JP4259167B2 - Continuous blood purification device - Google Patents

Continuous blood purification device Download PDF

Info

Publication number
JP4259167B2
JP4259167B2 JP2003108862A JP2003108862A JP4259167B2 JP 4259167 B2 JP4259167 B2 JP 4259167B2 JP 2003108862 A JP2003108862 A JP 2003108862A JP 2003108862 A JP2003108862 A JP 2003108862A JP 4259167 B2 JP4259167 B2 JP 4259167B2
Authority
JP
Japan
Prior art keywords
dialysate
container
replacement fluid
blood
flexible container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003108862A
Other languages
Japanese (ja)
Other versions
JP2004313303A (en
Inventor
英俊 斉尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nipro Corp
Original Assignee
Nipro Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nipro Corp filed Critical Nipro Corp
Priority to JP2003108862A priority Critical patent/JP4259167B2/en
Publication of JP2004313303A publication Critical patent/JP2004313303A/en
Application granted granted Critical
Publication of JP4259167B2 publication Critical patent/JP4259167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、血管から体外に取り出した血液を浄化し、これに有用物質を補給することにより、生体の臓器機能を補助あるいは代行する持続的血液浄化装置に関する。
【0002】
【従来の技術】
従来、腎不全の患者や、術後の薬液注入によって水分過多症になった患者などの重篤な状態を改善するために、血液透析や血液濾過が行われている。そして、患者の治療に透析と濾過のいずれを用いるかは、それぞれの患者の状態を勘案して臨床医により適宜判断され選択されて、透析か濾過かの二者択一的な方法が採られていたが、近年、透析と濾過を併用する所謂持続的血液浄化療法(CHDF)が、患者に対する悪影響を最小限に留めることができることが認められ、急速に普及しつつある。CHDFは、透析と濾過を併用した治療を短時間で行うと、患者の体液バランスが急激に変動して患者の状態に悪影響を与えることから、長時間かけて患者を徐々に正常に戻す方法であり、透析液の使用流量は、通常の血液透析療法に比較して約10分の1程度の低流量で行われる。
【0003】
CHDFは、血液透析のような特別な施設を必要とせず、夜間や緊急時に迅速に施行できるうえに、手術室やICUなどの多くの機器に囲まれた場所でも設置場所に苦労することなく施行可能であることから、時と場所を選ばない血液浄化療法といえるが、反面、重症患者を管理する場合には、透析液流量と補液流量の誤差等によるトラブルや血液濾過器の交換に迅速に対応できるように、医師が24時間体制でベッドサイドに待機しなければならないため、医療スタッフの不足からCHDFを敬遠する施設も多い。
しかしながら、最近ではCHDF専用ベッドサイドコンソールが開発され、各種モニターや流量調節機構の精度が向上してきたため、CHDF施行時のトラブルを未然に防ぐことが可能となり、患者に対する安全面と医療スタッフに対する負担の軽減の面で飛躍的な向上がみられる。
【0004】
このようなCHDFに使用される持続的血液浄化装置には、血液循環路(血液回路と血液浄化器からなる)に対して出入りする透析液量と補液量を計測する手段として、重量センサーを使用する重量測定方式と計量容器を使用する容量測定方式がある。
しかしながら、流量調節機構の精度が向上したとは言え、重量測定方式では、液重量をそれぞれ別々の重量計で測定するため、それぞれの重量計のバラツキによって透析液流量と補液流量に誤差が生じるという欠点を有している。
また、容量測定方式では、液ごとの計量容器が必要であり、それぞれのローラーポンプのキャリブレーションを行いながら計量しているため(例えば、特許文献1)、ポンプ間のバラツキを無くするためにキャリブレーションを頻繁に行う必要があり、また、キャリブレーションに際してバルブの開閉が必要であり、その際の動作音が大きく問題であった。
【0005】
【特許文献1】
特開平8−191889号公報(段落番号0014の第23〜28行、段落番号0016の第23〜28行)
【0006】
【発明が解決しようとする課題】
本発明は、如上の事情に鑑みてなされたもので、透析液流量と補液流量の誤差が極めて小さく、ポンプのキャリブレーションの回数を大幅に改善した持続的血液浄化装置を提供することを目的とする。また、使用前の新鮮な透析液と補液を効率的かつ適度に加温できる持続的血液浄化装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者等は上記課題を解決するために、鋭意検討の結果、キャリブレーションの回数の少ない重量測定方式に、透析液貯留容器と補液貯留容器を収容した柔軟な容器を採用すれば、1つの重量計で柔軟な容器の重量を計量することにより供給された透析液量と補液の量を計量できるので、重量計間のバラツキを排除できること、また、使用済み透析液を適当に加温すれば、柔軟な容器に収容された使用済み透析液により透析液と補液を加温できることに想到し、本発明を完成した。すなわち本発明は、血液浄化器と血液回路、透析液回路、透析液容器、補液容器および除水ラインを含んでなり、持続的に血液を浄化することのできる血液浄化装置において、前記血液浄化器の下流の透析液回路には、濾過ポンプと密閉された柔軟な容器がこの順序で設けられており、この柔軟な容器には、透析液供給ラインを介して透析液容器と連通する柔軟な透析液貯留容器と、補液供給ラインを介して補液容器と連通する柔軟な補液貯留容器が収容されており、前記透析液供給ラインに設けられた透析液ポンプにより、前記透析液容器から透析液貯留容器への透析液の供給、およびこの透析液貯留容器から血液浄化器への透析液の供給がなされるとともに、前記補液供給ラインに設けられた補液ポンプにより、前記補液容器から補液貯留容器への補液の供給、およびこの補液貯留容器から前記血液浄化器の下流の血液回路への補液の供給がなされるようにされてなり、さらに、前記柔軟な容器にこの容器の重量を計量する重量計が設けられるとともに、前記除水ラインに柔軟な容器から排出される使用済透析液の量を計量する重量計が設けられ、計測された該柔軟な容器の重量および使用済透析液の排出量に基づいて、前記透析液貯留容器に供給された透析液量、補液貯留容器に供給された補液量および除水量が算出されるようにされてなる持続的血液浄化装置に関する。
【0008】
ここで、除水ラインは、濾過ポンプと柔軟な容器の間に開閉弁を設け、この開閉弁と柔軟な容器の間に設けるのがよい。また、濾過ポンプとこの開閉弁の間にヒーターを設け、柔軟な容器内に流入する使用済透析液を加温できるようにして、柔軟な容器に収容された加温された使用済み透析液により、透析液と補液を加温するようにしてもよい。
本発明の血液浄化装置は、柔軟な容器内に貯留された使用済透析液が、透析液貯留容器または補液貯留容器にそれぞれ供給された透析液または補液により排液されること、また、柔軟な容器内に流入する使用済透析液を加温すれば、加温された使用済み透析液で、柔軟な容器に収容された透析液貯留容器の透析液と補液貯留容器の補液を熱交換により加温することができることを特徴とする。
尚、本発明において、使用済透析液という場合、下流側の透析液回路から柔軟な容器に流入する液体を言い、濾液や洗浄液を含む意味で用いている。
【0009】
【発明の実施の形態】
次に、本発明の実施例について、図面を用いて説明する。
図1は本発明の持続的血液浄化装置の概略説明図であり、図2〜図4はそれぞれ本発明の持続的血液浄化装置を用いて行う持続的血液透析のフロー図および持続的血液濾過のフロー図、持続的血液濾過透析のフロー図である。
図1に示すように、本発明の持続的血液浄化装置は、血液浄化器1と血液回路21、22、透析液回路35、36、透析液容器3および補液容器4を含んでなり、血液浄化器1の下流の透析液回路36には、濾過ポンプ37と密閉された柔軟な容器5がこの順序で設けられている。この柔軟な容器5には、透析液供給ライン31を介して透析液容器3と連通する柔軟な透析液貯留容器34と、補液供給ライン41を介して補液容器4と連通する柔軟な補液貯留容器44が収容されており、透析液ポンプ32により透析液貯留容器34および血液浄化器1に透析液が供給されるとともに、補液ポンプ42により補液貯留容器44および血液浄化器1の下流の血液回路22に補液が供給されるようになっている。そして、柔軟な容器5には重量計51が設けられており、柔軟な容器5の重量が計量されるようになっている。
