JP4258686B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4258686B2
JP4258686B2 JP27664198A JP27664198A JP4258686B2 JP 4258686 B2 JP4258686 B2 JP 4258686B2 JP 27664198 A JP27664198 A JP 27664198A JP 27664198 A JP27664198 A JP 27664198A JP 4258686 B2 JP4258686 B2 JP 4258686B2
Authority
JP
Japan
Prior art keywords
electrode
electrode mixture
negative electrode
porosity
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27664198A
Other languages
Japanese (ja)
Other versions
JP2000090981A5 (en
JP2000090981A (en
Inventor
直澄 宮永
吉田  浩明
真也 北野
剛文 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP27664198A priority Critical patent/JP4258686B2/en
Publication of JP2000090981A publication Critical patent/JP2000090981A/en
Publication of JP2000090981A5 publication Critical patent/JP2000090981A5/ja
Application granted granted Critical
Publication of JP4258686B2 publication Critical patent/JP4258686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シート状極板をセパレータを介して巻回してなる発電要素を用いた非水電解質電池に関する。
【0002】
【従来の技術】
リチウムを負極活物質として用いた非水電解質電池が、高エネルギー密度電池として注目されており、特に正極活物質に二酸化マンガン、フッ素化炭素、塩化チオニルなどを用いた一次電池は、電卓、時計の電源やメモリのバックアップ電池として多用されている。
【0003】
さらに、カメラ一体型VTR、ラップトップパソコン、携帯電話などの各種の電子機器の小型化、軽量化に伴い、それらの電源として高エネルギー密度二次電池の要求が高まり、炭素材料を負極活物質とするリチウムイオン二次電池の研究開発、量産が盛んに行われている。そして、近年は、リチウムイオン二次電池は、電気自動車、電力貯蔵等への応用が検討されつつある。
【0004】
しかしながら、リチウム電池やリチウムイオン電池においては、リチウムが水と激しく反応するため、水溶液系電解液は使用できないので、有機溶媒と塩からなる有機電解質を主成分とする非水電解質を用いている。これらの非水電解質電池では、水溶液系電解液に比べて電解質の電気伝導度が低いので、低電流密度での使用に限られる。
【0005】
そのため、非水電解質電池から大電流を取り出す場合には、電極の表面積を大きくする必要があり、電極を薄くして使用している。すなわち、非水電解質電池では、正、負の電極板をシート状にし、これらの電極をセパレータを介してロール状に巻回した渦巻構造が採用されている。
【0006】
このようなシート状極板を製造する方法としては、ペースト状の電極合剤を、リバースロール方式、ドクターブレード方式等により、集電板として働く金属箔等の導電性基材上に塗工するがのが一般的である。電極合剤が塗布されたシート状極板は、ロールプレス機により圧縮され、電極多孔度を通常25〜50%の範囲に調整される。
【0007】
【発明が解決しようとする課題】
従来のシート状極板を製造する方法においては、集電体としての導電性基材の表裏両面に取り付けられた電極合剤の多孔度が同じであったため、これらの方法で製造されたシート状極板を使用した非水電解質電池では、充放電サイクルを繰り返すとともに放電容量が急激に減少するなどの電池性能の劣化が起こった。
【0008】
これらの方法で製造されたシート状極板は、円筒形、長円筒形、角型などの電池1個分の長さに裁断し、正極シート、セパレータ、負極シートを順次積層した極板群を、芯材を中心にしてロール状に巻回して使用されている。
【0009】
従来の非水電解質電池として長円筒形電池をとりあげる。図2は長円筒形電池の蓋面に平行な面で切断した断面を示したもので、図2において、21は非水電解質電池であり、22は電池ケース、23は芯材、24は極板群であり、極板群24は正極シート、セパレータ、負極シートからなり、芯材23にロール状に巻回されている。
【0010】
図1は、芯材に極板群を巻回した場合の、芯材に近い極板群の巻きはじめ部分の拡大断面を示したものである。図1において、1は芯材、2はセパレータである。また、3は負極集電板、4は内側負極合剤、5は外側負極合剤であり、6は正極集電板、7は内側正極合剤、8は外側正極合剤である。さらにな、9はセパレータであり、セパレータ2よりも一周外側に位置している。また、10は負極集電板、11は内側負極合剤、12は外側負極合剤である。
図1に示したように、芯材に近い極板群の巻きはじめの部分においては、極板群の巻回部分が、ゆるやかな曲面とはならず折れ曲がった形状となっていた。
【0011】
このような折れ曲がった形状の極板群においては、正極および負極とも、集電体の表と裏に取り付けられた電極合剤の多孔度が同じの場合、正極と負極の活物質量のバランスが問題となる。
【0012】
図1において、セパレータ2を挟んで対向する外側負極合剤5と内側正極合剤7を比較すると、外側負極合剤5の断面積は図1の水平線を引いた部分Aであり、内側正極合剤7の断面積は図1の垂直線を引いた部分Bであり、明らかにセパレータ2の外側に配置されている内側正極合剤Bの断面積の方が大きくなっている。電極合剤の体積は図1の断面積に比例するため、セパレータ2を挟んで対向する電極合剤の体積は、正極の方が負極よりも大きくなっている。
【0013】
一方、セパレータ2よりも一周外側に位置するセパレータ9を挟んで対向する内側負極合剤11と外側正極合剤8を比較すると、セパレータ9の外側に配置されている内側負極合剤11の断面積A′は外側正極合剤8の断面積B′よりも大きくなっている。いいかえると、セパレータ9を挟んで対向する電極合剤の体積は、負極の方が正極よりも大きくなっている。
【0014】
ここで、正極および負極とも、集電体の表と裏に取り付けられた電極合剤の多孔度が同じの場合には、合剤の単位体積中に含まれる活物質の重量は集電体の表と裏で等しいため、セパレータ2を挟んで対向する負極合剤5と正極合剤7における正・負活物質重量のバランスと、セパレータ9を挟んで対向する負極合剤11と正極合剤8における正・負活物質重量のバランスが同時に最適値になることはありえない。例えばセパレータ9を挟んで対向する部分の正・負活物質重量のバランスが最適値ならば、セパレータ2を挟んで対向する部分の正・負活物質重量のバランスが最適値から大きくずれることになる。
【0015】
図1に示したように、セパレータ2を挟んで対向する外側負極合剤5の体積が内側正極合剤7の体積よりも小さい場合には、体積の小さい負極合剤に含まれる負極活物質は、体積の大きい正極合剤に含まれる正極活物質と電極反応を行う必要がある。すなわち、巻きはじめの折れ曲がった部分の単位体積当たりの負極活物質の利用率は、その他の部分と比較して大きくなる。
【0016】
その結果、巻き芯に近い極板群の折れ曲がった部分において、充放電によって負極活物質に出入りする単位体積当たりのリチウムイオンの数またリチウムイオンに伴う電解液溶媒の数は、他の部分よりも多くなり、電極合剤の物理的変化が大きくなったり、あるいは負極の表面に金属リチウムが析出して内部ショートが生じるなど、充放電サイクル数により放電容量が減少するという問題があった。
【0017】
本発明は、このような問題を解決するためになされたもので、安全性に優れ、充放電サイクル数による放電容量の減少の少ない非水電解質二次電池を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明になる非水電解質電池は、正極および負極は集電体の両面に電極合剤が取り付けられたシート状極板とし、正極シート、セパレータ、負極シートを芯材に巻回した長円筒形極板群を備え、前記長円筒形極板群の巻きはじめの部分が折れ曲がった形状である非水電解質二次電池において、正極または負極の少なくとも一方の極板における集電体の両面の電極合剤の多孔度が異なり、正極板および負極板を、電極合剤の多孔度が大きい面を外側に、電極合剤の多孔度が小さい面を内側にして、セパレータを介して巻回されてなる発電要素を用いるものである。
【0019】
図1において、セパレータ2を挟んで対向する外側負極合剤5と内側正極合剤7の場合、それぞれの合剤に含まれる活物質が電極反応に関与する。外側負極合剤5の部分の断面積Aは内側正極合剤7の部分の断面積Bよりも小さいが、外側負極合剤5の多孔度が大きいために、外側負極合剤5の表面積は内側正極合剤7の表面積よりも相対的に大きく、多孔度が大きくなるにしたがってこの部分の電流密度は小さくなり、その結果外側負極合剤5の表面に金属リチウムが析出することはなくなる。
【0020】
一方、セパレータ2よりも一周外側に位置するセパレータ9を挟んで対向する外側正極合剤8と内側負極合剤11の場合、内側負極合剤11の多孔度が小さくても、内側負極合剤11の部分の断面積B′は外側正極合剤8の部分の断面積A′よりも大きいために、内側負極合剤11の表面積が外側正極合剤8の表面積よりも相対的に大きく、この部分の電流密度は小さく、その結果内側負極合剤11の表面に金属リチウムが析出することはなくなる。
【0021】
電極合剤の多孔度と負極合剤の電流密度との関係は、上で述べた場合以外にも、正極板または負極板の少なくとも一方の極板の集電体の表と裏に取り付けられた電極合剤の多孔度が異なり、他方の極板の集電体の表と裏に取り付けられた電極合剤の多孔度が同じである場合にも、集電体の表と裏に取り付けられた電極合剤の多孔度が異なる極板の多孔度が大きい側が外側となるようにセパレータを介して巻回した場合にも保持される。
【0022】
【実施例】
本発明の実施例を図面を参照して説明するが、本発明の趣旨から外れない限り、以下の実施例に限定されるものではない。
【0023】
まず、正極シートを作製した。活物質としてLiCoO2を90重量部、導電剤としてアセチレンブラックを5重量部の割合でそれぞれ混合し、さらに結着剤としてポリフッ化ビニリデンを5重量部の割合で加え、溶媒としてN−メチル−2−ピロドリンを添加し、混練して、スラリー状の正極合材塗布液を作製した。次いで、この正極合材塗布液を厚さ20μmのアルミニウム箔の表裏両面に、同じ塗布重量(単位面積当たり)となるよう、片面ずつ塗布した。
【0024】
つぎに負極シートを作製した。活物質として人造黒鉛を90重量部、結着剤としてポリフッ化ビニリデンを10重量部の割合で加え、溶媒としてN−メチル−2−ピロドリンを添加し、混練して、スラリー状の負極合材塗布液を作製した。次いで、厚さ20μmの銅箔の表裏両面に、同じ塗布重量(単位面積当たり)となるよう、片面ずつ塗布した。
【0025】
さらに、これら正極シートおよび負極シートを、それぞれの電極合剤の多孔度が所定の値となるように、ロールプレスにより圧縮加工した。表と裏の多孔度が異なる電極シートを、正負極とも6種類ずつ作製した。
【0026】
次いで、正・負極シートをポリエチレン製微多孔膜セパレータを介して、正・負極シートとも表面を外側に裏面を内側となるようにしてロール状に巻回し、長円筒形とし、表1に示す6種類の容量100Ahの電池(厚み50mm、幅130mm、高さ210mm)を作製した。
【0027】
表1において、セルNo.1〜No.5は本発明になる電池であり、電極シートの集電体の両面に取り付けた電極合剤の多孔度が異なっている。セルNo.6は電極シートの集電体の両面に取り付けた電極合剤の多孔度が同じである従来の電池である。
【0028】
各電池とも、温度25℃において電流50A/電圧4.1Vで4時間定電流/定電圧充電後、電流50Aで2.75Vまで放電する充放電サイクルを1000回繰り返した。
【0029】
図3はここで試験した6種類の電池の、充放電サイクル数と放電容量の関係を示したものである。図3から明らかなように、本発明になる電池(セルNo.1〜No.5)では、充放電サイクルの初期放電容量は従来の電池(No.6)よりやや小さくなるものの、充放電サイクルの進行にともなう放電容量の減少が少なかった。
【0030】
また、充放電サイクル試験終了後、各電池を解体調査した結果、芯材に近い巻きはじめの部分において、従来の電池(No.6)では金属リチウムの析出(いわゆるリチウムデンドライト)が存在したのに対し、本発明になる電池(セルNo.1〜No.5)では、金属リチウムの析出はまったく見られなかった。なお、本発明になる電池の初期放電容量が、従来の電池に比べて小さくなった原因は正極板の多孔度の低下にともない正極の利用率が低下したためと考えられる。
【0031】
電極シートの集電体の表裏における電極合剤の多孔度の差は、多孔度が大きい面の多孔度と多孔度が小さい面の多孔度の差が0.1%〜10%の範囲にあることが好ましい。電極合剤の多孔度の差が0.1%未満では、両面で多孔度を変えた効果がほとんどなく、充放電サイクル寿命の向上効果が小さい。反対に電極合剤の多孔度の差が10%を超える場合には、電極の利用率の差が大きくなりすぎ、初期放電容量の低下が大きくなる。
【0032】
例えばリチウムイオン二次電池において、正・負極の活物質の容量バランスが正極過剰の場合、正極から脱離するリチウムイオンを負極において吸蔵しきれなくなる。その結果、負極表面に金属リチウムが析出し、安全性に問題が生じるばかりでなく、充放電サイクルによる電極の劣化により放電容量が低下するなどの問題が生じる。
【0033】
なお、上記実施例では正・極ともに集電体の両側の電極合剤の多孔度が異なる場合を説明したが、少なくとも一方の電極において集電体の両側の電極合剤の多孔度を異ならせることによっても同様の効果を得ることができる。
【0034】
本発明において、金属箔等の導電性基材上への電極合剤の塗布は、リバースロール方式あるいは、ドクターブレード方式によって行われる。電極合剤を溶媒によりペースト化した塗布液は、走行する導電性基材表面へ塗布された後、乾燥される。電極は、ロールプレス等により加圧圧縮して、多孔度を調整する。
【0035】
また本発明においては、集電体としての導電性基材の表裏両面で電極合剤の多孔度を変えることにより、電極合剤中の活物質の反応性を変え、正極シート、セパレータ、負極シートを芯材に巻回した長円筒形極板群を備え、前記長円筒形極板群の巻きはじめの部分が折れ曲がった形状である非水電解質二次電池において、正極と負極の活物質の容量バランスが最適に保たれるようになっている。
【0036】
本発明において塗布される電極合剤の塗布液は、電極材料、導電剤、結着剤、溶媒などを含む。電極材料としては、H+、Li+、Na+、K+などが挿入および離脱できる化合物であれば、どのような化合物でも良いが、なかでも遷移金属酸化物、遷移金属カルコゲナイド、炭素材料等を用いることができ、特にリチウム含有遷移金属酸化物または炭素材料の使用が好ましい。
【0037】
なお、遷移金属としては、Co、Mn、Ni、V、Feを主体とするものが好ましく、このような遷移金属酸化物として、具体的には、LiCoO2、LiNiO2、LiMn24、LiCoVO4、LiNiVO4、LiCo0.9Sn0.12、Fe34、V25などが挙げられる。
【0038】
また炭素材料としては、黒鉛、石油コークス、クレゾール樹脂焼成炭素、フラン樹脂焼成炭素、ポリアクリロニトリル繊維焼成炭素、気相成長炭素、メソフェーズピッチ焼成炭素などを挙げることができる。
【0039】
導電剤としては、構成された電池において化学変化を起こさない電子伝導性材料であれば、どのようなものでも使用することができる。通常、天然黒鉛、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉、金属繊維あるいはポリフェニレン誘導体等の導電性材料を、1種単独でまたは2種以上混合して使用することができ、特に黒鉛とアセチレンブラックとの併用が好ましい。
【0040】
結着剤としては、非水電解質二次電池に使用する有機電解液に溶解または膨潤しにくい多糖類、熱可塑性樹脂、熱硬化性樹脂、あるいはゴム弾性を有するポリマーを、1種または2種以上を混合して用いることができる。具体的には、ヒドロキシプロピルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム、エチレン−プロピレン−ジエンターポリマー(EPDM)、スチレンブタジエンゴム、ポリブタジエン、ポリエチレンオキシド等を挙げることができる。これらの結着剤は、溶媒に溶解しても良いし、分散または懸濁などのようにエマルジョン状態であっても良い。
【0041】
さらに、これらの電極材料、導電剤、結着剤を混練する際の溶媒としては、水あるいは1種または2種以上の有機溶剤の混合物を用いることができる。有機溶剤の種類は特に限定されないが、N−メチル−2−ピロドリン、キシレン、トルエン、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサン、エタノール、メタノール等の使用が好ましい。
【0042】
本発明において、電極合剤塗布液の組成は特に限定されないが、通常、活物質100重量部に対し、導電剤1〜10重量部、結着剤0.1〜10重量部、および溶媒30〜300重量部を含んで構成される。
【0043】
本発明において使用される導電性基材は、特に限定されるものではないが、アルミニウム、銅、ニッケル、ステンレスなどの金属箔や、無機酸化物、有機高分子材料、炭素などの導電性フィルムを用いることができる。またこのような導電性基材の形態は、連続シート、穴あきシート、ネット(網)状シートなど、いろいろな形態とすることができるが、特に連続シートとすることが好ましい。さらに、導電性基材の厚さは1〜30μmとすることが好ましい。
【0044】
本発明においては、このような導電性基材の表裏両面に電極材料塗布液が塗布された後、乾燥室に搬送されて、塗布層中の溶媒が除去され、次いでロールプレスを通すなどの方法で加圧圧縮される。電極の表裏で多孔度を変える方法としては、ロールプレス機の上下ロールの温度を変えたり、塗布、乾燥、プレスの工程を、電極の片面ごとに行うことが好ましい。
【0045】
本発明では、こうして製造された集電体の両面の電極合剤の多孔度が異なるシート状極板を、正極と負極のどちらか一方または両方として用い、長円筒形非水電解質二次電池を作製することができる。
【0046】
ここで、正極シートと負極シートを分離するセパレータとしては、例えば、材質がポリエチレン、プロピレン等からなる、微多孔膜、不織布等が挙げられる。
【0047】
また電解質としては、有機溶媒として、例えばプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロキシフランなどの非プロトン性有機溶媒から選ばれた少なくとも1種以上を混合した溶媒と、その溶媒に溶けるリチウム塩、例えばLiClO4、LiBF4、LiPF6、LiCF3SO3、LiN(CF3SO22、LiAsF6などから選ばれた少なくとも1種以上の塩から構成された溶液が挙げられる。
【0048】
【発明の効果】
本発明になる正極シート、セパレータ、負極シートを芯材に巻回した長円筒形極板群を備え、前記長円筒形極板群の巻きはじめの部分が折れ曲がった形状である非水電解質二次電池においては、シート状極板をロール状に巻回した芯材に近い部分において、セパレータを挟んで対向する正極合剤と負極合剤の多孔度の関係が、巻き数に関係なく常にセパレータの内側の電極合剤の多孔度が大きく、外側の電極合剤の多孔度が小さくなっている。そのため、セパレータを挟んで対向する部分では常に負極合剤の反応が多くなり、負極合剤の電流密度が小さくなり、その結果、負極合剤表面への金属リチウムの析出が防止できる。
【0049】
本発明になる電池は、充放電サイクルを繰り返しも熱的に活性なリチウムの析出が起こりにくいことから、従来の電池に比べて、安全性が優れ、充放電サイクル数による容量減少を小さくするものである。
【図面の簡単な説明】
【図1】極板群の巻きはじめ部分の拡大断面図。
【図2】長円筒形電池の断面図。
【図3】本発明になる電池と従来の電池の、充放電サイクル数と放電容量の関係を示した図。
【符号の説明】
1 芯材
2 セパレータ
3 負極集電板
4 内側負極合剤
5 外側負極合剤
6 正極集電体
7 内側正極合剤
8 外側正極合剤
【表1】

Figure 0004258686
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte battery using a power generation element obtained by winding a sheet electrode plate through a separator.
[0002]
[Prior art]
Non-aqueous electrolyte batteries using lithium as a negative electrode active material are attracting attention as high energy density batteries, and primary batteries using manganese dioxide, fluorinated carbon, thionyl chloride, etc. as positive electrode active materials are particularly useful for calculators and watches. It is often used as a backup battery for power supplies and memory.
[0003]
In addition, as various electronic devices such as camera-integrated VTRs, laptop computers, and mobile phones have become smaller and lighter, the demand for high energy density secondary batteries as their power source has increased. Research and development and mass production of lithium-ion secondary batteries are underway. In recent years, lithium ion secondary batteries are being studied for application to electric vehicles, power storage, and the like.
[0004]
However, in lithium batteries and lithium ion batteries, since lithium reacts violently with water, an aqueous electrolyte solution cannot be used. Therefore, a non-aqueous electrolyte composed mainly of an organic electrolyte composed of an organic solvent and a salt is used. These nonaqueous electrolyte batteries are limited to use at a low current density because the electrical conductivity of the electrolyte is lower than that of the aqueous electrolyte solution.
[0005]
Therefore, when a large current is taken out from the nonaqueous electrolyte battery, it is necessary to increase the surface area of the electrode, and the electrode is made thinner. That is, the nonaqueous electrolyte battery employs a spiral structure in which positive and negative electrode plates are formed into a sheet shape, and these electrodes are wound into a roll shape via a separator.
[0006]
As a method for producing such a sheet-like electrode plate, a paste-like electrode mixture is applied on a conductive base material such as a metal foil serving as a current collector plate by a reverse roll method, a doctor blade method, or the like. It is common. The sheet-like electrode plate on which the electrode mixture is applied is compressed by a roll press, and the electrode porosity is usually adjusted to a range of 25 to 50%.
[0007]
[Problems to be solved by the invention]
In the conventional method for producing a sheet-like electrode plate, since the porosity of the electrode mixture attached on both the front and back surfaces of the conductive base material as a current collector was the same, the sheet-like material produced by these methods In the nonaqueous electrolyte battery using the electrode plate, the battery performance deteriorated, for example, the charge capacity was repeated and the discharge capacity decreased rapidly.
[0008]
The sheet-like electrode plate manufactured by these methods is cut into a length of one battery such as a cylindrical shape, a long cylindrical shape, and a rectangular shape, and an electrode plate group in which a positive electrode sheet, a separator, and a negative electrode sheet are sequentially laminated. It is used by being wound into a roll around the core material.
[0009]
A long cylindrical battery is taken up as a conventional non-aqueous electrolyte battery. FIG. 2 shows a cross section cut by a plane parallel to the lid surface of the long cylindrical battery. In FIG. 2, 21 is a nonaqueous electrolyte battery, 22 is a battery case, 23 is a core material, and 24 is a pole. The electrode group 24 is composed of a positive electrode sheet, a separator, and a negative electrode sheet, and is wound around the core material 23 in a roll shape.
[0010]
FIG. 1 shows an enlarged cross-section of the winding start portion of the electrode plate group close to the core material when the electrode plate group is wound around the core material. In FIG. 1, 1 is a core material and 2 is a separator. Further, 3 is a negative electrode current collector plate, 4 is an inner negative electrode mixture, 5 is an outer negative electrode mixture, 6 is a positive electrode current collector plate, 7 is an inner positive electrode mixture, and 8 is an outer positive electrode mixture. Further, reference numeral 9 denotes a separator, which is located on the outer side of the separator 2. Further, 10 is a negative electrode current collector plate, 11 is an inner negative electrode mixture, and 12 is an outer negative electrode mixture.
As shown in FIG. 1, at the beginning of the winding of the electrode plate group close to the core material, the winding portion of the electrode plate group was not a gently curved surface but a bent shape.
[0011]
In such a bent electrode group, when the porosity of the electrode mixture attached to the front and back of the current collector is the same for both the positive electrode and the negative electrode, the amount of active material of the positive electrode and the negative electrode is balanced. It becomes a problem.
[0012]
In FIG. 1, when the outer negative electrode mixture 5 and the inner positive electrode mixture 7 facing each other with the separator 2 interposed therebetween are compared, the cross-sectional area of the outer negative electrode mixture 5 is a portion A drawn with a horizontal line in FIG. The cross-sectional area of the agent 7 is a portion B in which the vertical line in FIG. 1 is drawn, and clearly the cross-sectional area of the inner positive electrode mixture B disposed outside the separator 2 is larger. Since the volume of the electrode mixture is proportional to the cross-sectional area of FIG. 1, the volume of the electrode mixture facing the separator 2 is larger in the positive electrode than in the negative electrode.
[0013]
On the other hand, when the inner negative electrode mixture 11 and the outer positive electrode mixture 8 facing each other with the separator 9 positioned on the outer circumference of the separator 2 are compared, the cross-sectional area of the inner negative electrode mixture 11 disposed outside the separator 9 is compared. A ′ is larger than the cross-sectional area B ′ of the outer positive electrode mixture 8. In other words, the volume of the electrode mixture facing each other across the separator 9 is larger in the negative electrode than in the positive electrode.
[0014]
Here, when the porosity of the electrode mixture attached to the front and back of the current collector is the same for both the positive electrode and the negative electrode, the weight of the active material contained in the unit volume of the mixture is Since the front and back are equal, the balance between the positive and negative active material weights of the negative electrode mixture 5 and the positive electrode mixture 7 facing each other with the separator 2 interposed therebetween, and the negative electrode mixture 11 and the positive electrode mixture 8 facing each other with the separator 9 interposed therebetween. The balance between the positive and negative active material weights cannot be the optimum value at the same time. For example, if the balance between the positive and negative active material weights of the portions facing each other across the separator 9 is the optimum value, the balance between the positive and negative active material weights facing each other across the separator 2 is greatly deviated from the optimum value. .
[0015]
As shown in FIG. 1, when the volume of the outer negative electrode mixture 5 opposed across the separator 2 is smaller than the volume of the inner positive electrode mixture 7, the negative electrode active material contained in the negative electrode mixture with a small volume is It is necessary to carry out an electrode reaction with the positive electrode active material contained in the positive electrode mixture having a large volume. That is, the utilization factor of the negative electrode active material per unit volume of the bent portion at the beginning of winding becomes larger than that of other portions.
[0016]
As a result, in the bent part of the electrode plate group near the winding core, the number of lithium ions per unit volume entering and exiting the negative electrode active material by charge / discharge or the number of electrolyte solvents accompanying the lithium ions is higher than in other parts. There is a problem that the discharge capacity is reduced depending on the number of charge / discharge cycles, such as an increase in the physical change of the electrode mixture, or the occurrence of an internal short circuit due to deposition of metallic lithium on the surface of the negative electrode.
[0017]
The present invention has been made to solve such a problem, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery that is excellent in safety and has a small decrease in discharge capacity due to the number of charge / discharge cycles.
[0018]
[Means for Solving the Problems]
The nonaqueous electrolyte battery according to the present invention is a long cylindrical shape in which the positive electrode and the negative electrode are a sheet-like electrode plate in which an electrode mixture is attached to both surfaces of a current collector, and the positive electrode sheet, separator, and negative electrode sheet are wound around a core material. In a nonaqueous electrolyte secondary battery comprising an electrode plate group and having a shape in which a winding start portion of the long cylindrical electrode plate group is bent, the electrode combination on both surfaces of the current collector in at least one of the positive electrode and the negative electrode plate The porosity of the agent is different, and the positive electrode plate and the negative electrode plate are wound through a separator with the surface with the large porosity of the electrode mixture on the outside and the surface with the low porosity of the electrode mixture on the inside. A power generation element is used.
[0019]
In FIG. 1, in the case of the outer negative electrode mixture 5 and the inner positive electrode mixture 7 that are opposed to each other with the separator 2 interposed therebetween, an active material contained in each mixture is involved in the electrode reaction. Although the cross-sectional area A of the outer negative electrode mixture 5 is smaller than the cross-sectional area B of the inner positive electrode mixture 7, the outer negative electrode mixture 5 has a large surface area. The current density of this portion decreases relative to the surface area of the positive electrode mixture 7 and increases as the porosity increases. As a result, no metallic lithium is deposited on the surface of the outer negative electrode mixture 5.
[0020]
On the other hand, in the case of the outer positive electrode mixture 8 and the inner negative electrode mixture 11 that are opposed to each other with the separator 9 positioned on the outer circumference of the separator 2, the inner negative electrode mixture 11 even if the inner negative electrode mixture 11 has a small porosity. Is larger than the cross-sectional area A ′ of the portion of the outer positive electrode mixture 8, the surface area of the inner negative electrode mixture 11 is relatively larger than the surface area of the outer positive electrode mixture 8. As a result, no metallic lithium is deposited on the surface of the inner negative electrode mixture 11.
[0021]
In addition to the case described above, the relationship between the porosity of the electrode mixture and the current density of the negative electrode mixture was attached to the front and back of the current collector of at least one of the positive electrode plate and the negative electrode plate. Even when the porosity of the electrode mixture is different and the porosity of the electrode mixture attached to the front and back of the current collector of the other electrode plate is the same, it was attached to the front and back of the current collector Even when the electrode plate having a different porosity of the electrode mixture is wound through a separator so that the side of the electrode plate having the higher porosity becomes the outer side, the electrode plate is retained.
[0022]
【Example】
Embodiments of the present invention will be described with reference to the drawings, but are not limited to the following embodiments unless departing from the spirit of the present invention.
[0023]
First, a positive electrode sheet was produced. 90 parts by weight of LiCoO 2 as an active material, 5 parts by weight of acetylene black as a conductive agent are mixed, and 5 parts by weight of polyvinylidene fluoride is added as a binder, and N-methyl-2 as a solvent. -Pyrodrine was added and kneaded to prepare a slurry-like positive electrode mixture coating solution. Next, this positive electrode mixture coating solution was applied to each of the front and back surfaces of an aluminum foil having a thickness of 20 μm so that the same coating weight (per unit area) was obtained.
[0024]
Next, a negative electrode sheet was produced. Add 90 parts by weight of artificial graphite as an active material and 10 parts by weight of polyvinylidene fluoride as a binder, add N-methyl-2-pyrodrine as a solvent, knead, and apply slurry-like negative electrode mixture A liquid was prepared. Next, each side was applied to both the front and back surfaces of a copper foil having a thickness of 20 μm so as to have the same coating weight (per unit area).
[0025]
Furthermore, the positive electrode sheet and the negative electrode sheet were compressed by a roll press so that the porosity of each electrode mixture had a predetermined value. Six types of electrode sheets having different front and back porosity were prepared for both positive and negative electrodes.
[0026]
Next, the positive and negative electrode sheets are wound in a roll shape with a polyethylene microporous membrane separator so that both the positive and negative electrode sheets are on the outside and the back side is on the inside. A battery having a capacity of 100 Ah (thickness 50 mm, width 130 mm, height 210 mm) was produced.
[0027]
In Table 1, cell no. 1-No. 5 is a battery according to the present invention, and the porosity of the electrode mixture attached to both surfaces of the current collector of the electrode sheet is different. Cell No. 6 is a conventional battery in which the porosity of the electrode mixture attached to both surfaces of the current collector of the electrode sheet is the same.
[0028]
For each battery, a charge / discharge cycle in which the battery was discharged at a current of 50 A to 2.75 V at a current of 50 A at a current of 50 A at a voltage of 4.1 V for 4 hours was repeated 1000 times.
[0029]
FIG. 3 shows the relationship between the number of charge / discharge cycles and the discharge capacity of the six types of batteries tested here. As is clear from FIG. 3, in the batteries (cells No. 1 to No. 5) according to the present invention, the initial discharge capacity of the charge / discharge cycle is slightly smaller than that of the conventional battery (No. 6), but the charge / discharge cycle. There was little decrease in the discharge capacity with the progress of.
[0030]
Moreover, after the completion of the charge / discharge cycle test, each battery was disassembled, and as a result, metal lithium deposition (so-called lithium dendrite) was present in the conventional battery (No. 6) at the beginning of winding near the core material. On the other hand, no precipitation of metallic lithium was observed in the batteries (cells No. 1 to No. 5) according to the present invention. The reason why the initial discharge capacity of the battery according to the present invention is smaller than that of the conventional battery is considered to be that the utilization factor of the positive electrode is reduced as the porosity of the positive electrode plate is reduced.
[0031]
The difference in the porosity of the electrode mixture on the front and back of the current collector of the electrode sheet is in the range of 0.1% to 10% of the difference between the porosity of the surface having a high porosity and the surface of the surface having a low porosity. It is preferable. When the difference in the porosity of the electrode mixture is less than 0.1%, there is almost no effect of changing the porosity on both sides, and the effect of improving the charge / discharge cycle life is small. On the other hand, when the difference in the porosity of the electrode mixture exceeds 10%, the difference in the utilization factor of the electrode becomes too large, and the initial discharge capacity is greatly reduced.
[0032]
For example, in a lithium ion secondary battery, when the capacity balance between the positive and negative electrode active materials is excessive in the positive electrode, lithium ions desorbed from the positive electrode cannot be occluded in the negative electrode. As a result, metallic lithium is deposited on the negative electrode surface, causing not only a problem in safety, but also a problem that the discharge capacity is reduced due to electrode deterioration due to the charge / discharge cycle.
[0033]
In the above embodiment, the case where the porosity of the electrode mixture on both sides of the current collector is different for both positive and negative electrodes has been described. However, the porosity of the electrode mixture on both sides of the current collector is different in at least one electrode. The same effect can be obtained.
[0034]
In this invention, application | coating of the electrode mixture on electroconductive base materials, such as metal foil, is performed by a reverse roll system or a doctor blade system. The coating solution obtained by pasting the electrode mixture with a solvent is applied to the surface of the traveling conductive substrate and then dried. The electrode is pressed and compressed by a roll press or the like to adjust the porosity.
[0035]
In the present invention also by varying the porosity of the electrode material mixture on the front and back surfaces of the conductive substrate as a collector, alter the reactivity of the active material in the electrode mixture, the positive electrode sheet, a separator, a negative electrode sheet In a non-aqueous electrolyte secondary battery comprising a long cylindrical electrode plate group wound around a core material, and a winding start portion of the long cylindrical electrode plate group being bent, the capacity of the active material of the positive electrode and the negative electrode The balance is kept optimal.
[0036]
The coating solution for the electrode mixture applied in the present invention includes an electrode material, a conductive agent, a binder, a solvent, and the like. As the electrode material, any compound can be used as long as H + , Li + , Na + , K + and the like can be inserted and removed. Among them, transition metal oxides, transition metal chalcogenides, carbon materials, and the like can be used. In particular, it is preferable to use a lithium-containing transition metal oxide or a carbon material.
[0037]
In addition, as a transition metal, what has Co, Mn, Ni, V, and Fe as a main component is preferable, and as such a transition metal oxide, specifically, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCoVO 4 , LiNiVO 4 , LiCo 0.9 Sn 0.1 O 2 , Fe 3 O 4 , V 2 O 5 and the like.
[0038]
Examples of the carbon material include graphite, petroleum coke, cresol resin calcined carbon, furan resin calcined carbon, polyacrylonitrile fiber calcined carbon, vapor grown carbon, and mesophase pitch calcined carbon.
[0039]
Any conductive agent can be used as long as it is an electron conductive material that does not cause a chemical change in the constructed battery. Usually, conductive materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder, metal fiber or polyphenylene derivative are used alone or in combination of two or more. In particular, the combined use of graphite and acetylene black is preferred.
[0040]
As the binder, one or more kinds of polysaccharides, thermoplastic resins, thermosetting resins, or polymers having rubber elasticity that are difficult to dissolve or swell in the organic electrolyte used in the non-aqueous electrolyte secondary battery are used. Can be mixed and used. Specific examples include hydroxypropylcellulose, polytetrafluoroethylene, polyvinylidene fluoride, fluororubber, ethylene-propylene-diene terpolymer (EPDM), styrene butadiene rubber, polybutadiene, and polyethylene oxide. These binders may be dissolved in a solvent, or may be in an emulsion state such as dispersion or suspension.
[0041]
Furthermore, water or a mixture of one or more organic solvents can be used as a solvent for kneading these electrode material, conductive agent, and binder. The type of the organic solvent is not particularly limited, but use of N-methyl-2-pyrodrine, xylene, toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexane, ethanol, methanol, or the like is preferable.
[0042]
In the present invention, the composition of the electrode mixture coating solution is not particularly limited, but usually 1 to 10 parts by weight of a conductive agent, 0.1 to 10 parts by weight of a binder, and 30 to 30 parts of a solvent with respect to 100 parts by weight of the active material. It includes 300 parts by weight.
[0043]
The conductive substrate used in the present invention is not particularly limited, but a metal foil such as aluminum, copper, nickel, and stainless steel, or a conductive film such as an inorganic oxide, an organic polymer material, or carbon. Can be used. Moreover, although the form of such an electroconductive base material can be made into various forms, such as a continuous sheet, a perforated sheet, and a net (net-like) sheet, it is particularly preferable to use a continuous sheet. Furthermore, the thickness of the conductive substrate is preferably 1 to 30 μm.
[0044]
In the present invention, after the electrode material coating liquid is applied to both the front and back surfaces of such a conductive substrate, it is transported to a drying chamber, the solvent in the coating layer is removed, and then passed through a roll press. And compressed with pressure. As a method of changing the porosity between the front and back of the electrode, it is preferable to change the temperature of the upper and lower rolls of the roll press machine, and perform the coating, drying and pressing steps for each side of the electrode.
[0045]
In the present invention, a sheet-shaped electrode plate having different porosity of the electrode mixture on both sides of the current collector thus produced is used as one or both of the positive electrode and the negative electrode, and a long cylindrical non-aqueous electrolyte secondary battery is obtained. Can be produced .
[0046]
Here, as a separator which isolate | separates a positive electrode sheet and a negative electrode sheet, a microporous film, a nonwoven fabric, etc. which consist of polyethylene, propylene, etc. are mentioned, for example.
[0047]
As the electrolyte, as an organic solvent, for example, at least one selected from aprotic organic solvents such as propylene carbonate, ethylene carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, and tetrahydroxyfuran is mixed. And a lithium salt soluble in the solvent, for example, at least one salt selected from LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiAsF 6 and the like. Solution.
[0048]
【The invention's effect】
A non-aqueous electrolyte secondary comprising a long cylindrical electrode plate group in which a positive electrode sheet, a separator, and a negative electrode sheet according to the present invention are wound around a core, and a winding start portion of the long cylindrical electrode plate group is bent. In the battery, in the portion close to the core material obtained by winding the sheet electrode plate in a roll shape, the relationship between the porosity of the positive electrode mixture and the negative electrode mixture facing each other across the separator is always the same regardless of the number of windings. The porosity of the inner electrode mixture is large, and the porosity of the outer electrode mixture is small. For this reason, the reaction of the negative electrode mixture always increases at the portions facing each other with the separator interposed therebetween, and the current density of the negative electrode mixture is reduced. As a result, the deposition of metallic lithium on the surface of the negative electrode mixture can be prevented.
[0049]
The battery according to the present invention is less likely to cause the precipitation of thermally active lithium even after repeated charge / discharge cycles. Therefore, the battery is superior in safety and has a smaller capacity reduction due to the number of charge / discharge cycles. It is.
[Brief description of the drawings]
FIG. 1 is an enlarged sectional view of a winding start portion of an electrode plate group.
FIG. 2 is a cross-sectional view of a long cylindrical battery.
FIG. 3 is a graph showing the relationship between the number of charge / discharge cycles and the discharge capacity between the battery according to the present invention and a conventional battery.
[Explanation of symbols]
1 Core material 2 Separator 3 Negative electrode current collector plate 4 Inner negative electrode mixture 5 Outer negative electrode mixture 6 Positive electrode current collector 7 Inner positive electrode mixture 8 Outer positive electrode mixture [Table 1]
Figure 0004258686

Claims (1)

正極および負極は集電体の両面に電極合剤が取り付けられたシート状極板とし、正極シート、セパレータ、負極シートを芯材に巻回した長円筒形極板群を備え、前記長円筒形極板群の巻きはじめの部分が折れ曲がった形状である非水電解質二次電池において、正極または負極の少なくとも一方の極板における集電体の両面の電極合剤の多孔度が異なり、正極板および負極板を、電極合剤の多孔度が大きい面を外側に、電極合剤の多孔度が小さい面を内側にして、セパレータを介して巻回されたことを特徴とする非水電解質二次電池。The positive electrode and the negative electrode are sheet-like electrode plates in which an electrode mixture is attached to both surfaces of a current collector, and include a long cylindrical electrode plate group in which a positive electrode sheet, a separator, and a negative electrode sheet are wound around a core material. In a non-aqueous electrolyte secondary battery having a bent shape at the beginning of winding of the electrode plate group, the porosity of the electrode mixture on both sides of the current collector in at least one of the positive electrode and the negative electrode is different. A non-aqueous electrolyte secondary battery, wherein the negative electrode plate is wound through a separator with the surface having a large porosity of the electrode mixture facing outward and the surface having a small porosity of the electrode mixture facing inward .
JP27664198A 1998-09-10 1998-09-10 Non-aqueous electrolyte battery Expired - Lifetime JP4258686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27664198A JP4258686B2 (en) 1998-09-10 1998-09-10 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27664198A JP4258686B2 (en) 1998-09-10 1998-09-10 Non-aqueous electrolyte battery

Publications (3)

Publication Number Publication Date
JP2000090981A JP2000090981A (en) 2000-03-31
JP2000090981A5 JP2000090981A5 (en) 2005-10-27
JP4258686B2 true JP4258686B2 (en) 2009-04-30

Family

ID=17572285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27664198A Expired - Lifetime JP4258686B2 (en) 1998-09-10 1998-09-10 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4258686B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420066B1 (en) * 2000-07-03 2002-07-16 Wilson Greatbatch Ltd. Variable density cathode assembly which facilitates winding
JP6866202B2 (en) * 2017-03-28 2021-04-28 太陽誘電株式会社 Electrochemical device
WO2021131659A1 (en) * 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 Flat non-aqueous electrolyte secondary battery
CN112417725A (en) * 2020-11-20 2021-02-26 苏州凌威新能源科技有限公司 Design method for porosity of negative plate
KR20230164355A (en) * 2022-05-25 2023-12-04 주식회사 엘지에너지솔루션 Electrode manufacture apparatus and electrode manufacturing method using the same

Also Published As

Publication number Publication date
JP2000090981A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP4831075B2 (en) Nonaqueous electrolyte secondary battery
JP5472759B2 (en) Lithium secondary battery
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
JP4380201B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP3728162B2 (en) Non-aqueous electrolyte secondary battery
JP2002117844A (en) Solid electrolyte battery
JP2001357855A (en) Nonaqueous electrolyte secondary battery
US20030068555A1 (en) Non-aqueous electrolyte secondary battery
JP2012084426A (en) Nonaqueous electrolyte secondary battery
JP2000011991A (en) Organic electrolyte secondary battery
US20230082023A1 (en) Method of manufacturing negative electrode
JP2007172879A (en) Battery and its manufacturing method
KR20220046267A (en) Anodeless lithium secondary battery and preparing method thereof
JP2022547501A (en) Method for manufacturing secondary battery
JP4258686B2 (en) Non-aqueous electrolyte battery
JP2001357874A (en) Nonaqueous electrolyte secondary battery
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JP3697324B2 (en) Sheet electrode manufacturing method and non-aqueous electrolyte battery
JP7309258B2 (en) Method for manufacturing secondary battery
JP2007172878A (en) Battery and its manufacturing method
JP4664455B2 (en) Non-aqueous electrolyte secondary battery
JP2000331686A (en) Nonaqueous electrolyte secondary battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH09293535A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

EXPY Cancellation because of completion of term