JP4255228B2 - Method for producing high-purity vinylene carbonate - Google Patents

Method for producing high-purity vinylene carbonate Download PDF

Info

Publication number
JP4255228B2
JP4255228B2 JP2001358900A JP2001358900A JP4255228B2 JP 4255228 B2 JP4255228 B2 JP 4255228B2 JP 2001358900 A JP2001358900 A JP 2001358900A JP 2001358900 A JP2001358900 A JP 2001358900A JP 4255228 B2 JP4255228 B2 JP 4255228B2
Authority
JP
Japan
Prior art keywords
vinylene carbonate
solvent
methyl
ether
butyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001358900A
Other languages
Japanese (ja)
Other versions
JP2002226475A (en
Inventor
博夫 宮内
一哉 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001358900A priority Critical patent/JP4255228B2/en
Publication of JP2002226475A publication Critical patent/JP2002226475A/en
Application granted granted Critical
Publication of JP4255228B2 publication Critical patent/JP4255228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高純度ビニレンカーボネートの製造方法に関する。詳しくは、粗ビニレンカーボネートを特定の溶媒を用いて晶析精製することにより高純度ビニレンカーボネートを製造する方法に関する。
ビニレンカーボネートは、リチウム二次電池用電解液の溶媒及び添加剤として有用である。
【0002】
【従来の技術】
ビニレンカーボネートの合成法としては、これ迄に幾つかの方法が報告されている。例えばエチレンカーボネートの塩素化で得られるクロロエチレンカーボネートの脱塩化水素による方法(M.S.Newman and R.W.Addor,J.Am.Chem.Soc.,75,1263(1953)、J.Am.Chem.Soc.,77,3789(1955))、特開平11−180974号公報)やエチレンカーボネートの脱水素による方法(米国特許第3,457,279号明細書)等が知られている。
【0003】
電解液の溶媒として用いられるビニレンカーボネートについては、高品質のものが要求されるが、例えばクロロエチレンカーボネートを原料とするビニレンカーボネートについては、非常に多様な有機塩素化合物や無機塩素化合物を不純物として含有している。
このため、粗ビニレンカーボネートの精製方法についても、今迄に幾つかの方法が提案されている。
【0004】
例えば、減圧条件での蒸留(M.S.Newman and R.W.Addor,J.Am.Chem.Soc.,75,1263(1953)、J.Am.Chem.Soc.,77,3789(1955))、融液晶析法によりビニレンカーボネートを部分的に結晶化させる操作を数回繰り返す方法(英国特許899205号明細書)とゾーンメルティングによる方法(M.Zief,H.Ruch and C.H.Schramm,J.Chem.Education,40,351(1963))及びクロロエチレンカーボネートの脱塩化水素反応をジブチルカーボネート等の高沸点溶媒中で行い、次いで蒸留する方法(特開2000−26449号公報)等が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、蒸留による精製法の場合、沸点がビニレンカーボネートに近い有機塩素化合物が製品中に不純物として混入するために品質的に満足できるものではない。
また、クロロエチレンカーボネートの脱塩化水素反応を高沸点溶媒中で行う方法については、高価な溶媒の回収が容易ではなく、工業的に満足できるものではない。
【0006】
一方、融液晶析による方法については、高品質の製品を得ようとすれば、回収率を低くしなければならず、経済的に満足できるものではない。
本発明は、高品質のビニレンカーボネートを従来の方法よりも経済的に製造することができる方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明者らは、かかる事情に鑑み鋭意検討した結果、粗ビニレンカーボネート中に不純物として含まれる塩素化合物については、極性溶媒及び/又は芳香族炭化水素溶媒に溶解すること、しかもその量が少ない場合には前記溶媒中に非極性溶媒が含まれていても塩素化合物は溶解したままであること、従って、かかる溶媒を用いて粗ビニレンカーボネートの晶析精製をすれば、不純物が製品の表面に付着したり、或いはそれ自身が固体として析出するという問題は起こらず、製品品質が向上することを見出し、本発明を完成するに至った。
【0008】
即ち、本発明の要旨は、粗粗ビニレンカーボネートを極性溶媒及び/又は芳香族炭化水素溶媒に溶解させ、次いでビニレンカーボネートを析出させることを特徴とする高純度ビニレンカーボネートの製造方法、にある。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の対象となる粗ビニレンカーボネートについては、その製造方法が限定されるものではないが、不純物として塩素化合物を含むものが好ましく、例えば前述したクロロエチレンカーボネートの脱塩化水素反応(M.S.Newmanand R.W.Addor,J.Am.Chem.Soc.,75,1263(1953)、J.Am.Chem.Soc.,77,3789(1955))により得られたものが好ましい。
【0010】
但し、原料となる粗ビニレンカーボネートの純度については、単蒸留等により好ましくは95%以上、より好ましくは97%以上迄精製したものがよい。
粗ビニレンカーボネートを溶解させる溶媒としては、極性溶媒及び/又は芳香族炭化水素溶媒、即ち、極性溶媒及び芳香族炭化水素溶媒から選ばれる少なくとも一種の溶媒が用いられる。かかる溶媒は単独でも二種以上の混合物でもよい。なお、本発明でいう「溶解」とは、粗ビニレンカーボネートと上記溶媒とがエマルジョン様に懸濁状態にあるものをも包含する。
【0011】
但し、かかる溶媒については、塩素含有不純物の溶解量が、溶媒100g当り0.1g以上、好ましくは1g以上であるものが好ましい。
【0012】
なお、粗ビニレンカーボネート中に含まれる塩素化合物とは、ビニレンカーボネートがクロロエチレンカーボネートの脱塩酸により製造された場合には、例えばクロロエチレンカーボネート、ジクロロエチレンカーボネート、クロロアセトアルデヒド、クロロエタノール、ジメトキシメチルクロライド、反応溶媒の塩素化物のような有機塩素化合物である。
この場合、かかる非極性溶媒の具体例としては、例えばプロパン、ブタン、イソブタン、ペンタン、2−メチルブタン、ネオペンタン、シクロペンタン、ヘキサン、2−メチルペンタン、3−メチルペンタン、ヘプタン、2−メチルヘキサン、3−メチルヘキサン、シクロヘキサン、オクタン、イソオクタン、ノナン、イソノナン、デカン等が挙げられる。
【0013】
本発明に用いられる極性溶媒の具体例としては、例えばメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブタノール、t−ブタノール、1−ペンタノール、2−ペンタノール、3−ペンタノール、アミルアルコール、イソアミルアルコール、1−ヘキサノール、2−ヘキサノール、3−ヘキサノール、2−メチル−2−ペンタノール、2−メチル−3−ペンタノール、3−メチル−3−ペンタノール、1−ヘプタノール、2−ヘプタノール、3−ヘプタノール、4−ヘプタノール、2−メチル−2−ヘキサノール、3−メチル−3−ヘキサノール、4−メチル−4−ヘキサノール、2−メチル−4−ヘキサノール、4−メチル−2−ヘキサノール、2−エチルヘキサノール、ベンジルアルコール、フェノール、レゾルシノール、1−フェニルエタノール、2−フェニルエタノール、1−フェニル−2−ブタノール、3−フェニル−1−ブタノール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、エチレングリコール、グリセロール等のアルコール類;エタノールアミン、プロパノールアミン、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、メチルエチルアミン、メチルブチルアミン、プロピルアミン、ジプロピルアミン、トリプロピルアミン、ジイソプロピルアミン、トリイソプロピルアミン、t−ブチルアミン、1,2−エチレンジアミン、N,N,N′,N′−テトラメチル−1,2−エチレンジアミン、ジ(n−ブチル)アミン、トリブチルアミン、アニリン、N−メチルアニリン、N,N−ジメチルアニリン、トルイジン、N,N−ジメチルトルイジン等のアミン類;アセトアルデヒド、ブチルアルデヒド、ヘキサナール、プロピオンアルデヒド等のアルデヒド類;ブタノン、アセトン、メチルプロピルケトン、ジエチルケトン等のケトン類;ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、γ−ブチロラクトン、プロピオン酸ブチル等のカルボン酸エステル類;ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、ジブチルエーテル、ジイソプロピルエーテル、ジオキサン、トリオキサン、テトラヒドロフラン、メチル−t−ブチルエーテル、ジメトキシエタン等のエーテル類;フラン、ピロール、ピリジン、チオフェン等のヘテロ芳香族化合物;ホルムアミド、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、ジエチルアセトアミド、N−メチルピロリドン等のカルボキシアミド類;アセトニトリル、プロピオニトリル、ブチロニトリル等のニトリル類;クロロベンゼン、1,2−ジクロロベンゼン、1,3−ジクロロベンゼン、プロモベンゼン等のハロ芳香族化合物;臭化エチル、塩化エチル、フッ化エチル、臭化ブチル、塩化ブチル、塩化メチル、クロロホルム、ジクロロエタン、ジクロロメタン等のハロゲン化アルキル化合物;ニトロメタン、ニトロエタン、1−ニトロプロパン、2−ニトロプロパン、1−ニトロブタン、2−ニトロブタン、ニトロベンゼン、2−ニトロトルエン、3−ニトロトルエン等のニトロ化合物が挙げられる。
【0014】
これらの中、エーテル類、ケトン類、エステル類、アルコール類が好ましい。
また、芳香族炭化水素溶媒の具体例としては、例えばベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン、イソプロピルベンゼン等が挙げられる。これらの中、ベンゼン、トルエン、キシレンが好ましく、トルエンが特に好ましい。
かかる溶媒の使用量については、特に限定はされないが、粗ビニレンカーボネートに対して、通常、0.5〜20重量倍、好ましくは0.7〜5重量倍、より好ましくは0.8〜3重量倍である。
【0015】
晶析はビニレンカーボネートの約5〜70重量%の溶液を放置して結晶を析出させてもよいが、その溶液を過冷却状態にすることにより結晶を析出させるのが好ましい。この場合、例えばその溶液を先ず0〜20℃(温度A)迄冷却し、温度Aで約1〜2時間撹拌した後、更に温度Aよりも5〜15℃低い温度B迄、例えば0.1〜10℃/時の速度で温度を下げ、この温度Bで約1〜2時間撹拌して晶析させるという手法が好ましい。
【0016】
なお、過冷却状態にして晶析を行う場合、その溶液に冷却された溶媒を添加するとか、ドライアイス等の低温を固体を投入する等して局所的な温度分布を作るとか、その溶液に脂肪族炭化水素のようなビニレンカーボネートの溶解度の小さい溶媒を添加するとか、液体又は固体のビニレンカーボネートを添加する等して局所的な濃度分布を作るとか、或いは種晶等を加えることも好ましい。
【0017】
結晶を更に析出又は成長させる方法としては、例えば冷却、脂肪族炭化水素のようなビニレンカーボネートの溶解度の小さい溶媒を添加する方法、冷却された溶媒を添加する方法、液体のビニレンカーボネートを添加する方法等やそれらの組合せによる方法が使用できる。
ビニレンカーボネートの回収率は使用する溶媒に対する溶解度に依存し、温度、溶媒量で任意に設定することが出来るが、通常ビニレンカーボネートの回収率が60%以上、好ましくは80%以上になるように設定される。
【0018】
析出した固体は、濾過、遠心分離等の方法で分離される。必要があれば、更に固体表面を適当な溶媒で洗浄する。この固体は、通常は融点以上に加熱し、ビニレンカーボネートを液体として取得する。このビニレンカーボネートはそのまま製品とすることもできるが、必要があればトッピング等で残留溶媒を除去することもできる。
このような方法により高純度のビニレンカーボネートを得ることができる。
但し、本発明にいう高純度ビニレンカーボネートとは、純度99.5%以上、好ましくは99.7%以上、より好ましくは99.9%以上で、塩素化合物の含有量が全塩素量として500ppm以下、好ましくは200ppm以下、より好ましくは50ppm以下のものを指す。
なお、この方法でも充分な品質のビニレンカーボネートが得られるが、更に高品質なものが必要である場合には本発明の方法を繰り返して使用することが出来る。
【0019】
【実施例】
以下、実施例により、本発明を更に具体的に説明するが、本発明は、その要旨を越えない限りこれらの実施例に限定されるものではない。
なお、分析はガスクロマトグラフィーで実施した。純度は溶媒が残存している場合は溶媒をカットした数値を使用した。
純度=(ビニレンカーボネート面積)/(全面積−残留溶媒ピーク面積)
【0020】
実施例1〜10
撹拌機能を備えた500mlの四つ口フラスコに、ビニレンカーボネート(VC)と溶媒を仕込み、撹拌しながら、1時間当り2℃の速度で冷却した。ある温度(温度A)まで冷却すると固体が析出するので、その温度で1時間撹拌した後、所定の温度(温度B)まで1時間当り2℃の速度で冷却し、更に1時間撹拌した。固体を濾別し、5℃のヘキサンで2回洗浄した後、加熱融解し、液体を回収した。以下の表1に結果を示した。
【0021】
【表1】

Figure 0004255228
【0022】
実施例11、12
撹拌機能を備えた50mlの三つ口フラスコに、ビニレンカーボネート(純度99.24%、全塩素6270ppm)10g、溶媒10gを仕込み、撹拌しながら冷却したところ固体が析出した。5℃で1時間撹拌した後、撹拌を停止し、−5℃で12時間静置した。固体を濾別し、5℃のヘキサンで2回洗浄した後、加熱融解し、液体を回収した。結果を以下の表2に示した。
【0023】
【表2】
Figure 0004255228
【0024】
実施例13
撹拌機能を備えた250L反応器に、ビニレンカーボネート(純度98.69%、全塩素3160ppm)40.0kgとトルエン40.0kg、ヘキサン40.0kgを仕込み撹拌しながら冷却した。14.7℃で種晶40gを添加し30分撹拌した後、14.3〜5℃で6時間撹拌し、更に4時間かけて4.0℃まで冷却した。固体を濾別し、5℃のヘキサン40kgで2回洗浄し、VCを固体で得た。回収率93.2%、純度99.94%、全塩素11ppm。
【0025】
実施例14
掻き取り翼付きの250L反応器に、ビニレンカーボネート(純度98.69%、全塩素3160ppm)50.0kgとトルエン50.0kg、ヘキサン50.0kgを仕込み撹拌しながら冷却した。14.7℃で種晶50gを添加し30分撹拌した後、2.5時間かけて4.0℃まで冷却した。固体を濾別し、5℃のヘキサン50kgで2回洗浄し、VCを固体で得た。回収率93.3%、純度99.94%、全塩素15ppm。
【0026】
比較例1
ビニレンカーボネート100g(純度99.24%、全塩素6270ppm)を4段の蒸留塔を使用し、還流比5〜10で2回精密蒸留した。収率69%、純度99.80%、全塩素量530ppm。
【0027】
【発明の効果】
本発明によれば、粗ビニレンカーボネートを極性溶媒及び/又は芳香族炭化水素溶媒を含む溶媒に溶解させ、次いでビニレンカーボネートを固定として析出させることにより、高品質のビニレンカーボネートを経済的に得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing high-purity vinylene carbonate. Specifically, the present invention relates to a method for producing high-purity vinylene carbonate by crystallizing and purifying crude vinylene carbonate using a specific solvent.
Vinylene carbonate is useful as a solvent and an additive for an electrolytic solution for a lithium secondary battery.
[0002]
[Prior art]
Several methods have been reported so far for synthesizing vinylene carbonate. For example, a method by dehydrochlorination of chloroethylene carbonate obtained by chlorination of ethylene carbonate (MS Newman and RW Addor, J. Am. Chem. Soc., 75, 1263 (1953), J. Am). Chem. Soc., 77, 3789 (1955)), JP-A-11-180974), a method by dehydrogenation of ethylene carbonate (US Pat. No. 3,457,279), and the like are known.
[0003]
The vinylene carbonate used as the solvent for the electrolytic solution is required to have a high quality. For example, vinylene carbonate using chloroethylene carbonate as a raw material contains a wide variety of organic chlorine compounds and inorganic chlorine compounds as impurities. is doing.
For this reason, several methods have been proposed so far for the purification of crude vinylene carbonate.
[0004]
For example, distillation under reduced pressure conditions (MS Newman and RW Addor, J. Am. Chem. Soc., 75, 1263 (1953), J. Am. Chem. Soc., 77, 3789 (1955). )), A method of repeating the operation of partially crystallizing vinylene carbonate by the melt liquid crystal deposition method (UK Patent No. 899205) and a method by zone melting (M. Zief, H. Ruch and C.H. Schramm, J. Chem. Education, 40, 351 (1963)) and a method in which a dehydrochlorination reaction of chloroethylene carbonate is carried out in a high boiling point solvent such as dibutyl carbonate and then distilled (Japanese Patent Laid-Open No. 2000-26449), etc. Has been proposed.
[0005]
[Problems to be solved by the invention]
However, in the case of the purification method by distillation, an organic chlorine compound having a boiling point close to that of vinylene carbonate is mixed in as an impurity in the product, which is not satisfactory in terms of quality.
Moreover, about the method of performing the dehydrochlorination reaction of a chloroethylene carbonate in a high boiling-point solvent, collection | recovery of an expensive solvent is not easy and is not industrially satisfactory.
[0006]
On the other hand, with respect to the method by melt liquid crystal deposition, if a high-quality product is to be obtained, the recovery rate must be lowered, which is not economically satisfactory.
The present invention seeks to provide a process by which high quality vinylene carbonate can be produced more economically than conventional processes.
[0007]
[Means for Solving the Problems]
As a result of intensive studies in view of such circumstances, the present inventors have found that the chlorine compound contained as an impurity in the crude vinylene carbonate can be dissolved in a polar solvent and / or an aromatic hydrocarbon solvent, and the amount thereof is small. Even if a non-polar solvent is contained in the solvent, the chlorine compound remains dissolved. Therefore, if the crude vinylene carbonate is purified by crystallization using such a solvent, impurities will adhere to the surface of the product. Or the problem that it precipitates as a solid does not occur, and it has been found that the product quality is improved, and the present invention has been completed.
[0008]
That is, the gist of the present invention resides in a method for producing high-purity vinylene carbonate, which comprises dissolving crude crude vinylene carbonate in a polar solvent and / or an aromatic hydrocarbon solvent, and then precipitating vinylene carbonate.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The crude vinylene carbonate which is the subject of the present invention is not limited in its production method, but preferably contains a chlorine compound as an impurity. For example, the dehydrochlorination reaction (MS) of chloroethylene carbonate described above is preferable. Newmanand RW Addor, J. Am. Chem. Soc., 75, 1263 (1953), J. Am. Chem. Soc., 77, 3789 (1955)) are preferred.
[0010]
However, the purity of the crude vinylene carbonate as a raw material is preferably purified by simple distillation or the like to 95% or more, more preferably 97% or more.
As the solvent for dissolving the crude vinylene carbonate, a polar solvent and / or an aromatic hydrocarbon solvent, that is, at least one solvent selected from a polar solvent and an aromatic hydrocarbon solvent is used. Such solvents may be used singly or as a mixture of two or more. The “dissolution” in the present invention includes those in which the crude vinylene carbonate and the solvent are in a suspension state like an emulsion.
[0011]
However, such solvents are preferably those in which the amount of chlorine-containing impurities dissolved is 0.1 g or more, preferably 1 g or more per 100 g of the solvent.
[0012]
Note that the chlorine compound contained in the crude vinylene carbonate is, for example, chloroethylene carbonate, dichloroethylene carbonate, chloroacetaldehyde, chloroethanol, dimethoxymethyl chloride, reaction when vinylene carbonate is produced by dehydrochlorination of chloroethylene carbonate. Organochlorine compounds such as chlorinated solvents.
In this case, specific examples of such a nonpolar solvent include propane, butane, isobutane, pentane, 2-methylbutane, neopentane, cyclopentane, hexane, 2-methylpentane, 3-methylpentane, heptane, 2-methylhexane, Examples include 3-methylhexane, cyclohexane, octane, isooctane, nonane, isononane, decane, and the like.
[0013]
Specific examples of polar solvents used in the present invention include, for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, t-butanol, 1-pentanol, and 2-pentanol. 3-pentanol, amyl alcohol, isoamyl alcohol, 1-hexanol, 2-hexanol, 3-hexanol, 2-methyl-2-pentanol, 2-methyl-3-pentanol, 3-methyl-3-pentanol 1-heptanol, 2-heptanol, 3-heptanol, 4-heptanol, 2-methyl-2-hexanol, 3-methyl-3-hexanol, 4-methyl-4-hexanol, 2-methyl-4-hexanol, 4 -Methyl-2-hexanol, 2-ethylhexanol, benzyl Lucol, phenol, resorcinol, 1-phenylethanol, 2-phenylethanol, 1-phenyl-2-butanol, 3-phenyl-1-butanol, 1,2-propanediol, 1,3-propanediol, 1,2- Alcohols such as butanediol, 1,3-butanediol, 1,4-butanediol, ethylene glycol, glycerol; ethanolamine, propanolamine, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, methylethylamine, methyl Butylamine, propylamine, dipropylamine, tripropylamine, diisopropylamine, triisopropylamine, t-butylamine, 1,2-ethylenediamine, N, N, N ', N'-tetra Amines such as til-1,2-ethylenediamine, di (n-butyl) amine, tributylamine, aniline, N-methylaniline, N, N-dimethylaniline, toluidine, N, N-dimethyltoluidine; acetaldehyde, butyraldehyde Aldehydes such as butanone, acetone, methyl propyl ketone, diethyl ketone; methyl formate, ethyl formate, propyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, propion Carboxylic acid esters such as methyl acid, γ-butyrolactone and butyl propionate; dimethyl ether, diethyl ether, methyl ethyl ether, dibutyl ether, diisopropyl ether, dioxane, trioxane, tetrahydrofuran , Ethers such as methyl-t-butyl ether and dimethoxyethane; heteroaromatic compounds such as furan, pyrrole, pyridine and thiophene; carboxamides such as formamide, dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide and N-methylpyrrolidone Nitriles such as acetonitrile, propionitrile, butyronitrile; haloaromatic compounds such as chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, promobenzene; ethyl bromide, ethyl chloride, ethyl fluoride, Halogenated alkyl compounds such as butyl bromide, butyl chloride, methyl chloride, chloroform, dichloroethane, dichloromethane; nitromethane, nitroethane, 1-nitropropane, 2-nitropropane, 1-nitro Tan, 2-nitrobutane, nitrobenzene, 2-nitrotoluene, nitro compounds such as 3-nitrotoluene and the like.
[0014]
Of these, ethers, ketones, esters, and alcohols are preferred.
Specific examples of the aromatic hydrocarbon solvent include benzene, toluene, xylene, ethylbenzene, mesitylene, isopropylbenzene, and the like. Of these, benzene, toluene and xylene are preferred, and toluene is particularly preferred.
The amount of the solvent used is not particularly limited, but is usually 0.5 to 20 times by weight, preferably 0.7 to 5 times by weight, more preferably 0.8 to 3 weights with respect to the crude vinylene carbonate. Is double.
[0015]
Crystallization may be performed by allowing a solution of about 5 to 70% by weight of vinylene carbonate to stand, but it is preferable to precipitate the crystal by bringing the solution into a supercooled state. In this case, for example, the solution is first cooled to 0 to 20 ° C. (temperature A), stirred at temperature A for about 1 to 2 hours, and further to a temperature B lower than temperature A by 5 to 15 ° C., for example 0.1 A technique is preferred in which the temperature is lowered at a rate of 10 ° C./hour and the mixture is stirred at this temperature B for about 1 to 2 hours for crystallization.
[0016]
When crystallization is performed in a supercooled state, a local temperature distribution is created by adding a cooled solvent to the solution, or by introducing a solid at a low temperature such as dry ice, etc. It is also preferable to add a solvent having low solubility of vinylene carbonate such as an aliphatic hydrocarbon, create a local concentration distribution by adding liquid or solid vinylene carbonate, or add seed crystals.
[0017]
As a method for further precipitation or growth of crystals, for example, cooling, a method of adding a solvent having a low solubility of vinylene carbonate such as an aliphatic hydrocarbon, a method of adding a cooled solvent, a method of adding liquid vinylene carbonate Etc. or a combination thereof can be used.
The recovery rate of vinylene carbonate depends on the solubility in the solvent used, and can be arbitrarily set depending on the temperature and the amount of the solvent. Usually, the recovery rate of vinylene carbonate is set to 60% or more, preferably 80% or more. Is done.
[0018]
The precipitated solid is separated by a method such as filtration or centrifugation. If necessary, the solid surface is further washed with a suitable solvent. This solid is usually heated above its melting point to obtain vinylene carbonate as a liquid. This vinylene carbonate can be used as a product as it is, but if necessary, the residual solvent can be removed by topping or the like.
High purity vinylene carbonate can be obtained by such a method.
However, the high-purity vinylene carbonate referred to in the present invention means a purity of 99.5% or more, preferably 99.7% or more, more preferably 99.9% or more, and the chlorine compound content is 500 ppm or less as the total chlorine content. , Preferably 200 ppm or less, more preferably 50 ppm or less.
This method can also obtain a vinylene carbonate having a sufficient quality. However, when a higher quality vinylene carbonate is required, the method of the present invention can be used repeatedly.
[0019]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples as long as the gist of the present invention is not exceeded.
The analysis was performed by gas chromatography. For the purity, when the solvent remained, a value obtained by cutting the solvent was used.
Purity = (Vinylene carbonate area) / (Total area−Residual solvent peak area)
[0020]
Examples 1-10
A 500 ml four-necked flask equipped with a stirring function was charged with vinylene carbonate (VC) and a solvent, and cooled at a rate of 2 ° C. per hour while stirring. Solids precipitated when cooled to a certain temperature (temperature A). After stirring at that temperature for 1 hour, the mixture was cooled to a predetermined temperature (temperature B) at a rate of 2 ° C. per hour and further stirred for 1 hour. The solid was separated by filtration, washed twice with hexane at 5 ° C., and then melted by heating to recover the liquid. The results are shown in Table 1 below.
[0021]
[Table 1]
Figure 0004255228
[0022]
Examples 11 and 12
A 50 ml three-necked flask equipped with a stirring function was charged with 10 g of vinylene carbonate (purity 99.24%, total chlorine 6270 ppm) and 10 g of solvent, and cooled with stirring to precipitate a solid. After stirring at 5 ° C for 1 hour, stirring was stopped and the mixture was allowed to stand at -5 ° C for 12 hours. The solid was separated by filtration, washed twice with hexane at 5 ° C., and then melted by heating to recover the liquid. The results are shown in Table 2 below.
[0023]
[Table 2]
Figure 0004255228
[0024]
Example 13
A 250 L reactor equipped with a stirring function was charged with 40.0 kg of vinylene carbonate (purity 98.69%, total chlorine 3160 ppm), 40.0 kg of toluene, and 40.0 kg of hexane, and cooled while stirring. After adding 40 g of seed crystals at 14.7 ° C. and stirring for 30 minutes, the mixture was stirred at 14.3 to 5 ° C. for 6 hours, and further cooled to 4.0 ° C. over 4 hours. The solid was filtered off and washed twice with 40 kg of hexane at 5 ° C. to obtain VC as a solid. Recovery rate 93.2%, purity 99.94%, total chlorine 11ppm.
[0025]
Example 14
A 250 L reactor equipped with a scraping blade was charged with 50.0 kg of vinylene carbonate (purity 98.69%, total chlorine 3160 ppm), 50.0 kg of toluene, and 50.0 kg of hexane, and cooled with stirring. After adding 50 g of seed crystals at 14.7 ° C. and stirring for 30 minutes, the mixture was cooled to 4.0 ° C. over 2.5 hours. The solid was filtered off and washed twice with 50 kg of hexane at 5 ° C. to obtain VC as a solid. Recovery rate 93.3%, purity 99.94%, total chlorine 15ppm.
[0026]
Comparative Example 1
100 g of vinylene carbonate (purity 99.24%, total chlorine 6270 ppm) was subjected to precision distillation twice using a four-stage distillation column at a reflux ratio of 5 to 10. Yield 69%, purity 99.80%, total chlorine content 530 ppm.
[0027]
【The invention's effect】
According to the present invention, it is possible to economically obtain high-quality vinylene carbonate by dissolving crude vinylene carbonate in a solvent containing a polar solvent and / or an aromatic hydrocarbon solvent, and then precipitating vinylene carbonate as a fixed substance. it can.

Claims (4)

粗ビニレンカーボネートを、粗ビニレンカーボネートを溶解することができる、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、ジブチルエーテル、ジイソプロピルエーテル、ジオキサン、トリオキサン、テトラヒドロフラン、メチル−t−ブチルエーテル、ジメトキシエタン、ブタノン、アセトン、メチルプロピルケトン、ジエチルケトン、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、γ−ブチロラクトン、プロピオン酸ブチル、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブタノール及びt−ブタノールから選ばれる極性溶媒並びに/又はベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン及びキシレンから選ばれる芳香族炭化水素溶媒に溶解させ、次いで過冷却状態にすることによりビニレンカーボネートを析出させることを特徴とする高純度ビニレンカーボネートの製造方法。Crude vinylene carbonate can dissolve crude vinylene carbonate , dimethyl ether, diethyl ether, methyl ethyl ether, dibutyl ether, diisopropyl ether, dioxane, trioxane, tetrahydrofuran, methyl-t-butyl ether, dimethoxyethane, butanone, acetone, methyl Propyl ketone, diethyl ketone, methyl formate, ethyl formate, propyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, γ-butyrolactone, butyl propionate, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, a polar solvent and / or benzene selected from isobutanol and t- butanol, toluene, xylene Ethylbenzene are dissolved in an aromatic hydrocarbon solvent selected from mesitylene and xylene, and then high-purity production method of vinylene carbonate, characterized in that precipitating vinylene carbonate by the supercooled state. 粗ビニレンカーボネート中の塩素化合物の含有量を低減する請求項1に記載の製造方法。  The manufacturing method of Claim 1 which reduces content of the chlorine compound in crude vinylene carbonate. 溶媒が前記塩素化合物を溶媒100g当り0.1g以上溶解するものである請求項2に記載の製造方法。  The production method according to claim 2, wherein the solvent dissolves 0.1 g or more of the chlorine compound per 100 g of the solvent. 芳香族炭化水素溶媒がベンゼン、トルエン又はキシレンである請求項1ないし3のいずれかに記載の製造方法。  4. The production method according to claim 1, wherein the aromatic hydrocarbon solvent is benzene, toluene or xylene.
JP2001358900A 2000-11-29 2001-11-26 Method for producing high-purity vinylene carbonate Expired - Lifetime JP4255228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001358900A JP4255228B2 (en) 2000-11-29 2001-11-26 Method for producing high-purity vinylene carbonate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000362419 2000-11-29
JP2000-362419 2000-11-29
JP2001358900A JP4255228B2 (en) 2000-11-29 2001-11-26 Method for producing high-purity vinylene carbonate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008203872A Division JP5457647B2 (en) 2000-11-29 2008-08-07 High purity vinylene carbonate

Publications (2)

Publication Number Publication Date
JP2002226475A JP2002226475A (en) 2002-08-14
JP4255228B2 true JP4255228B2 (en) 2009-04-15

Family

ID=26604781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001358900A Expired - Lifetime JP4255228B2 (en) 2000-11-29 2001-11-26 Method for producing high-purity vinylene carbonate

Country Status (1)

Country Link
JP (1) JP4255228B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014041A (en) * 2000-11-29 2016-01-28 三菱化学株式会社 High purity vinylene carbonate

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005021967A1 (en) 2005-05-12 2006-11-16 Lanxess Deutschland Gmbh High purity vinylene carbonate and a process for the purification of vinylene carbonate
DE102005021965A1 (en) * 2005-05-12 2006-11-16 Lanxess Deutschland Gmbh Process for the storage and transport of vinylene carbonate
JP5698443B2 (en) * 2009-06-02 2015-04-08 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
CN103113343B (en) * 2013-01-21 2015-10-28 张家港瀚康化工有限公司 Prevent the treatment process of discolorment of vinylene carbonate
JP2014160658A (en) * 2014-02-26 2014-09-04 Mitsubishi Chemicals Corp Nonaqueous electrolyte, nonaqueous electrolyte secondary battery, and vinylene carbonate
JP2014150062A (en) * 2014-02-26 2014-08-21 Mitsubishi Chemicals Corp Nonaqueous electrolyte, nonaqueous electrolyte secondary battery and vinylene carbonate
CN114011107B (en) * 2021-11-18 2022-06-24 中建安装集团有限公司 Novel device and method for continuously producing high-purity vinylene carbonate
CN114349731A (en) * 2022-01-27 2022-04-15 珠海长先新材料科技股份有限公司 Method for purifying vinylene carbonate
CN114989130B (en) * 2022-06-28 2023-10-31 多氟多新材料股份有限公司 Preparation method of vinylene carbonate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014041A (en) * 2000-11-29 2016-01-28 三菱化学株式会社 High purity vinylene carbonate

Also Published As

Publication number Publication date
JP2002226475A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JP6644241B2 (en) High purity vinylene carbonate
JP5150989B2 (en) Method for producing high-purity vinylene carbonate
JP4255228B2 (en) Method for producing high-purity vinylene carbonate
JP2007008825A (en) Method for producing high-purity 4-fluoro-1,3-dioxolan-2-one
WO2018141642A1 (en) Process for the preparation of 2-chloro-4-fluoro-5-nitrobenzotrichloride
JP2515765B2 (en) Method for separating o, p ''-isomer of bisphenol A
JP5826533B2 (en) Method for producing high-purity vinylene carbonate
JP2002346303A (en) Crystallization method
JP5936947B2 (en) Method for producing high-purity vinylene carbonate
JP2014080423A (en) Method of producing high purity vinylene carbonate
JPS5941973B2 (en) Terphenyl separation and purification method
US20040122260A1 (en) Process for preparing 2-nitro-4'-fluorobenzophenone
JP3084577B2 (en) Method for producing optically active atrolactic acid and intermediate for production
JP3039600B2 (en) Process for producing dimethyl 2,6-naphthalenedicarboxylate
JP4408634B2 (en) Method for separating isomers of nitroisoquinoline
JPH03190847A (en) Purification of 3,4-dichloronitrobenzene
JP2000198779A (en) Purification of 3-alkylflavanol derivative
JP3036661B2 (en) Method for producing 2-chlorocyclododecadienone oxime
JPH05194509A (en) Method for purifying quinuclidine-4-carboxamide
US20060004209A1 (en) Process for preparing highly pure and free-flowing solid of 7-ethyltryptophol
JPH07165660A (en) Recovery of 4-hydroxyneophy-3-phenoxybenzyl ether compounds
JP2006290753A (en) METHOD FOR PRODUCING 2-(10,11-DIHYDRO-10-OXYDIBENZO[b,f]THIEPIN-2-YL)PROPIONIC ACID
JPH0558962A (en) Purification of 2,4-dichloro-3-ethyl-6-nitrophenol
JP2004168722A (en) METHOD FOR PRODUCING O,O-DIMETHYL-O-(p-CYANOPHENYL) PHOSPHOROTHIOATE
JPH05246957A (en) Production of m-nitroacetophenone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20081029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4255228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term