【0010】
図1において、血液循環路は、血液浄化器1の血液通路と上流側の血液回路21および下流側の血液回路22からなり、上流側および下流側の血液回路21、22にはそれぞれ血液ポンプ23および開閉弁V1が設けられている。
一方、透析液流路は、透析液容器3と透析液貯留容器34を接続する透析液供給ライン31と、上流側の透析液回路35と血液浄化器1の透析液通路および下流側の透析液回路36からなり、下流側の透析液回路36には濾過ポンプ37と密閉された柔軟な容器5がこの順序で設けられている。そしてこの柔軟な容器5には、透析液貯留容器34と補液貯留容器44が収容されている。透析液供給ライン31にはその上流側から順に開閉弁V2、透析液ポンプ32および圧力センサー33が設けられており、上流側の透析液回路35は開閉弁V2と透析液ポンプ32の間の透析液供給ライン31に接続されている。また、上流側の透析液回路35には開閉弁V3が設けられている。下流側の透析液回路36には開閉弁V4を設けてもよい。
補液流路は、補液容器4と補液貯留容器44を接続する補液供給ライン41と、補液貯留容器44と下流側の血液回路22を接続する補液ライン45からなり、補液供給ライン41には、その上流側から順に開閉弁V5、補液ポンプ42および圧力センサー43が設けられ、補液ライン45には開閉弁V6が設けられている。
下流側の透析液回路36には、濾過ポンプ37と開閉弁V4の間には好ましくはヒーター38が設けられ、開閉弁V4と柔軟な容器5の間には除水ライン6が接続されている(但し、除水ライン6はヒーター38と開閉弁V7の間に設けても構わない)。そして除水ライン6には、開閉弁V7と、除水量を計量するための重量計61が設けられている。除水ライン6には柔軟な容器5から排出された使用済透析液の温度を計測する温度計62を設けてもよい。
尚、圧力センサー33、43は、それぞれ透析液貯留容器34、補液貯留容器44の内圧を測定し、内圧の急増を検知したときには、ポンプ32、42を停止し、開閉弁V2、V5を閉じ、内圧の急減を検知したときにはポンプ32、42を停止し、その空回りを防ぐようになっている。また、開閉弁V1〜V7としては、通常、電動式のものが使用される。
【0011】
柔軟な容器5は、例えばポリエチレンやポリプロピレンなどの柔軟なプラスチックのシートで形成された所謂バッグ状の容器であり、その内部には、柔軟な容器5と同様の材料で形成された柔軟な透析液貯留容器34と柔軟な補液貯留容器44が収容されている。従って、柔軟な容器5内を使用済透析液で充満させた状態では、開閉弁V7を開くことにより、透析液貯留容器34に供給された透析液量や、補液貯留容器44に供給された補液量を、柔軟な容器5から除水ライン6を通って排出された使用済透析液の量と、柔軟な容器5の重量を計量することにより、確認することができる。すなわち、重量計61で計量された使用済透析液の排出量と重量計51で計量された柔軟な容器5の重量の増減から、透析液貯留容器34に供給された透析液量や、補液貯留容器44に供給された補液量を確認することができる。
また、濾過ポンプ37と柔軟な容器5の間であれば特に限定するものではないが、好ましくは濾過ポンプ37と開閉弁V7の間にヒーター38を設け使用済透析液を適当な温度に加温できるようにすれば、ヒーター38で加温され柔軟な容器5に貯留された使用済透析液で、透析液貯留容器34内の透析液や補液貯留容器44内の補液を熱交換により加温することができる。
【0012】
次に、本発明の持続的血液浄化装置の使用について説明する。
本発明の持続的血液浄化装置を用いて持続的血液透析を行う場合、図2に示すCHDフロー図に従う。
柔軟な容器5が使用済透析液で満たされ(満杯になっている必要はない)、透析液貯留容器34が空になっており、開閉弁V1〜V7が閉じた状態で、開閉弁V2、V7を開き、透析液ポンプ32を駆動させると、透析液容器3から透析液貯留容器34に透析液供給ライン31を通って透析液が供給される一方、柔軟な容器5が満杯になると、柔軟な容器5内の使用済透析液が、下流側の透析液回路36および除水ライン6を通って外部に排出される。従って、この時、排出された使用済透析液の量を重量計61で計量し、柔軟な容器5の重量を重量計51で計量すれば、透析液ポンプ32によって透析液貯留容器34に供給された単位時間あたりの透析液の量が分かるので、これを設定流量と比較することにより透析液ポンプ32のキャリブレーションを行うことができる。透析液貯留容器34が満杯になると圧力センサー33で内圧の急増が検知され、内圧急増信号を受けて透析液ポンプ32が停止し、開閉弁V2が閉じる。
【0013】
次に、開閉弁V1を開き、血液ポンプ23を駆動させて、血液循環路に血液を循環させるとともに、開閉弁V2を閉じ、開閉弁V3、V4を開いて、透析液ポンプ32を逆駆動(透析液を透析液貯留容器34に供給するときと逆回転)させ、濾過ポンプ37を駆動させると、透析液貯留容器34の透析液は、上流側の透析液回路35を通って血液浄化器1に供給され、血液透析を行った後、使用済透析液は、除水相当量を除く全量が下流側の透析液回路36を通って柔軟な容器5に供給される。この時、下流側の透析液回路36に流入する使用済透析液の量は濾過ポンプ37の流量によって決まる。従って、除水が必要な場合には、濾過ポンプ37の流量は透析液ポンプ32の流量より大きく設定される。濾過ポンプ37の流量と透析液ポンプ32の流量の差が除水量であり、除水された血液中の水分(使用済透析液)は、満杯状態の柔軟な容器5には入らず、除水ライン6を通って排出され、重量計61で計量される。透析液貯留容器34が空になると圧力センサー33で陰圧が検知され、陰圧信号を受けて透析液ポンプ32が停止し、開閉弁V3、V4が閉じる。以下、同様の操作を繰り返せばよい。
尚、CHD開始後の決められた時間において、除水ライン6を通って排出された使用済透析液の量を重量計61で計量すれば、柔軟な容器5が満杯状態の場合、濾過ポンプ37によって柔軟な容器5に供給される単位時間あたりの使用済透析液の量と、透析液ポンプ32によって柔軟な容器5から排出される単位時間あたりの透析液の量が等しくなるので、使用済透析液の排出量と濾過ポンプ37の設定流量を比較することにより、濾過ポンプ32のキャリブレーションを行うことができる。
【0014】
持続的血液濾過を行う場合は、図3に示すCHFフロー図に従う。
柔軟な容器5が使用済透析液で満たされ(満杯になっている必要はない)、補液貯留容器44が空になっており、開閉弁V1〜V7が閉じた状態で、開閉弁V5、V7を開き、補液ポンプ42を駆動させると、補液容器4から補液貯留容器44に補液供給ライン41を通って補液が供給される一方、柔軟な容器5が満杯になると、柔軟な容器5内の使用済透析液が、下流側の透析液回路36および除水ライン6を通って外部に排出される。従って、この時、排出された使用済透析液の量を重量計61で計量し、柔軟な容器5の重量を重量計51で計量すれば、補液ポンプ42によって補液貯留容器44に供給された単位時間あたりの補液の量が分かるので、設定流量と比較することにより補液ポンプ42のキャリブレーションを行うことができる。補液貯留容器44が満杯になると圧力センサー43で内圧の急増が検知され、内圧急増信号を受けて補液ポンプ42が停止し、開閉弁V5が閉じる。
【0015】
次に、開閉弁V1を開き、血液ポンプ23を駆動させて、血液循環路に血液を循環させるとともに、開閉弁V5を閉じ、開閉弁V6を開いて、補液ポンプ42を逆駆動(補液を補液貯留容器44に供給するときと逆回転)させ、濾過ポンプ37を駆動させると、補液貯留容器44の補液は、上流側の補液回路45を通って下流側の血液回路22に供給される。この時、濾過ポンプ37の流量は通常補液ポンプ42の流量より大きく設定されるので、濾過ポンプ37で濾過された血液中の水分(使用済透析液)は補液貯留容器44から排出された補液と同量が柔軟な容器5に供給される一方、残りの使用済透析液は除水ライン6を通って排出され、重量計61で計量される。補液貯留容器44が空になると圧力センサー43で陰圧が検知され、陰圧信号を受けて補液ポンプ42が停止し、開閉弁V6が閉じる。以下、同様の操作を繰り返せばよい。
尚、CHF開始後の決められた時間において、柔軟な容器5の重量を重量計51で計量すれば、この柔軟な容器5の重量とキャリブレーション後の補液ポンプ42の設定流量と濾過ポンプ37の設定流量を比較することにより、濾過ポンプ32のキャリブレーションを行うことができる。
【0016】
持続的血液濾過透析を行う場合、図4に示すCHDFフロー図に従う。
柔軟な容器5が使用済透析液で満たされ(満杯になっている必要はない)、透析液貯留容器34および補液貯留容器44が空になっており、開閉弁V1〜V7が閉じた状態で、開閉弁V2、V7を開き、透析液ポンプ32を駆動させると、透析液容器3から透析液貯留容器34に透析液供給ライン31を通って透析液が供給される一方、柔軟な容器5が満杯になると、柔軟な容器5内の使用済透析液が、下流側の透析液回路36および除水ライン6を通って外部に排出される。従って、この時、排出された使用済透析液の量を重量計61で計量し、柔軟な容器5の重量を重量計51で計量すれば、透析液ポンプ32によって透析液貯留容器34に供給された単位時間あたりの透析液の量が分かるので、これを設定流量と比較することにより透析液ポンプ32のキャリブレーションを行うことができる。透析液貯留容器34が満杯になると圧力センサー33で内圧の急増が検知され、内圧急増信号を受けて透析液ポンプ32が停止し、開閉弁V2が閉じる。
【0017】
次に、開閉弁V5を開き、補液ポンプ42を駆動させると、補液容器4から補液貯留容器44に補液供給ライン41を通って補液が供給される一方、満杯状態の柔軟な容器5内の同量の使用済透析液が、下流側の透析液回路36および除水ライン6を通って外部に排出される。従って、この時、排出された使用済透析液の量を重量計61で計測すれば、補液ポンプ42によって補液貯留容器44に供給された単位時間あたりの補液の量が分かるので、これを設定流量と比較することにより補液ポンプ42のキャリブレーションを行うことができる。補液貯留容器44が満杯になると圧力センサー43で内圧の急増が検知され、内圧急増信号を受けて補液ポンプ42が停止し、開閉弁V5が閉じる。
【0018】
次に、開閉弁V1を開き、血液ポンプ23を駆動させて、血液循環路に血液を循環させるとともに、開閉弁V2、V5を閉じ、開閉弁V3、V4を開いて、透析液ポンプ32を逆駆動させると、透析液貯留容器34の透析液は、上流側の透析液回路35を通って血液浄化器1に供給され、血液透析を行った後、使用済透析液は、除水相当量を除く全量が下流側の透析液回路36を通って柔軟な容器5に供給される。この時、下流側の透析液回路36に流入する使用済透析液の量は濾過ポンプ37の流量によって決まる。従って、除水が必要な場合には、濾過ポンプ37の流量は透析液ポンプ32の流量より大きく設定される。濾過ポンプ37の流量と透析液ポンプ32の流量の差が除水量であり、除水された血液中の水分(使用済透析液)は、満杯状態の柔軟な容器5には入らず、除水ライン6を通って排出され、重量計61で計量される。補液を行う場合は、開閉弁V6を開いて、補液ポンプ42を逆駆動させる。この時、補液貯留容器44の補液は、上流側の補液回路45を通って下流側の血液回路22に供給される。この時、濾過ポンプ37の流量は、通常、透析液ポンプ32の流量と補液ポンプ42の流量の和より大きく設定されるので、濾過ポンプ37で濾過された血液中の水分(使用済透析液)は透析液貯留容器34から排出された透析液と補液貯留容器44から排出された補液の和と同量が柔軟な容器5に供給される一方、残りの使用済透析液は除水ライン6を通って排出され、重量計61で計量される。
補液貯留容器44が空になると圧力センサー43で陰圧が検知され、陰圧信号を受けて補液ポンプ42が停止し、開閉弁V6が閉じる。
透析液貯留容器34が空になると圧力センサー33で陰圧が検知され、陰圧信号を受けて透析液ポンプ32が停止し、開閉弁V3、V4が閉じる。以下、同様の操作を繰り返せばよい。
【0019】
【発明の効果】
以上述べたことから明らかなように、本発明の持続的血液浄化装置は、柔軟な容器を満杯状態にして除水を行うようになっており、除水量を1つの重量計で測定しているので、重量計間のバラツキやポンプ間のバラツキによる誤差を生じることがない。従って、除水量測定の誤差が原因で患者の健康状態に支障を来したすような事態を回避することができる。
【図面の簡単な説明】
【図1】本発明の持続的血液浄化装置の概略説明図である。
【図2】本発明の持続的血液浄化装置を用いて行う持続的血液透析のフロー図である。
【図3】本発明の持続的血液浄化装置を用いて行う持続的血液濾過のフロー図である。
【図4】本発明の持続的血液浄化装置を用いて行う持続的血液濾過透析のフロー図である。
【符号の説明】
1 血液浄化器
21 上流側の血液回路
22 下流側の血液回路
23 血液ポンプ
3 透析液容器
31 透析液供給ライン
32 透析液ポンプ
33 圧力センサー
34透析液貯留容器
35 上流側の透析液回路
36 下流側の透析液回路
37 濾過ポンプ
38 ヒーター
4 補液容器
41 補液供給ライン
42 補液ポンプ
43 圧力センサー
44 補液貯留容器
45 補液ライン
5 柔軟な容器(固い容器)
51 重量計
6 除水ライン
61 重量計
V1〜V7 開閉弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous blood purification device that assists or substitutes for organ functions of a living body by purifying blood taken out of a body from a blood vessel and supplying useful substances thereto.
[0002]
[Prior art]
Conventionally, hemodialysis and blood filtration have been performed in order to improve a serious condition such as a patient with renal failure or a patient with hyperhydration due to postoperative drug injection. Whether to use dialysis or filtration for the treatment of patients is determined and selected as appropriate by the clinician in consideration of the condition of each patient, and an alternative method of dialysis or filtration is adopted. However, in recent years, it has been recognized that so-called continuous blood purification therapy (CHDF), which combines dialysis and filtration, can minimize adverse effects on patients and is rapidly becoming popular. CHDF is a method that gradually returns the patient to normal over a long period of time because the balance of fluids of the patient changes suddenly and adversely affects the patient's condition if treatment with dialysis and filtration is performed in a short time. The dialysate is used at a flow rate as low as about one-tenth that of normal hemodialysis therapy.
[0003]
CHDF does not require special facilities such as hemodialysis and can be performed quickly at night or in an emergency, and it can be performed without trouble in the installation place even in a place surrounded by many devices such as operating rooms and ICU. Because it is possible, it can be said that blood purification therapy is available at any time and place. On the other hand, when managing critically ill patients, it is possible to quickly deal with troubles due to errors in dialysate flow rate and replacement fluid flow rate, and replacement of blood filters. Since doctors have to be on the bedside 24 hours a day so that they can respond, many facilities refrain from CHDF due to a lack of medical staff.
However, recently, a CHDF dedicated bedside console has been developed, and the accuracy of various monitors and flow rate adjustment mechanisms has been improved, so it is possible to prevent problems during the implementation of CHDF, and to improve the safety for patients and the burden on medical staff. There is a dramatic improvement in terms of mitigation.
[0004]
In such a continuous blood purification apparatus used for CHDF, a weight sensor is used as a means for measuring the amount of dialysate and the amount of replacement fluid entering and exiting the blood circulation path (consisting of a blood circuit and a blood purifier). There is a weight measurement method that uses a weighing container and a capacity measurement method that uses a weighing container.
However, although the accuracy of the flow rate adjustment mechanism has improved, in the gravimetric method, since the liquid weight is measured by separate weighing scales, there is an error between the dialysate flow rate and the replacement fluid flow rate due to variations in the weighing scales. Has drawbacks.
In addition, the capacity measurement method requires a measuring container for each liquid, and performs measurement while calibrating each roller pump (for example, Patent Document 1). Therefore, calibration is performed to eliminate variations between pumps. It is necessary to frequently perform calibration, and it is necessary to open and close the valve during calibration.
[0005]
[Patent Document 1]
JP-A-8-191889 (paragraph number 0014, lines 23-28, paragraph number 0016, lines 23-28)
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a continuous blood purification apparatus in which an error between a dialysate flow rate and a replacement fluid flow rate is extremely small, and the number of pump calibrations is greatly improved. To do. It is another object of the present invention to provide a continuous blood purification device that can efficiently and appropriately warm fresh dialysate and replacement fluid before use.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors, as a result of intensive studies, adopt a flexible container containing a dialysate storage container and a replacement fluid storage container in a weight measurement method with a small number of calibrations. By weighing the flexible container with a weigh scale, it is possible to measure the amount of dialysate and replacement fluid supplied, so that variations between weigh scales can be eliminated, and if the used dialysate is heated appropriately The inventors have conceived that the dialysate and the replacement fluid can be heated by the used dialysate contained in a flexible container, and the present invention has been completed. That is, the present invention includes a blood purifier and a blood circuit, a dialysate circuit, a dialysate container, a replacement fluid container, and a water removal line, and the blood purifier can purify blood continuously. The dialysate circuit downstream of the filter is provided with a filtration pump and a sealed flexible container in this order. The flexible container is connected to a flexible dialyzer that communicates with the dialysate container via a dialysate supply line. A fluid storage container and a flexible fluid replacement container that communicates with the fluid replacement container via the fluid replacement supply line are accommodated, and the dialysate liquid pump provided in the dialysate supply line causes the dialysate fluid storage container to pass the dialysate fluid storage container. The dialysate is supplied from the dialysate storage container to the blood purifier, and the replacement fluid reservoir provided in the replacement fluid supply line is used to store the replacement fluid from the replacement fluid container. The replacement fluid is supplied to the container, and the replacement fluid is supplied from the replacement fluid storage container to the blood circuit downstream of the blood purifier, and the weight of the container is measured in the flexible container. A weigh scale is provided, and a weigh scale is provided for measuring the amount of used dialysate discharged from the flexible container in the dewatering line, and the measured weight of the flexible container and discharge of the used dialysate The present invention relates to a continuous blood purification apparatus in which the amount of dialysate supplied to the dialysate storage container, the amount of replacement fluid supplied to the replacement fluid storage container, and the amount of water removal are calculated based on the amount.
[0008]
Here, the dewatering line is preferably provided with an opening / closing valve between the filtration pump and the flexible container, and between the opening / closing valve and the flexible container. In addition, a heater is provided between the filtration pump and the on-off valve so that the used dialysate flowing into the flexible container can be heated, and the heated used dialysate contained in the flexible container is used. The dialysate and the replacement fluid may be heated.
In the blood purification apparatus of the present invention, the spent dialysate stored in a flexible container is drained by the dialysate or the replacement fluid supplied to the dialysate storage container or the replacement fluid storage container, respectively. If the used dialysate flowing into the container is heated, the dialysate storage container contained in the flexible container and the replacement fluid stored in the flexible container are heated and exchanged with the heated used dialysate. It can be heated.
In the present invention, the term “used dialysate” refers to a liquid that flows into a flexible container from a downstream dialysate circuit, and includes a filtrate and a cleaning liquid.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic explanatory view of a continuous blood purification apparatus of the present invention, and FIGS. 2 to 4 are flow charts of continuous hemodialysis and continuous blood filtration performed using the continuous blood purification apparatus of the present invention, respectively. It is a flow figure and a flow figure of continuous hemofiltration dialysis.
As shown in FIG. 1, the continuous blood purification apparatus of the present invention includes a blood purification device 1, blood circuits 21 and 22, dialysate circuits 35 and 36, a dialysate container 3, and a replacement fluid container 4. The dialysate circuit 36 downstream of the vessel 1 is provided with a filtration pump 37 and a sealed flexible container 5 in this order. The flexible container 5 includes a flexible dialysate storage container 34 that communicates with the dialysate container 3 via the dialysate supply line 31, and a flexible replacement fluid storage container that communicates with the replacement fluid container 4 via the replacement fluid supply line 41. 44 is accommodated, and dialysate is supplied to the dialysate reservoir 34 and the blood purifier 1 by the dialysate pump 32, and the blood circuit 22 downstream of the replacement fluid reservoir 44 and the blood purifier 1 by the replacement fluid pump 42. A replacement fluid is supplied to the tube. The flexible container 5 is provided with a weighing scale 51 so that the weight of the flexible container 5 is measured.
[0010]
In FIG. 1, the blood circulation path includes a blood passage of the blood purifier 1, an upstream blood circuit 21 and a downstream blood circuit 22, and the upstream and downstream blood circuits 21, 22 have blood pumps 23, respectively. And the on-off valve V1 is provided.
On the other hand, the dialysate flow path includes a dialysate supply line 31 that connects the dialysate container 3 and the dialysate reservoir 34, a dialysate circuit 35 on the upstream side, a dialysate passage of the blood purifier 1, and a dialysate on the downstream side. The downstream dialysate circuit 36 is provided with a filtration pump 37 and a sealed flexible container 5 in this order. The flexible container 5 accommodates a dialysate storage container 34 and a replacement fluid storage container 44. The dialysate supply line 31 is provided with an on-off valve V 2, a dialysate pump 32, and a pressure sensor 33 in order from the upstream side, and the upstream dialysate circuit 35 has a dialysis between the on-off valve V 2 and the dialysate pump 32. The liquid supply line 31 is connected. The upstream dialysate circuit 35 is provided with an on-off valve V3. The downstream dialysate circuit 36 may be provided with an on-off valve V4.
The replacement fluid flow path includes a replacement fluid supply line 41 that connects the replacement fluid container 4 and the replacement fluid storage container 44 and a replacement fluid line 45 that connects the replacement fluid storage container 44 and the blood circuit 22 on the downstream side. An on-off valve V5, a replacement fluid pump 42, and a pressure sensor 43 are provided in order from the upstream side, and an on-off valve V6 is provided in the replacement fluid line 45.
In the downstream dialysate circuit 36, a heater 38 is preferably provided between the filtration pump 37 and the on-off valve V4, and a water removal line 6 is connected between the on-off valve V4 and the flexible container 5. (However, the water removal line 6 may be provided between the heater 38 and the on-off valve V7). The water removal line 6 is provided with an on-off valve V7 and a weigh scale 61 for measuring the water removal amount. The water removal line 6 may be provided with a thermometer 62 for measuring the temperature of the used dialysate discharged from the flexible container 5.
The pressure sensors 33 and 43 measure the internal pressures of the dialysate storage container 34 and the replacement fluid storage container 44, respectively. When a sudden increase in internal pressure is detected, the pumps 32 and 42 are stopped, and the on-off valves V2 and V5 are closed. When a sudden decrease in internal pressure is detected, the pumps 32 and 42 are stopped to prevent idling. In addition, as the on-off valves V1 to V7, an electric type is usually used.
[0011]
The flexible container 5 is a so-called bag-shaped container formed of a flexible plastic sheet such as polyethylene or polypropylene, and a flexible dialysate formed of the same material as the flexible container 5 is contained therein. A storage container 34 and a flexible replacement fluid storage container 44 are accommodated. Therefore, in a state where the flexible container 5 is filled with the used dialysate, the amount of dialysate supplied to the dialysate storage container 34 and the replacement fluid supplied to the replacement fluid storage container 44 are opened by opening the on-off valve V7. The amount can be confirmed by measuring the amount of used dialysate discharged from the flexible container 5 through the water removal line 6 and the weight of the flexible container 5. That is, the amount of dialysate supplied to the dialysate storage container 34 and the replacement fluid storage from the amount of used dialysate discharged by the weight scale 61 and the increase / decrease in the weight of the flexible container 5 measured by the weight scale 51. The amount of replacement fluid supplied to the container 44 can be confirmed.
Further, there is no particular limitation as long as it is between the filtration pump 37 and the flexible container 5, but preferably a heater 38 is provided between the filtration pump 37 and the open / close valve V7 to warm the used dialysate to an appropriate temperature. If possible, the dialysate in the dialysate reservoir 34 and the replacement fluid in the replacement fluid reservoir 44 are heated by heat exchange with the used dialysate heated by the heater 38 and stored in the flexible container 5. be able to.
[0012]
Next, the use of the continuous blood purification apparatus of the present invention will be described.
When performing continuous hemodialysis using the continuous blood purification apparatus of the present invention, the CHD flow diagram shown in FIG. 2 is followed.
With the flexible container 5 filled with spent dialysate (not necessarily full), the dialysate reservoir 34 is empty, and the on-off valves V1-V7 are closed, the on-off valve V2, When V7 is opened and the dialysate pump 32 is driven, dialysate is supplied from the dialysate container 3 to the dialysate storage container 34 through the dialysate supply line 31, while when the flexible container 5 is full, The spent dialysate in the container 5 is discharged to the outside through the dialysate circuit 36 and the water removal line 6 on the downstream side. Therefore, at this time, if the amount of the used dialysate discharged is measured by the weight meter 61 and the weight of the flexible container 5 is measured by the weight meter 51, the dialysate pump 32 supplies the dialysate storage container 34. Since the amount of dialysate per unit time is known, the dialysate pump 32 can be calibrated by comparing it with the set flow rate. When the dialysate reservoir 34 is full, the pressure sensor 33 detects a sudden increase in internal pressure, receives the internal pressure rapid increase signal, stops the dialysate pump 32, and closes the on-off valve V2.
[0013]
Next, the on-off valve V1 is opened, the blood pump 23 is driven to circulate blood in the blood circulation path, the on-off valve V2 is closed, the on-off valves V3, V4 are opened, and the dialysate pump 32 is reversely driven ( When the dialysate is rotated in the reverse direction when the dialysate is supplied to the dialysate reservoir 34 and the filtration pump 37 is driven, the dialysate in the dialysate reservoir 34 passes through the dialysate circuit 35 on the upstream side and the blood purifier 1. After the hemodialysis, the used dialysate is supplied to the flexible container 5 through the dialysate circuit 36 on the downstream side, except for the equivalent amount of water removal. At this time, the amount of the used dialysate flowing into the downstream dialysate circuit 36 is determined by the flow rate of the filtration pump 37. Therefore, when water removal is necessary, the flow rate of the filtration pump 37 is set larger than the flow rate of the dialysate pump 32. The difference between the flow rate of the filtration pump 37 and the flow rate of the dialysate pump 32 is the water removal amount, and the water in the removed blood (used dialysate) does not enter the full flexible container 5 and is removed. It is discharged through the line 6 and weighed with a weigh scale 61. When the dialysate storage container 34 becomes empty, the negative pressure is detected by the pressure sensor 33, the negative pressure signal is received, the dialysate pump 32 is stopped, and the on-off valves V3 and V4 are closed. Thereafter, the same operation may be repeated.
In addition, if the amount of the used dialysate discharged through the water removal line 6 is measured with the weigh scale 61 at a predetermined time after the start of CHD, the filtration pump 37 can be used when the flexible container 5 is full. The amount of used dialysate per unit time supplied to the flexible container 5 is equal to the amount of dialysate per unit time discharged from the flexible container 5 by the dialysate pump 32. By comparing the liquid discharge amount and the set flow rate of the filtration pump 37, the filtration pump 32 can be calibrated.
[0014]
When performing continuous blood filtration, follow the CHF flow diagram shown in FIG.
The flexible container 5 is filled with the used dialysate (not necessarily full), the replacement fluid storage container 44 is empty, and the on-off valves V1 to V7 are closed, and the on-off valves V5 and V7 are closed. When the replacement fluid pump 42 is driven, the replacement fluid is supplied from the replacement fluid container 4 to the replacement fluid storage container 44 through the replacement fluid supply line 41. On the other hand, when the flexible container 5 is full, the flexible container 5 is used. The dialyzed fluid is discharged to the outside through the downstream dialysate circuit 36 and the water removal line 6. Therefore, at this time, if the amount of the used dialysate discharged is measured by the weighing scale 61 and the weight of the flexible container 5 is measured by the weighing scale 51, the unit supplied to the replacement fluid storage container 44 by the replacement fluid pump 42 Since the amount of the replacement fluid per time is known, the replacement fluid pump 42 can be calibrated by comparing with the set flow rate. When the replacement fluid storage container 44 becomes full, the pressure sensor 43 detects a sudden increase in internal pressure, receives the internal pressure rapid increase signal, stops the replacement fluid pump 42, and closes the on-off valve V5.
[0015]
Next, the on-off valve V1 is opened, the blood pump 23 is driven to circulate blood in the blood circulation path, the on-off valve V5 is closed, the on-off valve V6 is opened, and the replacement fluid pump 42 is reversely driven (the replacement fluid is replaced with the replacement fluid). When the filtration pump 37 is driven, the replacement fluid in the replacement fluid storage container 44 is supplied to the downstream blood circuit 22 through the upstream replacement fluid circuit 45. At this time, since the flow rate of the filtration pump 37 is normally set to be larger than the flow rate of the replacement fluid pump 42, the water in the blood filtered by the filtration pump 37 (used dialysate) and the replacement fluid discharged from the replacement fluid storage container 44 While the same amount is supplied to the flexible container 5, the remaining spent dialysate is discharged through the dewatering line 6 and weighed by a weigh scale 61. When the replacement fluid storage container 44 becomes empty, the negative pressure is detected by the pressure sensor 43, the negative pressure signal is received, the replacement fluid pump 42 is stopped, and the on-off valve V6 is closed. Thereafter, the same operation may be repeated.
If the weight of the flexible container 5 is measured by the weigh scale 51 at a predetermined time after the start of CHF, the weight of the flexible container 5, the set flow rate of the replacement fluid pump 42 after calibration, and the filtration pump 37 The filter pump 32 can be calibrated by comparing the set flow rates.
[0016]
When performing continuous hemofiltration dialysis, the CHDF flow diagram shown in FIG. 4 is followed.
The flexible container 5 is filled with the used dialysate (not necessarily filled), the dialysate storage container 34 and the replacement fluid storage container 44 are empty, and the on-off valves V1 to V7 are closed. When the on-off valves V2 and V7 are opened and the dialysate pump 32 is driven, the dialysate is supplied from the dialysate container 3 to the dialysate reservoir 34 through the dialysate supply line 31, while the flexible container 5 is When full, the spent dialysate in the flexible container 5 is discharged to the outside through the downstream dialysate circuit 36 and the water removal line 6. Therefore, at this time, if the amount of the used dialysate discharged is measured by the weight meter 61 and the weight of the flexible container 5 is measured by the weight meter 51, the dialysate pump 32 supplies the dialysate storage container 34. Since the amount of dialysate per unit time is known, the dialysate pump 32 can be calibrated by comparing it with the set flow rate. When the dialysate reservoir 34 is full, the pressure sensor 33 detects a sudden increase in internal pressure, receives the internal pressure rapid increase signal, stops the dialysate pump 32, and closes the on-off valve V2.
[0017]
Next, when the on-off valve V5 is opened and the replacement fluid pump 42 is driven, the replacement fluid is supplied from the replacement fluid container 4 to the replacement fluid storage container 44 through the replacement fluid supply line 41, while the same in the flexible container 5 that is full. An amount of spent dialysate is discharged to the outside through the downstream dialysate circuit 36 and the water removal line 6. Accordingly, at this time, if the amount of the used dialysate discharged is measured by the weigh scale 61, the amount of the replacement fluid per unit time supplied to the replacement fluid storage container 44 by the replacement fluid pump 42 can be known. As a result, calibration of the replacement fluid pump 42 can be performed. When the replacement fluid storage container 44 becomes full, the pressure sensor 43 detects a sudden increase in internal pressure, receives the internal pressure rapid increase signal, stops the replacement fluid pump 42, and closes the on-off valve V5.
[0018]
Next, the on-off valve V1 is opened, the blood pump 23 is driven to circulate blood in the blood circulation path, the on-off valves V2, V5 are closed, the on-off valves V3, V4 are opened, and the dialysate pump 32 is reversed. When driven, the dialysate in the dialysate reservoir 34 is supplied to the blood purifier 1 through the upstream dialysate circuit 35, and after hemodialysis, the used dialysate has an amount equivalent to dewatering. The entire amount is supplied to the flexible container 5 through the dialysate circuit 36 on the downstream side. At this time, the amount of the used dialysate flowing into the downstream dialysate circuit 36 is determined by the flow rate of the filtration pump 37. Therefore, when water removal is necessary, the flow rate of the filtration pump 37 is set larger than the flow rate of the dialysate pump 32. The difference between the flow rate of the filtration pump 37 and the flow rate of the dialysate pump 32 is the water removal amount, and the water in the removed blood (used dialysate) does not enter the full flexible container 5 and is removed. It is discharged through the line 6 and weighed with a weigh scale 61. When performing the replacement fluid, the on-off valve V6 is opened and the replacement fluid pump 42 is driven in reverse. At this time, the replacement fluid in the replacement fluid storage container 44 is supplied to the downstream blood circuit 22 through the upstream replacement fluid circuit 45. At this time, the flow rate of the filtration pump 37 is usually set to be larger than the sum of the flow rate of the dialysate pump 32 and the flow rate of the replacement fluid pump 42. Therefore, the water in the blood filtered by the filtration pump 37 (used dialysate) The same amount as the sum of the dialysate discharged from the dialysate storage container 34 and the replacement fluid discharged from the replacement fluid storage container 44 is supplied to the flexible container 5, while the remaining spent dialysate passes through the water removal line 6. It is discharged through and weighed by a weigh scale 61.
When the replacement fluid storage container 44 becomes empty, the negative pressure is detected by the pressure sensor 43, the negative pressure signal is received, the replacement fluid pump 42 is stopped, and the on-off valve V6 is closed.
When the dialysate storage container 34 becomes empty, the negative pressure is detected by the pressure sensor 33, the negative pressure signal is received, the dialysate pump 32 is stopped, and the on-off valves V3 and V4 are closed. Thereafter, the same operation may be repeated.
[0019]
【The invention's effect】
As is apparent from the above description, the continuous blood purification apparatus of the present invention is designed to perform water removal with a flexible container full, and the amount of water removal is measured with one weighing scale. Therefore, there is no error due to variations between weighing scales and variations between pumps. Accordingly, it is possible to avoid a situation in which the health condition of the patient is hindered due to an error in measuring the water removal amount.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of a continuous blood purification apparatus of the present invention.
FIG. 2 is a flow diagram of continuous hemodialysis performed using the continuous blood purification apparatus of the present invention.
FIG. 3 is a flow chart of continuous blood filtration performed using the continuous blood purification apparatus of the present invention.
FIG. 4 is a flow diagram of continuous hemofiltration dialysis performed using the continuous blood purification apparatus of the present invention.
[Explanation of symbols]
1 Blood Purifier 21 Upstream Blood Circuit 22 Downstream Blood Circuit 23 Blood Pump 3 Dialysate Container 31 Dialysate Supply Line 32 Dialysate Pump 33 Pressure Sensor 34 Dialysate Storage Container 35 Upstream Dialysate Circuit 36 Downstream Dialysis fluid circuit 37 Filtration pump 38 Heater 4 Fluid replacement container 41 Fluid replacement supply line 42 Fluid replacement pump 43 Pressure sensor 44 Fluid replacement reservoir 45 Fluid replacement line 5 Flexible container (hard container)
51 Weigh scale 6 Water removal line 61 Weigh scale V1 to V7 On-off valve

Claims (3)

血液浄化器と血液回路、透析液回路、透析液容器、補液容器および除水ラインを含んでなり、持続的に血液を浄化することのできる血液浄化装置において、前記血液浄化器の下流の透析液回路には、濾過ポンプと密閉された柔軟な容器がこの順序で設けられており、該濾過ポンプにより、透析を行った後の使用済透析液が前記血液浄化器の下流の透析液回路を通って該柔軟な容器に供給され、該濾過ポンプと該柔軟な容器の間には、前記除水ラインが接続されており、前記柔軟な容器には、透析液供給ラインを介して透析液容器と連通する柔軟な透析液貯留容器と、補液供給ラインを介して補液容器と連通する柔軟な補液貯留容器が収容されており、前記透析液供給ラインに設けられた透析液ポンプにより、前記透析液容器から透析液貯留容器へも透析液の供給、および該透析液貯留容器から血液浄化器への透析液の供給がなされるとともに、前記補液供給ラインに設けられた補液ポンプにより、前記補液容器から補液貯留容器への補液の供給、および該補液貯留容器から前記血液浄化器の下流の血液回路への補液の供給がなされるようにされてなり、さらに、前記柔軟な容器に該容器の重量を計量する重量計が設けられるとともに、前記柔軟な容器内を前記使用済透析液で充満させた状態で、前記除水ラインに設けられた開閉弁を開くことにより、前記除水ラインに前記柔軟な容器から排出される前記使用済透析液の量を計量する重量計が設けられ、前記柔軟な容器内を前記使用済透析液で充満させた状態で、計測された該柔軟な容器の重量および使用済透析液の排出量に基づいて、前記透析液貯留容器に供給された透析液量、補液貯留容器に供給された補液量、および除水量が算出されてなる持続的血液浄化装置。A blood purifier comprising a blood purifier and a blood circuit, a dialysate circuit, a dialysate container, a replacement fluid container, and a dewatering line, and capable of continuously purifying blood, wherein the dialysate downstream of the blood purifier The circuit is provided with a filtration pump and a sealed flexible container in this order. The filtration pump allows spent dialysate after dialysis to pass through the dialysate circuit downstream of the blood purifier. Is supplied to the flexible container, and the water removal line is connected between the filtration pump and the flexible container. The flexible container is connected to the dialysate container via the dialysate supply line. A flexible dialysate storage container that communicates with a flexible replacement fluid storage container that communicates with the replacement fluid container via a replacement fluid supply line is accommodated, and the dialysate container provided by the dialysate pump provided in the dialysate supply line To dialysate reservoir The dialysate is also supplied to the blood purifier, and the dialysate is supplied from the dialysate storage container to the blood purifier, and the replacement fluid is supplied from the replacement fluid container to the replacement fluid storage container by a replacement fluid pump provided in the replacement fluid supply line. And the replacement fluid is supplied from the replacement fluid storage container to the blood circuit downstream of the blood purifier, and a weighing scale for measuring the weight of the container is provided in the flexible container. together is above the flexible container in a state of being filled with the used dialysate, by opening the on-off valve provided in the water removal line, which is discharged from the flexible container to the water-removal line A weigh scale for measuring the amount of used dialysate is provided, and the flexible container is measured for its weight and the amount of used dialysate discharged in a state where the flexible container is filled with the used dialysate. Based on The dialysate dialysate amount supplied to the storage container, the replacement fluid replacement fluid amount supplied to the storage container, and ultrafiltration volume, which are calculated continuous blood purification apparatus. 濾過ポンプと柔軟な容器の間に開閉弁を設け、該開閉弁と柔軟な容器の間に除水ラインが設けられてなる請求項1記載の血液浄化装置。The blood purification apparatus according to claim 1, wherein an on-off valve is provided between the filtration pump and the flexible container, and a water removal line is provided between the on-off valve and the flexible container. 濾過ポンプと開閉弁の間にヒーターを設け、柔軟な容器内に流入する使用済透析液を加温できるようにしてなる請求項2に記載の血液浄化装置。The blood purification apparatus according to claim 2, wherein a heater is provided between the filtration pump and the on-off valve so that the used dialysate flowing into the flexible container can be heated.
JP2003108862A 2003-04-14 2003-04-14 Continuous blood purification device Expired - Fee Related JP4259167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108862A JP4259167B2 (en) 2003-04-14 2003-04-14 Continuous blood purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108862A JP4259167B2 (en) 2003-04-14 2003-04-14 Continuous blood purification device

Publications (2)

Publication Number Publication Date
JP2004313303A JP2004313303A (en) 2004-11-11
JP4259167B2 true JP4259167B2 (en) 2009-04-30

Family

ID=33470204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108862A Expired - Fee Related JP4259167B2 (en) 2003-04-14 2003-04-14 Continuous blood purification device

Country Status (1)

Country Link
JP (1) JP4259167B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978178B2 (en) * 2006-02-07 2012-07-18 株式会社ジェイ・エム・エス Blood purification circuit
US9011678B2 (en) 2006-02-07 2015-04-21 Jms Co., Ltd. Blood purification apparatus and blood purification circuit
JP4978179B2 (en) * 2006-02-07 2012-07-18 株式会社ジェイ・エム・エス Blood purification equipment
CN101610799B (en) 2007-02-15 2011-12-28 旭化成可乐丽医疗株式会社 Blood purification system
JP5347691B2 (en) * 2009-04-30 2013-11-20 株式会社ジェイ・エム・エス Blood purification device and heater
DE102011010067A1 (en) 2011-02-01 2012-08-02 Fresenius Medical Care Deutschland Gmbh Method and device for controlling an extracorporeal blood treatment device
JP6022846B2 (en) * 2011-08-09 2016-11-09 川澄化学工業株式会社 Blood purification apparatus and blood purification system
WO2015074999A1 (en) * 2013-11-22 2015-05-28 Gambro Lundia Ab A warming arrangement and a method for warming
JP6237283B2 (en) * 2014-02-03 2017-11-29 ニプロ株式会社 Dialysis system
JP6794713B2 (en) * 2016-08-18 2020-12-02 ニプロ株式会社 Blood purification device
JP7110766B2 (en) * 2018-07-02 2022-08-02 ニプロ株式会社 blood purifier
WO2020045385A1 (en) 2018-08-27 2020-03-05 日機装株式会社 Blood purification device

Also Published As

Publication number Publication date
JP2004313303A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP3714947B2 (en) Blood purification equipment
US8562822B2 (en) Dynamic weight balancing of flow in kidney failure treatment systems
CA2119375C (en) Hemofiltration system and method
JP5160455B2 (en) Blood purification system
ES2260389T5 (en) Procedure to determine the aging of a liquid filter
FI115955B (en) Device for performing peritoneal dialysis
JP4259167B2 (en) Continuous blood purification device
EP0498382B1 (en) Continuous peritoneal dialysis system
JP5553829B2 (en) Peritoneal dialysis machine
JPH05208048A (en) Artificial kidney
TW419385B (en) Process for controlling a blood epuration device
JP3180309B2 (en) Continuous blood purification device
JP4337981B2 (en) Blood purification equipment
JP4458346B2 (en) Continuous slow hemodialysis machine
JP4172261B2 (en) Continuous blood purification device
WO2004006992A1 (en) Peritoneal dialyzer and method of peritoneal dialysis
JPWO2008120803A1 (en) Continuous blood purification device with syringe pump
JPH0910304A (en) Continuous blood purifying device
JPS6119275B2 (en)
JPS6330025B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees