JP4262501B2 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
JP4262501B2
JP4262501B2 JP2003078546A JP2003078546A JP4262501B2 JP 4262501 B2 JP4262501 B2 JP 4262501B2 JP 2003078546 A JP2003078546 A JP 2003078546A JP 2003078546 A JP2003078546 A JP 2003078546A JP 4262501 B2 JP4262501 B2 JP 4262501B2
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
pixel electrode
pixel
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003078546A
Other languages
English (en)
Other versions
JP2004094190A (ja
Inventor
尚志 永田
登 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003078546A priority Critical patent/JP4262501B2/ja
Publication of JP2004094190A publication Critical patent/JP2004094190A/ja
Application granted granted Critical
Publication of JP4262501B2 publication Critical patent/JP4262501B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示装置に関し、特に、アクティブマトリクス駆動の液晶表示装置に関する。
【0002】
【従来の技術】
近年、液晶表示装置(Liquid Crystal Display)は、薄型で低消費電力であるという特徴を生かして、ワードプロセッサやパーソナルコンピュータなどのOA機器、電子手帳などの携帯情報機器、あるいは液晶モニターを備えたカメラー体型VTRなどに用いられている。特に、高解像度で高コントラストな表示が可能なアクティブマトリクス型の液晶表示装置が広く用いられている。
【0003】
一般的なアクティブマトリクス型の液晶表示装置は、アクティブマトリクス基板と、これに対向する対向基板と、アクティブマトリクス基板と対向基板との間に設けられた液晶層とを備えている。アクティブマトリクス基板上には、行方向に延びる複数の走査配線と、列方向に延びる信号配線と、これらに囲まれた領域にそれぞれが配置された複数の画素電極と、複数の画素電極のそれぞれに電気的に接続されたスイッチング素子とが形成されている。スイッチング素子を介して画素電極に所定の電圧が印加され、それによって液晶層の液晶分子の配向状態が変化することによって表示が行われる。
【0004】
従来の液晶表示装置において、画素電極が存在しない部分は、対向基板に遮光層を設けることによって遮光されていた。これは、画素電極と走査配線との間や、画素電極と信号配線との間においては、液晶層に電圧が印加されず、また、走査配線や信号配線によって遮光されることもないので、バックライトからの光が漏れてきて表示が正しく行われないためである。
【0005】
ところが、上述したように対向基板側に遮光層を設けると、画素内での表示に寄与する領域の割合が低下し、開口率が低下するので、明るい表示を行うことができない。
【0006】
そこで、対向基板側に遮光層を設ける必要がない構造として、図14および図15に示すような二層構造電極が提案されている。
【0007】
図14および図15に示した液晶表示装置700は、画素電極715が、層間絶縁膜716の下に形成された下層電極715aと、層間絶縁膜716の上に形成された上層電極715bとを有している。下層電極715aは、ITOなどの透明導電材料から形成されており、上層電極715bは、Alなどの光反射性を有する材料から形成されている。下層電極715aは、TFT713のドレイン電極と接続されており、上層電極715bは、層間絶縁膜716に設けられたコンタクトホール716aにおいて下層電極715aと接続されている。
【0008】
液晶表示装置700は、透過反射両用型の液晶表示装置である。上層電極715bが形成されている部分は、周囲光を用いて反射モードの表示を行う反射領域であり、上層電極715bが形成されず、下層電極715aが露出している部分が、バックライトからの光を用いて透過モードで表示を行う透過領域である。なお、下層電極715aは、補助容量配線714とともに補助容量を構成し、画素内での電荷の保持を補助する役割も果たす。
【0009】
液晶表示装置700においては、上層電極715bは、図14および図15に示したように、層間絶縁膜716を介して走査配線711や信号配線712と重畳するように形成されているので、画素電極715が存在しない部分からの光漏れがなく、対向基板700b側に遮光層を形成する必要がない。そのため、開口率が向上し、明るい表示が実現される。なお、上述した二層構造電極は、透過反射両用型の液晶表示装置だけでなく、透過型の液晶表示装置や、反射型の液晶表示装置にも用いることができる。透過型の液晶表示装置に用いる場合には、上層電極を透明導電材料を用いて形成すればよく、反射型の液晶表示装置に用いる場合には、下層電極を光反射性を有する材料を用いて形成すればよい。
【0010】
【発明が解決しようとする課題】
しかしながら、液晶表示装置の走査配線には、スイッチング素子の非選択期間に大きな電圧が供給されるので、画素電極と走査配線との間にこれらの電位差に起因した横電界が発生する。そのため、この横電界によって画素電極の端部上に位置する液晶分子の配向が乱され、表示不良の原因となる。この表示不良は、図14および図15に示した、二層構造電極を備えた液晶表示装置700においても生じる。以下、この表示不良についてさらに詳しく説明する。
【0011】
一般に、走査配線には、その走査配線に接続されたTFTの選択期間以外(すなわち非選択期間)には常に−10V程度の電圧が供給されている。一方、画素電極には、0V〜5V程度の電圧が供給される。液晶層は、理想的には、画素電極と対向電極との間の電位差にのみ基づいて配向状態を制御されることが好ましいが、実際には、走査配線に供給される強い負電圧の影響により、画素電極の端部において電界が歪められ、液晶分子の配向状態が乱れてしまう。
【0012】
走査配線に供給される電圧に起因する電界の歪みは、走査配線を挟んで隣接する2つの画素の一方においてより顕著となることが多い。典型的には、画素に供給される電圧は、走査配線1ラインごと(1水平走査期間ごと)および1フレームごとにその極性を反転されるので、走査配線を挟んで隣接する2つの画素には、任意の時点で極性が異なる電圧が供給され、それぞれの画素の電圧の極性は1フレームごとに反転される。図15においては、走査配線711を挟んで隣接した2つの画素のうち、右側の画素に正極性の電圧、左側の画素に負極性の電圧が供給されているときの液晶分子30aの配向状態を模式的に示しているが、右側の画素は、正極性の電圧を供給されているので、走査配線711との電位差が左側の画素よりも大きく、電界の歪みも大きい。
【0013】
また、図15に示した液晶表示装置700においては、アクティブマトリクス基板700aの表面には矢印718で示す方向にラビング処理が施されているが、ラビング処理の下流側に相当する右側の画素の端部においては、横電界の影響によって、ラビング処理によるプレチルト方向とは逆向きに液晶分子30aが配向した液晶ドメイン(いわゆるリバースチルトドメイン)が発生してしまうので、表示不良が視認されやすい。
【0014】
リバースチルトドメインは、図15に示したように、遮光性材料からなる走査配線上に発生する。そのため、透過型の液晶表示装置においては、リバースチルトドメインが小さいと表示不良としてほとんど視認されないこともあるものの、透過反射両用型液晶表示装置や反射型液晶表示装置においては、層間絶縁膜を介して走査配線に重畳する部分も表示に寄与するので、リバースチルトドメインが発生すると顕著な表示不良として視認されやすい。
【0015】
また、液晶表示装置は、近年、携帯電話や携帯情報端末などに用いられることが多く、低消費電力性が求められており、低消費電力性を実現する手法として、常に高い周波数で画素電極への書き込みを繰り返す通常の動作モードに加えて、静止画を必要最低限のリフレッシュレートで書き込むことによって表示状態を保持する、いわゆる低周波駆動を行うことが提案されている。
【0016】
しかしながら、本願発明者が検討したところ、低周波駆動を行うと、上述したような表示不良はいっそう顕著となることがわかった。
【0017】
本発明は、上述の問題に鑑みてなされたものであり、その目的は、走査配線と画素電極との間の電位差に起因する表示不良の発生が抑制された、高品位の表示が可能な液晶表示装置を提供することにある。
【0018】
【課題を解決するための手段】
本発明による液晶表示装置は、互いに対向する第1基板および第2基板と、前記第1基板と前記第2基板との間に設けられた液晶層とを有し、前記第1基板は、複数の行および複数の列を有するマトリクス状に配列された複数の画素電極と、行方向に延びる複数の走査配線と、列方向に延びる複数の信号配線と、それぞれが前記複数の画素電極のそれぞれと前記複数の走査配線および前記複数の信号配線とに接続された複数のスイッチング素子と、前記複数のスイッチング素子上に形成された層間絶縁膜と、を有し、前記複数の走査配線の間には、前記画素電極との間で補助容量を形成すると共に行方向に延びる補助容量配線がそれぞれ配置された、液晶表示装置であって、前記複数の画素電極のそれぞれは、前記層間絶縁膜の下に形成された第1画素電極と、前記層間絶縁膜の上に形成された第2画素電極とを有し、互いに隣り合う前記第2画素電極同士の間には、前記第1基板の表面の法線方向から見て、前記走査配線と重なる位置に間隙が設けられ、前記第1画素電極は、前記間隙と前記走査配線との間に配置され、該走査配線と前記第2画素電極との間で電界を遮蔽する遮蔽電極を有しており、そのことによって上記目的が達成される。
【0019】
前記複数の画素電極のうちの任意の1つの画素電極が有する前記第1画素電極の遮蔽電極は、前記任意の1つの画素電極が属する行に隣接した一対の走査配線のうちの一方のみの一部を覆っていてもよい。
【0020】
前記任意の1つの画素電極が有する前記第1画素電極の遮蔽電極によってその一部が覆われた前記一方の走査配線は、前記任意の1つの画素電極に接続されたスイッチング素子と接続されていないことが好ましい。
【0021】
前記第1基板は、前記液晶層側の表面に、一方側から他方側に向けてラビング処理が施された配向膜を有し、前記複数の走査配線のそれぞれは、前記行方向に沿った一対の端辺を有する場合には、前記任意の1つの画素電極が有する前記第1画素電極の遮蔽電極は、少なくとも、前記一方の走査配線が有する前記一対の端辺のうちの前記他方側に位置する端辺の一部を覆っていることが好ましい。
【0022】
前記第2基板は、前記液晶層を介して前記複数の画素電極に対向する少なくとも1つの対向電極を有し、前記少なくとも1つの対向電極に交流電圧が供給され、前記複数の走査配線のそれぞれには、非選択期間において、前記少なくとも1つの対向電極に供給される交流電圧と振幅および位相が同じ交流電圧が供給されることが好ましい。
【0023】
前記複数の画素電極のそれぞれに前記複数の信号配線を介して周期的に供給される表示信号電圧が、45Hz以下の周波数で書き換えられる構成としてもよい
【0024】
【発明の実施の形態】
以下、図面を参照しながら本発明による実施形態の液晶表示装置を説明する。なお、以下では、透過反射両用型液晶表示装置を例に本発明を説明するが、本発明はこれに限定されず、透過型液晶表示装置や反射型液晶表示装置にも好適に用いることができる。
【0025】
(実施形態1)
図1および図2を参照しながら、本発明による実施形態1の液晶表示装置100の構造を説明する。図1は、液晶表示装置100の1つの絵素領域の構造を模式的に示す上面図であり、図2は、図1中の2A−2A’線に沿った断面図である。なお、本願明細書においては、表示の最小単位である画素に対応する液晶表示装置の領域も簡単のために「画素」と称することにする。また、以下の図面においては、液晶表示装置100の構成要素と実質的に同じ機能を有する構成要素を同じ参照符号で示し、その説明を省略する。
【0026】
液晶表示装置100は、アクティブマトリクス基板(以下「TFT基板」と称する。)100aと、対向基板(「カラーフィルタ基板」とも呼ぶ。)100bと、これらの間に設けられた液晶層30とを有している。
【0027】
TFT基板100aは、透明絶縁性基板(例えばガラス基板)10上に、複数の行および複数の列を有するマトリクス状に配列された複数の画素電極15と、行方向に延びる複数の走査配線11と、列方向に延びる複数の信号配線12と、それぞれが複数の画素電極のそれぞれに対応して設けられた複数のTFT(薄膜トランジスタ)13とを有する。また、ここでは、絶縁性基板10上には、行方向に延びる複数の補助容量配線14も形成されている。
【0028】
スイッチング素子としてのTFT13は、対応する画素電極15、走査配線11および信号配線12に電気的に接続されている。TFT13上には、図2に示したように、層間絶縁膜16が形成されている。なお、図2では、凹凸状の表面を有する層間絶縁膜16を例示しているが、層間絶縁膜16は平坦な表面を有していてもよい。
【0029】
画素電極15は、層間絶縁膜16の下に形成された第1画素電極(下層電極)15aと、層間絶縁膜16の上に形成された第2画素電極(上層電極)15bとを有する。本実施形態では、第1画素電極15aは、透明導電材料(例えばITO)から形成された透明電極であり、第2画素電極15bは、光反射性を有する導電材料(例えばAlなどの金属)から形成された反射電極である。透明電極15aはTFT13のドレイン電極に接続されており、反射電極15bは層間絶縁膜16に設けられた開口部(コンタクトホール)16a内において透明電極15aに接続されている。
【0030】
透明電極(下層電極)15aは、図1および図2に示したように、ゲート絶縁膜17を介して走査配線11の一部を覆うように形成されている。本実施形態では、ある画素電極15が有する透明電極15aは、その画素電極15が属する行に隣接した一対の走査配線11のうちの一方のみの一部を覆っている。より具体的には、ある画素電極15が有する透明電極15aは、その画素電極15に接続されたTFT13と接続されていない方の走査配線11の一部、つまり、その画素電極15にTFT13を介して接続されていない方の走査配線11の一部を覆っている。
【0031】
また、反射電極15bは、TFT13を覆い、且つ、走査配線11および信号配線12と周辺部で重なるように形成されている。ここでは、反射電極15bは、凹凸状の表面を有する層間絶縁膜16上に形成されているので、層間絶縁膜16の凹凸を反映した表面形状を有しており、入射光を適度に拡散反射する。そのため、ペーパーホワイトに近い白表示を行うことができる。
【0032】
各画素において、反射電極15bが形成されている領域が反射領域を規定し、開口部16a内の反射電極15bが形成されていない領域が透過領域を規定する。液晶表示装置100は、画素ごとに、透過モードで表示を行う透過領域と反射モードで表示を行う反射領域とを有しているので、透過モードおよび反射モードで表示を行うことができる。透過モードおよび反射モードのいずれか一方のモードで表示を行うことも可能で、両方のモードで表示を行うこともできる。
【0033】
TFT基板100aは、さらに、液晶層30側の表面に、配向膜(不図示)を有している。配向膜は、図2中に矢印18で示す方向にラビング処理が施されている。
【0034】
TFT基板100aに対向する対向基板100bは、図2に示したように、透明絶縁性基板(例えばガラス基板)20の液晶層30側に、画素電極15に対向する対向電極25と、カラーフィルタ層(不図示)と、配向膜(不図示)とを有している。対向電極25は、典型的には、全ての画素に共通に設けられた単一の対向電極である。液晶表示装置100においては、反射電極(上層電極)15bが層間絶縁膜16を介して走査配線11や信号配線12に重畳するように形成されているので、画素電極15が存在しない部分からの光漏れを抑制するための遮光層を対向基板100bに設ける必要がなく、そのため、開口率が向上し、明るい表示が実現される。
【0035】
上述した液晶表示装置100は、走査配線11の一部が画素電極15の第1画素電極15aで覆われている点以外は、公知の二層構造電極を備えた液晶表示装置と同じ構成を採用することができ、公知の製造方法で製造することができる。
【0036】
液晶表示装置100は、複数の走査配線11に走査信号電圧を順次供給することによって、複数の画素電極15のうちから同じ走査配線11に接続されている画素電極15の群を順次選択し、選択された群の画素電極15に、信号配線12を介して表示信号電圧を供給することによって表示を行う。
【0037】
本発明による液晶表示装置100においては、画素電極15が有する第1画素電極(下層電極)15aが、図1および図2に示したように、走査配線11の一部を覆っているので、画素電極15と走査配線11との間の電位差に起因して発生する電界の影響が、第1画素電極15aによって電気的に遮蔽(シールド)される。従って、画素電極15の端部上に位置する液晶分子は、上述した電界の影響をほとんど受けず、液晶分子の配向の乱れが抑制される。そのため、リバースチルトドメインの発生などの表示不良が抑制され、高品位の表示が実現される。
【0038】
上述したように、本発明の液晶表示装置100においては、第1画素電極15aの一部が、表示に寄与する画素電極としてではなく、走査配線11の影響を電気的に遮蔽する遮蔽(シールド)電極として機能する。言い換えると、走査配線11の一部を覆うように第1画素電極15aから遮蔽電極が延在している。
【0039】
なお、液晶表示装置100の各画素電極15は、2本の走査配線と隣接しているが、ある画素(任意の1つの画素)の画素電極15が有する第1画素電極(下層電極)15aは、その画素を駆動するための走査配線11を覆わないことが好ましい。すなわち、隣接する画素を駆動するための走査配線11を覆うことが好ましい。ある画素の第1画素電極15aが、その画素を駆動するための走査配線11を覆うように形成されていると、その画素のTFT13の寄生容量が増加するので、TFT13のオンからオフへのスイッチング動作の際に画素電極15の電圧に生じる引き込みが大きくなる。そのため、引き込み電圧を補償するために対向電極に印加するオフセット電圧の調整範囲も大きくなってしまう。
【0040】
本実施形態では、任意の1つの画素電極15が有する透明電極15aは、その画素電極15にTFT13を介して接続されている走査配線11を覆っておらず、その画素電極15にTFT13を介して接続されていない走査配線11を覆っているので、引き込み電圧の原因となるTFT13の寄生容量が増加することがない。そのため、オフセット電圧の調整範囲が小さいので、オフセットのための回路の規模を小さくでき、また、温度やプロセスばらつきによる変動量も少なくできる。
【0041】
また、消費電力の低減および製造コストの低減の観点からは、対向電極25には、信号配線12から画素電極15に供給される表示信号電圧にほぼ同期した交流電圧が供給されることが好ましい。すなわち、対向電極25には、最大の表示信号電圧とほぼ同じ振幅の交流電圧を供給し、表示信号電圧として、黒表示時にはこの交流電圧と逆位相の電圧を、白表示時には同位相の電圧を供給することが好ましい。これによって、表示信号電圧の振幅を小さくすることができるので、消費電力を低減できる。また、表示信号電圧の振幅が小さいと、ソースドライバとして耐圧が低いものを用いることができるので、製造コストを低減できる。
【0042】
対向電極25に上述したように交流電圧を供給する場合には、さらに、補助容量配線14にも同位相且つ同振幅の交流電圧を供給することが好ましい。これによって、TFT13の非選択時に画素電極15の電位もこれらと同位相且つ同振幅で変動するため、TFT13の選択時に画素に書き込まれて液晶層30に印加された電圧は、次の書き込みまでの間同じ電圧のまま保持される。以下、このメカニズムを、図3(a)〜(e)を参照しながらさらに詳しく説明する。図3(a)は走査配線11に出力される走査信号波形を示し、図3(b)は信号配線12に出力される表示信号波形を示し、図3(c)は対向電極25および補助容量配線14に出力される信号波形を示す。また、図3(d)は画素電極15の電位を示し、図3(e)は液晶層30に実際に印加される電圧を示す。
【0043】
まず、時刻t1に、ある走査配線11が選択され、その走査配線11に対応した画素電極15に信号配線12を介して所定の電位(表示信号電圧に対応した電位)が書き込まれる。例えばこの時の電位が+2.5Vであったとする。
【0044】
次に、走査配線11が選択状態から非選択状態に切り替わった時、先に述べたように画素電極15の電位は寄生容量の影響によって引込みを受けて、書き込まれた電位よりも低い電位に固定される。例えばこの引き込み量が0.5Vであったとすると、画素電極15の電位は、走査配線11が非選択状態になったときには+2.0Vである。
【0045】
一方、対向電極25および補助容量配線14が、信号配線12とは逆電位で交流駆動されており、その振幅が5.0Vであるとすると、上述したように対向電極25にはオフセットが与えられるので、これらは±2.5Vではなく+2.0Vと−3.0Vの間で交流駆動される。時刻t1では画素電極15に+2.0V(引込み後)の電位が与えられるのに対して、対向電極25には−3.0Vの電位が与えられるので、液晶層30には+5.0Vの電圧が印加された状態となる。
【0046】
次に、時刻t2に、信号配線12、対向電極25および補助容量配線14は極性反転される。このとき走査配線11が非選択状態であるので、画素電極15は電気的に浮いた状態であって信号配線12の影響は受けない。一方、画素電極15は、液晶層30を介して対向電極25と静電容量(液晶容量)を形成し、また、補助容量配線14とも静電容量(補助容量)を形成している。そのため、電気的に浮いた状態の画素電極15は、静電容量を形成する相手方が交流駆動されていると、その相手方、すなわち、対向電極25および補助容量配線14の状態に応じて保持期間(非選択期間)中の電位が変動する。
【0047】
画素電極15と静電容量を形成する相手方が対向電極25および補助容量配線14のみの場合には、画素電極15はこれらと同じ振幅で揺り動かされることになるので、時刻t2には+7.0V、時刻t3には再び+2.0V、時刻t4には+7.0Vというように電位変動する。この間、対向電極25は、時刻t2には+2.0V、時刻t3には−3.0V、時刻t4には+2.0Vというように駆動されるため、液晶層30に印加される電圧は常に+5.0Vに保たれる。
【0048】
次に、時刻t6に、画素電極15には信号配線12を介して−2.5Vの電位が書き込まれ、この電位は引込みを受けることによって−3.0Vに固定される。このとき対向電極25および補助容量配線14の電位は+2.0Vであり、時刻t7で−3.0V、時刻t8で+2.0Vと交流駆動されるにつれて、画素電極15は時刻t7で−8.0V、時刻t8で−3.0Vと揺動される。その結果、液晶層30に印加される電圧は−5.0Vに保たれる。
【0049】
ところが、本発明の液晶表示装置100のように、走査配線11の一部が画素電極15の第1画素電極(下層電極)15aによって覆われていると、第1画素電極15aと走査配線11との間に新たな静電容量が発生する。この静電容量の値をCgdと呼ぶことにし、この新たな静電容量と液晶容量および補助容量とが画素容量(画素全体での容量)に相当する場合を考えると、画素電極15の電位は、画素容量(この値をCpixと呼ぶことにする。)のうち、液晶容量および補助容量が占める割合分しか変動しない。このため、時刻t2、t4における対向電極25の交流駆動に同期した画素電極15の変動分は目減りする。
【0050】
すなわち、対向電極25および補助容量配線14の交流駆動の振幅をVcppとすると、画素電極15の電位は、(1−Cgd/Cpix)・Vcppしか変動しない。一方、対向電極25はVcppの振幅で変動するため、時刻t2、t4などにおいて液晶層30に印加される電圧は、図3(e)に示したように、上述した印加電圧(+5.0V)に対して(Cgd/Cpix)・Vcppだけ目減りする。なお、時刻t3、t5では書き込まれた状態(引込み後)に戻る為、上述した印加電圧(+5.0V)のままである。このような変動が保持期間(非選択期間)中繰り返され、また時刻t6で画素に印加される電圧の極性が書き換えられた後も同様である。したがって、保持期間全体にわたっての液晶層30への印加電圧の実効値ベースでの目減り量ΔVlcは、下式で表される。
【0051】
ΔVlc=(Cgd/Cpix)・Vcpp・(1/2)
この目減りを防ぐために、走査配線11の非選択時に、対向電極25および補助容量配線14の交流駆動に同期して走査配線11も交流駆動することが好ましい。すなわち、図4(a)〜(d)に示すように、走査配線11に、非選択期間において、対向電極25および補助容量配線14に供給される交流電圧と振幅および位相が同じ交流電圧を供給することが好ましい。なお、走査配線11に供給されるこの交流電圧がTFT13の非選択電圧(すなわちオフ電圧)であることは言うまでもない。このような駆動によって、非選択期間において画素電極15の電位に、対向電極25および補助容量配線14の交流駆動と同じ振幅の揺動がもたらされるので、新たな静電容量Cgdに起因する目減りが生じない。そのため、静電容量Cgdがない場合と同様、図4(e)に示したように、TFT13の選択時に画素に書き込まれて液晶層30に印加された電圧が次の書き込みまでの間一定に保持される。
【0052】
なお、上述の説明では液晶層30に最大設定電圧が印加される場合を例として説明しているが、例えば表示すべき画面によっては当然液晶層30にはより小さな電圧が印加される。その場合には、信号配線12に供給される表示信号電圧を対向電極25に供給される電圧と同位相とするのは、従来の対向電極反転駆動と同様である。
【0053】
(実施形態2)
図5および図6に、本発明による実施形態2の液晶表示装置200を示す。図5は、液晶表示装置200の1つの絵素領域の構造を模式的に示す上面図であり、図6は、図5中の6A−6A’線に沿った断面図である。以下では、実施形態1の液晶表示装置100と異なる点を中心に説明する。
【0054】
実施形態1の液晶表示装置100においては、図1および図2に示したように、画素電極15の第1画素電極(下層電極)15aは、走査配線11が有する端辺の両方を覆っている。これに対して、実施形態2の液晶表示装置200においては、図5および図6に示したように、画素電極15の第1画素電極(下層電極)15aは、走査配線11が有する端辺の一方のみを覆っている。
【0055】
より具体的には、液晶表示装置200の第1画素電極15aは、行方向に沿った一対の端辺のうち、ラビング処理の下流側(ラビング処理の開始方向と反対側)の端辺のみを覆っている。
【0056】
本発明の液晶表示装置においては、画素電極の第1画素電極が走査配線の一部を覆うように形成されるので、走査配線と画素電極との間に静電容量が発生し、走査配線全体としての負荷容量が大きくなる。走査配線に供給される選択信号と非選択信号との電位差は通常25V程度と非常に大きいので、走査配線の負荷容量の増大は、消費電力の増加を招くことがある。
【0057】
本実施形態の液晶表示装置200においては、画素電極15の第1画素電極(下層電極)15aが、走査配線11の端辺の一方のみを覆っているので、走査配線11と画素電極15とが重なる部分の面積が比較的小さい。従って、走査配線11と画素電極15とによって形成される静電容量が比較的小さく、走査配線11の負荷容量も比較的小さい。そのため、消費電力の増加が抑制される。
【0058】
このように、低消費電力の観点からは、走査配線11と画素電極15との重なりが小さいことが好ましく、第1画素電極15aが走査配線11の端辺の一方のみを覆っていることが好ましい。表示不良の発生を効果的に抑制するためには、本実施形態のように、走査配線11が有する一対の端辺(行方向に沿った一対の端辺)のうち、ラビング処理の下流側の端辺を覆うことが好ましい。以下、この理由を説明する。
【0059】
図6に示した液晶表示装置200において、TFT基板100aの表面の配向膜(不図示)には矢印18で示す方向にラビング処理が施されているので、液晶層30の液晶分子30aは、その左端が右端よりもTFT基板100a側に近いように傾斜しており、言い換えると、右上がりにプレチルトしている。
【0060】
第1画素電極15aの遮蔽電極として機能する部分(走査配線11を覆う部分)がない場合には、走査配線11と画素電極15との電位差に起因して発生する横電界は、液晶分子30aを画素の外周側に倒すように作用する。つまり、図6の左側の画素においては液晶分子30aは時計回りに傾斜(回転)し、図6の右側の画素においては液晶分子30aは反時計回りに傾斜(回転)する。従って、もともと右上がりにプレチルトしている液晶分子30aは、横電界の影響を受けると、左側の画素においてはもとの傾斜方向と同じ方向に倒れ込むが、右側の画素においてはもとの傾斜方向と異なる方向に倒れ込む。そのため、右側の画素においては、リバースチルトドメインが発生しやすい。
【0061】
このように、第1画素電極15aの遮蔽電極として機能する部分がない場合には、走査配線11を挟んで隣接する2つの画素のうち、ラビング処理の下流側の画素においてリバースチルトドメインがより発生しやすい。そのため、本実施形態の液晶表示装置200のように、走査配線11が有する端辺のうち、ラビング処理の下流側の端辺のみを覆うように第1画素電極15aを形成することによって、走査配線11の負荷容量の増大を抑えつつ、効果的に表示不良の発生を抑制することができる。
【0062】
また、横電界の影響をより確実に遮蔽するためには、図5および図6に示したように、走査配線11の近傍において、基板法線方向からみたときに第1画素電極(下層電極)15aが第2画素電極(上層電極)15bよりも幾分はみ出るように第1画素電極15aが形成されていることが好ましい。言い換えると、第1画素電極15aの端辺が第2画素電極15bの端辺よりもラビング処理の上流側に位置することが好ましい。例えば図6では、第1画素電極15aの端辺は、右側の画素の第2画素電極15bの端辺よりも左側、つまり、ラビング処理の上流側に位置している。
【0063】
勿論、第1画素電極15aをさらに延ばし、左側の画素の第2画素電極15bと重なるようにすると、左側の画素への横電界の影響も抑制できるが、この場合には以下の原因から所望の表示が得られない可能性がある。図6中に示す2つの画素は、列方向に沿って隣接しているので、一方の画素にある極性で書き込みが行われた後に他方の画素に逆極性で書き込みが行われる。例えば、左側の画素にある極性で書き込みが行われた後に右側の画素に逆極性で書き込みが行われるとする。左側の画素の第2画素電極15bと右側から延びる第1画素電極15aとが層間絶縁膜16を介して重ねられ、静電容量を形成していると、左側の画素の第2画素電極15bと右側から延びる第1画素電極15aとはそれぞれ列方向に隣接した異なる画素に属する電極であるので、左側の画素において逆極性への引き込みが生じ、実質的に液晶層30に印加される電圧が目減りする。そのため、所望の表示が得られないことがある。従って、層間絶縁膜16を介した静電容量の値が無視できない場合には、一方の画素から延びる第1画素電極15aは、両方の画素の第2画素電極15bの間の適当なところで終焉するように設計されることが好ましい。
【0064】
また、図5に示したように、本実施形態では、ある画素の第1画素電極(下層電極)15aは、その画素を駆動するための走査配線11を覆っておらず、隣接する画素を駆動するための走査配線11を覆っている。このような構成とすることで、TFT13のオンからオフへのスイッチング動作時に画素電極15の電圧に生じる引き込みを小さくできることは既に述べたとおりである。
【0065】
従って、各画素の第1画素電極15aが、隣接する画素を駆動するための走査配線11のみを覆い、且つ、その走査配線11の端辺のうち、ラビング処理の下流側の端辺のみを覆っていると、高品位の表示が可能となるだけでなく、消費電力および製造コストが低減される。各画素が、隣接する一対の走査配線11のうち、ラビング処理の下流側の走査配線11によって駆動されるような配置とすることで、上記構成を採用することができるようになる。
【0066】
(実施形態3)
スイッチング素子としてTFTを備える液晶表示装置においては、TFTの寄生容量に起因して、TFTのオンからオフへのスイッチング動作時に画素電極の電圧に引き込みが生じる。そのため、この引き込み電圧を補償するために、対向電極に引き込み電圧に応じたオフセット電圧が印加される。
【0067】
しかしながら、引き込み電圧とオフセット電圧とが一致していない場合、液晶層に印加する電圧の極性を反転させるごとに、液晶層に印加される実効電圧に差が生じ、フリッカとして視認されることになる。
【0068】
引き込み電圧とオフセット電圧との差(「対向ずれ」と称される。)に起因するフリッカは、通常の周波数での駆動においてよりも、低周波駆動においてより視認されやすい。
【0069】
フリッカの視認性を下げる方法の1つとして、走査配線1本ごとに極性を反転させる、いわゆるゲートライン反転(「1H反転」とも呼ばれる。)駆動に代えて、1画素ごとに極性を反転させる、いわゆるドット反転駆動を採用する方法がある。
【0070】
ただし、ドット反転駆動は、データ信号ドライバ(ソースドライバ)の耐圧や消費電力の点など不利な点も多い。
【0071】
実施形態3の液晶表示装置300は、ゲートライン反転駆動用の回路構成で、実質的なドット反転駆動を行うことができる。
【0072】
図7に、本発明による実施形態3の液晶表示装置300を示す。図7は、液晶表示装置300を模式的に示す上面図である。
【0073】
液晶表示装置300では、ドット反転駆動を実現するために、図7に示したように、TFT13に対して画素電極15を千鳥状に配列している。すなわち、ある走査配線11に接続されたTFT13は、その走査配線11に隣接する一対の行に属する画素電極15のうちの一方の行に属する画素電極15に接続されたTFT13と、他方の行に属する画素電極15に接続されたTFT13とを交互に有している。
【0074】
このように配置すると、走査配線11が選択される度に全ての信号配線12に印加される表示信号電圧の極性を反転し、さらに次の垂直走査期間で同一画素電極15に印加される表示信号電圧の極性を反転させることによって、ドット反転駆動を実現することができる。すなわち、TFT13の千鳥配列とゲートライン反転駆動とを組み合わせることによって、実質的なドット反転駆動が実現される。そのため、本実施形態の液晶表示装置300は、従来のゲートライン反転駆動用の回路構成でドット反転駆動を行うことができる。
【0075】
また、本実施形態においても、各画素の第1画素電極(下層電極)15aは、その画素を駆動するための走査配線11を覆っておらず、隣接する画素を駆動するための走査配線11を覆っている。従って、ある走査配線11は、その走査配線11に隣接する一対の行に属する画素のうちの一方から延びる第1画素電極15aと、他方から延びる第1画素電極15aとによって交互に覆われている。
【0076】
TFT13に対して画素電極15を千鳥配列とする場合、例えば、隣接した画素列に属する2つの画素電極15の一方を、単に他方を180°回転させた配置とすることもできるが、図7に示したように、補助容量配線14を直線状に配置し、透過領域が行方向に一直線上に並ぶようにすると、透過モードの表示においてギザギザが視認されにくい。
【0077】
参考例
図8に、本発明による参考例の液晶表示装置400を示す。図8は、液晶表示装置400の1つの絵素領域の構造を模式的に示す上面図である。
【0078】
参考例の液晶表示装置400においては、各画素の第1画素電極(下層電極)15aは、隣接する画素を駆動するための走査配線11を覆っており、第1画素電極15aとそれに覆われた走査配線11とによって形成される静電容量を補助容量として機能させている。つまり、いわゆるCs on Gateの構造をとっている。従って、補助容量配線を省略することができ、透過反射両用型液晶表示装置における透過領域の面積上、配置上の制約が緩和される。つまり、典型的には遮光性の材料から形成される補助容量配線が存在する場合には、この補助容量配線が存在しない部分にしか透過領域を配置できないが、上述の構造を採用することでより自由な設計が可能となる。
【0079】
実施形態4
図9および図10に、本発明による実施形態4の液晶表示装置500を示す。図9は、液晶表示装置500の1つの絵素領域の構造を模式的に示す上面図であり、図10は、図9中の10A−10A’線に沿った断面図である。以下では、実施形態1の液晶表示装置100と異なる点を中心に説明する。
【0080】
実施形態1の液晶表示装置100においては、図1および図2に示したように、第1画素電極15aが走査配線11を覆っていたのに対し、実施形態4の液晶表示装置500においては、図9及び図10に示したように、シールド電極101が走査配線11を覆っている。
【0081】
より具体的には、シールド電極101は、補助容量配線14に電気的に接続されており、画素電極15が属する行に隣接した一対の走査配線11のうち、該画素電極15のTFT13に接続されていない方の走査配線11を覆うように構成されている。液晶表示装置500の全体としては、複数の走査配線のそれぞれは、該各走査配線11の一部をシールド電極101によって覆われている。
【0082】
補助容量配線14は、上記画素電極15のTFT13に接続されていない方の走査配線11へ向かって延長された延長部14aを備えている。補助容量配線14は、第1画素電極15aにより覆われる一方、延長部14aの少なくとも一部は、第1画素電極15aにより覆われていない。言い換えれば、延長部14aの少なくとも一部は、第1画素電極15aに重なっていない。
【0083】
図10に示すように、補助容量配線14及び走査配線11の上には、ゲート絶縁膜17が積層されている。ゲート絶縁膜17には、補助容量配線14の延長部14aの上において、コンタクトホール102が上方に開口されている。
【0084】
もちろん、コンタクトホール102を含む開口部を、配置させやすいように延長部14aを設けているが、この延長部14aが必ずしも必要というわけではなく、補助容量配線14において第1画素電極15aに覆われていない部分が存在すればよく、この部分にコンタクトホール102を設けて上方に開口するようにしておけばよい。
【0085】
シールド電極101は、ゲート絶縁膜17の上に積層され、コンタクトホール102において、補助容量配線14の延長部14aに接続されている。そして、シールド電極101は、ゲート絶縁膜17を介して上記走査配線11に対向するようになっている。こうして、シールド電極101によって、走査配線11と第2画素電極15bとの間を、電界的に遮蔽するようにしている。
【0086】
そして、シールド電極101は、第1画素電極15aと同一の層に構成されている。言い換えれば、シールド電極101及び第1画素電極15aは、略同じ厚さに形成され、ゲート絶縁膜17の上にそれぞれ積層されている。
【0087】
したがって、液晶表示装置500を製造する場合には、まず、絶縁性基板10の上に走査配線11、補助容量配線14及びゲート絶縁膜17を積層する。続いて、ゲート絶縁膜17にコンタクトホール102を形成した後に、該ゲート絶縁膜17の上に、シールド電極101及び第1画素電極15aを同時に積層して形成する。
【0088】
次に、図11を参照して、液晶表示装置500の駆動について説明する。
【0089】
この実施形態においても、液晶表示装置500は、上記実施形態1の液晶表示装置100と同様に駆動される。すなわち、図11(a)に示すように、走査配線11には、選択期間において、所定の走査信号が供給される一方、非選択期間において、所定の直流電圧が供給される。信号配線12には、図11(b)に示すように、交流電圧が供給される。また、対向電極25及び補助容量配線14には、上記信号配線12に供給される交流電圧とは逆電位の交流電圧が、それぞれ供給される。
【0090】
そのとき、シールド電極101は、補助容量配線14に接続されているため、該補助容量配線14と同じ交流電圧が供給される。その結果、走査配線11に交流電圧を印加しなくても、液晶層30への印加電圧を一定に保持することができる。
【0091】
尚、シールド電極101と第2画素電極15bとの間には、寄生容量が発生するが、該シールド電極101に接続された補助容量配線14は、画素電極15との間に所定の静電容量を得る目的で設けられたものであるため、本来の補助容量値が若干増加するに過ぎず、表示に悪影響を及ぼすことはない。
【0092】
つまり、補助容量配線14は、対向電極25と同様に、交流駆動されているため、シールド電極101に対しても、外部から別途駆動信号を供給するまでもなく、交流駆動の状態となっているため、画素駆動電圧の目減りの発生を防止することができる。
【0093】
すなわち、本実施形態では、層間絶縁膜の16の下に設けられた第1画素電極15aと、層間絶縁膜の16の上に設けられた第2画素電極15bとを備える液晶表示装置において、走査線11と第2画素電極15bとの間の強電界を遮蔽するようにしたので、第2画素電極15bの端部における液晶分子の配向状態を乱れを低減し、リバースチルトドメインの発生を防止することができる。そのことに加えて、液晶分子の配向の乱れが抑制されるため、表示画像におけるフリッカの発生を防止することができる。この効果は、液晶表示装置に対し、信号配線12に供給される表示信号電圧が、例えば45Hz以下である低周波駆動を行う場合に、特に有効である。
【0094】
ところで、上記実施形態1では、走査配線11に対し、非選択期間に、対向電極25及び補助容量配線14と同じ振幅で交流電圧を供給している。そのことにより、画素全体の画素容量の変動の目減りを補償し、液晶層30に印加される電圧を一定に保持するようにしている。
【0095】
しかしながら、走査配線11を非選択期間に交流駆動させると、その交流駆動のために電源駆動回路が別途必要となる。詳しくは、TFT13をOFF状態に保持するために、走査配線11には、対向電極25に印加される交流電圧と同様に、2つの電圧値の間で変動する交流電圧を供給する必要がある。したがって、走査配線11に対し、非選択期間において各電圧を供給するために2種類の電源系統が必要となる。
【0096】
その結果、液晶表示装置に設ける外装回路部材が増加するため、装置の大型化が避けられず、上記電源駆動回路に要するコストが必要となってしまう。また、走査配線11を交流駆動することにより、消費電力の増大が避けられない。
【0097】
これに対し、本実施形態では、ゲート絶縁膜17上の導電膜を、シールド電極101として利用し、該シールド電極101により走査配線11と画素電極15との間に寄生容量Cgdが生じることを防止できるため、走査配線11に対し、非選択期間において直流電圧を供給しながら、液晶層30への印加電圧を一定に保持することができる。
【0098】
したがって、走査配線11に対して交流電圧を印加するための電源駆動回路が不要となるため、装置の小型化を図ると共に、コストを低減させることができる。さらに、走査配線11を、非選択期間に直流電圧で駆動できるため、消費電力の低減を図ることもできる。
【0099】
また、上記実施形態1では、走査配線11と画素電極15との間の寄生容量Cgdが比較的大きいため、走査配線11が非選択電位から選択電位に切り替わる際に、上記寄生容量Cgdが画素電極15の電位の揺動に与える影響は、大きくなる。
【0100】
すなわち、通常、画素電極15は、その電位がプラスからマイナス、あるいはマイナスからプラスに定期的に書き換えられることにより交流駆動される。しかし、寄生容量Cgdが比較的大きいため、隣接する画素を駆動する走査線に対して第1画素電極15aを延伸し、電界を遮蔽するようにしても、その走査配線11が隣接する画素を選択する際の電圧変動によって、その選択期間には、本来のプラス電位及びマイナス電位とは異なる、画素電極15の電位が突き上げられた状態が生じることになる。その結果、45Hz以下の低周波駆動を行う場合には、画素電極15の電位が、一定の周期で大きく又は小さくなるために、フリッカの発生を招く虞れがある。
【0101】
これに対し、本実施形態によると、走査配線11からの突き上げの影響を、シールド電極101により遮蔽しているため、低周波駆動時におけるフリッカの発生を防止できるという効果がある。
【0102】
尚、本実施形態では、透過反射両用型の液晶表示装置を示しているが、透過型又は反射型のいずれの形態の液晶表示装置に適用してもよく、本実施形態の構成に限定されるものではない。例えば、反射型の液晶表示装置に適用する場合には、第2画素電極15bを不透明な電極で形成する一方、第1画素電極15aは、不透明な金属膜により構成してもよい。さらに、シールド電極101を、信号配線12と同じ材質の金属膜を用いて、第1画素電極15aと同時に形成するようにしてもよい。
【0103】
次に、走査配線11に対し、非選択期間において交流電圧を供給するようにした液晶表示装置(図示省略)について説明する。
【0104】
補助容量配線14および信号配線12は、上記液晶表示装置500と同様に、交流電圧により駆動されている。これに対し、走査配線11には、非選択期間において、補助容量配線14に供給される交流電圧と振幅及び位相が同じ交流電圧が供給されるようになっている。
【0105】
そして、液晶表示装置は、複数の画素電極のそれぞれに複数の信号配線12を介して周期的に供給される表示信号電圧が、45Hz以下の低周波数で書き換えられるように構成されている。
【0106】
すなわち、この場合においても、走査配線11を覆うシールド電極101により、リバースチルトドメインなどの発生を防止できる。また、走査配線11からの突き上げの影響についても、隣接する画素を駆動する走査配線11に対して第1画素電極15aを延伸して電界を遮蔽する先の実施形態1とは異なり、シールド電極101による遮蔽構造によって寄生容量Cgdの増大という弊害の発生を回避しているため、低周波駆動時におけるフリッカの発生を防止できる。
【0107】
そのことに加え、シールド電極101が補正容量配線14の電位に従って交流駆動されると同時に、走査配線11も非選択期間において同じ振幅および位相で交流駆動される。したがって、上記走査配線11とシールド電極101との間に形成される静電容量において、電荷のやりとりがないために電力消費が生じない。つまり、液晶表示装置の消費電力の低減を図ることができる。
【0108】
以上のように、走査配線11に対し、非選択期間において、直流電圧を供給するようにしてもよいし、交流電圧を供給するようにしてもよい。これらは、非選択電位を供給する電源の構成や、画素電極15の駆動周波数に応じて決定すればよい。
【0109】
(その他の実施形態)
上記実施形態で例示して説明したように、本発明は、走査配線の一部を画素電極が有する第1画素電極(下層電極)で覆うことによって、表示不良の発生を抑制するが、この効果は、低周波駆動を行う液晶表示装置において特に顕著である。低周波駆動を行う液晶表示装置においては、走査配線と画素電極との間の電位差に起因する表示不良の発生がいっそう顕著となるからである。
【0110】
低周波駆動を行うと、当然ながら、画素に印加される電圧の極性反転の周期が長くなるので、画素の端部の配向が乱れる領域(例えばリバースチルトドメインが発生する領域)にある液晶分子が、この長い反転周期に追従した挙動を示すようになる。以下、図15を参照しながらより具体的に説明する。
【0111】
図15中の右側の画素は、正極性の電圧を供給されており、走査配線711との電位差が大きいので、電界の歪みも大きい。そのため、リバースチルトドメインが発生しやすい状態である。低周波駆動の場合には、この状態での電荷保持期間が通常周波数の駆動の場合よりも数倍長いので、極性反転までの数十〜数百msecの間に、リバースチルトドメインが徐々に大きくなり、また、リバースチルトドメイン内の配向乱れの程度も徐々にひどくなる。次のフレームでは、逆の極性での書き込みが行われ、この画素には負極性の電圧が供給されるので、走査配線711との電位差が小さく、リバースチルトドメインが発生しにくい状態である。ところが、先のフレームで発生したリバースチルトドメインは瞬時に消滅するのではなく、電荷保持期間内の一定期間を費やして徐々に消滅する。液晶分子30aがこのような挙動を示すので、この画素の表示は、1フレームの2倍、すなわち2フレームを1周期として明暗を繰り返すことになり、画面全体でのフリッカとして視認されてしまう。左側の画素についても同様のことがいえる。
【0112】
また、走査配線711と画素電極715との電位差の大きさによっては、リバースチルトドメインが発生しない場合もあるが、その場合でもやはり画素電極715の端部に位置する液晶分子30aの配向が乱されるので、電荷保持期間内で画素端部の反射率(あるいは透過率)が徐々に変化し、フリッカの要因となってしまう。
【0113】
通常の周波数での駆動においては、60Hzなどの比較的高い周波数で画素への印加電圧の極性が反転されるので、画素端部の配向が乱れる領域の液晶分子30aは、この周波数に追従した挙動を示すことはできず、また、追従したとしても肉眼で視認可能な周波数を超えているために点滅状のフリッカとして認識されない。勿論、点滅状のフリッカとして視認されなくても、画素の端部にリバースチルトドメインが存在することによってコントラスト比が低下するが、透過型の液晶表示装置においては走査配線や信号配線がバックライトからの光を遮るし、反射型や透過反射両用型の液晶表示装置においては、反射電極の凹凸状表面の散乱効果のためにもともとコントラスト比がそれほど高くないので、リバースチルトドメインの存在によるコントラスト比の低下はさほど問題にはならなかった。
【0114】
しかしながら、低周波駆動を行う場合には、既に述べたように表示品位が劣化してしまう。本発明による液晶表示装置100においては、画素電極15が有する第1画素電極(下層電極)15aが、図1および図2に示したように、走査配線11の一部を覆っており、画素電極15と走査配線11との間の電位差に起因して発生する電界の影響が、第1画素電極15aによって電気的に遮蔽(シールド)される。そのため、低周波駆動を行う場合でも、液晶分子の配向の乱れが抑制されるので、表示不良の発生が抑制され、高品位の表示が実現される。
【0115】
−低周波駆動回路−
低周波駆動を実行するための回路構成の好ましい実施形態を説明する。
【0116】
図12に、低周波駆動が可能な液晶表示装置1のシステムブロック図を示す。
【0117】
液晶表示装置1は、液晶パネル2と、低周波駆動回路8とを有している。液晶パネル2は、上述した液晶表示装置100、200、300、400および500を例示して説明した構成を有している。低周波駆動回路8は、ゲートドライバ3、ソースドライバ4、コントロールIC5、画像メモリ6および同期クロック発生回路7を有している。
【0118】
走査信号ドライバとしてのゲートドライバ3は、液晶パネル2の各走査配線11に、選択期間と非選択期間とのそれぞれに応じた電圧の走査信号を出力する。データ信号ドライバとしてのソースドライバ4は、液晶パネル2の各信号配線12に、選択されている走査配線11上にある画素電極15のそれぞれに供給する画像データを表示信号として交流駆動で出力する。
【0119】
コントロールIC5は、コンピュータなどの内部にある画像メモリ6に蓄えられている画像データを受け取り、ゲートドライバ3にゲートスタートパルス信号GSPおよびゲートクロック信号GCKを配信し、ソースドライバ4にRGBの階調データ、ソーススタートパルス信号SPおよびソースクロック信号SCKを配信する。
【0120】
周波数設定手段としての同期クロック発生回路7は、コントロールIC5が画像メモリ6から画像データを読み出すための同期クロックや、出力するゲートスタートパルス信号GSP、ゲートクロック信号GCK、ソーススタートパルス信号SPおよびソースクロック信号SCKを生成するための同期クロックを発生させる。本実施の形態では、上記各信号を液晶パネル2の画面の書き換え周波数に合わせるための、同期クロックの周波数設定をここで行うようにしている。ゲートスタートパルス信号GSPの周波数は上記書き換え周波数に相当し、同期クロック発生回路7では少なくとも1つの書き換え周波数を30Hz以下に設定することができ、また、30Hz以上をも含めて任意の複数通りの書き換え周波数を設定できるようになっている。
【0121】
図12では、同期クロック発生回路7が外部から入力される周波数設定信号M1およびM2に応じて書き換え周波数の設定を変えるようになっている。周波数設定信号の数は任意でよいが、例えばこのように2種類の周波数設定信号M1、M2があるとすると、表1に示すように書き換え周波数を4通りに設定することができる。
【0122】
(表1)
M1 M2 設定周波数(Hz)
H H 60
H L 30
L H 15
L L 6
なお、書き換え周波数の設定はこの例のように同期クロック発生回路7に複数の周波数設定信号が入力されるようになっていてもよいし、同期クロック発生回路7に書き換え周波数調整用のボリュームや選択用のスイッチなどが備えられていてもよい。勿論使用者が設定しやすいように液晶表示装置100’の筐体外周面に書き換え周波数調整用のボリュームや選択用のスイッチなどが備えられていてもよい。同期クロック発生回路7は少なくとも外部からの指示に応じて書き換え周波数の設定が変えられる構成であればよい。あるいは、表示する画像に合わせて自動で書き換え周波数が切り替わるように設定することも可能である。
【0123】
ゲートドライバ3は、コントロールIC5から受け取ったゲートスタートパルス信号GSPを合図に液晶パネル2の走査を開始し、ゲートクロック信号GCKに従って各走査配線32に順次選択電圧を印加していく。ソースドライバ4は、コントロールIC5から受け取ったソーススタートパルス信号SPを基に、送られてきた各画素の階調データをソースクロック信号SCKに従ってレジスタに蓄え、次のソーススタートパルス信号SPに従って液晶パネル2の各信号配線12に階調データを書き込む。
【0124】
上述したような低周波駆動回路8を備えることによって、低周波駆動が可能になる。複数の画素電極のそれぞれに信号配線を介して周期的に供給される表示信号電圧を45Hz以下の周波数で書き換えることによって、つまり、45Hz以下の低周波駆動とすることによって、走査信号の周波数が減少して走査信号ドライバ(ここではゲートドライバ)の消費電力が十分低減されるとともに、表示信号の極性反転周波数が減少し、データ信号ドライバ(ここではソースドライバ)の消費電力が十分に低減される。
【0125】
なお、書き換え周波数の好ましい範囲は、0.5Hz以上45Hz以下であり、さらに好ましい範囲は、1Hz以上15Hz以下である。この理由を図13(a)および(b)を参照しながら説明する。図13(a)および(b)は、液晶層30の液晶材料としてメルク社製ZLI−4792を用いた場合について、書き込み時間を一定(例えば100μsec)に固定したときの液晶電圧保持率Hrの駆動周波数(書き換え周波数)依存性を測定した結果である。図13(b)は、図13(a)のうち駆動周波数が0Hz〜5Hzの領域を拡大した図である。
【0126】
図13(b)からわかるように、液晶電圧保持率Hrは約97%となる1Hzあたりから低下し、約92%となる0.5Hzより低くなると急激に低下する。液晶電圧保持率Hrがあまり小さくなると、液晶層30やTFT13の漏れ電流に起因して画素電極15の電位が変動して明るさが変化し、チラツキが生じることになる。また、ここで議論している書き込みから1sec〜2sec後といった時間領域ではTFT13のオフ抵抗値は大きく変動することはない。従って、表示のチラツキは液晶電圧保持率Hrに大きく依存する。
【0127】
このことから、書き換え周波数が0.5Hz以上45Hz以下であると、十分な低消費電力化と確実な画素のチラツキ防止とを達成することができる。さらに、書き換え周波数が1Hz以上15Hz以下であると、極めて大きな低消費電力化と、より確実な画素のチラツキ防止とを達成することができる。
【0128】
【発明の効果】
本発明によると、画素電極が有する第1画素電極(下層電極)の一部である遮蔽電極が、走査配線の一部を覆っているので、画素電極と走査配線との間の電位差に起因して発生する電界の影響が、第1画素電極の遮蔽電極によって電気的に遮蔽(シールド)される。従って、画素電極の端部上に位置する液晶分子は、上述した電界の影響をほとんど受けず、液晶分子の配向の乱れが抑制される。そのため、リバースチルトドメインの発生などの表示不良が抑制され、高品位の表示が実現される
【0129】
って、本発明によると、走査配線と画素電極との間の電位差に起因する表示不良の発生が抑制された、高品位の表示が可能な液晶表示装置が提供される。
【0130】
本発明は、透過型、反射型および透過反射両用型の液晶表示装置に好適に用いられ、反射型および透過反射両用型の液晶表示装置に特に好適に用いられる。
【0131】
また、本発明による効果は、書き換え周波数(駆動周波数)が45Hz以下の低周波駆動を行う液晶表示装置において特に顕著である。
【図面の簡単な説明】
【図1】 本発明による実施形態1の液晶表示装置100を模式的に示す上面図である。
【図2】 本発明による実施形態1の液晶表示装置100を模式的に示す断面図であり、図1中の2A−2A’線に沿った図である。
【図3】 (a)〜(e)は、液晶表示装置100を駆動する際の走査信号波形、表示信号波形、対向電極および補助容量配線への出力信号波形、画素電極の電位、液晶層への印加電圧をそれぞれ示す図である。
【図4】 (a)〜(e)は、液晶表示装置100を駆動する際の走査信号波形、表示信号波形、対向電極および補助容量配線への出力信号波形、画素電極の電位、液晶層への印加電圧をそれぞれ示す図である。
【図5】 本発明による実施形態2の液晶表示装置200を模式的に示す上面図である。
【図6】 本発明による実施形態2の液晶表示装置200を模式的に示す断面図であり、図5中の6A−6A’線に沿った図である。
【図7】 本発明による実施形態3の液晶表示装置300を模式的に示す上面図である。
【図8】 本発明による参考例の液晶表示装置400を模式的に示す上面図である。
【図9】 本発明による実施形態4の液晶表示装置500を模式的に示す上面図である。
【図10】 本発明による実施形態4の液晶表示装置500を模式的に示す断面図であり、図9中の10a−10a’線に沿った図である。
【図11】 (a)〜(e)は、液晶表示装置500を駆動する際の走査信号波形、表示信号波形、対向電極および補助容量配線への出力信号波形、画素電極の電位、液晶層への印加電圧をそれぞれ示す図である。
【図12】 本発明による他の実施形態の液晶表示装置1を模式的に示すシステムブロック図である。
【図13】 (a)および(b)は、液晶電圧保持率Hrの駆動周波数(書き換え周波数)依存性を示すグラフである。
【図14】 二層構造電極を備える液晶表示装置700を模式的に示す上面図である。
【図15】 二層構造電極を備える液晶表示装置700を模式的に示す断面図であり、図14中の12A−12A’線に沿った図である。
【符号の説明】
1 液晶表示装置
2 液晶パネル
3 ゲートドライバ
4 ソースドライバ
5 コントロールIC
6 画像メモリ
7 同期クロック発生回路
8 低周波駆動回路
10 透明絶縁性基板
11 走査配線
12 信号配線
13 TFT
14 補助容量配線
15 画素電極
15a 第1画素電極(下層電極)
15b 第2画素電極(上層電極)
16 層間絶縁膜
16a 開口部(コンタクトホール)
17 ゲート絶縁膜
20 透明絶縁性基板
25 対向電極
30 液晶層
100 液晶表示装置
100a アクティブマトリクス基板(TFT基板)
100b 対向基板(カラーフィルタ基板)
101 シールド電極
200、300、400、500 液晶表示装置

Claims (6)

  1. 互いに対向する第1基板および第2基板と、前記第1基板と前記第2基板との間に設けられた液晶層とを有し、
    前記第1基板は、複数の行および複数の列を有するマトリクス状に配列された複数の画素電極と、行方向に延びる複数の走査配線と、列方向に延びる複数の信号配線と、それぞれが前記複数の画素電極のそれぞれと前記複数の走査配線および前記複数の信号配線とに接続された複数のスイッチング素子と、前記複数のスイッチング素子上に形成された層間絶縁膜と、を有し、
    前記複数の走査配線の間には、前記画素電極との間で補助容量を形成すると共に行方向に延びる補助容量配線がそれぞれ配置された、液晶表示装置であって、
    前記複数の画素電極のそれぞれは、前記層間絶縁膜の下に形成された第1画素電極と、前記層間絶縁膜の上に形成された第2画素電極とを有し、
    互いに隣り合う前記第2画素電極同士の間には、前記第1基板の表面の法線方向から見て、前記走査配線と重なる位置に間隙が設けられ、
    前記第1画素電極は、前記間隙と前記走査配線との間に配置され、該走査配線と前記第2画素電極との間で電界を遮蔽する遮蔽電極を有している、液晶表示装置。
  2. 前記複数の画素電極のうちの任意の1つの画素電極が有する前記第1画素電極の遮蔽電極は、前記任意の1つの画素電極が属する行に隣接した一対の走査配線のうちの一方のみの一部を覆っている、請求項1に記載の液晶表示装置。
  3. 前記任意の1つの画素電極が有する前記第1画素電極の遮蔽電極によってその一部が覆われた前記一方の走査配線は、前記任意の1つの画素電極に接続されたスイッチング素子と接続されていない、請求項2に記載の液晶表示装置。
  4. 前記第1基板は、前記液晶層側の表面に、一方側から他方側に向けてラビング処理が施された配向膜を有し、
    前記複数の走査配線のそれぞれは、前記行方向に沿った一対の端辺を有し、
    前記任意の1つの画素電極が有する前記第1画素電極の遮蔽電極は、少なくとも、前記一方の走査配線が有する前記一対の端辺のうちの前記他方側に位置する端辺の一部を覆っている、請求項2または3に記載の液晶表示装置。
  5. 前記第2基板は、前記液晶層を介して前記複数の画素電極に対向する少なくとも1つの対向電極を有し、
    前記少なくとも1つの対向電極に交流電圧が供給され、
    前記複数の走査配線のそれぞれには、非選択期間において、前記少なくとも1つの対向電極に供給される交流電圧と振幅および位相が同じ交流電圧が供給される、請求項1から4のいずれか1つに記載の液晶表示装置。
  6. 前記複数の画素電極のそれぞれに前記複数の信号配線を介して周期的に供給される表示信号電圧が、45Hz以下の周波数で書き換えられる、請求項1から5のいずれか1つに記載の液晶表示装置
JP2003078546A 2002-07-08 2003-03-20 液晶表示装置 Expired - Fee Related JP4262501B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003078546A JP4262501B2 (ja) 2002-07-08 2003-03-20 液晶表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002198625 2002-07-08
JP2003078546A JP4262501B2 (ja) 2002-07-08 2003-03-20 液晶表示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008257964A Division JP4871938B2 (ja) 2002-07-08 2008-10-03 液晶表示装置

Publications (2)

Publication Number Publication Date
JP2004094190A JP2004094190A (ja) 2004-03-25
JP4262501B2 true JP4262501B2 (ja) 2009-05-13

Family

ID=32072076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003078546A Expired - Fee Related JP4262501B2 (ja) 2002-07-08 2003-03-20 液晶表示装置

Country Status (1)

Country Link
JP (1) JP4262501B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7894026B2 (en) 2003-10-01 2011-02-22 Samsung Electronics Co., Ltd. Thin film transistor array panel and liquid crystal display including light shield
JP5380416B2 (ja) * 2010-10-20 2014-01-08 株式会社ジャパンディスプレイ 液晶表示装置

Also Published As

Publication number Publication date
JP2004094190A (ja) 2004-03-25

Similar Documents

Publication Publication Date Title
JP4111785B2 (ja) 液晶表示装置
US7321353B2 (en) Display device method of driving same and electronic device mounting same
JP4245028B2 (ja) 電気光学装置及び電子機器
US8144089B2 (en) Liquid crystal display device and driving method thereof
EP2328013B1 (en) Liquid crystal display device, active matrix substrate, and electronic device
JP4428255B2 (ja) 電気光学装置、駆動方法および電子機器
JP4361104B2 (ja) 液晶表示装置
JP3460989B2 (ja) 表示装置
JP4871938B2 (ja) 液晶表示装置
JP4262501B2 (ja) 液晶表示装置
KR20100030173A (ko) 액정표시장치
JP2010107739A (ja) 液晶表示装置
JP2004046180A (ja) 表示装置およびそれを備えた電子機器
US20210065638A1 (en) Display device
JP2003121865A (ja) 透過型または半透過型液晶表示装置およびこれを用いた携帯端末装置
JP4810910B2 (ja) 電気光学装置、駆動方法および電子機器
JP2007298801A (ja) 電気光学装置用駆動回路及び駆動方法並びに電気光学装置及び電子機器
JP4361105B2 (ja) 液晶表示装置
JP4622398B2 (ja) 液晶表示装置及び液晶表示装置の駆動方法
JP4147025B2 (ja) 反射型表示装置及びそれを備えた電子機器
JP2006235451A (ja) 電気光学装置、製造方法、駆動方法および電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees