JP4254550B2 - High strength steel plate with excellent weld heat affected zone toughness and method for producing the same - Google Patents
High strength steel plate with excellent weld heat affected zone toughness and method for producing the same Download PDFInfo
- Publication number
- JP4254550B2 JP4254550B2 JP2004012303A JP2004012303A JP4254550B2 JP 4254550 B2 JP4254550 B2 JP 4254550B2 JP 2004012303 A JP2004012303 A JP 2004012303A JP 2004012303 A JP2004012303 A JP 2004012303A JP 4254550 B2 JP4254550 B2 JP 4254550B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- reheating
- cooling
- affected zone
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 96
- 239000010959 steel Substances 0.000 title claims description 96
- 238000004519 manufacturing process Methods 0.000 title claims description 43
- 238000001816 cooling Methods 0.000 claims description 79
- 238000003303 reheating Methods 0.000 claims description 69
- 229910052719 titanium Inorganic materials 0.000 claims description 47
- 229910052720 vanadium Inorganic materials 0.000 claims description 46
- 229910052758 niobium Inorganic materials 0.000 claims description 45
- 229910052750 molybdenum Inorganic materials 0.000 claims description 43
- 238000010438 heat treatment Methods 0.000 claims description 28
- 238000005096 rolling process Methods 0.000 claims description 28
- 229910052799 carbon Inorganic materials 0.000 claims description 27
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 19
- 150000001247 metal acetylides Chemical class 0.000 claims description 15
- 230000006698 induction Effects 0.000 claims description 14
- 229910001563 bainite Inorganic materials 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 229910001567 cementite Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 238000005098 hot rolling Methods 0.000 claims description 8
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 description 41
- 239000002244 precipitate Substances 0.000 description 39
- 238000005728 strengthening Methods 0.000 description 15
- 239000002131 composite material Substances 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 230000009466 transformation Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000005496 tempering Methods 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 238000005275 alloying Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 229910001562 pearlite Inorganic materials 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- MODGUXHMLLXODK-UHFFFAOYSA-N [Br].CO Chemical compound [Br].CO MODGUXHMLLXODK-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- -1 cementite and Mo 2 C Chemical class 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003808 methanol extraction Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- RMLPZKRPSQVRAB-UHFFFAOYSA-N tris(3-methylphenyl) phosphate Chemical compound CC1=CC=CC(OP(=O)(OC=2C=C(C)C=CC=2)OC=2C=C(C)C=CC=2)=C1 RMLPZKRPSQVRAB-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、ラインパイプ、建築、海洋構造物、造船、土木、建設機械等の分野で使用される、溶接熱影響部靭性に優れた高強度鋼板およびその製造方法に関するものである。 The present invention relates to a high-strength steel plate excellent in welding heat affected zone toughness used in the fields of line pipes, architecture, offshore structures, shipbuilding, civil engineering, construction machinery and the like, and a method for producing the same.
ガスパイプラインの高圧操業や溶接鋼構造物の大型化、また素材コスト削減の観点から、より高強度、高靭性を有する鋼板の需要が高まっている。通常、高強度高靭性鋼板は、焼入れ焼戻し処理や、制御圧延に引き続く制御冷却、いわゆるTMCP法により製造される。例えば、NbあるいはVを含有する鋼を用い、圧延途中にNbあるいはVの炭窒化物として析出させ、圧延後直接焼き入れ焼戻し、あるいは加速冷却する方法が知られている(例えば、特許文献1、特許文献2参照。)。また、高V、高N含有鋼を用い、制御圧延−加速冷却後空冷するか、あるいは制御圧延後直接焼き入れ、その後焼戻し処理を施すことによって、空冷時や焼戻し時にVNを析出させる方法が知られている(例えば、特許文献3参照。)。 From the viewpoints of high-pressure operation of gas pipelines, increasing the size of welded steel structures, and reducing material costs, demand for steel sheets with higher strength and higher toughness is increasing. Usually, a high-strength and high-toughness steel plate is manufactured by quenching and tempering treatment or controlled cooling subsequent to controlled rolling, so-called TMCP method. For example, a method is known in which steel containing Nb or V is used, precipitated as Nb or V carbonitride during rolling, and directly quenched and tempered after rolling or accelerated cooling (for example, Patent Document 1, (See Patent Document 2). Also known is a method of precipitating VN at the time of air cooling or tempering by using high-V, high-N content steel and air-cooling after controlled rolling-accelerated cooling or directly quenching after controlled rolling and then tempering. (For example, see Patent Document 3).
一方、圧延から焼入れ焼戻し処理までを同一ラインで行い、かつ急速加熱で保持時間無しの焼戻し処理を行う技術が知られている(例えば、特許文献4、特許文献5参照。)。すべての工程を同一ラインで行うことで製造時間が短縮されるので、製造効率、製造コストが大幅に改善される。また、この技術で製造された鋼材は、急冷によってベイナイトまたはマルテンサイト組織とした後に、急速加熱焼戻しを行うことによって、過飽和に固溶した炭素が微細なセメンタイトとして析出し、さらに保持時間無しの焼戻し処理によりセメンタイトが粗大化しないため、強度靱性に優れている。
特許文献1、特許文献2、特許文献3等に記載の鋼板の製造方法によれば、析出強化によるある程度の強度上昇が得られるが、析出物のサイズが比較的大きいためその効果は十分ではなく、さらなる高強度化のためには多量の合金元素の添加が必要であり、溶接熱影響部靱性の劣化が問題となる。さらに、通常のオフラインの焼戻し処理を行っているため、熱処理に時間を要し製造コストが高い。また、特許文献4、特許文献5等に記載の技術では、製造効率、製造コストを大幅に改善できるが、高強度の鋼を得るためには、その実施例が示すように、鋼材の炭素含有量を高めるか、あるいはその他の合金元素の添加量を増やす必要があるため、素材コストの上昇を招くだけでなく、同様に溶接熱影響部靭性の劣化が問題となる。
According to the steel sheet manufacturing methods described in Patent Literature 1,
このように従来の技術では、高強度でかつ溶接熱影響部靭性に優れた鋼板を高能率に製造することは困難であった。 As described above, in the conventional technique, it has been difficult to efficiently produce a steel plate having high strength and excellent weld heat affected zone toughness.
したがって本発明の目的は、このような従来技術の課題を解決し、多量の合金元素を添加することなく、低コストで製造できる、溶接熱影響部靭性に優れた高強度鋼板とその製造方法を提供することにある。 Therefore, an object of the present invention is to solve such problems of the prior art, and to produce a high-strength steel plate excellent in welding heat-affected zone toughness that can be produced at a low cost without adding a large amount of alloying elements, and a method for producing the same. It is to provide.
このような課題を解決するための本発明の特徴は以下の通りである。
(1)、質量%で、C:0.02%以上、0.06%未満、Si:0.01〜0.5%、Mn:0.5〜1.8%、Mo:0.05〜0.3%、Al:0.07%以下を含有し、Ti:0.005〜0.04%、Nb:0.005〜0.07%、V:0.005〜0.10%の1種又は2種以上を含有し、残部がFeおよび不可避不純物からなり、原子%でのC量と、Mo、Ti、Nb、Vの合計量との比である[C]/([Mo]+[Ti]+[Nb]+[V])が0.5〜3であり、(a)式で表されるCeqが0.38以下であり、金属組織が体積分率90%以上のベイナイト相であり、Ti、Nb、Vの1種又は2種以上とMoとを含む炭化物が分散析出していることを特徴とする、溶接熱影響部靭性に優れた高強度鋼板。
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5…(a)
但し、(a)式の元素記号は各含有元素の質量%を示す。
(2)、さらに、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、B:0.005%以下の中から選ばれる1種又は2種以上を含有することを特徴とする(1)に記載の溶接熱影響部靭性に優れた高強度鋼板。
(3)、(1)または(2)に記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、Ar3温度以上の圧延終了温度で熱間圧延した後、10℃/s以上の冷却速度で300℃未満の温度まで加速冷却を行い、その後、1℃/s以上の昇温速度で550〜700℃まで再加熱を行うことを特徴とする溶接熱影響部靭性に優れた高強度鋼板の製造方法。
(4)、鋼の熱間圧延を行うための圧延機および加速冷却を行うための冷却装置と同一の製造ライン上にソレノイド型誘導加熱装置を設置し、該ソレノイド型誘導加熱装置により鋼板の再加熱を行うことを特徴とする、(3)に記載の溶接熱影響部靭性に優れた高強度鋼板の製造方法。
(5)、(3)または(4)に記載の製造方法を用いて製造された鋼板であって、再加熱により新たに析出した炭化物(ただし、セメンタイトを除く)を構成する炭素の合計量の鋼板中の濃度が、10〜300ppmであることを特徴とする溶接熱影響部靭性に優れた高強度鋼板。
The features of the present invention for solving such problems are as follows.
(1), in mass%, C: 0.02% or more, less than 0.06%, Si: 0.01 to 0.5%, Mn: 0.5 to 1.8%, Mo: 0.05 to 1 containing 0.3%, Al: 0.07% or less, Ti: 0.005-0.04%, Nb: 0.005-0.07%, V: 0.005-0.10% [C] / ([Mo] +, which is a ratio of the amount of C in atomic% and the total amount of Mo, Ti, Nb, and V, containing seeds or two or more species, the balance being Fe and inevitable impurities [Ti] + [Nb] + [V]) is 0.5 to 3, Ceq represented by the formula (a) is 0.38 or less, and the bainite phase has a metal structure of 90% or more. A high-strength steel sheet excellent in weld heat-affected zone toughness, characterized in that a carbide containing one or more of Ti, Nb, V and Mo and Mo is dispersed and precipitated.
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (a)
However, the element symbol of the formula (a) indicates mass% of each contained element.
(2) Furthermore, by mass%, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, B: 0.005% or less The high-strength steel sheet having excellent weld heat affected zone toughness according to (1) , characterized by containing at least a seed.
(3) After heating the steel having the component composition described in (1) or (2) to a temperature of 1000 to 1300 ° C. and hot rolling at a rolling finish temperature not lower than the
(4) A solenoid type induction heating device is installed on the same production line as a rolling mill for hot rolling of steel and a cooling device for accelerated cooling, and the solenoid type induction heating device is used to recycle the steel plate. Heating is performed, The manufacturing method of the high strength steel plate excellent in the weld heat affected zone toughness as described in (3).
(5) A steel plate manufactured using the manufacturing method according to (3) or (4), wherein the total amount of carbon constituting carbides newly precipitated by reheating (excluding cementite) A high-strength steel sheet excellent in weld heat-affected zone toughness, characterized in that the concentration in the steel sheet is 10 to 300 ppm.
本発明によれば、溶接熱影響部靭性に優れた高強度鋼板を、多量の合金元素を添加することなく、低コストで製造することができる。このためラインパイプ、建築、海洋構造物、造船、土木、建設機械等の溶接構造物に使用する鋼板を、安価で大量に安定して製造することができ、生産性および経済性を著しく高めることができる。 According to the present invention, a high-strength steel sheet excellent in weld heat affected zone toughness can be produced at low cost without adding a large amount of alloying elements. For this reason, steel plates used for welded structures such as line pipes, buildings, marine structures, shipbuilding, civil engineering, construction machinery, etc. can be manufactured stably in large quantities at low cost, and productivity and economy are significantly increased. Can do.
本発明者らは高強度でかつ溶接熱影響部靭性に優れた鋼板を高能率に製造する方法を鋭意検討した結果、以下の(A)〜(D)の知見を得た。 As a result of intensive studies on a method for producing a steel sheet having high strength and excellent weld heat affected zone toughness with high efficiency, the present inventors have obtained the following findings (A) to (D).
(A)炭化物形成元素であるMoと、Ti、Nb、Vとを一定の範囲で含有する鋼は、制御圧延後の加速冷却によってCが過飽和となった状態から再加熱処理を行うことによって、Ti、Nb、Vの1種又は2種以上とMoとを含む微細な複合炭化物として析出する。 (A) Steel containing carbide and Mo, Ti, Nb, and V in a certain range is subjected to reheating treatment from a state where C is supersaturated by accelerated cooling after controlled rolling. It precipitates as a fine composite carbide containing one or more of Ti, Nb, and V and Mo.
(B)再加熱時に十分な量の析出物を得るためには、制御圧延後の冷却時の炭化物の析出を抑制する必要があり、そのためには、一定速度以上の冷却速度での加速冷却が必要である。 (B) In order to obtain a sufficient amount of precipitates at the time of reheating, it is necessary to suppress the precipitation of carbides during cooling after controlled rolling. For this purpose, accelerated cooling at a cooling rate of a certain rate or more is required. is necessary.
(C)さらに、一定速度以上の昇温速度で再加熱を行うことによって非常に微細な析出物が得られ、高強度化が達成できる。 (C) Furthermore, very fine precipitates can be obtained by performing reheating at a heating rate of a certain rate or higher, and high strength can be achieved.
(D)これによって、合金成分の大幅な低減が可能となり、高い溶接熱影響部靱性も同時に達成できる。 (D) As a result, the alloy components can be greatly reduced, and high weld heat affected zone toughness can be achieved at the same time.
本発明は上記のような、制御圧延−加速冷却を行った後の急速加熱によって、微細な析出物を分散析出させた高強度鋼板およびその製造方法に関するものであり、高速の冷却速度での加速冷却による変態強化に加えて析出強化を最大限に活用しているため、合金元素を多量に添加する必要がなく、溶接熱影響部靭性を損なうことなく高強度化が達成できるものである。 The present invention relates to a high-strength steel sheet in which fine precipitates are dispersed and precipitated by rapid heating after performing controlled rolling-accelerated cooling as described above, and a method for producing the same, and accelerates at a high cooling rate. Since precipitation strengthening is utilized to the maximum in addition to transformation strengthening by cooling, it is not necessary to add a large amount of alloy elements, and high strength can be achieved without impairing the weld heat affected zone toughness.
以下、本発明の高強度鋼板について詳しく説明する。まず、本発明の高強度鋼板の組織について説明する。 Hereinafter, the high-strength steel sheet of the present invention will be described in detail. First, the structure of the high-strength steel sheet of the present invention will be described.
本発明の鋼板の金属組織は実質的にベイナイト単相とする。ベイナイト相にフェライトやマルテンサイト、またはパーライト等の異なる金属組織が1種または2種以上混在する場合は、異相界面での水素の集積や応力集中によってHICを生じやすくなるため、ベイナイト相以外の組織分率は少ないほどよい。しかし、ベイナイト以外の組織の体積分率が低い場合は影響が無視できるため、トータルの体積分率で10%以下、好ましくは5%以下の他の金属組織を、すなわちフェライト、マルテンサイト、パーライト、セメンタイトを、1種または2種以上含有してもよい。 The metal structure of the steel sheet of the present invention is substantially a bainite single phase. When one or more of different metal structures such as ferrite, martensite, or pearlite are mixed in the bainite phase, HIC tends to occur due to hydrogen accumulation and stress concentration at the heterogeneous interface. The smaller the fraction, the better. However, since the influence is negligible when the volume fraction of the structure other than bainite is low, other metal structures in a total volume fraction of 10% or less, preferably 5% or less, that is, ferrite, martensite, pearlite, You may contain 1 type, or 2 or more types of cementite.
次に、本発明において鋼板内に分散析出する析出物について説明する。本発明における鋼板はベイナイト相中にTi、Nb、Vの1種又は2種以上とMoとを含む炭化物が分散析出しているものである。Mo及びTiは鋼中で炭化物を形成する元素であり、MoC、TiCの析出により鋼を強化することは従来より行われているが、本発明ではMoと、Ti、Nb、Vの1種又は2種以上とを複合添加して、Ti、Nb、Vの1種又は2種以上とMoとを含有する複合炭化物を鋼中に微細析出させることにより、MoCおよび/またはTiCの析出強化の場合に比べて、より大きな強度向上効果が得られることが特徴である。この従来にない大きな強度向上効果は、Ti、Nb、Vの1種又は2種以上とMoとを含有する複合炭化物が安定でかつ成長速度が遅いので、粒径が10nm未満の極めて微細な析出物が得られることによるものである。 Next, the precipitate that is dispersed and precipitated in the steel sheet in the present invention will be described. In the steel sheet according to the present invention, carbide containing one or more of Ti, Nb, and V and Mo and Mo is dispersed and precipitated in the bainite phase. Mo and Ti are elements that form carbides in steel, and strengthening steel by precipitation of MoC and TiC has been conventionally performed. However, in the present invention, Mo and one of Ti, Ti, Nb, and V are used. In the case of precipitation strengthening of MoC and / or TiC by adding two or more compounds in combination and finely precipitating composite carbide containing one or more of Ti, Nb, V and two and Mo in steel. Compared to the above, it is characterized in that a greater strength improvement effect can be obtained. This unprecedented strength improvement effect is that a composite carbide containing one or more of Ti, Nb, V and Mo and Mo is stable and has a slow growth rate, and therefore, extremely fine precipitation with a particle size of less than 10 nm. This is because things are obtained.
本発明において鋼板内に分散析出する析出物である、Ti、Nb、Vの1種又は2種以上とMoとを含有する複合炭化物は、以下に述べる本発明の成分の鋼材と製造方法とを用いて鋼板を製造することにより、ベイナイト相中に分散させて得ることができる。本発明の高強度鋼板がTi、Nb、Vの1種又は2種以上とMoとを含有する複合炭化物以外の析出物を含有する場合は、Ti、Nb、Vの1種又は2種以上とMoとを含有する複合炭化物による高強度化の効果を損なわず、耐HIC特性を劣化させない程度とするが、10nm未満の析出物の個数は、TINを除いた全析出物の個数の95%以上であることが好ましい。 In the present invention, a composite carbide containing one or more of Ti, Nb, and V, and Mo, which is a precipitate that is dispersed and precipitated in a steel sheet, includes the following steel materials and production methods of the present invention. It can be obtained by being dispersed in the bainite phase by using it to produce a steel plate. When the high-strength steel sheet of the present invention contains precipitates other than the composite carbide containing one or more of Ti, Nb, and V and Mo, one or more of Ti, Nb, and V The effect of strengthening by the composite carbide containing Mo is not impaired, and the HIC resistance is not deteriorated. The number of precipitates of less than 10 nm is 95% or more of the total number of precipitates excluding TIN. It is preferable that
次に、本発明の高強度鋼板の化学成分について説明する。以下の説明において%で示す単位は全て質量%である。 Next, chemical components of the high-strength steel sheet of the present invention will be described. In the following description, all units represented by% are mass%.
C:0.02%以上、0.06%未満とする。Cは炭化物として析出強化に寄与する元素であるが、0.02%未満では十分な強度が確保できず、0.06%以上では靭性を劣化させるため、C含有量を0.02%以上、0.06%未満に規定する。 C: Not less than 0.02% and less than 0.06%. C is an element that contributes to precipitation strengthening as a carbide. However, if it is less than 0.02%, sufficient strength cannot be secured, and if it is 0.06% or more, the toughness is deteriorated, so the C content is 0.02% or more. It is specified to be less than 0.06%.
Si:0.01〜0.5%とする。Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えると靭性や溶接性を劣化させるため、Si含有量を0.01〜0.5%に規定する。 Si: 0.01 to 0.5%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.5%, the toughness and weldability are deteriorated, so the Si content is 0.01 to 0.00. Specify 5%.
Mn:0.5〜1.8%とする。Mnは強度、靭性のため添加するが、0.5%未満ではその効果が十分でなく、1.8%を超えると溶接性が劣化するため、Mn含有量を0.5〜1.8%に規定する。好ましくは、0.5〜1.5%である。 Mn: 0.5 to 1.8%. Mn is added for strength and toughness, but if it is less than 0.5%, the effect is not sufficient, and if it exceeds 1.8%, the weldability deteriorates, so the Mn content is 0.5 to 1.8%. Stipulate. Preferably, it is 0.5 to 1.5%.
Mo:0.05〜0.3%とする。Moは本発明において重要な元素であり、0.05%以上含有させることで、熱間圧延後冷却時のパーライト変態を抑制しつつ、Ti、Nb、Vの1種又は2種以上と微細な複合析出物を形成し、強度上昇に大きく寄与する。しかし、0.3%を超えると溶接熱影響部靭性の劣化を招くことから、Mo含有量を0.05〜0.3%に規定する。 Mo: 0.05 to 0.3%. Mo is an important element in the present invention, and by containing 0.05% or more, it suppresses pearlite transformation at the time of cooling after hot rolling, and is as fine as one or more of Ti, Nb, and V. A composite precipitate is formed, which greatly contributes to an increase in strength. However, if it exceeds 0.3%, the weld heat-affected zone toughness is deteriorated, so the Mo content is specified to be 0.05 to 0.3%.
Al:0.07%以下とする。Alは脱酸剤として添加されるが、0.07%を超えると鋼の清浄度が低下し、靱性が劣化するため、Al含有量は0.07%以下に規定する。好ましくは、0.01〜0.07%である。 Al: 0.07% or less. Al is added as a deoxidizer, but if it exceeds 0.07%, the cleanliness of the steel decreases and the toughness deteriorates, so the Al content is specified to be 0.07% or less. Preferably, it is 0.01 to 0.07%.
本発明は上記化学成分に加え、Ti、Nb、Vの1種又は2種以上を含有する。 In addition to the above chemical components, the present invention contains one or more of Ti, Nb, and V.
Ti:0.005〜0.04%とする。0.005%以上添加することで、Moと複合析出物を形成し、強度上昇に大きく寄与する。しかし、0.04%を超える添加は溶接熱影響部靭性の劣化を招くため、Ti含有量は0.005〜0.04%に規定する。さらに、0.02%未満にするとより優れた靭性を示す。このため、Nbおよび/またはVを添加する場合は、Ti含有量を0.005〜0.02%未満とすることが好ましい。 Ti: 0.005 to 0.04%. Addition of 0.005% or more forms a composite precipitate with Mo, which greatly contributes to an increase in strength. However, since addition exceeding 0.04% causes deterioration of the weld heat affected zone toughness, the Ti content is specified to be 0.005 to 0.04%. Furthermore, when it is less than 0.02%, more excellent toughness is exhibited. For this reason, when adding Nb and / or V, it is preferable to make Ti content into 0.005 to less than 0.02%.
Nb:0.005〜0.07%とする。Nbは組織の微細粒化により靭性を向上させるが、Moと、さらにTi、Vと共に複合析出物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.07%を超えると溶接熱影響部の靭性が劣化するため、Nb含有量は0.005〜0.07%に規定する。 Nb: 0.005 to 0.07%. Nb improves toughness by refining the structure, but forms a composite precipitate together with Mo and further Ti and V, and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.07%, the toughness of the weld heat-affected zone deteriorates, so the Nb content is specified to be 0.005 to 0.07%.
V:0.005〜0.1%とする。VもNb、Tiと同様Moと共に複合析出物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.1%を超えると溶接熱影響部の靭性が劣化するため、V含有量は0.005〜0.1%に規定する。 V: Set to 0.005 to 0.1%. V, like Nb and Ti, forms a composite precipitate with Mo and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.1%, the toughness of the weld heat affected zone deteriorates, so the V content is specified to be 0.005 to 0.1%.
本発明では析出強化を最大限に活用するため、原子%でのC量とMo、Ti、Nb、Vの合計量の比である、C/(Mo+Ti+Nb+V)を0.5〜3とする。本発明による高強度化はTi、Nb、Vの1種又は2種以上とMoとを含む複合析出物(主に炭化物)となる。このとき各元素の原子%の含有量で表される、C/(Mo+Ti+Nb+V)の値が0.5〜3の場合は、非常に微細で安定な析出物となるため、大きな強度上昇が得られる。しかし、C/(Mo+Ti+Nb+V)の値が0.5未満または3を越える場合はいずれかの元素量が過剰であり、析出物が熱的に不安定となり、容易に粗大化しやすくなる。さらに、過剰な元素によって溶接熱影響部に島状マルテンサイトなどの硬化組織が形成し溶接熱影響部靭性の劣化を招く。よって、C/(Mo+Ti+Nb+V)の値を0.5〜3とするのが好ましい。C/(Mo+Ti+Nb+V)の値を0.7〜2とすると、粒径5nm以下のより微細な析出物が得られるためより好ましい。C/(Mo+Ti+Nb+V)の各元素記号は原子%の各元素の含有量であり、質量%の含有量を用いる場合には(C/12.01)/(Mo/95.9+TI/47.9+Nb/92.91+V/50.94)で表される。 In the present invention, in order to make the best use of precipitation strengthening, C / (Mo + Ti + Nb + V), which is a ratio of the amount of C in atomic% and the total amount of Mo, Ti, Nb, and V, is set to 0.5-3. Strengthening according to the present invention results in a composite precipitate (mainly carbide) containing one or more of Ti, Nb, and V and Mo. At this time, when the value of C / (Mo + Ti + Nb + V), expressed by the atomic% content of each element, is 0.5 to 3, a very fine and stable precipitate is obtained, and thus a large increase in strength is obtained. . However, when the value of C / (Mo + Ti + Nb + V) is less than 0.5 or exceeds 3, the amount of any element is excessive, and the precipitate becomes thermally unstable and easily becomes coarse. Furthermore, a hardened structure such as island martensite is formed in the weld heat affected zone due to excessive elements, leading to deterioration of the weld heat affected zone toughness. Therefore, the value of C / (Mo + Ti + Nb + V) is preferably 0.5-3. When the value of C / (Mo + Ti + Nb + V) is 0.7-2, it is more preferable because finer precipitates having a particle size of 5 nm or less can be obtained. Each element symbol of C / (Mo + Ti + Nb + V) is the content of each element in atomic%, and when using a mass% content, (C / 12.01) / (Mo / 95.9 + TI / 47.9 + Nb / 92.91 + V / 50.94).
本発明では鋼板の強度靱性をさらに改善する目的で、以下に示すCu、Ni、Cr、Bの1種又は2種以上を含有してもよい。 In the present invention, for the purpose of further improving the strength toughness of the steel sheet, one or more of Cu, Ni, Cr and B shown below may be contained.
Cu:0.5%以下とする。Cuは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると溶接性が劣化するため、添加する場合は0.5%を上限とする。 Cu: 0.5% or less. Cu is an element effective for improving toughness and increasing strength, but if added in a large amount, weldability deteriorates, so when added, the upper limit is 0.5%.
Ni:0.5%以下とする。Niは靭性の改善と強度の上昇に有効な元素であるが、多く添加するとコスト的に不利になり、また、溶接熱影響部靱性が劣化するため、添加する場合は0.5%を上限とする。 Ni: 0.5% or less. Ni is an element effective for improving toughness and increasing strength, but if added in a large amount, it is disadvantageous in terms of cost, and the weld heat affected zone toughness deteriorates, so when added, the upper limit is 0.5%. To do.
Cr:0.5%以下とする。CrはMnと同様に低Cでも十分な強度を得るために有効な元素であるが、多く添加すると溶接性を劣化するため、添加する場合は0.5%を上限とする。 Cr: 0.5% or less. Cr, like Mn, is an element effective for obtaining sufficient strength even at low C. However, if a large amount is added, weldability deteriorates, so when added, the upper limit is 0.5%.
B:0.005%以下とする。Bは強度上昇、HAZ靭性改善に寄与する元素であるが、0.005%を越えて添加すると溶接性を劣化させるため、添加する場合は0.005%以下とする。 B: Set to 0.005% or less. B is an element that contributes to strength increase and HAZ toughness improvement, but if added over 0.005%, weldability deteriorates, so when added, the content is made 0.005% or less.
また、溶接性の観点から、強度レベルに応じて下記の(1)式で定義されるCeqの上限を規定することが好ましい。降伏強度が448MPa以上の場合には、Ceqを0.32%以下、降伏強度が482MPa以上の場合には、Ceqを0.35%以下、降伏強度が551MPa以上の場合には、Ceqを0.38%以下にすることで良好な溶接性を確保することが出来る。 Moreover, it is preferable to prescribe | regulate the upper limit of Ceq defined by the following (1) Formula from a viewpoint of weldability according to an intensity | strength level. When the yield strength is 448 MPa or more, Ceq is 0.32% or less, when the yield strength is 482 MPa or more, Ceq is 0.35% or less, and when the yield strength is 551 MPa or more, Ceq is set to 0. By making it 38% or less, good weldability can be secured.
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5…(1)
但し、(1)式の元素記号は各含有元素の質量%を示す。
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
However, the element symbol of the formula (1) indicates mass% of each contained element.
なお、本発明の鋼材については、板厚10mmから30mm程度の範囲でCeqの板厚依存性はなく、30mm程度まで同じCeqで設計することができる。 In addition, about the steel material of this invention, there is no board thickness dependence of Ceq in the range of about 10 mm to 30 mm, and it can design with the same Ceq to about 30 mm.
上記以外の残部は実質的にFeからなる。残部が実質的にFeからなるとは、本発明の作用効果を無くさない限り、不可避不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれ得ることを意味する。 The remainder other than the above consists essentially of Fe. The balance substantially consisting of Fe means that an element containing an inevitable impurity and other trace elements can be included in the scope of the present invention unless the effects of the present invention are lost.
次に、本発明の高強度鋼板の製造方法について説明する。 Next, the manufacturing method of the high strength steel plate of this invention is demonstrated.
本発明は、加速冷却時のベイナイト変態による変態強化と、加速冷却後の再加熱時に析出する微細炭化物による析出強化を複合して活用することにより、合金元素を多量に添加することなく高強度化が可能な技術である。 The present invention uses a combination of transformation strengthening due to bainite transformation during accelerated cooling and precipitation strengthening due to fine carbides precipitated during reheating after accelerated cooling, thereby increasing strength without adding a large amount of alloying elements. Is a possible technology.
本発明の高強度鋼板は上記の成分組成を有する鋼を用い、加熱温度:1000〜1300℃、圧延終了温度:Ar3温度以上で熱間圧延を行い、その後10℃/s以上の冷却速度で300℃未満の温度まで加速冷却を行い、その後1℃/s以上の昇温速度で550〜700℃の温度まで再加熱を行うことで、Ti、Nb、Vの1種又は2種以上とMoとを含む複合炭化物を分散析出することができる。ここで、温度は鋼板の平均温度とする。以下、各製造条件について詳しく説明する。
The high-strength steel sheet of the present invention uses steel having the above-mentioned composition, and is hot-rolled at a heating temperature of 1000 to 1300 ° C., a rolling end temperature of
加熱温度:1000〜1300℃とする。加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度が得られず、1300℃を超えると靭性が劣化するため、1000〜1300℃とする。 Heating temperature: 1000-1300 ° C. If the heating temperature is less than 1000 ° C., the solid solution of the carbide is insufficient and the required strength cannot be obtained, and if it exceeds 1300 ° C., the toughness deteriorates.
圧延終了温度:Ar3温度以上とする。Ar3温度とは、冷却中におけるフェライト変態開始温度を意味し、以下の(2)式で求めることができる。
Ar3=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo…(2)
但し、(2)式の元素記号は各含有元素の質量%を示す。
圧延終了温度がAr3温度以下になると、その後のフェライト変態速度が低下するため、再加熱によるフェライト変態時に十分な微細析出物の分散析出が得られず、強度が低下するため、圧延終了温度をAr3温度以上とする。
Rolling end temperature: Ar3 temperature or higher. Ar3 temperature means the ferrite transformation start temperature during cooling, and can be determined by the following equation (2).
Ar3 = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (2)
However, the element symbol of the formula (2) indicates mass% of each contained element.
When the rolling end temperature is equal to or lower than the Ar3 temperature, the subsequent ferrite transformation rate is lowered, so that sufficient precipitation of fine precipitates cannot be obtained during ferrite transformation by reheating, and the strength is lowered. Above the temperature.
圧延終了後、直ちに10℃/s以上の冷却速度で冷却する。冷却速度が10℃/s未満では冷却時にフェライトを生成するため、ベイナイトによる強化が得られないだけでなく、冷却中に析出を生じその析出物が容易に粗大化するため、十分な強度が得られない。よって、圧延終了後の冷却速度を10℃/s以上に規定する。このときの冷却方法については製造プロセスによって任意の冷却設備を用いることが可能である。 Immediately after the completion of rolling, cooling is performed at a cooling rate of 10 ° C./s or more. If the cooling rate is less than 10 ° C./s, ferrite is generated during cooling, so that not only strengthening by bainite is not obtained, but also precipitation occurs during cooling and the precipitate easily coarsens, so that sufficient strength is obtained. I can't. Therefore, the cooling rate after the end of rolling is specified to be 10 ° C./s or more. About the cooling method at this time, it is possible to use arbitrary cooling equipment by a manufacturing process.
冷却停止温度:300℃未満とする。本発明では圧延終了後加速冷却によりCが過飽和に固溶したベイナイト単相とすることによって、その後の再加熱処理時に微細析出物による析出強化が得られる。しかし、冷却停止温度が300℃以上では、ベイナイト変態が完了せずに、冷却停止後の空冷時にパーライトが析出し加速冷却後に十分な強度が得られない場合があるだけでなく、固溶C量が不足し微細炭化物の析出量が不十分となり、再加熱後の強度が得られない。よって、加速冷却停止温度を300℃未満に規定する。 Cooling stop temperature: less than 300 ° C. In the present invention, precipitation strengthening due to fine precipitates can be obtained during the subsequent reheating treatment by forming a bainite single phase in which C is supersaturated by accelerated cooling after the end of rolling. However, when the cooling stop temperature is 300 ° C. or higher, the bainite transformation is not completed, pearlite is precipitated during air cooling after cooling stop, and sufficient strength cannot be obtained after accelerated cooling. Is insufficient, the amount of fine carbides deposited becomes insufficient, and the strength after reheating cannot be obtained. Therefore, the accelerated cooling stop temperature is specified to be less than 300 ° C.
加速冷却後1℃/s以上の昇温速度で550〜700℃の温度まで再加熱を行う。このプロセスは本発明における重要な製造条件である。 After accelerated cooling, reheating is performed to a temperature of 550 to 700 ° C. at a temperature rising rate of 1 ° C./s or more. This process is an important manufacturing condition in the present invention.
昇温速度:1℃/s以上とする。Cが過飽和に固溶した状態から急速に加熱することによって、セメンタイトやMo2C等の粗大な炭化物の析出を抑制しつつ、非常に微細なTi、Nb、Vの1種又は2種以上とMoとを含む複合炭化物を析出させることが可能となる。しかし、昇温速度が1℃/s未満では、目的の再加熱温度に達するまでに長時間を要するためセメンタイトやMo2C等の粗大な炭化物を析出し、微細析出物による強化が得られない。 Temperature increase rate: 1 ° C./s or more. By heating rapidly from the state in which C is supersaturated, while suppressing the precipitation of coarse carbides such as cementite and Mo 2 C, one or more of very fine Ti, Nb, V and more It becomes possible to precipitate the composite carbide containing Mo. However, if the rate of temperature increase is less than 1 ° C./s, it takes a long time to reach the target reheating temperature, so that coarse carbides such as cementite and Mo 2 C are precipitated, and strengthening by fine precipitates cannot be obtained. .
再加熱温度:550〜700℃とする。本発明で用いる微細炭化物は、550〜700℃の温度範囲でもっとも安定に生成することが可能である。再加熱温度が550℃未満では拡散が遅いため、十分な析出量が得られず、700℃を超えると析出物が粗大化し十分な強度が得られないため、再加熱の温度域を550〜700℃に規定する。 Reheating temperature: 550 to 700 ° C. The fine carbide used in the present invention can be most stably generated in the temperature range of 550 to 700 ° C. When the reheating temperature is less than 550 ° C., the diffusion is slow, so that a sufficient amount of precipitation cannot be obtained. When the reheating temperature exceeds 700 ° C., the precipitate is coarsened and sufficient strength cannot be obtained. It is specified in ° C.
再加熱温度において、特に温度保持時間を設定する必要はない。本発明の製造方法を用いれば再加熱後直ちに冷却しても、十分な析出量が得られるため高強度化が可能である。しかし、確実に微細炭化物の析出を終了させるために、30分以内の温度保持を行うことができる。30分を超えて温度保持を行うと、析出物の粗大化を生じ強度低下を招く場合がある。また、再加熱後の冷却過程でも析出が進行するので、再加熱後の冷却速度は基本的には空冷とする。しかし、析出を阻害しない程度の早い冷却速度で冷却を行うこともできる。 There is no need to set the temperature holding time at the reheating temperature. If the production method of the present invention is used, even if it is cooled immediately after reheating, a sufficient amount of precipitation can be obtained, so that the strength can be increased. However, the temperature can be kept within 30 minutes in order to reliably finish the precipitation of fine carbides. If the temperature is maintained for more than 30 minutes, the precipitates may become coarse and the strength may be reduced. In addition, since precipitation proceeds in the cooling process after reheating, the cooling rate after reheating is basically air cooling. However, it is also possible to perform cooling at a rapid cooling rate that does not inhibit precipitation.
図1に、上記の製造方法を用いて製造した本発明の鋼板(0.05C−0.25Si−1.3Mn−0.15Mo−0.014Ti)を透過型電子顕微鏡(TEM)で観察した写真を示す。図1によれば、非常に微細な析出物がランダムに析出している様子が確認でき、析出物のサイズは10nm以下と非常に微細である。また、析出物はMoとTiを含有する炭化物であり、このことはエネルギー分散型X線分光法(EDX)等を用いて分析して確認した。 FIG. 1 is a photograph of a steel sheet of the present invention (0.05C-0.25Si-1.3Mn-0.15Mo-0.014Ti) manufactured using the above manufacturing method, observed with a transmission electron microscope (TEM). Indicates. According to FIG. 1, it can be confirmed that very fine precipitates are randomly precipitated, and the size of the precipitates is as very small as 10 nm or less. The precipitate is a carbide containing Mo and Ti, and this was confirmed by analysis using energy dispersive X-ray spectroscopy (EDX) or the like.
早い昇温速度とともに高い製造効率を得るために、圧延機及び冷却装置と同一の製造ライン上に設置された誘導加熱装置により再加熱を行うと効果的である。板厚が薄い場合は再加熱をガス燃焼炉を用いて行う場合にも早い昇温速度が得られるが、板厚が厚い場合やより早い昇温速度を得るためには誘導加熱装置を用いる事が好ましい。ソレノイド型誘導加熱装置は均熱炉等に比べて温度制御が容易でありコストも比較的低く、冷却後の鋼板を迅速に加熱できるので特に好ましい。また複数の誘導加熱装置を直列に連続して配置することにより、ライン速度や鋼板の種類・寸法が異なる場合にも、通電する誘導加熱装置の数や供給電力を任意に設定するだけで、昇温速度、再加熱温度を自在に操作することが可能である。 In order to obtain a high production efficiency with a fast heating rate, it is effective to perform reheating by an induction heating device installed on the same production line as the rolling mill and the cooling device. When the plate thickness is thin, a fast heating rate can be obtained even when reheating is performed using a gas combustion furnace. However, when the plate thickness is thick or to obtain a faster heating rate, an induction heating device should be used. Is preferred. Solenoid induction heating devices are particularly preferable because they are easier to control the temperature than a soaking furnace or the like, have a relatively low cost, and can quickly heat the steel plate after cooling. In addition, by arranging a plurality of induction heating devices in series, even if the line speed and the type and size of the steel sheet are different, the number of induction heating devices to be energized and the supply power can be set by arbitrarily setting them. It is possible to freely control the temperature rate and the reheating temperature.
本発明の製造方法を実施するための設備の一例を図2に示す。図2に示すように、圧延ライン1には上流から下流側に向かって熱間圧延機3、加速冷却装置4、インライン型誘導加熱装置5、ホットレベラー6が配置されている。インライン型誘導加熱装置5あるいは他の熱処理装置を、圧延設備である熱間圧延機3およびそれに引き続く冷却設備である加速冷却装置4と同一ライン上に設置する事によって、圧延、冷却終了後迅速に再加熱処理が行えるので、圧延冷却後の鋼板温度を過度に低下させることなく加熱することができる。
An example of equipment for carrying out the production method of the present invention is shown in FIG. As shown in FIG. 2, a
以上のように、本発明では再加熱処理を行うことによって、Ti、Nb、Vの1種又は2種以上とMoとを含む微細な複合炭化物を析出させて鋼板の高強度化を達成する。十分に高強度化するためには、再加熱時の析出量が一定以上であることが好ましく、本発明の鋼板は、再加熱により新たに析出した炭化物を構成する炭素の合計量の鋼板中濃度が、10〜300ppmであることが好ましい。ただし、鉄の炭化物であるセメンタイトは、再加熱により新たに析出した炭化物には含まれないものとする。 As described above, in the present invention, by performing the reheating treatment, fine composite carbide containing one or more of Ti, Nb, and V and Mo and Mo is precipitated, thereby achieving high strength of the steel sheet. In order to sufficiently increase the strength, it is preferable that the precipitation amount at the time of reheating is a certain level or more, and the steel sheet of the present invention is a concentration in the steel sheet of the total amount of carbon constituting carbides newly precipitated by reheating. Is preferably 10 to 300 ppm. However, cementite, which is an iron carbide, is not included in newly precipitated carbide by reheating.
圧延、冷却後の再加熱時に析出する炭化物の量は、材料の強度上昇のために非常に重要である。この値が10ppm未満であると、再加熱時に析出する炭化物の量が少なすぎるために強度が低くなる。また、300ppmを超えると炭化物の量が増加しすぎて、靱性が低下する。 The amount of carbide precipitated during reheating after rolling and cooling is very important for increasing the strength of the material. If this value is less than 10 ppm, the amount of carbide precipitated during reheating is too small and the strength becomes low. Moreover, when it exceeds 300 ppm, the quantity of a carbide | carbonized_material will increase too much and toughness will fall.
再加熱時に新たに析出する、Ti、Nb、Vの中から選ばれる1種以上と、Moとを含有する炭化物を構成する炭素量は、例えば、以下の(A)、(B)の方法で求めることができる。 The amount of carbon constituting the carbide containing Mo and one or more selected from Ti, Nb, and V newly precipitated at the time of reheating is, for example, by the following methods (A) and (B): Can be sought.
(A)、再加熱後のTi、Nb、V、Moの析出量と、冷却後のTi、Nb、V、Moの析出量とを測定することで、再加熱により新たに析出したこれらの金属元素(Ti、Nb、V、Mo)と炭化物を構成する炭素の合計濃度を求める方法。 (A) These metals newly deposited by reheating are measured by measuring the precipitation amount of Ti, Nb, V, and Mo after reheating and the precipitation amount of Ti, Nb, V, and Mo after cooling. A method for obtaining the total concentration of carbon constituting the element (Ti, Nb, V, Mo) and carbide.
鋼板の冷却後、および再加熱後の炭化物の炭素量は、各段階での析出物に含まれるNb、Ti、V、Moの量を分析すれば計算により求められる。Nbと結合している再加熱時に新たに析出したC量をΔ[CasNbC]、Moと結合している再加熱時に新たに析出したC量をΔ[CasMoC]、Tiと結合している再加熱時に新たに析出したC量をΔ[CasTiC]、Vと結合している再加熱時に新たに析出したC量をΔ[CasVC]とすると、Δ[CasNbC]+Δ[CasMoC]+Δ[CasTiC]+Δ[CasVC]が再加熱時に新たに析出する、Nb、Ti、V、Moの中から選ばれる1種以上を含有する炭化物を構成する炭素量であり、Δ[CasNbC]、Δ[CasMoC]、Δ[CasTiC]、Δ[CasVC]は以下の(3)〜(6)式で求められる。 The carbon content of the carbide after cooling and reheating of the steel sheet can be obtained by calculation by analyzing the amounts of Nb, Ti, V, and Mo contained in the precipitates at each stage. Δ [CasNbC] is the amount of C newly precipitated during reheating combined with Nb, and Δ [CasMoC] is the amount of newly precipitated C during reheating combined with Mo. When the amount of newly precipitated C is Δ [CasTiC] and the amount of C newly precipitated during reheating combined with V is Δ [CasVC], Δ [CasNbC] + Δ [CasMoC] + Δ [CasTiC] + Δ [Ca [ CasVC] is a carbon amount constituting a carbide containing one or more selected from Nb, Ti, V, and Mo newly precipitated during reheating, and Δ [CasNbC], Δ [CasMoC], Δ [ CasTiC] and Δ [CasVC] are obtained by the following equations (3) to (6).
Δ[CasNbC] = 12/93×((再加熱後のNb析出量)−(冷却後のNb析出量))・・・(3)
Δ[CasMoC] = 12/96×((再加熱後のMo析出量)−(冷却後のMo析出量))・・・(4)
Δ[CasTiC] = 12/48×((再加熱後のTi析出量)−(冷却後のTi析出量))・・・(5)
Δ[CasVC] = 12/51×((再加熱後のV析出量)−(冷却後のV析出量))・・・(6)
各金属元素の析出量は、冷却後および再加熱後の鋼板の一部を試料として、例えば10%アセチル−アセトン電解抽出によって得られた残さを、ICP発光分析により測定した値(ppm換算値)を用いればよい。
Δ [CasNbC] = 12/93 × ((Nb precipitation after reheating) − (Nb precipitation after cooling)) (3)
Δ [CasMoC] = 12/96 × ((Mo precipitation amount after reheating) − (Mo precipitation amount after cooling)) (4)
Δ [CasTiC] = 12/48 × ((Ti precipitation amount after reheating) − (Ti precipitation amount after cooling)) (5)
Δ [CasVC] = 12/51 × ((V precipitation amount after reheating) − (V precipitation amount after cooling)) (6)
The amount of precipitation of each metal element is a value obtained by measuring the residue obtained by electrolytic extraction of 10% acetyl-acetone using a part of the steel sheet after cooling and reheating as a sample (in terms of ppm) May be used.
(B)、再加熱後に析出物中のTi、Nb、V、Moの量を測定することで、再加熱により新たに析出した炭化物を構成する炭素の合計濃度を求める方法(P値を求めることにより再加熱により新たに析出した炭化物を構成する炭素の合計濃度を求める方法)。 (B) A method for obtaining the total concentration of carbon constituting carbides newly deposited by reheating by measuring the amount of Ti, Nb, V, and Mo in the precipitate after reheating (determining the P value) To obtain the total concentration of carbon constituting the newly precipitated carbide by reheating).
鋼板の冷却後と再加熱後の炭化物の炭素量を、それぞれの製造段階で分析することは手間がかかり、操業上は望ましくない。そこで本発明では、製造後の鋼板のみを分析して、再加熱後の炭化物の炭素量を求める方法について検討し、再加熱後に析出物中のTi、Nb、V、Moの量を測定することで、再加熱により新たに析出した炭化物を構成する炭素の合計濃度を推定することが可能であることを見出した。 Analyzing the carbon content of the carbides after cooling and reheating of the steel sheet at each production stage takes time and is not desirable in operation. Therefore, in the present invention, only the steel sheet after manufacture is analyzed to examine a method for obtaining the carbon content of the carbide after reheating, and the amount of Ti, Nb, V, and Mo in the precipitate is measured after reheating. Thus, it has been found that it is possible to estimate the total concentration of carbon constituting the newly precipitated carbide by reheating.
本発明の製造方法では、鋼板をAr3温度以上の圧延終了温度で熱間圧延した後、10℃/s以上の冷却速度で300℃未満の温度まで加速冷却を行う、高温から急速に析出が生じない低温まで冷却する製造条件であるために、鋼板の成分から冷却後の炭化物の析出量が計算可能である。以下、各炭化物形成元素についての計算原理を説明する。 In the production method of the present invention, the steel sheet is hot-rolled at a rolling finish temperature of Ar3 temperature or higher, and then accelerated cooling is performed to a temperature of less than 300 ° C at a cooling rate of 10 ° C / s or more. Since it is the manufacturing conditions which cool to the low temperature which is not, the precipitation amount of the carbide after cooling is calculable from the component of a steel plate. Hereinafter, the calculation principle for each carbide forming element will be described.
Nbについては、急速冷却の場合にも添加量の5分の1が冷却の初期段階から析出してしまい強度上昇に寄与しないため、添加量の5分の4が再加熱により新たに析出した炭化物を構成する元素となる。 For Nb, even in the case of rapid cooling, one-fifth of the added amount is precipitated from the initial stage of cooling and does not contribute to the increase in strength, so that four-fifth of the added amount is newly precipitated carbide by reheating. It becomes an element that constitutes.
VおよびMoについては、加速冷却時に析出物として析出する量は少なく、添加量の100分の1程度である。したがって、添加量の100分の99が再加熱により新たに析出した炭化物を構成する元素となる。 About V and Mo, the quantity which precipitates as a precipitate at the time of accelerated cooling is small, and is about 1/100 of the addition amount. Therefore, 99/100 of the added amount becomes an element constituting carbide newly precipitated by reheating.
Tiについては、製鋼段階で既にTiNとして一定量析出しており、TiNとして析出しなかった残りのTiのうち4分の1が冷却時に析出して強度上昇に寄与しない。したがって、TiNとして析出しなかった残りのTiのうち4分の3が再加熱により新たに析出した炭化物を構成する元素となる。 Regarding Ti, a certain amount of TiN has already been deposited in the steelmaking stage, and one-fourth of the remaining Ti that has not precipitated as TiN precipitates during cooling and does not contribute to an increase in strength. Therefore, three-quarters of the remaining Ti that did not precipitate as TiN is an element constituting carbide newly precipitated by reheating.
以上をまとめると、下記(7)式で示されるP値が再加熱により新たに析出した炭化物の合計量となる。ただし、[M]pptは製造された鋼板(再加熱後に相当)中で炭化物を形成する金属元素Mの量のppm換算値であり、[M]matは金属元素Mの添加量(鋼板の成分組成)のppm換算値である。また、[TiasTiN]は鋼板中でTiNを形成するTi量のppm換算値である。
P=12/93×([Nb]ppt−[Nb]mat/5)+12/51×([V]ppt−[V]mat/100)+12/96×([Mo]ppt−[Mo]mat/100)+12/48×([Ti]ppt−([Ti]mat−[TiasTiN])/4−[TiasTiN])・・・(7)
したがって、(7)式で示されるP値が10〜300であれば、再加熱により新たに析出した炭化物を構成する炭素の合計濃度が、10〜300ppmである鋼板が得られたことが分かり、製造後の鋼板のみを分析して析出物中のTi、Nb、V、Moの量を測定することで、再加熱により新たに析出した炭化物を構成する炭素の合計濃度を求めることが可能である。
In summary, the P value represented by the following formula (7) is the total amount of carbide newly precipitated by reheating. However, [M] ppt is the ppm conversion value of the amount of the metal element M that forms carbide in the manufactured steel plate (corresponding to after reheating), and [M] mat is the added amount of the metal element M (component of the steel plate) It is a ppm conversion value of (composition). [TiasTiN] is a ppm conversion value of the amount of Ti forming TiN in the steel sheet.
P = 12/93 × ([Nb] ppt− [Nb] mat / 5) + 12/51 × ([V] ppt− [V] mat / 100) + 12/96 × ([Mo] ppt− [Mo] mat / 100) + 12/48 × ([Ti] ppt − ([Ti] mat− [TiasTiN]) / 4− [TiasTiN]) (7)
Therefore, if the P value represented by the formula (7) is 10 to 300, it is understood that a steel sheet having a total concentration of carbon constituting the newly precipitated carbide by reheating is 10 to 300 ppm, By analyzing only the steel sheet after production and measuring the amounts of Ti, Nb, V, and Mo in the precipitate, it is possible to determine the total concentration of carbon constituting the newly precipitated carbide by reheating. .
[M]pptは、上記と同様に、鋼板の一部を試料として、例えば10%アセチル−アセトン電解抽出によって炭化物として得られた残さを、ICP発光分析により測定した値(ppm換算値)を用いればよい。[M]matは、通常の鋼の成分分析方法を用いて求めることができる。[TiasTiN]量は、鋼板の窒素濃度である[N]matの3.4倍とするか、臭素−メタノール抽出等により定量された窒化物を形成する窒素量として求めることができる。 [M] ppt is a value obtained by measuring the residue obtained as a carbide by electrolytic extraction of 10% acetyl-acetone, for example, by ICP emission analysis (ppm conversion value) using a part of the steel sheet as a sample, as described above. That's fine. [M] mat can be obtained by using an ordinary steel component analysis method. The amount of [TiasTiN] can be determined as 3.4 times the [N] mat, which is the nitrogen concentration of the steel sheet, or as the amount of nitrogen that forms nitrides quantified by bromine-methanol extraction or the like.
したがって、本発明の再加熱により新たに析出した炭化物を構成する炭素の合計量の鋼板中濃度が10〜300ppmである鋼板は、上記のP値が10〜300である鋼板であり、上記(A)、(B)等の方法で再加熱により新たに析出した炭化物を構成する炭素の合計濃度を求めて、製造条件にフィードバックさせつつ製造条件を調整することで、より効率的に鋼板を高強度化させることが可能となる。 Therefore, the steel plate having a concentration of 10 to 300 ppm in the steel plate of the total amount of carbon constituting the carbide newly precipitated by the reheating of the present invention is a steel plate having the P value of 10 to 300, and the above (A ), (B) and other methods to obtain the total concentration of carbon that constitutes the newly precipitated carbide by reheating, and by adjusting the manufacturing conditions while feeding back to the manufacturing conditions, the steel sheet is more efficiently strengthened. It becomes possible to make it.
表1に示す化学成分の鋼(鋼種A〜I)を連続鋳造法によりスラブとし、これを用いて板厚12〜28mmの厚鋼板(No.1〜16)を製造した。 Steels (steel types A to I) having chemical components shown in Table 1 were made into slabs by a continuous casting method, and thick steel plates (Nos. 1 to 16) having a thickness of 12 to 28 mm were produced using the slabs.
加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の加速冷却設備を用いて冷却を行い、その後、誘導加熱炉またはガス燃焼炉を用いて再加熱を行った。誘導加熱炉は加速冷却設備と同一ライン上に設置した。各鋼板の製造条件を表2に示す。 After the heated slab was rolled by hot rolling, it was immediately cooled using a water-cooled accelerated cooling facility, and then reheated using an induction heating furnace or a gas combustion furnace. The induction furnace was installed on the same line as the accelerated cooling equipment. Table 2 shows the manufacturing conditions of each steel plate.
以上のようにして製造した鋼板のミクロ組織を、透過型電子顕微鏡(TEM)により観察した。析出物の成分はエネルギー分散型X線分光法(EDX)により分析した。また各鋼板の引張特性を測定した。測定結果を表2に併せて示す。引張特性は、圧延垂直方向の全厚試験片を引張試験片として引張試験を行い、引張強度を測定した。引張強度580MPa以上を本発明に必要な強度とした。溶接熱影響部(HAZ)靭性については、再現熱サイクル装置によって入熱40kJ/cmに相当する熱履歴を加えた試験片を用いてシャルピー試験を行った。そして、0℃でのシャルピー吸収エネルギーが80J以上の物を良好とした。 The microstructure of the steel sheet produced as described above was observed with a transmission electron microscope (TEM). The components of the precipitate were analyzed by energy dispersive X-ray spectroscopy (EDX). Moreover, the tensile property of each steel plate was measured. The measurement results are also shown in Table 2. Tensile properties were measured by performing a tensile test using a full thickness test piece in the vertical direction of rolling as a tensile test piece, and measuring the tensile strength. The tensile strength of 580 MPa or more was determined as the strength required for the present invention. For the weld heat affected zone (HAZ) toughness, a Charpy test was performed using a test piece to which a heat history corresponding to a heat input of 40 kJ / cm was added by a reproducible heat cycle apparatus. And the thing whose Charpy absorbed energy in 0 degreeC is 80J or more was made favorable.
析出物の析出量の測定をNo.2、3、7、8、11、14の鋼板について行った。再加熱後の鋼板から10%アセチル−アセトンを用いて炭化物を抽出し、炭化物を形成する金属元素(Mo、Ti、V、Nb)を定量測定して評価した。また、窒化物を形成するTi量は、臭素−メタノール電解液を用いて抽出した残さから窒化物を形成する窒素量[NasNitride]から、AlNを形成する窒素量[NasAlN]の差を、TiNを形成する窒素量とし、TiおよびNの質量数の比である48/14をかけて[TiasTiN]とした。また、No.2、3、7、8、11、14の鋼板については、冷却停止温度から引き続き室温まで冷却を行った材料を冷却後試料として作製し、析出物の析出量を測定した。測定結果から、冷却後の炭化物の炭素量(冷却後のTi、Mo、V、Nb炭化物析出量のppm炭素換算量)と、再加熱後の炭化物の炭素量(再加熱後のTi、Mo、V、Nb炭化物析出量のppm炭素換算量)とを計算し、再加熱後の鋼板のMo、Ti、V、Nbを構成する炭素量と、冷却後の鋼板のMo、Ti、V、Nbを構成する炭素量との差を、再加熱過程で形成される、再加熱中に析出したMo、Ti、V、Nbを構成する炭化物量として表2に併せて示す。また、最終段階で得られるMo、Ti、V、Nbを構成する炭素量(再加熱後の炭化物の炭素量)と鋼成分から求めたP値も表2に併せて示す(No.8については、冷却速度が10℃/s未満であるために、P値が適用出来ない場合である。)。
The measurement of the precipitation amount of the precipitate was No. The test was carried out on 2, 3, 7, 8, 11, and 14 steel plates. Carbide was extracted from the steel plate after reheating using 10% acetyl-acetone, and metal elements (Mo, Ti, V, Nb) forming the carbide were quantitatively measured and evaluated. The amount of Ti that forms nitride is the difference between the amount of nitrogen [NasNitride] that forms nitride from the amount of nitrogen [NasNitride] that forms nitride from the residue extracted using bromine-methanol electrolyte, and the amount of TiN The amount of nitrogen to be formed was set to [TiasTiN] by multiplying 48/14 which is the ratio of the mass number of Ti and N. No. For the
表2において、本発明例であるNo.1〜7はいずれも、化学成分および製造方法が本発明の範囲内であり、引張強度580MPa以上の高強度であり、溶接熱影響部靭性は良好であり、かつ鋼板の組織は、Ti、Nb、Vの1種又は2種以上とMoとを含む粒径が微細な炭化物の析出物が分散析出していた。 In Table 2, Nos. 1 to 7 as examples of the present invention all have chemical components and production methods within the scope of the present invention, high strength of tensile strength of 580 MPa or more, and good weld heat affected zone toughness. In addition, in the structure of the steel sheet, precipitates of carbides having a fine particle size including one or more of Ti, Nb, and V and Mo and Mo were dispersed and precipitated.
No.8〜12は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、微細炭化物による析出強化が十分でないため、強度不足であった。No.13〜16は化学成分が本発明の範囲外であるので、十分な強度が得られないか、溶接熱影響部靭性が劣っていた。 Nos. 8 to 12 were insufficient in strength because the chemical components were within the scope of the present invention, but the production method was outside the scope of the present invention, and thus precipitation strengthening by fine carbides was not sufficient. Nos. 13 to 16 had chemical components outside the scope of the present invention, so that sufficient strength was not obtained or welding heat affected zone toughness was inferior.
表2において、再加熱中に析出したTi、Mo、V、Nb炭化物析出量とP値とは、非常に近い値を示し、P値が再加熱中に析出したTi、Mo、V、Nbの炭化物析出量を示すことが確認できた。No.2、3、7については、P値が10以上であり、十分な強度が得られた。No.11、14については、P値が10未満であり、再加熱時の炭化物析出量が少ないために十分な強度が得られなかった。一方で、No.8については、製造方法が本発明の範囲外であり、冷却後の炭化物の析出量が少なく、十分な強度が得られなかった。 In Table 2, the precipitation amount of Ti, Mo, V, Nb carbides precipitated during reheating and the P value show very close values, and the P value of Ti, Mo, V, Nb precipitated during reheating. It was confirmed that the amount of carbide precipitation was shown. No. About 2, 3, and 7, P value was 10 or more and sufficient intensity | strength was obtained. No. About 11 and 14, P value was less than 10, and sufficient intensity was not obtained because the amount of carbide precipitation at the time of reheating was small. On the other hand, no. For No. 8, the production method was outside the scope of the present invention, the amount of carbide precipitation after cooling was small, and sufficient strength was not obtained.
1 圧延ライン
2 鋼板
3 熱間圧延機、
4 加速冷却装置
5 インライン型誘導加熱装置
6 ホットレベラー
1
4
Claims (5)
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5…(1)
但し、(1)式の元素記号は各含有元素の質量%を示す。 In mass%, C: 0.02% or more, less than 0.06%, Si: 0.01 to 0.5%, Mn: 0.5 to 1.8%, Mo: 0.05 to 0.3% Al: 0.07% or less, Ti: 0.005-0.04%, Nb: 0.005-0.07%, V: 0.005-0.10%, 1 type or 2 types [C] / ([Mo] + [Ti] + which is the ratio of the amount of C in atomic% and the total amount of Mo, Ti, Nb, and V, with the balance being Fe and inevitable impurities . [Nb] + [V]) is 0.5 to 3, Ceq represented by the formula (1) is 0.38 or less, the metal structure is a bainite phase having a volume fraction of 90% or more , and Ti A high-strength steel sheet excellent in weld heat affected zone toughness, characterized in that a carbide containing Mo, one or more of Nb, V, and Mo is dispersed and precipitated.
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
However, the element symbol of the formula (1) indicates mass% of each contained element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004012303A JP4254550B2 (en) | 2003-07-31 | 2004-01-20 | High strength steel plate with excellent weld heat affected zone toughness and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003204984 | 2003-07-31 | ||
JP2004012303A JP4254550B2 (en) | 2003-07-31 | 2004-01-20 | High strength steel plate with excellent weld heat affected zone toughness and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005060819A JP2005060819A (en) | 2005-03-10 |
JP4254550B2 true JP4254550B2 (en) | 2009-04-15 |
Family
ID=34379951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004012303A Expired - Lifetime JP4254550B2 (en) | 2003-07-31 | 2004-01-20 | High strength steel plate with excellent weld heat affected zone toughness and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4254550B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270194A (en) * | 2006-03-30 | 2007-10-18 | Jfe Steel Kk | Method for producing high-strength steel sheet excellent in sr resistance property |
JP5163450B2 (en) * | 2008-11-28 | 2013-03-13 | Jfeスチール株式会社 | Steel manufacturing method |
-
2004
- 2004-01-20 JP JP2004012303A patent/JP4254550B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005060819A (en) | 2005-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10358688B2 (en) | Steel plate and method of producing same | |
JP6225997B2 (en) | H-section steel and its manufacturing method | |
JP4547044B2 (en) | High-strength thick steel material excellent in toughness and weldability, high-strength extra-thick H-shaped steel, and methods for producing them | |
JP4735191B2 (en) | Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same | |
JP5092498B2 (en) | Low yield ratio high strength high toughness steel sheet and method for producing the same | |
JP7218533B2 (en) | Steel material and its manufacturing method | |
JP4254551B2 (en) | High strength steel plate for line pipe with excellent HIC resistance and method for producing the same | |
JP4507708B2 (en) | Low yield ratio high strength high toughness steel sheet manufacturing method | |
JP4507745B2 (en) | Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof | |
JP4677883B2 (en) | Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same | |
JP5217413B2 (en) | High strength steel plate with excellent weld heat affected zone toughness and method for producing the same | |
JP4419695B2 (en) | Low yield ratio high strength high toughness steel sheet and method for producing the same | |
JP4412098B2 (en) | Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same | |
JP4507730B2 (en) | Low yield ratio high strength high toughness steel sheet and method for producing the same | |
JPWO2019050010A1 (en) | Steel sheet and manufacturing method thereof | |
JP2020012172A (en) | Steel material and manufacturing method therefor | |
JP4742617B2 (en) | Manufacturing method of high-strength steel sheet with excellent weld heat-affected zone toughness | |
JP4254550B2 (en) | High strength steel plate with excellent weld heat affected zone toughness and method for producing the same | |
JP4311020B2 (en) | Low yield ratio high strength high toughness steel sheet and method for producing the same | |
JP4412099B2 (en) | High strength steel plate with excellent weld heat affected zone toughness and method for producing the same | |
JP2004269964A (en) | Method for producing high strength steel sheet | |
JP4273824B2 (en) | High strength steel plate with excellent weld heat affected zone toughness and method for producing the same | |
JP4273825B2 (en) | High strength steel plate with excellent weld heat affected zone toughness and method for producing the same | |
JP3975920B2 (en) | Low yield ratio high strength high toughness steel sheet and method for producing the same | |
JP3891030B2 (en) | High strength steel plate and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060921 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081007 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090106 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090119 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4254550 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |