JP3891030B2 - High strength steel plate and manufacturing method thereof - Google Patents

High strength steel plate and manufacturing method thereof Download PDF

Info

Publication number
JP3891030B2
JP3891030B2 JP2002125818A JP2002125818A JP3891030B2 JP 3891030 B2 JP3891030 B2 JP 3891030B2 JP 2002125818 A JP2002125818 A JP 2002125818A JP 2002125818 A JP2002125818 A JP 2002125818A JP 3891030 B2 JP3891030 B2 JP 3891030B2
Authority
JP
Japan
Prior art keywords
strength
less
steel sheet
ferrite
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002125818A
Other languages
Japanese (ja)
Other versions
JP2003321725A (en
Inventor
豊久 新宮
茂 遠藤
信行 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002125818A priority Critical patent/JP3891030B2/en
Publication of JP2003321725A publication Critical patent/JP2003321725A/en
Application granted granted Critical
Publication of JP3891030B2 publication Critical patent/JP3891030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、建築、海洋構造物、造船、土木、建設機械等の分野で使用される、高強度鋼板とその製造方法に関するものである。
【0002】
【従来の技術】
溶接鋼構造物の大型化、またコスト削減の観点から、より高強度、高靭性を有する鋼板の需要が高まっている。通常、高強度高靭性鋼板は、焼入れ焼戻し処理や制御圧延・制御冷却を用いる、いわゆるTMCP法により製造されるが、焼入れ焼戻し処理は時間と手間を要し、製造コスト高である。また、TMCP法を用いて鋼材の高強度化を行なう際には、鋼材への多量の合金元素の添加が必要であり、合金元素添加によるコスト上昇が問題となる。
【0003】
焼入れ焼戻し処理の欠点を補うために、特公昭53−6616号公報、特公昭58−3011号公報には、圧延後そのまま焼入れを行う直接焼入れ技術が開示されているが、焼戻し工程を圧延・冷却ラインと別のラインで行うため従来の形式と大差がなく、製造効率、製造コストの改善には至らない。
【0004】
一方、特許3015923号公報、特許3015924号公報には、圧延から焼入れ焼戻し処理までを同一ラインで行い、かつ急速加熱で保持時間無しの焼戻し処理を行う技術が開示されている。すべての工程を同一ラインで行うことで製造時間が短縮されるので、製造効率、製造コストが大幅に改善される。また、この技術で製造された鋼材は、急冷によってベイナイトまたはマルテンサイト組織とした後に、急速加熱焼戻しを行うことによって、過飽和に固溶した炭素が微細なセメンタイトとして析出し、さらに保持時間無しの焼戻し処理によりセメンタイトが粗大化しないため、強度靱性に優れている。
【0005】
【発明が解決しようとする課題】
しかし、特許3015923号公報、特許3015924号公報に記載の技術では、製造効率、製造コストを大幅に改善できるが、高強度の鋼を得るためには、その実施例が示すように、鋼材の炭素含有量を高めるか、あるいはその他の合金元素の添加量を増やす必要があるため、素材コストの上昇を招く。このように従来の技術では、多量の合金元素を添加することなく高強度鋼板を製造することは困難である。
【0006】
したがって本発明の目的は、このような従来技術の課題を解決し、多量の合金元素を添加することなく、低コストで製造できる、高強度鋼板とその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
このような課題を解決するための本発明の特徴は以下の通りである。
(1)、質量%で、C:0.02%以上、0.07%未満、Si:0.01〜0.5%、Mn:0.5〜2.0%、Mo:0.05〜0.5%、Ti:0.04%超、0.10%以下、Al:0.01〜0.08%を含有し、残部がFeおよび不可避不純物からなり、原子%でのC量とMo、Tiの合計量の比であるC/(Mo+Ti)が0.5〜3.0であり、金属組織がフェライトとベイナイトの2相組織であり、フェライト相中にTiと、Moとを含む炭化物が分散析出していることを特徴とする、高強度鋼板。
【0008】
(2)、さらに、質量%で、Nb:0.005〜0.07%および/またはV:0.005〜0.10%を含有し、原子%でのC量とMo、Ti、Nb、Vの合計量の比であるC/(Mo+Ti+Nb+V)が0.5〜3.0であり、フェライト相中にTiと、Moと、Nbおよび/またはVとを含む炭化物が分散析出していることを特徴とする(1)に記載の高強度鋼板。
【0009】
(3)、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、B:0.005%以下の中から選ばれる1種又は2種以上を含有することを特徴とする(1)または(2)に記載の高強度鋼板。
【0010】
(4)、(1)ないし(3)のいずれかに記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、750℃以上の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で300〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜700℃まで再加熱を行うことを特徴とする、高強度鋼板の製造方法。
【0011】
【発明の実施の形態】
本発明者らは多量の合金元素を添加することなく、低コストで製造できる、高強度鋼板の製造方法を鋭意検討し、制御圧延後の加速冷却とその後の再加熱という製造プロセスにおいて、ベイナイト変態途中で再加熱を行うことによって、加速冷却時のベイナイト変態による強化に加え、再加熱時の未変態オーステナイトからのフェライト変態時に析出する微細析出物による析出強化によって、合金元素が少なく低成分系の鋼においても高強度化が可能になるという知見を得た。そして、Mo、Tiを含有する鋼を用いることで、極めて微細なMoと、Tiとの複合炭化物の分散析出が得られ、また、NbやVを複合添加する場合でも、Ti、MoとNbおよび/またはVを含む析出物を分散析出させることによってフェライト相の高強度化が達成できるという知見を得た。
【0012】
本発明は上記のような、圧延後の加速冷却によって生成したベイナイト相と、その後の再加熱によって生じるTi、Moを基本として含有する析出物が分散析出したフェライト相との2相組織を有する高強度鋼板とその製造方法に関するものであり、変態強化に加え析出強化を最大限に活用するため、合金元素を多量に添加する必要がなく、高強度化が達成できるものである。
【0013】
以下、本発明の高強度鋼板について詳しく説明する。まず、本発明の高強度鋼板の組織について説明する。
【0014】
本発明の鋼板の金属組織は実質的にフェライトとベイナイトの2相組織とする。本発明では、加速冷却時のベイナイト変態による変態強化と、加速冷却後に再加熱してフェライト中に析出する微細析出物による析出強化を複合して活用することにより、合金元素を多量に添加することなく高強度化が可能である。フェライト相は延性に富んでおり、一般的には軟質であるが、本発明では以下に述べる微細な析出物により高強度化を達成できる。一方で、合金元素を多量に添加しない場合には、加速冷却で得られるベイナイト単層組織だけでは強度不足であるが、析出強化されたフェライト相との2相組織であれば十分な強度を有するものとなる。フェライトとベイナイトとの2相組織に、マルテンサイトやパーライトなどの異なる金属組織が1種または2種以上混在する場合は、強度が低下するため、フェライト相とベイナイト相以外の組織分率は少ない程良い。しかし、フェライト相とベイナイト相以外の組織の体積分率が低い場合は影響が無視できるため、トータルの体積分率で5%以下の他の金属組織を、すなわちマルテンサイト、パーライト等を1種または2種以上含有してもよい。また、強度確保の観点からフェライト分率を5%以上に、母材の靭性確保の観点からベイナイト分率を10%以上にする事が望ましい。
【0015】
次に、上記のフェライト相内に分散析出する析出物について説明する。
本発明の鋼板では、フェライト相中のMoとTiとを基本として含有する析出物による析出強化を利用している。Mo及びTiは鋼中で炭化物を形成する元素であり、MoC、TiCの析出により鋼を強化することは従来より行われているが、本発明ではMoとTiを複合添加して、MoとTiとを基本として含有する複合炭化物を鋼中に微細析出させることにより、MoCまたはTiCの析出強化の場合に比べて、より大きな強度向上効果が得られることが特徴である。この従来にない大きな強度向上効果は、MoとTiとを基本として含有する複合炭化物が安定でかつ成長速度が遅いので、粒径が10nm未満の極めて微細な析出物が得られることによるものである。
【0016】
MoとTiとを基本として含有する複合炭化物は、Mo、Ti、Cのみで構成される場合は、MoとTiの合計とCとが原子比で1:1の付近で化合しているものであり、高強度化に非常に効果がある。本発明では、Nbおよび/またはVを複合添加することにより、析出物がMo、TiとNbおよび/またはVを含んだ複合炭化物となり、同様の析出強化が得られることを見出した。
【0017】
本発明において鋼板内に分散析出する析出物である、MoとTiとを主体とする複合炭化物は、以下に述べる成分の鋼に本発明の製造方法を用いて鋼板を製造することにより、フェライト相中に分散させて得ることができる。
【0018】
次に、本発明の高強度鋼板の化学成分について説明する。以下の説明において%で示す単位は全て質量%である。
【0019】
C:0.02以上、0.07%未満とする。Cは炭化物として析出強化に寄与する元素であるが、0.02%未満では十分な強度が確保できず、0.07%以上では靭性を劣化させるため、C含有量を0.02以上、0.07%未満に規定する。
【0020】
Si:0.01〜0.5%とする。Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えると靭性や溶接性を劣化させるため、Si含有量を0.01〜0.5%に規定する。
【0021】
Mn:0.5〜2.0%とする。Mnは強度、靭性のため添加するが、0.5%未満ではその効果が十分でなく、2.0%を超えると溶接性が劣化するため、Mn含有量を0.5〜2.0%に規定する。
【0022】
Al:0.01〜0.08%とする。Alは脱酸剤として添加されるが、0.01%未満では効果がなく、0.08%を超えると鋼の清浄度が低下し、靱性が劣化するため、Al含有量は0.01〜0.08%に規定する。
【0023】
Mo:0.05〜0.5%とする。Moは本発明において重要な元素であり、0.05%以上含有させることで、熱間圧延後冷却時のパーライト変態を抑制しつつ、Tiとの微細な複合析出物を形成し、強度上昇に大きく寄与する。しかし、0.5%を超えると、コストの上昇、溶接性の劣化を招くことから、Mo含有量を0.05〜0.5%に規定する。
【0024】
Ti:0.04%超、0.10%以下とする。TiはMoと同様に本発明において重要な元素である。0.04%を超えて添加することで、Moと複合析出物を形成し、強度上昇に大きく寄与する。しかし、強度上昇に寄与するのは0.10%までであり、それ以上の添加はコスト上昇を招くため、Ti含有量は0.04%超、0.10%以下に規定する。
【0025】
本発明の高強度鋼板は上記の成分の鋼を用いることで、TiとMoを含有する複合炭化物の微細析出物が得られるが、析出強化を最大限に利用するためには、炭化物を形成する元素の含有量の割合を以下のように制限することが望ましい。すなわち、原子%でのC量とMo、Tiの合計量の比である、C/(Mo+Ti)は0.5〜3.0が好ましい。本発明による高強度化はTi、Moを含む析出物によるものである。この複合析出物による析出強化を有効に利用するためには、C量と炭化物形成元素であるMo、Tiの関係が重要であり、これらの元素を適正なバランスのもとで添加することによって、熱的に安定かつ非常に微細な複合析出物を得ることが出来る。このとき各元素の原子%の含有量で表される、C/(Mo+Ti)の値が0.5未満または3.0を越える場合はいずれかの元素量が過剰であり、本発明のTiとMoとを含む微細析出物以外の析出物や硬化相が生成し靭性の劣化を招くため、C/(Mo+Ti)の値を0.5〜3.0とするのが好ましい。ただし、各元素記号は原子%での各元素の含有量である。なお、質量%の含有量を用いる場合には(C/12.01)/(Mo/95.9+Ti/47.9)で表される。
【0026】
Nbおよび/またはVは、Ti及びMoとともに微細複合炭化物を形成するので、本発明の鋼板は、Nbおよび/またはVを含有してもよい。
【0027】
Nb:0.005〜0.07%とする。Nbは組織の微細粒化により靭性を向上させるが、Ti及びMoと共に複合析出物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.07%を超えると溶接割れを発生しやすくなるため、Nb含有量は0.005〜0.07%に規定する。
【0028】
V:0.005〜0.10%とする。VもNbと同様にTi及びMoと共に複合析出物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.10%を超えると溶接割れを発生しやすくなるため、V含有量は0.005〜0.10%に規定する。
【0029】
Nbおよび/またはVを含有する場合には、原子%でのC量とMo、Ti、Nb、Vの合計量の比である、C/(Mo+Ti+Nb+V)は0.5〜3.0とすることが好ましい。本発明による高強度化はTi、Moを含む析出物によるが、Nbおよび/またはVを含有する場合はそれらを含んだ複合析出物(主に炭化物)となる。このとき各元素の原子%の含有量で表される、C/(Mo+Ti+Nb+V)の値が0.5未満または3.0を越える場合はいずれかの元素量が過剰であり、本発明のTiとMoとを含む微細析出物以外の析出物や硬化相が生成し靭性の劣化を招くため、C/(Mo+Ti+Nb+V)の値を0.5〜3.0とするのが好ましい。ただし、各元素記号は原子%の各元素の含有量である。なお、質量%の含有量を用いる場合には(C/12.01)/(Mo/95.9+Ti/47.9+Nb/92.91+V/50.94)で表される。
【0030】
本発明では鋼板の強度靱性をさらに改善する目的で、以下に示すCu、Ni、Cr、Bの1種又は2種以上を含有してもよい。
【0031】
Cu:0.50%以下とする。Cuは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると溶接性が劣化するため、添加する場合は0.50%を上限とする。
【0032】
Ni:0.50%以下とする。Niは靭性の改善と強度の上昇に有効な元素であるが、多く添加するとコスト的に不利になるため、添加する場合は0.50%を上限とする。
【0033】
Cr:0.50%以下とする。CrはMnと同様に低Cでも十分な強度を得るために有効な元素であるが、多く添加すると溶接性を劣化するため、添加する場合は0.50%を上限とする。
【0034】
B:0.005%以下とする。Bは強度上昇、HAZ靭性改善に寄与する元素であるが、0.005%を越えて添加すると溶接性を劣化させるため、添加する場合は0.005%以下とする。
【0035】
上記以外の残部は実質的にFeからなる。残部が実質的にFeからなるとは、本発明の作用効果を無くさない限り、不可避不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれ得ることを意味する。
【0036】
次に、本発明の高強度鋼板の製造方法について説明する。
【0037】
本発明は、加速冷却時のベイナイト変態による変態強化と、加速冷却後の再加熱時にフェライト中に析出する微細炭化物による析出強化を複合して活用することにより、合金元素を多量に添加することなく高強度化が可能な技術である。本発明では、加速冷却によりベイナイト変態領域まで過冷することにより、その後の再加熱時に温度保持することなくフェライト変態を完了させることが可能である。
【0038】
本発明の高強度鋼板は上記の成分組成を有する鋼を用い、加熱温度:1000〜1300℃、圧延終了温度:750℃以上で熱間圧延を行い、その後5℃/s以上の冷却速度で300〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜700℃の温度まで再加熱を行うことで、金属組織をフェライトとベイナイトの2相組織とし、MoとTiとを主体とする微細な複合炭化物をフェライト相中に分散析出することができる。ここで、温度は鋼板の平均温度とする。以下、各製造条件について詳しく説明する。
【0039】
加熱温度:1000〜1300℃とする。加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度が得られず、1300℃を超えると靭性が劣化するため、1000〜1300℃とする。
【0040】
圧延終了温度:750℃以上とする。圧延終了温度が低いと、その後のフェライト変態速度が低下するため、再加熱によるフェライト変態時に十分な微細析出物の分散析出が得られず、強度が低下するため、圧延終了温度を750℃以上とする。
【0041】
圧延終了後、直ちに5℃/s以上の冷却速度で冷却する。冷却速度が5℃/s未満では冷却時にフェライトを生成するため、ベイナイトによる強化が得られないだけでなく、700℃以上の高温域でのフェライト変態時に生じた析出物が容易に粗大化するため、十分な強度が得られない。よって、圧延終了後の冷却速度を5℃/s以上に規定する。このときの冷却方法については製造プロセスによって任意の冷却設備を用いることが可能である。
【0042】
冷却停止温度:300〜600℃とする。圧延終了後加速冷却でベイナイト変態域である300〜600℃まで急冷することにより、ベイナイト相を生成させ、かつ、ベイナイト変態途中で冷却を停止することによって、未変態のオーステナイトをその後の再加熱時にフェライトに変態させることが可能となる。さらに、過冷却により駆動力が大きくなるため、再加熱過程でのフェライト変態が促進され、短時間の再加熱でフェライト変態を完了させることが可能となる。冷却停止温度が300℃未満では、ベイナイト変態がほぼ完了するためにその後の再加熱によって十分な量のフェライトが得られないだけでなく、島状マルテンサイト(MA)が生成するため再加熱時の微細炭化物の析出が不十分となり、また600℃を超えるとフェライト変態の駆動力が十分でなく、再加熱時にフェライト変態が完了せずパーライトが析出するため微細炭化物の析出が不十分であり十分な強度が得られないため、加速冷却停止温度を300〜600℃に規定する。
【0043】
加速冷却後直ちに0.5℃/s以上の昇温速度で550〜700℃の温度まで再加熱を行う。このプロセスは本発明における重要な製造条件である。フェライト相の強化に寄与する微細析出物は、再加熱時のフェライト変態と同時に析出する。このような微細析出物を得るためには、加速冷却後直ちに550〜700℃の温度域まで再加熱する必要がある。昇温速度が0.5℃/s未満では、目的の再加熱温度に達するまでに長時間を要するため製造効率が悪化し、またパーライト変態が生じるため、微細析出物の分散析出が得られず十分な強度を得ることができない。再加熱温度が550℃未満ではフェライト変態が進行せずに、ベイナイト変態を生じるため、十分な析出強化が図れず、700℃を超えると析出物が粗大化し十分な強度が得られないため、再加熱の温度域を550〜700℃に規定する。再加熱温度において、特に温度保持時間を設定する必要はない。本発明の製造方法を用いれば再加熱後直ちに冷却しても、フェライト変態が十分に進行するため、微細析出による高い強度が得られる。しかし、確実にフェライト変態を終了させるために、30分以内の温度保持を行うことができる。30分を超えて温度保持を行うと、析出物の粗大化を生じ強度低下を招く場合がある。また、再加熱後の冷却過程でもフェライト変態が進行するので、再加熱後の冷却速度は基本的には空冷とする。しかし、フェライト変態を阻害しない程度の早い冷却速度で冷却を行うこともできる。
【0044】
加速冷却後の再加熱を行うための設備として、加速冷却を行なうための冷却設備の下流側に加熱装置を設置することができる。加熱装置としては、鋼板の急速加熱が可能であるガス燃焼炉や誘導加熱装置を用いる事が好ましい。誘導加熱装置は均熱炉等に比べて温度制御が容易でありコストも比較的低く、冷却後の鋼板を迅速に加熱できるので特に好ましい。また複数の誘導加熱装置を直列に連続して配置することにより、ライン速度や鋼板の種類・寸法が異なる場合にも、通電する誘導加熱装置の数を任意に設定するだけで、昇温速度、再加熱温度を自在に操作することが可能である。
【0045】
また、本発明の製造方法を実施するための設備の一例を図1に示す。図1に示すように、圧延ライン1には上流から下流側に向かって熱間圧延機3、加速冷却装置4、インライン型誘導加熱装置5、ホットレベラー6が配置されている。インライン型誘導加熱装置5あるいは他の熱処理装置を、圧延設備である熱間圧延機3およびそれに引き続く冷却設備である加速冷却装置4と同一ライン上に設置する事によって、圧延、冷却終了後迅速に再加熱処理が行えるので、圧延冷却後の鋼板温度を過度に低下させることなく加熱することができる。
【0046】
【実施例】
表1に示す化学成分の鋼(鋼種A〜P)を連続鋳造法によりスラブとし、これを用いて板厚18、26mmの厚鋼板(No.1〜30)を製造した。
【0047】
【表1】

Figure 0003891030
【0048】
加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の加速冷却設備を用いて冷却を行い、誘導加熱炉またはガス燃焼炉を用いて再加熱を行った。誘導加熱炉は加速冷却設備と同一ライン上に設置した。各鋼板(No.1〜30)の製造条件を表2に示す。
【0049】
以上のようにして製造した鋼板のミクロ組織を、光学顕微鏡、透過型電子顕微鏡(TEM)により観察した。析出物の成分はエネルギー分散型X線分光法(EDX)により分析した。また各鋼板の引張特性、母材靭性を測定した。測定結果を表2に併せて示す。引張特性は、圧延垂直方向の全厚試験片を引張試験片として引張試験を行い、引張強度を測定した。引張強度700MPa以上(API X80グレード以上)を本発明に必要な強度とした。母材靭性(vE)については、−10℃でのシャルピー吸収エネルギーが100J以上の物を良好とした。
【0050】
【表2】
Figure 0003891030
【0051】
表2において、本発明例であるNo.1〜18はいずれも、化学成分および製造方法が本発明の範囲内であり、引張強度700MPa以上の高強度であり、かつ鋼板の組織は、実質的にフェライト+ベイナイト2相組織であり、TiとMoと、一部の鋼板についてはさらにNbおよび/またはVとを含む粒径が10nm未満の微細な炭化物の析出物が分散析出していた。
【0052】
No.19〜25は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、組織がフェライト+ベイナイト2相組織にならない場合や、微細炭化物が分散析出しない場合があり、強度不足であった。No.26〜30は化学成分が本発明の範囲外であるので、十分な強度が得られないか、靭性が劣っていた。
【0053】
【発明の効果】
以上述べたように、本発明によれば、引張強度700MPa以上の高強度を有する高強度鋼板を、多量の合金元素を添加することなく、低コストで製造することができる。このため建築、海洋構造物、造船、土木、建設機械等の溶接構造物に使用する鋼板を、安価で大量に安定して製造することができ、生産性および経済性を著しく高めることができる。
【図面の簡単な説明】
【図1】本発明の製造方法を実施するための製造ラインの一例を示す概略図。
【符号の説明】
1:圧延ライン、
2:鋼板、
3:熱間圧延機、
4:加速冷却装置、
5:インライン型誘導加熱装置、
6:ホットレベラー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel plate used in the fields of architecture, offshore structures, shipbuilding, civil engineering, construction machinery and the like, and a method for producing the same.
[0002]
[Prior art]
From the viewpoint of increasing the size of welded steel structures and reducing costs, there is an increasing demand for steel sheets having higher strength and higher toughness. Usually, a high-strength and high-toughness steel sheet is manufactured by a so-called TMCP method using quenching and tempering treatment or controlled rolling / controlled cooling. However, the quenching and tempering treatment requires time and labor and is expensive to manufacture. Further, when increasing the strength of a steel material using the TMCP method, it is necessary to add a large amount of alloy elements to the steel material, which raises a problem of cost increase due to the addition of alloy elements.
[0003]
In order to compensate for the shortcomings of quenching and tempering, Japanese Patent Publication No. 53-6616 and Japanese Patent Publication No. 58-3011 disclose direct quenching techniques in which quenching is performed as it is after rolling. Since the process is performed separately from the line, there is no significant difference from the conventional type, and manufacturing efficiency and manufacturing cost are not improved.
[0004]
On the other hand, Japanese Patent No. 3015923 and Japanese Patent No. 3015924 disclose a technique in which rolling to quenching and tempering are performed on the same line, and rapid heating and tempering without holding time are performed. Since all the processes are performed on the same line, the manufacturing time is shortened, so that the manufacturing efficiency and the manufacturing cost are greatly improved. In addition, the steel produced by this technique is rapidly tempered to form a bainite or martensite structure, followed by rapid heating and tempering, so that supersaturated solid solution carbon precipitates as fine cementite, and further tempering without holding time. Since cementite does not become coarse due to the treatment, it has excellent strength and toughness.
[0005]
[Problems to be solved by the invention]
However, in the techniques described in Japanese Patent Nos. 3015923 and 3015924, the manufacturing efficiency and manufacturing cost can be greatly improved. However, in order to obtain high-strength steel, as shown in the examples, the carbon of the steel material is used. Since it is necessary to increase the content or increase the amount of other alloy elements added, the material cost increases. As described above, in the conventional technique, it is difficult to manufacture a high-strength steel sheet without adding a large amount of alloy elements.
[0006]
Accordingly, an object of the present invention is to solve such problems of the prior art and provide a high-strength steel sheet that can be manufactured at a low cost without adding a large amount of alloy elements and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
The features of the present invention for solving such problems are as follows.
(1), in mass%, C: 0.02% or more, less than 0.07%, Si: 0.01 to 0.5%, Mn: 0.5 to 2.0%, Mo: 0.05 to 0.5%, Ti: 0.04%, greater than 0.10%, Al: containing from 0.01 to 0.08%, the balance being Fe and inevitable impurities or Rannahli, the C content in atomic% Mo, C / is the total amount of the ratio of Ti (Mo + Ti) is 0.5 to 3.0, a metal structure gaff ferrite and bainite dual phase structure of the Ti in the ferrite phase, Mo A high-strength steel sheet, characterized in that a carbide containing is dispersed and precipitated.
[0008]
(2) Further, by mass%, Nb: 0.005 to 0.07% and / or V: 0.005 to 0.10%, C amount in atomic% and Mo, Ti, Nb, C / (Mo + Ti + Nb + V), which is the ratio of the total amount of V, is 0.5 to 3.0, and carbides containing Ti, Mo, Nb and / or V are dispersed and precipitated in the ferrite phase. The high-strength steel sheet according to (1), characterized in that
[0009]
(3) Furthermore, by mass%, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, B: 0.005% or less The high-strength steel sheet according to (1) or (2), which contains seeds or more.
[0010]
(4) After heating the steel having the component composition according to any one of (1) to (3) to a temperature of 1000 to 1300 ° C and hot rolling at a rolling end temperature of 750 ° C or higher, 5 ° C A high-strength steel sheet characterized by performing accelerated cooling to 300 to 600 ° C. at a cooling rate of not less than / s, and immediately reheating to 550 to 700 ° C. at a temperature rising rate of not less than 0.5 ° C./s. Production method.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors diligently studied a method for producing a high-strength steel sheet that can be produced at a low cost without adding a large amount of alloying elements. In the production process of accelerated cooling after controlled rolling and subsequent reheating, the bainite transformation is performed. By reheating in the middle, in addition to strengthening due to bainite transformation during accelerated cooling, precipitation strengthening due to fine precipitates precipitated during ferrite transformation from untransformed austenite during reheating reduces the number of alloy elements and We obtained the knowledge that high strength can be achieved in steel. Then, by using steel containing Mo and Ti, a dispersion precipitate of a composite carbide of very fine Mo and Ti is obtained. Even when Nb and V are added in combination, Ti, Mo and Nb and The inventors have found that the ferrite phase can be strengthened by dispersing and precipitating a precipitate containing V.
[0012]
The present invention has a two-phase structure composed of a bainite phase generated by accelerated cooling after rolling and a ferrite phase in which precipitates containing Ti and Mo generated by subsequent reheating are dispersed and precipitated. The present invention relates to a high-strength steel sheet and a method for producing the same. In order to make the best use of precipitation strengthening in addition to transformation strengthening, it is not necessary to add a large amount of alloy elements, and high strength can be achieved.
[0013]
Hereinafter, the high-strength steel sheet of the present invention will be described in detail. First, the structure of the high-strength steel sheet of the present invention will be described.
[0014]
The metal structure of the steel sheet of the present invention is substantially a two-phase structure of ferrite and bainite. In the present invention, a combination of transformation strengthening by bainite transformation during accelerated cooling and precipitation strengthening by fine precipitates reheated after accelerated cooling and precipitating in ferrite can be used to add a large amount of alloying elements. The strength can be increased. The ferrite phase is rich in ductility and is generally soft, but in the present invention, high strength can be achieved by the fine precipitates described below. On the other hand, when a large amount of the alloy element is not added, the strength is insufficient only with the bainite single layer structure obtained by accelerated cooling, but the two-phase structure with the precipitation strengthened ferrite phase has sufficient strength. It will be a thing. When two or more different metal structures such as martensite and pearlite are mixed in the two-phase structure of ferrite and bainite, the strength decreases, so the smaller the fraction of the structure other than the ferrite and bainite phases. good. However, if the volume fraction of the structure other than the ferrite phase and the bainite phase is low, the influence can be ignored. Therefore, other metal structures of 5% or less in total volume fraction, that is, one type of martensite, pearlite, etc. You may contain 2 or more types. Further, it is desirable that the ferrite fraction is 5% or more from the viewpoint of securing strength, and the bainite fraction is 10% or more from the viewpoint of securing toughness of the base material.
[0015]
Next, the precipitate that is dispersed and precipitated in the ferrite phase will be described.
In the steel sheet of the present invention, precipitation strengthening by precipitates containing Mo and Ti in the ferrite phase as a basis is utilized. Mo and Ti are elements that form carbides in steel, and it has been conventionally practiced to strengthen steel by precipitation of MoC and TiC. However, in the present invention, Mo and Ti are added together to form Mo and Ti. It is a feature that a greater strength improvement effect can be obtained by finely depositing a composite carbide containing the above in steel as compared with the case of precipitation strengthening of MoC or TiC. This unprecedented strength improvement effect is due to the fact that a composite carbide containing Mo and Ti as a basis is stable and has a slow growth rate, so that an extremely fine precipitate having a particle size of less than 10 nm can be obtained. .
[0016]
When the composite carbide containing Mo and Ti as a base is composed of only Mo, Ti, and C, the total of Mo and Ti and C are combined in an atomic ratio of about 1: 1. Yes, it is very effective for increasing strength. In the present invention, it has been found that by adding Nb and / or V in combination, the precipitate becomes a composite carbide containing Mo, Ti and Nb and / or V, and the same precipitation strengthening can be obtained.
[0017]
In the present invention, the composite carbide mainly composed of Mo and Ti, which is a precipitate dispersed and precipitated in the steel sheet, is produced by manufacturing the steel sheet using the manufacturing method of the present invention to steel having the components described below. It can be obtained by dispersing in.
[0018]
Next, chemical components of the high-strength steel sheet of the present invention will be described. In the following description, all units represented by% are mass%.
[0019]
C: Not less than 0.02 and less than 0.07%. C is an element that contributes to precipitation strengthening as a carbide. However, if it is less than 0.02%, sufficient strength cannot be secured, and if it is 0.07% or more, the toughness is deteriorated, so the C content is 0.02 or more, 0 It is specified to be less than 0.07%.
[0020]
Si: 0.01 to 0.5%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.5%, the toughness and weldability are deteriorated, so the Si content is 0.01 to 0.00. Specify 5%.
[0021]
Mn: 0.5 to 2.0%. Mn is added for strength and toughness, but if it is less than 0.5%, the effect is not sufficient, and if it exceeds 2.0%, the weldability deteriorates, so the Mn content is 0.5 to 2.0%. Stipulate.
[0022]
Al: 0.01 to 0.08%. Al is added as a deoxidizer, but if it is less than 0.01%, there is no effect, and if it exceeds 0.08%, the cleanliness of the steel decreases and the toughness deteriorates, so the Al content is 0.01 to It is specified as 0.08%.
[0023]
Mo: 0.05 to 0.5%. Mo is an important element in the present invention, and by containing 0.05% or more, fine composite precipitates with Ti are formed while suppressing pearlite transformation during cooling after hot rolling, thereby increasing strength. A big contribution. However, if it exceeds 0.5%, the cost is increased and the weldability is deteriorated, so the Mo content is specified to be 0.05 to 0.5%.
[0024]
Ti: More than 0.04% and not more than 0.10%. Ti, like Mo, is an important element in the present invention. By adding over 0.04%, a composite precipitate is formed with Mo, which greatly contributes to an increase in strength. However, it is up to 0.10% that contributes to the strength increase, and addition beyond that causes a cost increase, so the Ti content is specified to be more than 0.04% and not more than 0.10%.
[0025]
The high-strength steel sheet of the present invention can produce fine precipitates of composite carbide containing Ti and Mo by using the steel of the above components, but in order to make maximum use of precipitation strengthening, the carbide is formed. It is desirable to limit the proportion of element content as follows. That is, C / (Mo + Ti), which is a ratio of the amount of C in atomic% and the total amount of Mo and Ti, is preferably 0.5 to 3.0. The increase in strength according to the present invention is due to precipitates containing Ti and Mo. In order to effectively use the precipitation strengthening by this composite precipitate, the relationship between the amount of C and Mo and Ti which are carbide forming elements is important. By adding these elements in an appropriate balance, A thermally stable and very fine composite precipitate can be obtained. At this time, when the value of C / (Mo + Ti) represented by the atomic% content of each element is less than 0.5 or more than 3.0, either element amount is excessive, and Ti of the present invention Since precipitates other than fine precipitates containing Mo and a hardened phase are generated and toughness is deteriorated, the value of C / (Mo + Ti) is preferably set to 0.5 to 3.0. However, each element symbol is the content of each element in atomic%. In addition, when content of mass% is used, it is represented by (C / 12.01) / (Mo / 95.9 + Ti / 47.9).
[0026]
Since Nb and / or V forms a fine composite carbide with Ti and Mo, the steel sheet of the present invention may contain Nb and / or V.
[0027]
Nb: 0.005 to 0.07%. Nb improves toughness by refining the structure, but forms a composite precipitate with Ti and Mo and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.07%, weld cracks are likely to occur, so the Nb content is specified to be 0.005 to 0.07%.
[0028]
V: Set to 0.005 to 0.10%. V, like Nb, forms a composite precipitate with Ti and Mo and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.10%, weld cracking tends to occur, so the V content is specified to be 0.005 to 0.10%.
[0029]
When Nb and / or V are contained, C / (Mo + Ti + Nb + V), which is the ratio of the amount of C in atomic% and the total amount of Mo, Ti, Nb, and V, is 0.5 to 3.0. Is preferred. Strengthening according to the present invention depends on precipitates containing Ti and Mo, but when Nb and / or V are contained, they become composite precipitates (mainly carbides) containing them. At this time, when the value of C / (Mo + Ti + Nb + V) represented by the content of atomic% of each element is less than 0.5 or exceeds 3.0, the amount of any element is excessive, and Ti of the present invention Since precipitates other than fine precipitates containing Mo and a hardened phase are generated and the toughness is deteriorated, the value of C / (Mo + Ti + Nb + V) is preferably set to 0.5 to 3.0. However, each element symbol is the content of each element in atomic%. In addition, when content of mass% is used, it is represented by (C / 12.01) / (Mo / 95.9 + Ti / 47.9 + Nb / 92.91 + V / 50.94).
[0030]
In the present invention, for the purpose of further improving the strength toughness of the steel sheet, one or more of Cu, Ni, Cr and B shown below may be contained.
[0031]
Cu: 0.55% or less. Cu is an element effective for improving toughness and increasing strength, but if added in a large amount, weldability deteriorates, so when added, the upper limit is 0.50%.
[0032]
Ni: It shall be 0.50% or less. Ni is an element effective for improving toughness and increasing strength, but adding a large amount is disadvantageous in terms of cost, so when added, the upper limit is 0.50%.
[0033]
Cr: 0.55% or less. Like Mn, Cr is an element effective for obtaining sufficient strength even at low C. However, if added in a large amount, the weldability deteriorates, so when added, the upper limit is 0.50%.
[0034]
B: Set to 0.005% or less. B is an element that contributes to strength increase and HAZ toughness improvement, but if added over 0.005%, weldability deteriorates, so when added, the content is made 0.005% or less.
[0035]
The remainder other than the above consists essentially of Fe. The balance substantially consisting of Fe means that an element containing an inevitable impurity and other trace elements can be included in the scope of the present invention unless the effects of the present invention are lost.
[0036]
Next, the manufacturing method of the high strength steel plate of this invention is demonstrated.
[0037]
The present invention uses a combination of transformation strengthening by bainite transformation during accelerated cooling and precipitation strengthening by fine carbides precipitated in ferrite during reheating after accelerated cooling, without adding a large amount of alloying elements. This is a technology that can increase strength. In the present invention, the ferrite transformation can be completed without maintaining the temperature during the subsequent reheating by supercooling to the bainite transformation region by accelerated cooling.
[0038]
The high-strength steel sheet of the present invention uses steel having the above component composition, and is hot-rolled at a heating temperature of 1000 to 1300 ° C. and a rolling end temperature of 750 ° C. or higher, and then 300 ° C. at a cooling rate of 5 ° C./s or higher. Accelerated cooling to ˜600 ° C., and then immediately reheating to a temperature of 550 to 700 ° C. at a temperature rising rate of 0.5 ° C./s or more, thereby converting the metal structure into a two-phase structure of ferrite and bainite. Fine composite carbides mainly composed of Ti and Ti can be dispersed and precipitated in the ferrite phase. Here, the temperature is the average temperature of the steel sheet. Hereinafter, each manufacturing condition will be described in detail.
[0039]
Heating temperature: 1000-1300 ° C. If the heating temperature is less than 1000 ° C., the solid solution of the carbide is insufficient and the required strength cannot be obtained, and if it exceeds 1300 ° C., the toughness deteriorates, so the temperature is set to 1000 to 1300 ° C.
[0040]
Rolling end temperature: 750 ° C. or higher. If the rolling end temperature is low, the subsequent ferrite transformation rate decreases, so that sufficient precipitation of fine precipitates cannot be obtained during ferrite transformation by reheating, and the strength decreases, so the rolling end temperature is 750 ° C. or higher. To do.
[0041]
Immediately after the end of rolling, it is cooled at a cooling rate of 5 ° C./s or more. If the cooling rate is less than 5 ° C./s, ferrite is generated during cooling, so that not only strengthening by bainite cannot be obtained, but also precipitates generated during ferrite transformation in a high temperature region of 700 ° C. or higher easily coarsen. A sufficient strength cannot be obtained. Therefore, the cooling rate after the end of rolling is specified to be 5 ° C./s or more. About the cooling method at this time, it is possible to use arbitrary cooling equipment by a manufacturing process.
[0042]
Cooling stop temperature: 300 to 600 ° C. After completion of rolling, the bainite phase is rapidly cooled to 300 to 600 ° C. by accelerating cooling, thereby generating a bainite phase and stopping the cooling in the middle of the bainite transformation so that the untransformed austenite is subjected to subsequent reheating. It becomes possible to transform into ferrite. Furthermore, since the driving force is increased by the supercooling, the ferrite transformation in the reheating process is promoted, and the ferrite transformation can be completed by a short reheating. When the cooling stop temperature is less than 300 ° C., the bainite transformation is almost completed, so that not only a sufficient amount of ferrite can be obtained by the subsequent reheating, but also island-shaped martensite (MA) is generated, and thus the reheating is not performed. Precipitation of fine carbide becomes insufficient, and if it exceeds 600 ° C., the driving force for ferrite transformation is not sufficient, and ferrite transformation does not complete during reheating, so that precipitation of fine carbide is insufficient. Since the strength cannot be obtained, the accelerated cooling stop temperature is set to 300 to 600 ° C.
[0043]
Immediately after accelerated cooling, reheating is performed to a temperature of 550 to 700 ° C. at a heating rate of 0.5 ° C./s or more. This process is an important manufacturing condition in the present invention. Fine precipitates that contribute to strengthening of the ferrite phase are deposited simultaneously with the ferrite transformation during reheating. In order to obtain such fine precipitates, it is necessary to reheat to a temperature range of 550 to 700 ° C. immediately after accelerated cooling. When the heating rate is less than 0.5 ° C./s, it takes a long time to reach the target reheating temperature, so that the production efficiency is deteriorated and pearlite transformation occurs, so that the fine precipitates cannot be dispersed and precipitated. A sufficient strength cannot be obtained. If the reheating temperature is less than 550 ° C., the ferrite transformation does not proceed and bainite transformation occurs, so that sufficient precipitation strengthening cannot be achieved, and if it exceeds 700 ° C., the precipitate becomes coarse and sufficient strength cannot be obtained. The temperature range of heating is specified at 550 to 700 ° C. There is no need to set the temperature holding time at the reheating temperature. If the production method of the present invention is used, even if it is cooled immediately after reheating, the ferrite transformation proceeds sufficiently, so that high strength due to fine precipitation can be obtained. However, temperature retention within 30 minutes can be performed in order to reliably complete the ferrite transformation. If the temperature is maintained for more than 30 minutes, the precipitates may become coarse and the strength may be reduced. Also, since the ferrite transformation proceeds in the cooling process after reheating, the cooling rate after reheating is basically air cooling. However, cooling can also be performed at a rapid cooling rate that does not inhibit the ferrite transformation.
[0044]
As equipment for performing reheating after accelerated cooling, a heating device can be installed on the downstream side of the cooling equipment for performing accelerated cooling. As the heating device, it is preferable to use a gas combustion furnace or induction heating device capable of rapid heating of the steel sheet. The induction heating device is particularly preferable because temperature control is easier than in a soaking furnace, the cost is relatively low, and the cooled steel sheet can be heated quickly. In addition, by arranging a plurality of induction heating devices continuously in series, even if the line speed and the type and dimensions of the steel sheet are different, the number of induction heating devices to be energized can be set arbitrarily, the heating rate, The reheating temperature can be freely controlled.
[0045]
Moreover, an example of the equipment for implementing the manufacturing method of this invention is shown in FIG. As shown in FIG. 1, a hot rolling mill 3, an acceleration cooling device 4, an in-line induction heating device 5, and a hot leveler 6 are arranged in the rolling line 1 from upstream to downstream. By installing the in-line type induction heating device 5 or other heat treatment device on the same line as the hot rolling mill 3 as a rolling facility and the accelerated cooling device 4 as a subsequent cooling facility, the rolling and cooling can be quickly performed. Since a reheating process can be performed, it can heat without reducing the steel plate temperature after rolling cooling too much.
[0046]
【Example】
Steels (steel types A to P) having chemical components shown in Table 1 were made into slabs by a continuous casting method, and thick steel plates (Nos. 1 to 30) having a thickness of 18 and 26 mm were manufactured using the slabs.
[0047]
[Table 1]
Figure 0003891030
[0048]
After the heated slab was rolled by hot rolling, it was immediately cooled using a water-cooled accelerated cooling facility and reheated using an induction heating furnace or a gas combustion furnace. The induction furnace was installed on the same line as the accelerated cooling equipment. Table 2 shows the production conditions of each steel plate (No. 1 to 30).
[0049]
The microstructure of the steel sheet produced as described above was observed with an optical microscope and a transmission electron microscope (TEM). The components of the precipitate were analyzed by energy dispersive X-ray spectroscopy (EDX). In addition, the tensile properties and base metal toughness of each steel plate were measured. The measurement results are also shown in Table 2. Tensile properties were measured by performing a tensile test using a full thickness test piece in the vertical direction of rolling as a tensile test piece, and measuring the tensile strength. The tensile strength of 700 MPa or more (API X80 grade or more) was determined as the strength required for the present invention. Regarding the base material toughness (vE), a material having Charpy absorbed energy at −10 ° C. of 100 J or more was considered good.
[0050]
[Table 2]
Figure 0003891030
[0051]
In Table 2, all of Nos. 1 to 18 as examples of the present invention have chemical components and production methods within the scope of the present invention, have a high tensile strength of 700 MPa or more, and the structure of the steel sheet is substantially In addition, it has a ferrite + bainite two-phase structure, and fine carbide precipitates having a particle size of less than 10 nm containing Ti, Mo, and some steel sheets and further containing Nb and / or V were dispersed and precipitated.
[0052]
In Nos. 19 to 25, the chemical components are within the scope of the present invention, but the manufacturing method is outside the scope of the present invention, and therefore, the structure does not become a ferrite + bainite two-phase structure or fine carbides are not dispersed and precipitated. In some cases, the strength was insufficient. Nos. 26 to 30 had chemical components outside the scope of the present invention, so that sufficient strength could not be obtained or toughness was poor.
[0053]
【The invention's effect】
As described above, according to the present invention, a high-strength steel sheet having a high tensile strength of 700 MPa or more can be manufactured at a low cost without adding a large amount of alloy elements. For this reason, the steel plate used for welding structures, such as a building, a marine structure, shipbuilding, a civil engineering, a construction machine, can be manufactured stably in large quantities cheaply, and productivity and economical efficiency can be improved significantly.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a production line for carrying out the production method of the present invention.
[Explanation of symbols]
1: rolling line,
2: Steel plate,
3: Hot rolling mill,
4: Accelerated cooling device,
5: Inline type induction heating device,
6: Hot leveler

Claims (4)

質量%で、C:0.02%以上、0.07%未満、Si:0.01〜0.5%、Mn:0.5〜2.0%、Mo:0.05〜0.5%、Ti:0.04%超、0.10%以下、Al:0.01〜0.08%を含有し、残部がFeおよび不可避不純物からなり、原子%でのC量とMo、Tiの合計量の比であるC/(Mo+Ti)が0.5〜3.0であり、金属組織がフェライトとベイナイトの2相組織であり、フェライト相中にTiと、Moとを含む炭化物が分散析出していることを特徴とする、高強度鋼板。In mass%, C: 0.02% or more, less than 0.07%, Si: 0.01 to 0.5%, Mn: 0.5 to 2.0%, Mo: 0.05 to 0.5% , Ti: 0.04%, greater than 0.10%, Al: contains 0.01 to 0.08 percent, the balance being Fe and inevitable impurities or Rannahli, C amount in atomic percent Mo, a Ti is the ratio of the total amount C / (Mo + Ti) is 0.5 to 3.0, a metal structure gaff ferrite and bainite dual phase structure of carbide containing and Ti in the ferrite phase, and Mo A high-strength steel sheet characterized in that is dispersed and precipitated. さらに、質量%で、Nb:0.005〜0.07%および/またはV:0.005〜0.10%を含有し、原子%でのC量とMo、Ti、Nb、Vの合計量の比であるC/(Mo+Ti+Nb+V)が0.5〜3.0であり、フェライト相中にTiと、Moと、Nbおよび/またはVとを含む炭化物が分散析出していることを特徴とする請求項1に記載の高強度鋼板。Further, in mass%, Nb: 0.005 to 0.07% and / or V: 0.005 to 0.10%, and the total amount of C, Mo, Ti, Nb, and V in atomic% The ratio of C / (Mo + Ti + Nb + V) is 0.5 to 3.0, and carbides containing Ti, Mo, Nb and / or V are dispersed and precipitated in the ferrite phase. The high-strength steel plate according to claim 1. さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、B:0.005%以下の中から選ばれる1種又は2種以上を含有することを特徴とする請求項1または請求項2に記載の高強度鋼板。Furthermore, by mass%, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, and B: 0.005% or less are contained. The high-strength steel sheet according to claim 1 or 2, wherein the steel sheet has high strength. 請求項1ないし請求項3のいずれかに記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、750℃以上の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で300〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜700℃まで再加熱を行うことを特徴とする、高強度鋼板の製造方法。The steel having the component composition according to any one of claims 1 to 3 is heated to a temperature of 1000 to 1300 ° C, hot-rolled at a rolling finish temperature of 750 ° C or higher, and then 5 ° C / s or higher. A method for producing a high-strength steel sheet, characterized in that accelerated cooling is performed at a cooling rate of 300 to 600 ° C, and then reheating is performed immediately at 550 to 700 ° C at a heating rate of 0.5 ° C / s or more.
JP2002125818A 2002-04-26 2002-04-26 High strength steel plate and manufacturing method thereof Expired - Fee Related JP3891030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125818A JP3891030B2 (en) 2002-04-26 2002-04-26 High strength steel plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125818A JP3891030B2 (en) 2002-04-26 2002-04-26 High strength steel plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003321725A JP2003321725A (en) 2003-11-14
JP3891030B2 true JP3891030B2 (en) 2007-03-07

Family

ID=29540429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125818A Expired - Fee Related JP3891030B2 (en) 2002-04-26 2002-04-26 High strength steel plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3891030B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6149776B2 (en) * 2014-03-28 2017-06-21 Jfeスチール株式会社 High toughness, high ductility, high strength hot-rolled steel sheet and method for producing the same
DE102014221068A1 (en) * 2014-10-16 2016-04-21 Sms Group Gmbh Plant and method for the production of heavy plates

Also Published As

Publication number Publication date
JP2003321725A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
CA2775031C (en) Low yield ratio, high strength and high uniform elongation steel plate and method for manufacturing the same
KR101044161B1 (en) Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe
JP4066905B2 (en) Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness
JP5092498B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5354164B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP4507747B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same
JP4507745B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof
JP2010229441A (en) Method for manufacturing high toughness high tensile thick steel plate
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP5217413B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4419695B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4412098B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP4507730B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4311020B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4742617B2 (en) Manufacturing method of high-strength steel sheet with excellent weld heat-affected zone toughness
JP4385622B2 (en) Manufacturing method of high-strength steel sheet
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP3812488B2 (en) High-strength steel with excellent workability and material uniformity and method for producing the same
JP4412099B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP3891030B2 (en) High strength steel plate and manufacturing method thereof
JP4273825B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4273824B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP3975920B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees