaves and light waves. Further, in order to improve this velocity mismatch, it is necessary to shorten the interaction length (electrode length) l of the microwave and the light wave, as can be seen from the equation (1). However, when the electrode length 1 is shortened, the driving voltage increases, and the modulation efficiency decreases.

【0010】これに対し、有機高分子材料からなる非線
形光学材料は、誘電率が無機材料に比べて小さく、上記
の速度不整合の問題を大幅に改善できる見込みがある上
に、薄膜化などの加工性に富み、しかも広い波長域で二
次の非線形光学系数χ(2)が大きいなど、高性能な光変
調器用材料として期待されている。
On the other hand, a nonlinear optical material made of an organic polymer material has a dielectric constant smaller than that of an inorganic material, and it is expected that the above-mentioned problem of speed mismatch can be remarkably improved. It is expected to be a high-performance optical modulator material because it is highly workable and has a large second-order nonlinear optical system χ (2) in a wide wavelength range.

【0011】[0011]

【発明が解決しようとする課題】上述のように、光変調
器用材料として有機高分子材料は種々の利点を有する
が、現実には変調効率の向上に有効な単一モード導波路
構造を有し、マイクロ波と光の速度整合が達成されるよ
うに電極構造を最適化した光変調器について、有機高分
子材料を用いた低損失で100GHz以上の広い動作帯
域を示す導波路型光変調器は報告されていない。
As described above, the organic polymer material has various advantages as a material for an optical modulator, but in reality, it has a single mode waveguide structure effective for improving the modulation efficiency. As for the optical modulator with the electrode structure optimized so that the velocity matching between microwave and light is achieved, a waveguide type optical modulator using an organic polymer material and exhibiting a wide operating band of 100 GHz or more is used. Not reported.

【0012】本発明はこのような背景の下になされたも
のであり、その目的は現状の光変調器が抱える上記の問
題点を解決し、低損失で高速の光変調器を提供すること
にある。
The present invention has been made under such a background, and an object thereof is to solve the above problems of the existing optical modulator and to provide a low loss and high speed optical modulator. is there.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するた
め、本発明による導波路型光変調器は、酸化シリコン膜
を上部に形成したシリコン基板上に、金属からなる下部
接地電極を配し、この上に二次光非線形感受率の大きな
物質が溶解している、もしくは結合している高分子を分
極処理した材料からなるチャネル導波路層と、この導波
路層の左右および上下に、導波路層よりも低屈折率なク
ラッド層を配し、該上部クラッド層の上に金属からなる
マイクロストリップ電極を配した構造をとる光変調器に
おいて、該導波路層の膜厚を4〜6μm、該導波路と上
下のクラッド層を併せた膜厚を10〜25μmとし、該
導波路層とそれに接するクラッド層の比屈折率差を0.
4%〜1.0%とし、下部クラッド層の下部接地電極に
接する部分および上部クラッド層のマイクロストリップ
電極に接する部分に、下部クラッド層および上部クラッ
ド層よりも屈折率が小さく、該クラッド層との比屈折率
差が2%以上である境界層を有し、上部のマイクロスト
リップ電極の幅を該導波路層と上下のクラッド層を併せ
た膜厚の約2倍にすることを特徴とする。
In order to solve the above problems, in a waveguide type optical modulator according to the present invention, a lower ground electrode made of metal is arranged on a silicon substrate on which a silicon oxide film is formed, A channel waveguide layer made of a material in which a polymer having a high second-order nonlinear susceptibility dissolved or bound thereto is polarized, and the waveguides are formed on the left, right, top, and bottom of the waveguide layer. In a light modulator having a structure in which a clad layer having a lower refractive index than the layer is arranged, and a microstrip electrode made of metal is arranged on the upper clad layer, the waveguide layer has a thickness of 4 to 6 μm. The total thickness of the waveguide and the upper and lower clad layers is 10 to 25 μm, and the relative refractive index difference between the waveguide layer and the clad layer in contact with the waveguide layer is 0.
4% to 1.0%, and the refractive index is smaller than that of the lower clad layer and the upper clad layer at the portion of the lower clad layer that contacts the lower ground electrode and the portion of the upper clad layer that contacts the microstrip electrode. Is characterized in that it has a boundary layer having a relative refractive index difference of 2% or more, and the width of the upper microstrip electrode is approximately twice as large as the total thickness of the waveguide layer and the upper and lower cladding layers. .

【0014】さらに、本発明は酸化シリコン膜を上部に
形成したシリコン基板上に、金属からなる下部接地電極
を配し、この上に二次光非線形感受率の大きな物質が溶
解している、もしくは結合している高分子を分極処理し
た材料からなるチャネル導波路層と、この導波路層の左
右および上下に、導波路層よりも低屈折率なクラッド層
を配し、該上部クラッド層の上に金属からなるマイクロ
ストリップ電極を配した構造をとる導波路型光変調器に
おいて、該導波路の膜厚を2μm以下、該導波路層と上
下のクラッド層を併せた膜厚を10μm以下とし、該導
波路層と左右のクラッド層の比屈折率差を0.2%〜
0.5%、該導波路層と上下のクラッド層の比屈折率差
を2%以上とし、上部のマイクロストリップ電極の幅を
該導波路層と上下のクラッド層を併せた膜厚の約2倍に
することを特徴とする。
Further, according to the present invention, a lower ground electrode made of metal is arranged on a silicon substrate having a silicon oxide film formed thereon, and a substance having a large second-order optical non-linear susceptibility is dissolved on the lower ground electrode. A channel waveguide layer made of a material obtained by subjecting a coupled polymer to polarization treatment, and clad layers having a refractive index lower than that of the waveguide layer are arranged on the left, right, top and bottom of the waveguide layer. In a waveguide type optical modulator having a structure in which a microstrip electrode made of a metal is disposed, the film thickness of the waveguide is 2 μm or less, and the film thickness of the waveguide layer and upper and lower clad layers is 10 μm or less, The relative refractive index difference between the waveguide layer and the left and right cladding layers is 0.2% to
0.5%, the relative refractive index difference between the waveguide layer and the upper and lower clad layers is 2% or more, and the width of the upper microstrip electrode is about 2 of the film thickness of the waveguide layer and the upper and lower clad layers combined. It is characterized by doubling.

【0015】本発明においては、最上部に金属からなる
マイクロストリップ電極を配した構造をとる光変調器に
おいて、一次電気光学効果を示す有機高分子材料をコア
層材料に用い、周囲のクラッド層材料との比屈折率差を
最適化して単一モード導波路とし、かつ、上下の電極間
隔を狭くして低電圧で駆動させることを特徴とする。さ
らに、最上部のマイクロストリップ電極の幅と、同軸ケ
ーブルからマイクロストリップ電極への接続部(フィー
ルドスルー部)の構成を最適化して広帯域で変調動作を
行なうことを特徴とする。
In the present invention, in an optical modulator having a structure in which a microstrip electrode made of metal is arranged on the uppermost part, an organic polymer material exhibiting a primary electro-optical effect is used as a core layer material, and a surrounding clad layer material. Is characterized by optimizing the relative refractive index difference between and to form a single-mode waveguide, and narrowing the gap between the upper and lower electrodes to drive at a low voltage. Furthermore, the width of the uppermost microstrip electrode and the configuration of the connection portion (field through portion) from the coaxial cable to the microstrip electrode are optimized to perform a wide band modulation operation.

【0016】従来の技術とは、大きな一次電気光学効果
を示す有機高分子材料からなり、変調効率の向上に有効
な単一モード導波路構造を有している点と、マイクロ波
と光の速度整合が達成されるようにマイクロストリップ
電極構造を最適化した点が異なる。
The prior art is composed of an organic polymer material exhibiting a large first-order electro-optical effect and has a single mode waveguide structure effective for improving the modulation efficiency, and the speed of microwave and light. The difference is that the microstrip electrode structure has been optimized to achieve matching.

【0017】[0017]

【作用】本発明のマイクロストリップ電極を配した構造
をとる光変調器では、図11に記載したような従来の対
称もしくは非対称のコブラナー電極を有する光変調器に
比べて、変調用電気信号の電界と導波光との重なりが大
きいため、駆動電圧の低減化が容易である。また、本発
明の光変調器では、一次電気光学効果を示す有機高分子
材料をコア層材料に用い、周囲のクラッド層材料との比
屈折率差を最適化して単一モード導波路としている。こ
のため上下の電極間隔を狭くしても、電極を構成する金
属による光損失を実用上問題にならない範囲に抑えるこ
とが可能となり、本発明の目的である低電圧駆動を行な
うことができるようになる。
In the optical modulator having the structure in which the microstrip electrodes of the present invention are arranged, the electric field of the electric signal for modulation is different from that of the conventional optical modulator having the symmetrical or asymmetrical co-branner electrode as shown in FIG. Since there is a large overlap with the guided light, it is easy to reduce the drive voltage. Further, in the optical modulator of the present invention, the organic polymer material exhibiting the primary electro-optical effect is used as the core layer material, and the relative refractive index difference with the surrounding clad layer material is optimized to form a single mode waveguide. Therefore, even if the distance between the upper and lower electrodes is narrowed, it is possible to suppress the optical loss due to the metal forming the electrodes to a range that does not pose a practical problem, so that the low voltage driving which is the object of the present invention can be performed. Become.

【0018】本発明の一つの光変調器では、該有機高分
子からなる導波路の膜厚を、細径(5μm径)偏波保持
ファイバとのモードマッチングが最適となる4〜6μm
とし、該導波路と上下のクラッド層を併せた膜厚を、駆
動電圧を低減するために10〜25μmに抑えている。
図1は単一モード条件を満たす方形光導波路の寸法d
と、導波路とそれに接するクラッド層の比屈折率差Δn
との関係を、等価屈折率法で計算した結果である。図1
からわかるように、導波路の膜厚が4〜6μmの場合に
は、Δnを0.4%〜1.0%とすれば1.3μmおよ
び1.55μmにおいて単一モード導波路となる。一
方、電極による光損失増加を防ぐには、下部クラッド層
の下部接地電極に接する部分および上部クラッド層のマ
イクロストリップ電極に接する部分に、下部クラッド層
および上部クラッド層よりも屈折率が小さく、該クラッ
ド層との比屈折率差が大きな境界層を設ければよい。詳
細な電磁界解析の結果、この比屈折率差を2%以上にす
れば金属電極による伝搬損失を0.1dB/cm以下に
抑えることができることがわかった。
In one optical modulator of the present invention, the thickness of the waveguide made of the organic polymer is 4 to 6 μm, which is optimal for mode matching with a polarization maintaining fiber having a small diameter (5 μm diameter).
In order to reduce the drive voltage, the total thickness of the waveguide and the upper and lower clad layers is suppressed to 10 to 25 μm.
FIG. 1 shows the dimension d of a rectangular optical waveguide that satisfies the single mode condition.
And the relative refractive index difference Δn between the waveguide and the clad layer in contact with it.
It is the result of calculating the relationship with and by the equivalent refractive index method. Figure 1
As can be seen from the above, when the thickness of the waveguide is 4 to 6 μm, if Δn is 0.4% to 1.0%, the single mode waveguide is formed at 1.3 μm and 1.55 μm. On the other hand, in order to prevent an increase in optical loss due to the electrodes, the lower cladding layer and the upper cladding layer have a smaller refractive index in the portion of the lower cladding layer that contacts the lower ground electrode and the portion of the upper cladding layer that contacts the microstrip electrode. A boundary layer having a large relative refractive index difference from the clad layer may be provided. As a result of detailed electromagnetic field analysis, it was found that the propagation loss due to the metal electrode can be suppressed to 0.1 dB / cm or less by setting the relative refractive index difference to 2% or more.

【0019】また、本発明のもう一つの光変調器では、
該有機高分子からなる導波路の膜厚を2μm以下、該導
波路と上下のクラッド層を併せた膜厚を10μm以下と
する。図2は単一モード条件を満たす方形光導波路の寸
法wおよびdと、導波路とそれに接する上下クラッド層
の比屈折率差Δn2との関係を、等価屈折率法で計算し
た結果である。ここで、Δn3は該導波路とそれに接す
る左右クラッド層の比屈折率差である。図からわかるよ
うに、導波路の膜厚を2μm以下、該導波路と上下のク
ラッド層を併せた膜厚を10μm以下とする場合には、
該導波路と左右のクラッド層の比屈折率Δn3を0.5
%以下、該導波路と上下のクラッド層の比屈折率差Δn
2を2%以上とすれば、導波路幅wが細径(5μm径)
偏波保持ファイバとのモードマッチングが最適となる4
〜6μmで、単一モード導波路となる。
According to another optical modulator of the present invention,
The thickness of the waveguide made of the organic polymer is 2 μm or less, and the thickness of the waveguide and the upper and lower clad layers combined is 10 μm or less. FIG. 2 shows the result of calculation by the equivalent refractive index method of the relationship between the dimensions w and d of the rectangular optical waveguide satisfying the single mode condition and the relative refractive index difference Δn 2 between the waveguide and the upper and lower clad layers in contact with it. Here, Δn 3 is the relative refractive index difference between the waveguide and the left and right cladding layers in contact with it. As can be seen from the figure, when the film thickness of the waveguide is 2 μm or less and the film thickness of the waveguide and the upper and lower clad layers is 10 μm or less,
The relative refractive index Δn 3 between the waveguide and the left and right cladding layers is 0.5.
% Or less, the relative refractive index difference Δn between the waveguide and the upper and lower clad layers
If 2 is 2% or more, the waveguide width w is small (5 μm diameter).
Optimal mode matching with polarization maintaining fiber 4
At ~ 6 μm, it becomes a single mode waveguide.

【0020】本発明の光変調器では導波路を構成する有
機高分子自体の誘電率(約3.6)が小さいために、マ
イクロ波の等価屈折率が有機高分子の屈折率とほぼ等し
くなり、マイクロ波と光波の位相速度差による帯域制限
を受けない。このため、マイクロ波と光波の相互作用長
(電極長)lを短くする必要がない。
In the optical modulator according to the present invention, since the dielectric constant (about 3.6) of the organic polymer itself which constitutes the waveguide is small, the equivalent refractive index of microwave becomes almost equal to the refractive index of the organic polymer. , The band is not limited by the phase velocity difference between the microwave and the light wave. Therefore, it is not necessary to shorten the interaction length (electrode length) l of the microwave and the light wave.

【0021】さらに、本発明の光変調器では最上部のマ
イクロストリップ電極の幅と、同軸ケーブルからマイク
ロストリップ電極への接続部(フィールドスルー部)の
構成を最適化して、同軸ケーブルのインピーダンス整合
がとれているために、広い周波数帯域のマイクロ波を変
調用電気信号として使用可能となり、本発明の目的であ
る広帯域での変調動作を行なうことができるようにな
る。図3はマイクロストリップ電極の特性インピーダン
スZ0と、マイクロストリップ電極幅と電極間距離(導
波路とクラッド層を併せた膜厚)の比の関係を計算した
結果である。図よりわかるように、マイクロストリップ
電極の幅を該導波路とクラッド層を併せた膜厚の約2倍
にとれば、同軸ケーブル(特性インピーダンス50Ω)
とのインピーダンス整合がとれる。図4はフィールドス
ルー部の特性インピーダンスZ0と、下部接地電極のギ
ャップと上部電極幅の比との関係を計算した結果であ
る。図よりわかるように、上部電極の真下の下部接地電
極に、上部電極幅の約1.65〜1.70倍の大きさの
ギャップをあければ、特性インピーダンスが50Ωとな
り、同軸ケーブルやマイクロストリップ電極とのインピ
ーダンス整合がとれる。
Further, in the optical modulator of the present invention, the width of the uppermost microstrip electrode and the configuration of the connection portion (field through portion) from the coaxial cable to the microstrip electrode are optimized so that impedance matching of the coaxial cable can be improved. As a result, the microwave of a wide frequency band can be used as an electric signal for modulation, and the wide band modulation operation which is the object of the present invention can be performed. FIG. 3 shows the result of calculation of the relationship between the characteristic impedance Z 0 of the microstrip electrode and the ratio of the width of the microstrip electrode to the distance between the electrodes (film thickness of the waveguide and the clad layer). As can be seen from the figure, if the width of the microstrip electrode is about twice the film thickness of the waveguide and the clad layer, the coaxial cable (characteristic impedance 50Ω)
Impedance matching with can be obtained. FIG. 4 shows the result of calculation of the relationship between the characteristic impedance Z 0 of the field through portion and the ratio of the gap between the lower ground electrode and the upper electrode width. As can be seen from the figure, if a gap of about 1.65 to 1.70 times the width of the upper electrode is opened in the lower ground electrode just below the upper electrode, the characteristic impedance becomes 50Ω, and the coaxial cable or the microstrip electrode. Impedance matching with can be obtained.

【0022】本発明に用いる二次光非線形感受率の大き
な物質が溶解している、もしくは結合している高分子材
料としては、低損失化が容易で加工の自由度が大きいと
いう理由から、ポリメチルメタクリレート(PMMA)
を代表とするアクリル酸エステル系樹脂、ポリスチレン
系樹脂、これらの樹脂の重水素置換体、あるいは特願平
3−269728号に記載されているようなフッ素原子
を含有する樹脂に、特願平3−184080号もしくは
特願平4−20074号に記載されているようなスチル
ベン化合物、アゾ化合物あるいはアゾメチン化合物から
なる有機色素化合物を高分子中に分散、もしくは高分子
の側鎖に結合させた材料を用いることができる。
As a polymer material in which a substance having a large second-order optical non-linear susceptibility is dissolved or bound to the present invention, it is easy to reduce the loss and have a high degree of processing freedom. Methyl methacrylate (PMMA)
Acrylic ester resins, polystyrene resins, deuterium-substituted products of these resins, or resins containing a fluorine atom as described in Japanese Patent Application No. 3-269728, and Japanese Patent Application No. No. 184080 or Japanese Patent Application No. 4-20074, a material in which an organic dye compound composed of a stilbene compound, an azo compound or an azomethine compound is dispersed in a polymer or bonded to a side chain of the polymer. Can be used.

【0023】本発明の光変調器において、導波路の上下
のクラッド層および電極近傍の境界層に使用される材料
としては、コア層を構成する上記のような有機高分子材
料よりも屈折率の小さいものであれば特に限定するもの
でないが、例えばエポキシ系あるいはアクリル系の紫外
線硬化樹脂を挙げることができる。
In the optical modulator of the present invention, the materials used for the upper and lower clad layers of the waveguide and the boundary layers near the electrodes have a refractive index higher than that of the above organic polymer material forming the core layer. The epoxy resin is not particularly limited as long as it is small, and examples thereof include epoxy-based or acrylic UV-curable resins.

【0024】本発明の光変調器に使用される上記の有機
高分子に分極処理を施す場合には、光変調器を一対の電
極間に挟み込み、該有機高分子のガラス転移温度(約1
00〜150℃)以上に加熱し、電極間に高電圧を印加
して、該有機高分子の電場配向を行なう。その後、高電
圧を印加したまま徐々に冷却して配向を凍結させる。こ
のようにすることにより、導波路のコア部に一次電気光
学効果を付与、発現させることができる。
When the above-mentioned organic polymer used in the optical modulator of the present invention is subjected to polarization treatment, the optical modulator is sandwiched between a pair of electrodes and the glass transition temperature of the organic polymer (about 1
(100 to 150 ° C.) or higher, and a high voltage is applied between the electrodes to perform electric field orientation of the organic polymer. After that, the orientation is frozen by gradually cooling while applying the high voltage. By doing so, the primary electro-optical effect can be imparted to the core portion of the waveguide to be exhibited.

【0025】次に実施例に従い、本発明の導波路型光変
調器を具体的に説明する。
Next, the waveguide type optical modulator of the present invention will be specifically described with reference to Examples.

【0026】[0026]

【実施例1】図5は本発明の導波路型光強度変調器の断
面図である。図5に示すように、酸化シリコン膜5を熱
酸化法で形成したシリコン基板4上に、金からなる下部
接地電極6をメッキ法で該酸化シリコン膜5上に形成し
た後、低屈折率のエポキシ系紫外線硬化樹脂を2μm厚
に塗布して境界層7を形成し、さらにその上にエピキシ
系紫外線硬化樹脂を4μm厚に塗布して、下部クラッド
層8を形成した。このとき、2つの紫外線硬化樹脂の屈
折率を調整して、下部クラッド層8と境界層7との比屈
折率差が2%になるようにした。この上に化1の有機高
分子をスピンコート法により5μm厚に塗布した後、マ
ッハツェンダー干渉計型の導波路パターンマスクを用い
て、特願平3−254352号に記載の手法により、5
×5μmの寸法を有するチャネル導波路層9を形成し
た。次に、この上にエポキシ系紫外線硬化樹脂をチャネ
ル導波路より4μm厚になるように塗布して上部クラッ
ド層10を形成し、さらにその上に低屈折率のエポキシ
系紫外線硬化樹脂を2μm厚に塗布して境界層11を形
成した。ここで、上下のクラッド層8および10に用い
たエポキシ系紫外線硬化樹脂は、チャネル導波路層9と
の比屈折率差が0.6%のものを用いた。さらに、該境
界層11の上に、マッハツェンダー干渉計型チャネル導
波路9の一方のアームの上に重なるように、金からなる
幅33μm、厚さ10μmのマイクロストリップ電極1
2をメッキ法で形成した。チャネル導波路と重なったマ
イクロストリップ電極12の長さは15mmとした。
EXAMPLE 1 FIG. 5 is a sectional view of a waveguide type optical intensity modulator of the present invention. As shown in FIG. 5, a lower ground electrode 6 made of gold is formed on a silicon substrate 4 on which a silicon oxide film 5 is formed by a thermal oxidation method by a plating method, and then a low refractive index An epoxy-based UV curable resin was applied to a thickness of 2 μm to form a boundary layer 7, and an epixy-based UV curable resin was applied thereon to a thickness of 4 μm to form a lower clad layer 8. At this time, the refractive indices of the two ultraviolet curable resins were adjusted so that the relative refractive index difference between the lower cladding layer 8 and the boundary layer 7 was 2%. After the organic polymer of Chemical formula 1 was applied thereon to a thickness of 5 μm by a spin coating method, a Mach-Zehnder interferometer type waveguide pattern mask was used to perform 5 by the method described in Japanese Patent Application No. 3-254352.
A channel waveguide layer 9 having a dimension of × 5 μm was formed. Next, an epoxy-based UV-curing resin is applied on this to a thickness of 4 μm from the channel waveguide to form an upper clad layer 10, and a low-refractive-index epoxy-based UV-curing resin is further formed thereon to a thickness of 2 μm. The boundary layer 11 was formed by coating. Here, the epoxy-based ultraviolet curable resin used for the upper and lower clad layers 8 and 10 had a relative refractive index difference of 0.6% from that of the channel waveguide layer 9. Further, on the boundary layer 11, a microstrip electrode 1 made of gold and having a width of 33 μm and a thickness of 10 μm is formed so as to overlap with one arm of the Mach-Zehnder interferometer type channel waveguide 9.
2 was formed by a plating method. The length of the microstrip electrode 12 overlapping the channel waveguide was 15 mm.

【0027】図6は本発明の導波路型光変調器のフィー
ルドスルー部の断面図である。図6に示すように、フィ
ールドスルー部は、シリコン基板4上に熱酸化法で形成
した酸化シリコン膜5の上に、金からなる下部接地電極
6と、低屈折率のエポキシ系紫外線硬化樹脂(2μm
厚)からなる境界層7と、エポキシ系紫外線硬化樹脂
(4μm厚)からなるクラッド層13と、低屈折率のエ
ポキシ系紫外線硬化樹脂(2μm厚)からなる境界層1
1と、この上にメッキ法で形成した、金からなる最大幅
300μm、厚さ10μmのマイクロストリップ電極1
4から構成されており、該マイクロストリップ電極14
の真下の下部接地電極6に、該マイクロストリップ電極
幅の約1.68倍の大きさのギャップをあけた構造を採
用した。該マイクロストリップ電極14の幅は光変調器
の中心に向かって徐々に減少し、最終的に図5のマイク
ロストリップ電極12と同じ幅33μmになり、この地
点で下部接地電極6のギャップは不連続的に0μmとし
た。
FIG. 6 is a sectional view of the field through portion of the waveguide type optical modulator of the present invention. As shown in FIG. 6, in the field through portion, a lower ground electrode 6 made of gold and a low refractive index epoxy-based ultraviolet curable resin (on a silicon oxide film 5 formed on a silicon substrate 4 by a thermal oxidation method). 2 μm
Thickness), a clad layer 13 made of an epoxy UV curable resin (4 μm thick), and a boundary layer 1 made of an epoxy UV curable resin (2 μm) having a low refractive index.
1 and a microstrip electrode 1 made of gold and having a maximum width of 300 μm and a thickness of 10 μm, which is formed by plating.
The microstrip electrode 14 is composed of
A structure in which a gap having a size of about 1.68 times the width of the microstrip electrode is opened in the lower ground electrode 6 directly under the electrode is adopted. The width of the microstrip electrode 14 gradually decreases toward the center of the optical modulator, and finally becomes the same width 33 μm as the microstrip electrode 12 of FIG. 5, and the gap of the lower ground electrode 6 is discontinuous at this point. To be 0 μm.

【0028】この導波路型光変調器に平行平板電極によ
る分極処理を施した後、波長1.55μmのレーザ光を
端面より入射して出射光の近視野像を測定したところ、
単一モードのみが伝搬していることが確認できた。さら
に、フィールドスルー部から同軸ケーブルを介してマイ
クロ波を入力したところ、約4Vの駆動電圧で100G
Hzまで光変調ができることがわかった。
This waveguide type optical modulator was polarized by a parallel plate electrode, and then laser light having a wavelength of 1.55 μm was made incident from the end face to measure a near-field image of the emitted light.
It was confirmed that only a single mode propagated. Furthermore, when microwave was input from the field through part via the coaxial cable, 100G was generated at a drive voltage of about 4V.
It was found that optical modulation can be performed up to Hz.

【0029】[0029]

【化1】 [Chemical 1]

【0030】[0030]

【実施例2】図7は本発明の導波路型光強度変調器の断
面図である。図7に示すように、酸化シリコン膜16を
熱酸化法で形成したシリコン基板15上に、金からなる
下部接地電極17をメッキ法で該酸化シリコン膜16上
に形成した後、エポキシ系紫外線硬化樹脂を4μm厚に
塗布して、下部クラッド層18を形成した。この上に化
2の有機高分子をスピンコート法により2μm厚に塗布
した後、マッハツェンダー干渉計型の導波路パターンマ
スクを用いて、特願平3−254352号に記載の手法
により、2×5μmの寸法を有するチャネル導波路層1
9を形成した。次に、この上にエポキシ系紫外線硬化樹
脂を厚めに塗布した後、反応性イオンエッチングにより
導波路層と同じ高さまでエッチングし、導波路の左右の
クラッド層20とを形成した。ここで、左右のクラッド
層20に用いたエポキシ系紫外線硬化樹脂は、チャネル
導波路層19との比屈折率差が0.3%のものを用い
た。さらに、この上にエポキシ系紫外線硬化樹脂を4μ
m厚に塗布して上部クラッド層21を形成した。ここ
で、上下のクラッド層18および21に用いたエポキシ
系紫外線硬化樹脂は、チャネル導波路層19との比屈折
率差が2%のものを用いた。さらに、該上部クラッド層
21の上に、マッハツェンダー干渉計型チャネル導波路
19の一方のアームの上に重なるように、金からなる幅
17μm、厚さ10μmのマイクロストリップ電極22
をメッキ法で形成した。チャネル導波路と重なったマイ
クロストリップ電極22の長さは15mmとした。
[Embodiment 2] FIG. 7 is a sectional view of a waveguide type optical intensity modulator of the present invention. As shown in FIG. 7, a lower ground electrode 17 made of gold is formed on a silicon substrate 15 on which a silicon oxide film 16 is formed by a thermal oxidation method by a plating method, and then epoxy-based ultraviolet curing is performed. The resin was applied to a thickness of 4 μm to form the lower clad layer 18. After the organic polymer of Chemical formula 2 was applied thereon to a thickness of 2 μm by a spin coating method, a Mach-Zehnder interferometer type waveguide pattern mask was used to perform 2 × by the method described in Japanese Patent Application No. 3-254352. Channel waveguide layer 1 having a dimension of 5 μm
9 was formed. Next, a thick layer of epoxy-based UV curable resin was applied on this, and then etched to the same height as the waveguide layer by reactive ion etching to form the clad layers 20 on the left and right of the waveguide. Here, the epoxy-based ultraviolet curable resin used for the left and right clad layers 20 had a relative refractive index difference with the channel waveguide layer 19 of 0.3%. In addition, 4μ of epoxy UV curable resin
Then, the upper clad layer 21 was formed by applying it to a thickness of m. Here, the epoxy-based ultraviolet curable resin used for the upper and lower clad layers 18 and 21 has a relative refractive index difference of 2% from that of the channel waveguide layer 19. Further, a microstrip electrode 22 made of gold and having a width of 17 μm and a thickness of 10 μm is formed on the upper clad layer 21 so as to overlap with one arm of the Mach-Zehnder interferometer type channel waveguide 19.
Was formed by a plating method. The length of the microstrip electrode 22 overlapping the channel waveguide was 15 mm.

【0031】図8は本発明の導波路型光変調器のフィー
ルドスルー部の断面図である。図8に示すように、フィ
ールドスルー部は、シリコン基板15上に熱酸化法で形
成した酸化シリコン膜16の上に、金からなる下部接地
電極17と、エポキシ系紫外線硬化樹脂(4μm厚)か
らなる下部クラッド層18と、化2の有機高分子に屈折
率を近付けたエポキシ系紫外線硬化樹脂(2μm厚)か
らなるクラッド層20と、エポキシ系紫外線硬化樹脂
(4μm厚)からなる上部クラッド層21と、この上に
メッキ法で形成した、金からなる最大幅300μm、厚
さ10μmのマイクロストリップ電極23から構成され
ており、該マイクロストリップ電極23の真下の下部接
地電極17に、該マイクロストリップ電極幅の約1.6
8倍の大きさのギャップをあけた構造を採用した。該マ
イクロストリップ電極23の幅は光変調器の中心に向か
って徐々に減少し、最終的に図8のマイクロストリップ
電極22と同じ幅17μmになり、この地点で下部接地
電極17のギャップは不連続的に0μmとした。
FIG. 8 is a sectional view of the field through portion of the waveguide type optical modulator of the present invention. As shown in FIG. 8, the field through portion is composed of a lower ground electrode 17 made of gold and an epoxy ultraviolet curable resin (4 μm thick) on a silicon oxide film 16 formed on a silicon substrate 15 by a thermal oxidation method. A lower clad layer 18, a clad layer 20 made of an epoxy UV curable resin (2 μm thick) having a refractive index close to that of the organic polymer of Chemical formula 2, and an upper clad layer 21 made of an epoxy UV curable resin (4 μm thick). And a microstrip electrode 23 made of gold and having a maximum width of 300 μm and a thickness of 10 μm, which is formed on the microstrip electrode 23 directly below the microstrip electrode 23. Width of about 1.6
We adopted a structure with a gap eight times larger. The width of the microstrip electrode 23 gradually decreases toward the center of the optical modulator, and finally becomes the same width of 17 μm as the microstrip electrode 22 of FIG. 8, and the gap of the lower ground electrode 17 is discontinuous at this point. To be 0 μm.

【0032】この導波路型光変調器に平行平板電極によ
る分極処理を施した後、波長1.55μmのレーザ光を
端面より入射して出射光の近視野像を測定したところ、
単一モードのみが伝搬していることが確認できた。さら
に、フィールドスルー部から同軸ケーブルを介してマイ
クロ波を入力したところ、約2Vの駆動電圧で100G
Hzまで光変調ができることがわかった。
This waveguide type optical modulator was subjected to polarization treatment by parallel plate electrodes, and then laser light having a wavelength of 1.55 μm was made incident from the end face to measure a near-field image of the emitted light.
It was confirmed that only a single mode propagated. Furthermore, when microwave was input from the field through part via the coaxial cable, 100G was generated at a driving voltage of about 2V.
It was found that optical modulation can be performed up to Hz.

【0033】[0033]

【化2】 [Chemical 2]

【0034】[0034]

【実施例3】図9は本発明の導波路型光位相変調器の断
面図である。図9に示すように、酸化シリコン膜25を
熱酸化法で形成したシリコン基板24上に、金からなる
下部接地電極26をメッキ法で該酸化シリコン膜25上
に形成した後、エポキシ系紫外線硬化樹脂を4μm厚に
塗布して、下部クラッド層27を形成した。この上に化
3の有機高分子をスピンコート法により2μm厚に塗布
した後、直線導波路パターンマスクを上から重ねて紫外
線で露光し、2×5μmの寸法を有するチャネル導波路
層28と、この導波路層の左右のクラッド層29とを形
成した。このとき、紫外線の露光量を調整して、チャネ
ル導波路層28と左右のクラッド層29との比屈折率差
が、0.2%〜0.5%になるようにした。次に、この
上にエポキシ系紫外線硬化樹脂を4μm厚に塗布して上
部クラッド層30を形成した。ここで、上下のクラッド
層27および30に用いたエポキシ系紫外線硬化樹脂
は、チャネル導波路層28との比屈折率差が2%のもの
を用いた。さらに、該上部クラッド層30の上に、チャ
ネル導波路28の上に重なるように、金からなる幅17
μm、厚さ10μmのマイクロストリップ電極31をメ
ッキ法で形成した。チャネル導波路と重なったマイクロ
ストリップ電極31の長さは15mmとした。
[Embodiment 3] FIG. 9 is a sectional view of a waveguide type optical phase modulator of the present invention. As shown in FIG. 9, a lower ground electrode 26 made of gold is formed on a silicon substrate 24 on which a silicon oxide film 25 is formed by a thermal oxidation method by a plating method, and then epoxy-based ultraviolet curing is performed. The resin was applied to a thickness of 4 μm to form the lower clad layer 27. After the organic polymer of Chemical formula 3 is applied thereon to a thickness of 2 μm by a spin coating method, a linear waveguide pattern mask is overlaid and exposed to ultraviolet rays to expose a channel waveguide layer 28 having a size of 2 × 5 μm. The clad layers 29 on the left and right of this waveguide layer were formed. At this time, the exposure amount of ultraviolet rays was adjusted so that the relative refractive index difference between the channel waveguide layer 28 and the left and right cladding layers 29 was 0.2% to 0.5%. Next, an epoxy-based ultraviolet curable resin was applied thereon to a thickness of 4 μm to form the upper clad layer 30. Here, the epoxy-based ultraviolet curable resin used for the upper and lower clad layers 27 and 30 has a relative refractive index difference of 2% from that of the channel waveguide layer 28. Further, a width 17 made of gold is formed on the upper clad layer 30 so as to overlap the channel waveguide 28.
A microstrip electrode 31 having a thickness of 10 μm and a thickness of 10 μm was formed by a plating method. The length of the microstrip electrode 31 overlapping the channel waveguide was set to 15 mm.

【0035】図10は本発明の導波路型光変調器のフィ
ールドスルー部の断面図である。図10に示すように、
フィールドスルー部は、シリコン基板24上に熱酸化法
で形成した酸化シリコン膜25の上に、金からなる下部
接地電極26と、エポキシ系紫外線硬化樹脂(4μm
厚)からなる下部クラッド層27と、化3の有機高分子
(2μm厚)からなるクラッド層29と、エポキシ系紫
外線硬化樹脂(4μm厚)からなる上部クラッド層30
と、この上にメッキ法で形成した。金からなる最大幅3
00μm、厚さ10μmのマイクロストリップ電極32
から構成されており、該マイクロストリップ電極32の
真下の下部接地電極26に、該マイクロストリップ電極
幅の約1.68倍の大きさのギャップをあけた構造を採
用した。該マイクロストリップ電極32の幅は光変調器
の中心に向かって徐々に減少し、最終的に図10のマイ
クロストリップ電極31と同じ幅17μmになり、この
地点で下部接地電極26のギャップは不連続的に0μm
とした。
FIG. 10 is a sectional view of the field through portion of the waveguide type optical modulator of the present invention. As shown in FIG.
The field through portion is composed of a lower ground electrode 26 made of gold and an epoxy-based ultraviolet curable resin (4 μm) on a silicon oxide film 25 formed on a silicon substrate 24 by a thermal oxidation method.
Thickness), a lower clad layer 27 made of an organic polymer of Chemical formula 3 (thickness: 2 μm), and an upper clad layer 30 made of an epoxy ultraviolet curing resin (thickness: 4 μm).
And, it was formed on this by the plating method. Maximum width of gold 3
00 μm, 10 μm thick microstrip electrode 32
And a structure in which a gap having a size of about 1.68 times the width of the microstrip electrode is opened in the lower ground electrode 26 immediately below the microstrip electrode 32. The width of the microstrip electrode 32 gradually decreases toward the center of the optical modulator, and finally becomes the same width of 17 μm as the microstrip electrode 31 of FIG. 10, and the gap of the lower ground electrode 26 is discontinuous at this point. 0 μm
And

【0036】この導波路型光変調器に平行平板電極によ
る分極処理を施した後、波長1.55μmのレーザ光を
端面より入射して出射光の近視野像を測定したところ、
単一モードのみが伝搬していることが確認できた。さら
に、フィールドスルー部から同軸ケーブルを介してマイ
クロ波を入力したところ、約3Vの駆動電圧で120G
Hzまで光変調ができることがわかった。
This waveguide type optical modulator was subjected to polarization treatment by parallel plate electrodes, and then laser light having a wavelength of 1.55 μm was made incident from the end face to measure a near-field image of the emitted light.
It was confirmed that only a single mode propagated. Furthermore, when microwave was input from the field through part via the coaxial cable, 120G was generated at a driving voltage of about 3V.
It was found that optical modulation can be performed up to Hz.

【0037】[0037]

【化3】 [Chemical 3]

【0038】[0038]

【発明の効果】以上説明したように、本発明による導波
路型光変調器は、一次電気光学効果が大きな有機高分子
材料をコア層材料に用い、周囲のクラッド層材料との比
屈折率差を最適化して単一モード導波路とし、かつ低電
圧駆動が可能なように上下の電極間隔を狭くしている。
さらに、最上部のマイクロストリップ電極の幅と、同軸
ケーブルからマイクロストリップ電極への接続部(フィ
ールドスルー部)の構成を最適化しているために、極め
て広い帯域で変調動作を実現できる。
As described above, in the waveguide type optical modulator according to the present invention, the organic polymer material having a large primary electro-optical effect is used as the core layer material, and the relative refractive index difference from the surrounding cladding layer material is used. Is optimized to form a single mode waveguide, and the upper and lower electrode intervals are narrowed so that low voltage driving is possible.
Furthermore, since the width of the uppermost microstrip electrode and the configuration of the connection portion (field through portion) from the coaxial cable to the microstrip electrode are optimized, the modulation operation can be realized in an extremely wide band.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による導波路型光変調器の単一モード条
件を与える導波路パラメータ特性図。
FIG. 1 is a waveguide parameter characteristic diagram that gives a single mode condition of a waveguide type optical modulator according to the present invention.

【図2】本発明による導波路型光変調器の単一モード条
件を与える導波路パラメータ特性図。
FIG. 2 is a waveguide parameter characteristic diagram giving a single mode condition of the waveguide type optical modulator according to the present invention.

【図3】本発明による導波路型光変調器のマイクロスト
リップ電極部のインピーダンス特性図。
FIG. 3 is an impedance characteristic diagram of a microstrip electrode portion of a waveguide type optical modulator according to the present invention.

【図4】本発明による導波路型光変調器のフィールドス
ルー部のインピーダンス特性図。
FIG. 4 is an impedance characteristic diagram of a field through portion of a waveguide type optical modulator according to the present invention.

【図5】本発明による導波路型光変調器の構成を示す断
面図。
FIG. 5 is a sectional view showing a configuration of a waveguide type optical modulator according to the present invention.

【図6】本発明による導波路型光変調器のフィールドス
ルーの構成を示す断面図。
FIG. 6 is a sectional view showing the structure of a field through of a waveguide type optical modulator according to the present invention.

【図7】本発明による導波路型光変調器の構成を示す断
面図。
FIG. 7 is a sectional view showing a configuration of a waveguide type optical modulator according to the present invention.

【図8】本発明による導波路型光変調器のフィールドス
ルーの構成を示す断面図。
FIG. 8 is a sectional view showing the structure of a field through of a waveguide type optical modulator according to the present invention.

【図9】本発明による導波路型光位相変調器の構成を示
す断面図。
FIG. 9 is a sectional view showing a configuration of a waveguide type optical phase modulator according to the present invention.

【図10】本発明による導波路型光変調器のフィールド
スルーの構成を示す断面図。
FIG. 10 is a sectional view showing the structure of a field through of a waveguide type optical modulator according to the present invention.

【図11】従来の導波路型光強度変調器の斜視図。FIG. 11 is a perspective view of a conventional waveguide type optical intensity modulator.

【符号の説明】[Explanation of symbols]

1 変調用電極 2 光導波路部 3 LN結晶 4 シリコン基板 5 酸化シリコン膜 6 下部接地電極 7 境界層 8 下部クラッド層 9 チャネル導波路層 10 上部クラッド層 11 境界層 12 マイクロストリップ電極 13 クラッド層 14 マイクロストリップ電極 15 シリコン基板 16 酸化シリコン膜 17 下部接地電極 18 下部クラッド層 19 チャネル導波路層 20 クラッド層 21 上部クラッド層 22 マイクロストリップ電極 23 マイクロストリップ電極 24 シリコン基板 25 酸化シリコン膜 26 下部接地電極 27 下部クラッド層 28 チャネル導波路層 29 クラッド層 30 上部クラッド層 31 マイクロストリップ電極 32 マイクロストリップ電極 1 Modulation Electrode 2 Optical Waveguide Section 3 LN Crystal 4 Silicon Substrate 5 Silicon Oxide Film 6 Lower Ground Electrode 7 Boundary Layer 8 Lower Clad Layer 9 Channel Waveguide Layer 10 Upper Clad Layer 11 Boundary Layer 12 Microstrip Electrode 13 Cladding Layer 14 Micro Strip electrode 15 Silicon substrate 16 Silicon oxide film 17 Lower ground electrode 18 Lower clad layer 19 Channel waveguide layer 20 Cladding layer 21 Upper clad layer 22 Microstrip electrode 23 Microstrip electrode 24 Silicon substrate 25 Silicon oxide film 26 Lower ground electrode 27 Lower part Clad layer 28 Channel waveguide layer 29 Clad layer 30 Upper clad layer 31 Microstrip electrode 32 Microstrip electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小沢口 治樹 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Haruki Ozawaguchi 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】酸化シリコン膜を上部に形成したシリコン
基板上に、金属からなる下部接地電極を配し、この上に
二次光非線形感受率の大きな物質が溶解している、もし
くは結合している高分子を分極処理した材料からなるチ
ャネル導波路層と、この導波路層の左右および上下に、
導波路層よりも低屈折率なクラッド層を配し、該上部ク
ラッド層の上に金属からなるマイクロストリップ電極を
配した構造をとる導波路型光変調器において、該導波路
層の膜厚を4〜6μm、該導波路層と上下のクラッド層
を併せた膜厚を10〜25μmとし、該導波路層とそれ
に接するクラッド層の比屈折率差を0.4%〜1.0%
とし、下部クラッド層の下部接地電極に接する部分およ
び上部クラッド層のマイクロストリップ電極に接する部
分に、下部クラッド層および上部クラッド層よりも屈折
率が小さく、該クラッド層との比屈折率差が2%以上で
ある境界層を有し、上部のマイクロストリップ電極の幅
を該導波路と上下のクラッド層を併せた膜厚の約2倍に
することを特徴とする導波路型光変調器。
1. A lower ground electrode made of a metal is arranged on a silicon substrate having a silicon oxide film formed on the upper surface thereof, and a substance having a large second-order optical non-linear susceptibility is dissolved or bonded on the lower ground electrode. A channel waveguide layer made of a polarized polymer material, and to the left, right, top and bottom of this waveguide layer,
In a waveguide type optical modulator having a structure in which a clad layer having a refractive index lower than that of the waveguide layer is arranged, and a microstrip electrode made of metal is arranged on the upper clad layer, the film thickness of the waveguide layer is 4 to 6 μm, the total thickness of the waveguide layer and upper and lower cladding layers is 10 to 25 μm, and the relative refractive index difference between the waveguide layer and the cladding layer in contact with the waveguide layer is 0.4% to 1.0%.
The lower clad layer has a smaller refractive index than the lower clad layer and the upper clad layer, and has a relative refractive index difference of 2 with the part of the lower clad layer that contacts the lower ground electrode and the part of the upper clad layer that contacts the microstrip electrode. % Of the boundary layer, and the width of the upper microstrip electrode is about twice as large as the total thickness of the waveguide and the upper and lower cladding layers.
【請求項2】フィールドスルー部において、上部電極の
真下の下部接地電極に、上部電極幅の約1.67〜1.
68倍の大きさのギャップを開けることを特徴とする請
求項1記載の導波路型光変調器。
2. In the field through portion, the lower ground electrode directly below the upper electrode has a width of about 1.67 to 1.
The waveguide type optical modulator according to claim 1, wherein a gap having a size of 68 times is opened.
【請求項3】酸化シリコン膜を上部に形成したシリコン
基板上に、金属からなる下部接地電極を配し、この上に
二次光非線形感受率の大きな物質が溶解している、もし
くは結合している高分子を分極処理した材料からなるチ
ャネル導波路層と、この導波路層の左右および上下に、
導波路層よりも低屈折率なクラッド層を配し、該上部ク
ラッド層の上に金属からなるマイクロストリップ電極を
配した構造をとる導波路型光変調器において、該導波路
層の膜厚を2μm以下、該導波路層と上下のクラッド層
を併せた膜厚を10μm以下とし、該導波路層と左右の
クラッド層の比屈折率差を0.2%〜0.5%、該導波
路と上下のクラッド層の比屈折率差を2%以上とし、上
部のマイクロストリップ電極の幅を該導波路と上下のク
ラッド層を併せた膜厚の約2倍にすることを特徴とする
導波路型光変調器。
3. A lower ground electrode made of metal is disposed on a silicon substrate having a silicon oxide film formed on the upper surface thereof, and a substance having a large second-order nonlinear susceptibility is dissolved or bonded on the lower ground electrode. A channel waveguide layer made of a polarized polymer material, and to the left, right, top and bottom of this waveguide layer,
In a waveguide type optical modulator having a structure in which a clad layer having a refractive index lower than that of the waveguide layer is arranged, and a microstrip electrode made of metal is arranged on the upper clad layer, the film thickness of the waveguide layer is 2 μm or less, the total thickness of the waveguide layer and the upper and lower clad layers is 10 μm or less, and the relative refractive index difference between the waveguide layer and the left and right clad layers is 0.2% to 0.5%. And a relative refractive index difference between the upper and lower clad layers is 2% or more, and the width of the upper microstrip electrode is about twice as large as the total thickness of the waveguide and the upper and lower clad layers. Type optical modulator.
【請求項4】フィールドスルー部において、上部電極の
真下の下部接地電極に、上部電極幅の約1.67〜1.
68倍の大きさのギャップを開けることを特徴とする請
求項1記載の導波路型光変調器。
4. In the field through portion, a lower ground electrode directly below the upper electrode has a width of about 1.67 to 1.
The waveguide type optical modulator according to claim 1, wherein a gap having a size of 68 times is opened.
JP4229348A 1992-08-05 1992-08-05 Waveguide type optical modulator Expired - Fee Related JP2805027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4229348A JP2805027B2 (en) 1992-08-05 1992-08-05 Waveguide type optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4229348A JP2805027B2 (en) 1992-08-05 1992-08-05 Waveguide type optical modulator

Publications (2)

Publication Number Publication Date
JPH0659223A true JPH0659223A (en) 1994-03-04
JP2805027B2 JP2805027B2 (en) 1998-09-30

Family

ID=16890761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4229348A Expired - Fee Related JP2805027B2 (en) 1992-08-05 1992-08-05 Waveguide type optical modulator

Country Status (1)

Country Link
JP (1) JP2805027B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268949B1 (en) 1998-06-26 2001-07-31 Samsung Electronics Co., Ltd. Optical intensity modulator and fabrication method using an optical waveguide having an arc shaped path
KR100472056B1 (en) * 2002-10-31 2005-03-11 한국전자통신연구원 Polarization-independent optical polymeric intensity modulator
JP2006501523A (en) * 2002-10-03 2006-01-12 ルーメラ・コーポレーション Polymer microstructure and method of manufacturing polymer waveguide
JP2007212787A (en) * 2006-02-09 2007-08-23 Ricoh Co Ltd Optical control element, optical switching unit, and optical modulator
JP2007256675A (en) * 2006-03-23 2007-10-04 Nippon Telegr & Teleph Corp <Ntt> Electro-optic element
JP2018136569A (en) * 2018-04-27 2018-08-30 住友大阪セメント株式会社 Optical waveguide element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268949B1 (en) 1998-06-26 2001-07-31 Samsung Electronics Co., Ltd. Optical intensity modulator and fabrication method using an optical waveguide having an arc shaped path
JP2006501523A (en) * 2002-10-03 2006-01-12 ルーメラ・コーポレーション Polymer microstructure and method of manufacturing polymer waveguide
KR100472056B1 (en) * 2002-10-31 2005-03-11 한국전자통신연구원 Polarization-independent optical polymeric intensity modulator
JP2007212787A (en) * 2006-02-09 2007-08-23 Ricoh Co Ltd Optical control element, optical switching unit, and optical modulator
JP2007256675A (en) * 2006-03-23 2007-10-04 Nippon Telegr & Teleph Corp <Ntt> Electro-optic element
JP2018136569A (en) * 2018-04-27 2018-08-30 住友大阪セメント株式会社 Optical waveguide element

Also Published As

Publication number Publication date
JP2805027B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
US7502530B2 (en) Optical waveguide devices and traveling wave type optical modulators
Mitomi et al. Design of ultra-broad-band LiNbO/sub 3/optical modulators with ridge structure
Thackara et al. Poled electro‐optic waveguide formation in thin‐film organic media
US20050175271A1 (en) Optical modulator
US7389030B2 (en) Optically functional device
US10921682B1 (en) Integrated optical phase modulator and method of making same
US20080212914A1 (en) Transparent conducting components and related electro-optic modulator devices
US7693355B2 (en) Hybrid electro-optic polymer/sol-gel modulator
JPH06300994A (en) Waveguide type optical device
Chang et al. Improved electrooptic modulator with ridge structure in X-cut LiNbO/sub 3
US11841563B2 (en) Electro-optic modulators that include caps for optical confinement
US7079714B2 (en) Electro-optic devices having flattened frequency response with reduced drive voltage
JP3159433B2 (en) Method for manufacturing low-loss optical active device
JP2847660B2 (en) Waveguide type optical modulator
JP2805027B2 (en) Waveguide type optical modulator
JPH05216079A (en) Waveguide type nonlinear optical element and production thereof
US20230007949A1 (en) Optical Device
JP2013037243A (en) Optical modulator
US7218819B2 (en) Electrode systems for optical modulation and optical modulators
JP4267544B2 (en) Light modulator
Zheng et al. Investigation on push-pull polymer Mach-Zehnder interferometer electro-optic switches using improved 3-D mode propagation analysis method
JP2004020780A (en) Optical modulator
JP2007033894A (en) Optical modulator
CN111913309A (en) Lithium niobate electro-optical switch with ultra-large bandwidth
US20070081755A1 (en) Optical modulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees