JP5163450B2 - Steel manufacturing method - Google Patents

Steel manufacturing method Download PDF

Info

Publication number
JP5163450B2
JP5163450B2 JP2008303355A JP2008303355A JP5163450B2 JP 5163450 B2 JP5163450 B2 JP 5163450B2 JP 2008303355 A JP2008303355 A JP 2008303355A JP 2008303355 A JP2008303355 A JP 2008303355A JP 5163450 B2 JP5163450 B2 JP 5163450B2
Authority
JP
Japan
Prior art keywords
precipitates
manufacturing
steel
size
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008303355A
Other languages
Japanese (ja)
Other versions
JP2010126771A (en
Inventor
克美 山田
哲史 城代
寿人 野呂
毅 横田
智治 石田
之啓 新垣
俊人 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008303355A priority Critical patent/JP5163450B2/en
Publication of JP2010126771A publication Critical patent/JP2010126771A/en
Application granted granted Critical
Publication of JP5163450B2 publication Critical patent/JP5163450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/40Minimising material used in manufacturing processes

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • General Factory Administration (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車、造船、土木および建築などに用いられる鋼材を製造するにあたり、目標特性を維持するために、製造条件の最適化(修正)を容易かつ迅速に行う鋼材の製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a method of manufacturing a steel material that can easily and quickly optimize (correct) manufacturing conditions in order to maintain target characteristics when manufacturing steel materials used in automobiles, shipbuilding, civil engineering, and construction. is there.

自動車、造船、土木および建築などの材料として用いられる、薄鋼板、厚鋼板、棒鋼・線材等の鉄鋼一次製品(以降、鋼材と称することとする)を製造するにあたっては、所定の成分に調整された素材を熱間圧延や熱間鍛造に代表される熱間加工プロセスを経ることで必要な形状と機械特性などの材質を得ている。
熱間加工プロセスは、素材を例えば1200℃程度に再加熱保持する工程、数回の加工によって減厚する工程、加工後所定の温度まで冷却する工程、さらに所定温度で一定時間保持する巻取り処理工程などの複数の工程からなり、所望の特性を得るにはそれぞれの工程が適正化される必要がある。通常、実機製造プロセスでは、実験室的に調査された結果を基に、それぞれの工程での製造条件の最適化がなされている。
When manufacturing primary steel products (hereinafter referred to as steel materials) such as thin steel plates, thick steel plates, steel bars and wires used as materials for automobiles, shipbuilding, civil engineering and construction, etc., they are adjusted to the prescribed components. The necessary shape and mechanical properties are obtained through hot working processes such as hot rolling and hot forging.
The hot working process includes, for example, a process of reheating and holding the material at about 1200 ° C., a process of reducing the thickness by several times of processing, a process of cooling to a predetermined temperature after processing, and a winding process of holding at a predetermined temperature for a certain time It consists of a plurality of processes such as processes, and each process needs to be optimized in order to obtain desired characteristics. Normally, in the actual machine manufacturing process, the manufacturing conditions in each process are optimized based on the result of laboratory investigation.

しかしながら、ハイテンなどの高級鋼種では、製造条件の狭幅制御がしばしば必要となり、多少の条件変動等により製品品質が劣化する場合がある。このような場合、劣化する原因を早期につきとめて好適製造条件内へ制御を修正する必要があるが、現在は有効な手段が存在しない。そのため、このような高級鋼種の安定製造、歩留向上を図ることが困難である。また、このような問題は高級鋼種で顕著であるが、一般鋼種でも存在している。   However, high-grade steel grades such as high tensile steel often require narrow control of manufacturing conditions, and product quality may deteriorate due to slight fluctuations in conditions. In such a case, it is necessary to identify the cause of deterioration at an early stage and correct the control within the preferable manufacturing conditions, but there is no effective means at present. Therefore, it is difficult to achieve stable production of such high-grade steel types and yield improvement. Moreover, such a problem is conspicuous in high-grade steel types, but also exists in general steel types.

前述したように、特に高級鋼種の製造にあたっては、製品品質が劣化する要因を速やかに見極め、修正すべき製造条件を迅速に見出し、適切にフィードバックすることが、歩留まり低下を最小限に留めるために必要である。
また、製造工程が多い鋼種を製造するにあたっては、製造工程途中の鋼材の状況をより詳細に把握し、その情報に基づいて後工程の製造条件へ的確なフィードフォワードを行うことが、製品歩留まり向上のために必要である。
As mentioned above, especially in the production of high-grade steel grades, it is necessary to quickly identify the factors that deteriorate the product quality, quickly find the manufacturing conditions to be corrected, and provide appropriate feedback in order to minimize the decrease in yield. is necessary.
In addition, when manufacturing steel grades with many manufacturing processes, it is necessary to grasp the status of steel materials in the middle of the manufacturing process in more detail and perform accurate feedforward to the manufacturing conditions in the subsequent process based on that information to improve product yield. Is necessary for.

本発明は、かかる事情に鑑みなされたもので、目標特性を維持するために修正すべき製造条件を迅速に見出し、種々の場合に応じて適切なフィードバックまたはフィードフォワードを行うことが可能な鋼材の製造方法を提供することを目的とするものである。   The present invention has been made in view of such circumstances, and quickly finds manufacturing conditions to be corrected in order to maintain the target characteristics, and is a steel material capable of performing appropriate feedback or feedforward depending on various cases. The object is to provide a manufacturing method.

上記課題を解決するため、発明者らは、製造条件のバラツキによる材質はずれと素材情報の点から鋭意検討した。
従来の物理分析法は高精度であるが鋼中の代表値を得ることが困難であり、従来の化学分析法は迅速ではあるが、材料特性を大きく支配する特定情報を選択的に得ることが困難である。そのため、製造条件修正に反映可能で修正されるべき条件を迅速に見出すための材料中の金属成分の固溶含有量や金属炭化物中のサイズ別析出量等の情報を、従来の物理分析法や化学分析法では迅速かつ高精度に得ることができなかった。その結果、適切なフィードバックまたはフィードフォワードを行うことができなかった。
そこで、本発明者らは、上記を鑑み、材料中の金属成分の固溶含有量や金属炭化物中のサイズ別析出量を迅速かつ高精度に求めることによって、多様な製造条件の中から修正すべき条件を迅速に見出し、種々の場合に応じて適切なフィードバックまたはフィードフォワードを行うことを考えた。そして、本発明は、上記思想に基づき、完成するに至ったものである。
In order to solve the above-mentioned problems, the inventors diligently studied from the viewpoint of material deviation and material information due to variations in manufacturing conditions.
Conventional physical analysis methods are highly accurate, but it is difficult to obtain representative values in steel, and conventional chemical analysis methods are quick, but specific information that largely governs material properties can be selectively obtained. Have difficulty. For this reason, information such as the solid solution content of metal components in materials and the precipitation amount by size in metal carbides to quickly find the conditions that can be reflected and corrected in manufacturing conditions can be obtained using conventional physical analysis methods and Chemical analysis methods could not be obtained quickly and with high accuracy. As a result, proper feedback or feedforward could not be performed.
Therefore, in view of the above, the present inventors have corrected from various manufacturing conditions by quickly and accurately obtaining the solid solution content of the metal component in the material and the precipitation amount by size in the metal carbide. It was considered to quickly find out the power condition and perform appropriate feedback or feedforward according to various cases. And this invention came to be completed based on the said thought.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]鋼材を製造する製造ステップAと、製造ステップAにて製造された鋼材における、析出物および/または介在物の組成の情報、析出物および/または介在物のサイズの情報、着目する元素の固溶量の情報の一つ以上を得る分析ステップと、前記分析ステップにて得られた前記各情報に基づく分析結果のうちの少なくとも1つが所定の範囲を外れる場合に、析出物および/または介在物の組成、析出物および/または介在物のサイズ、着目元素の固溶量の一つ以上が変化する製造条件を少なくとも一つ修正する製造条件修正ステップと、
前記製造条件修正ステップにて修正された製造条件により鋼材を製造する製造ステップBとを有することを特徴とする鋼材の製造方法。
[2]前記[1]において、前記分析ステップは、製造された鋼材を電解液中で電解し、前記鋼材に付着している析出物および/または介在物を分散性を有する溶液中に分離後、析出物および/または介在物の組成の情報、析出物および/または介在物のサイズの情報、着目する元素の固溶量の情報の一つ以上を得る分析をすることを特徴とする鋼材の製造方法。
[3]前記[2]において、前記分析ステップは、分離された析出物および/または介在物を含んだ分散性を有する溶液を一段以上ろ過することにより、前記析出物および/または介在物をサイズ別に分別することを特徴とする鋼材の製造方法。
[4]前記[1]〜[3]のいずれかにおいて、前記分析ステップは、鋼材を電解した後の電解液を分析し、前記電解液中の着目元素の濃度と鉄の濃度との比を求め、求められた比に前記鋼材の鉄の全濃度を乗じることで、着目元素の固溶量を分析することを特徴とする鋼材の製造方法。
[5]前記[1]〜[4]のいずれかにおいて、前記製造ステップAは、熱間加工工程を有し、前記製造条件修正ステップは、前記分析ステップにて得られた着目元素の固溶量が所定の範囲以下の場合、および/または、前記分析ステップにて得られた析出物および/または介在物のサイズが100nm超の析出物に含まれる着目元素の量が所定の範囲以上の場合に、前記熱間加工工程における再加熱温度を修正することを特徴とする鋼材の製造方法。
[6]前記[1]〜[4]のいずれかにおいて、前記製造ステップAは、熱間加工工程および該熱間加工工程後引き続き行われる冷却工程を有し、前記製造条件修正ステップは、前記分析ステップにて得られた析出物および/または介在物の全体の量に対する、サイズ20〜100nmの析出物および/または介在物の比率が所定の範囲以上の場合に、前記冷却工程における冷却速度を修正することを特徴とする鋼材の製造方法。
[7]前記[1]〜[4]のいずれかにおいて、前記製造ステップAは、熱間加工、冷却および特定温度域での中間保持の一連の工程を有し、前記製造条件修正ステップは、前記分析ステップにて得られたサイズ20nm未満の析出物および/または介在物に含まれる着目元素の量が所定の範囲以下で、かつ、前記分析ステップにて得られたサイズ20nm以上の析出物および/または介在物に含まれる着目元素の量が所定の範囲である場合に、前記中間保持工程における中間保持条件を修正することを特徴とする鋼材の製造方法。
[8]前記[1]〜[7]のいずれかの方法により製造され、出荷後に熱処理を行い特性調整することを特徴とする鋼材の製造方法。
なお、本発明において、析出物及び/又は介在物を、まとめて析出物等と称することとする。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] Manufacturing step A for manufacturing a steel material, information on the composition of precipitates and / or inclusions, information on the size of precipitates and / or inclusions, and elements of interest in the steel material manufactured in manufacturing step A An analysis step for obtaining one or more pieces of solid solution amount information, and when at least one of the analysis results based on the information obtained in the analysis step is out of a predetermined range, precipitates and / or A manufacturing condition correcting step for correcting at least one manufacturing condition in which one or more of the composition of inclusions, the size of precipitates and / or inclusions, and the solid solution amount of the element of interest changes;
A method for manufacturing a steel material, comprising: a manufacturing step B for manufacturing a steel material under the manufacturing conditions corrected in the manufacturing condition correcting step.
[2] In the above [1], in the analysis step, after the produced steel material is electrolyzed in an electrolytic solution, precipitates and / or inclusions adhering to the steel material are separated into a solution having dispersibility. Analysis of obtaining one or more of information on the composition of precipitates and / or inclusions, information on the size of precipitates and / or inclusions, and information on the solid solution amount of the element of interest Production method.
[3] In the above [2], in the analysis step, the precipitate and / or the inclusion is sized by filtering one or more stages of the dispersed solution containing the separated precipitate and / or the inclusion. Separating separately, The manufacturing method of the steel materials characterized by the above-mentioned.
[4] In any one of the above [1] to [3], the analyzing step analyzes an electrolytic solution after electrolyzing the steel material, and calculates a ratio between the concentration of the element of interest and the concentration of iron in the electrolytic solution. A method for producing a steel material, characterized by analyzing the solid solution amount of the element of interest by multiplying the obtained ratio by the total concentration of iron in the steel material.
[5] In any one of the above [1] to [4], the manufacturing step A includes a hot working process, and the manufacturing condition correcting step includes a solid solution of the element of interest obtained in the analyzing step. When the amount is less than the predetermined range, and / or when the amount of the element of interest contained in the precipitate obtained in the analysis step and / or the size of inclusions is more than 100 nm And reheating temperature in the hot working step is corrected.
[6] In any one of the above [1] to [4], the manufacturing step A includes a hot working step and a cooling step performed after the hot working step, and the manufacturing condition correcting step includes When the ratio of precipitates and / or inclusions having a size of 20 to 100 nm with respect to the total amount of precipitates and / or inclusions obtained in the analysis step is not less than a predetermined range, the cooling rate in the cooling step is set. A method of manufacturing a steel material, characterized by correcting.
[7] In any one of [1] to [4], the manufacturing step A includes a series of steps of hot working, cooling, and intermediate holding in a specific temperature range, and the manufacturing condition correcting step includes: The amount of the element of interest contained in precipitates and / or inclusions having a size of less than 20 nm obtained in the analysis step is not more than a predetermined range, and the precipitates having a size of 20 nm or more obtained in the analysis step and A method for producing a steel material, comprising: correcting an intermediate holding condition in the intermediate holding step when an amount of an element of interest contained in an inclusion is within a predetermined range.
[8] A method for manufacturing a steel material, which is manufactured by any one of the methods [1] to [7], and is subjected to heat treatment after shipment to adjust characteristics.
In the present invention, precipitates and / or inclusions are collectively referred to as precipitates.

本発明によれば、目標特性を維持するための修正すべき製造条件を迅速に見出し、種々の場合に応じて適切なフィードバックまたはフィードフォワードをすることで所望の材料特性を安定的に得ることが可能な鋼材の製造方法を提供することができる。
例えば、あらかじめ材質変動と極めて関連性の高い着目元素の析出挙動を把握しておき、分析により得られる析出情報を着目元素の析出挙動と照らし合わせることで、製造条件のどこの部分を修正すれば良いかが迅速に判断でき、安定した材質確保が達成される。
また、製造工程が長い鋼種を製造するにあたって、製造工程途中の鋼材の状況が修正が効かないほどの規定範囲外となってしまった場合、次工程以降の製造を行うかどうかの判断には、製品品質が劣化する要因を速やかに見極めるための分析データが高精度で迅速に必要になる。このような場合に、本発明の製造方法は有用である。そして、本発明の製造方法を用いることで次工程以降の製造の継続判断が可能となり製造コストの大幅な削減がはかれる。
According to the present invention, it is possible to quickly find a manufacturing condition to be corrected for maintaining a target property, and stably obtain a desired material property by performing appropriate feedback or feedforward according to various cases. It is possible to provide a method for producing a possible steel material.
For example, if you know the precipitation behavior of the element of interest that is highly related to material fluctuations in advance and then compare the precipitation information obtained by analysis with the precipitation behavior of the element of interest, you can correct any part of the manufacturing conditions. Whether it is good or not can be quickly determined, and stable material securing is achieved.
In addition, when manufacturing a steel type with a long manufacturing process, if the status of the steel material in the middle of the manufacturing process is outside the specified range so that the correction does not work, Analytical data for quickly ascertaining the cause of product quality degradation is required quickly with high accuracy. In such a case, the production method of the present invention is useful. And by using the manufacturing method of this invention, the continuation determination of the manufacturing after the following process is attained, and a manufacturing cost is significantly reduced.

以下、本発明について、詳細に説明する。
鋼中の化学成分は、鋼材の組織形成に様々な影響を及ぼす重要な因子であり、結晶粒成長挙動、変態現象ならびに析出現象を介して最終組織形成に影響し、マクロな材質を大きく左右する。特に、炭化物等による析出強化を効果的に利用しているハイテン等の高級鋼種においては、鋼中析出物制御が安定材質を確保する上で非常に重要度が高い。そのため、鋼中の析出物挙動に関する詳細情報を得ることにより、材質が変動した原因を高い確度で突き止めることが可能となる。
Hereinafter, the present invention will be described in detail.
The chemical composition in steel is an important factor that has various effects on the structure formation of steel materials. It influences the final structure formation through the grain growth behavior, transformation phenomenon and precipitation phenomenon, and greatly affects the macro material. . In particular, in high-grade steel grades such as high tensile steel that effectively utilize precipitation strengthening due to carbide or the like, the control of precipitates in steel is very important in securing a stable material. Therefore, by obtaining detailed information on the behavior of precipitates in steel, it is possible to ascertain the cause of material fluctuation with high accuracy.

以上の考察の結果、本発明においては、まず、修正すべき製造条件を迅速に見出すために、材質変動に大きな影響を及ぼす含有元素(以下、着目元素と称す)の鋼中での固溶状態と析出状態の定量値および析出物等のサイズ別における析出物等中の定量値を迅速かつ正確に把握することが可能な新しい分析法を、製造条件修正に反映可能な情報を得るための分析法として用いることとした。次いで、製造条件修正に反映可能な情報を得た後、この情報を基に多様な製造条件の中から修正すべき条件を迅速に見出し、適切なフィードバックまたはフィードフォワードを行うこととした。
以上は本発明の特徴であり、重要な要件である。以下にその詳細について説明する。
As a result of the above considerations, in the present invention, first, in order to quickly find out the production conditions to be corrected, a solid solution state in steel of the contained element (hereinafter referred to as the element of interest) that has a great influence on material variation Analysis to obtain information that can be reflected in the correction of manufacturing conditions, a new analysis method that can quickly and accurately grasp the quantitative values of precipitates and the quantitative values of precipitates by size, etc. I decided to use it as a method. Next, after obtaining information that can be reflected in the correction of the manufacturing conditions, based on this information, conditions to be corrected are quickly found out from various manufacturing conditions, and appropriate feedback or feedforward is performed.
The above are features of the present invention and are important requirements. The details will be described below.

鋼材における、析出物等の組成の情報、析出物等のサイズの情報、着目する元素の固溶量の情報の一つ以上を得る分析ステップでは、本発明者らが開発した、高精度に、析出物等の組成、サイズおよび着目元素の固溶量を分析する方法を用いることとし、先ず、これについて説明する。   In the analysis step of obtaining one or more of information on the composition of precipitates, information on the size of precipitates, etc., and information on the solid solution amount of the element of interest in the steel material, the inventors have developed with high accuracy, A method of analyzing the composition and size of precipitates and the amount of solid solution of the element of interest will be used, and this will be described first.

鋼材試料を適切な条件で電解し、析出強化元素の固溶部分をマトリクスの鉄とともに電解液中に溶解させ、析出物等を試料表面に露出させる。このとき、露出した析出物等は電気的引力によって陽極である試料表面に付着するので、析出物等と電解液(固溶部分)とを分離できる。すなわち、析出物等の付着した試料を電解液から取り出すだけで、ほとんどすべての析出物等が電解液から取り出せることになる。そして、試料とともにポリ燐酸水溶液のような分散性を有する溶液に浸漬して超音波を付与し、試料に付着している析出物等を試料から剥離する。このとき、分離された析出物等は、ポリ燐酸塩から表面電荷が付与されて、互いに反発しあって分散性を有する溶液中に分散する。   The steel material sample is electrolyzed under appropriate conditions, and the solid solution portion of the precipitation strengthening element is dissolved in the electrolytic solution together with the iron of the matrix to expose the precipitate and the like on the sample surface. At this time, the exposed precipitates and the like adhere to the surface of the sample, which is the anode, by electric attraction, so that the precipitates and the electrolytic solution (solid solution portion) can be separated. That is, almost all the precipitates and the like can be taken out from the electrolytic solution only by taking out the sample to which the deposits and the like are attached from the electrolytic solution. Then, the sample is immersed in a dispersible solution such as an aqueous polyphosphoric acid solution to apply ultrasonic waves, and precipitates and the like attached to the sample are peeled off from the sample. At this time, the separated precipitates and the like are given surface charges from the polyphosphate, repel each other, and are dispersed in a solution having dispersibility.

先ず、析出物等をサイズ別に分けない場合には、析出物等を含んだ分散性を有する溶液を動的光散乱分光分析方法で分析し、全析出物等の平均粒径や粒径分布を求める。   First, when the precipitates are not classified by size, a solution having dispersibility containing the precipitates is analyzed by a dynamic light scattering spectroscopic analysis method, and the average particle size and particle size distribution of all the precipitates are determined. Ask.

次に、析出物等をサイズ別に分ける場合には、以下の手順による。析出物等の分散した分散性を有する溶液をフィルタ孔径YとZ(ただし、Y>Z)のフィルタを用いて順次ろ過する。このとき、孔径Yのフィルタ上の残渣がサイズY以上の析出物等であり、孔径Zのフィルタ上の残渣がサイズZ以上Y未満の析出物等であり、孔径Zのフィルタを透過したろ液にはサイズZ未満の析出物等が含まれる。次いで、ろ過後のフィルタ上の析出物等とろ液を、誘導結合プラズマ(ICP)発光分光分析法、ICP質量分析法および原子吸光分析法等により分析し、サイズY以上、サイズZ以上Y未満、サイズZ未満の析出物等中の着目元素の含有量を求める。または、ろ過後のろ液を動的光散乱分光分析方法で分析し、サイズZ未満の析出物等の平均粒径や粒径分布を求める。   Next, when the precipitates are separated by size, the following procedure is used. A solution having dispersibility in which precipitates are dispersed is sequentially filtered using a filter having filter pore sizes Y and Z (where Y> Z). At this time, the residue on the filter with a pore size Y is a precipitate of size Y or larger, the residue on the filter with a pore size Z is a precipitate of size Z or larger and less than Y, and the filtrate that has passed through the filter with a pore size Z Includes precipitates having a size less than Z. Next, the precipitate and the filtrate on the filter after filtration are analyzed by inductively coupled plasma (ICP) emission spectroscopy, ICP mass spectrometry, atomic absorption spectrometry, etc., size Y or more, size Z or more and less than Y, The content of the element of interest in precipitates and the like of size Z is determined. Alternatively, the filtrate after filtration is analyzed by a dynamic light scattering spectroscopic analysis method, and the average particle size and particle size distribution of precipitates having a size less than Z are obtained.

このように、複数のフィルタ孔径のフィルタを用いてろ過することにより、析出物等をサイズ別に分別することが可能となる。なお、析出物等を含んだ分散性を有する溶液を所定のフィルタ孔径のフィルタでろ過すると、析出物等のサイズに応じてフィルタに捕集されるものとフィルタを通過するものとに分かれるが、このとき、比較的大きな析出物等によりフィルタ孔の閉塞が進行し、本来通過するべきサイズの析出物等がフィルタを通過せずに捕集されることがある。このような場合は、フィルタに捕集された析出物等の分析値は正しい値より高くなり、反対にろ液の分析値は正しい値より低くなる。しかし、フィルタとして、直孔でかつ4%以上の空隙率を有するフィルタを用いれば、フィルタ孔径より小さい析出物等が捕集されることなく、より正確な析出物等のサイズ別分析が可能となる。ここで、直孔とは、一定の開口形状で貫通しているフィルタ孔のことをいう。   In this way, by using a filter having a plurality of filter pore diameters, the precipitates and the like can be separated according to size. In addition, when a solution having dispersibility containing precipitates and the like is filtered with a filter having a predetermined filter pore size, it is divided into those collected by the filter according to the size of the precipitates and those passing through the filter. At this time, the filter pores are blocked by relatively large precipitates and the like, and precipitates having a size that should pass through may be collected without passing through the filter. In such a case, the analytical value of the precipitate collected in the filter becomes higher than the correct value, and conversely, the analytical value of the filtrate becomes lower than the correct value. However, if a filter that is a straight hole and has a porosity of 4% or more is used as a filter, it is possible to analyze precipitates by size more accurately without collecting precipitates smaller than the filter pore diameter. Become. Here, the straight hole refers to a filter hole penetrating with a certain opening shape.

着目元素の固溶量を求めるには、析出物等と分離された電解液中の着目元素の絶対量を測定して、鋼材試料の電解重量で除算する必要がある。しかしながら、一般的な電解液はメタノールを主体とした有機溶媒で揮発性が高いうえに数百ミリリットルもの液量となることから、着目元素の含有量を測定することは容易ではない。そこで、多量の電解液から1/10以下の適当量を採取して乾燥した後、適切な溶液で溶解して水溶液としてから着目元素と鉄をそれぞれ適切な溶液分析法で測定し、その濃度比(即ち、着目元素の測定濃度/鉄の測定濃度)に鋼材試料中の鉄の含有量を乗算することにより、着目元素の鋼中の固溶量を求めた。なお、水溶液を分析する方法としては、ICP発光分光分析法、ICP質量分析法および原子吸光分析法が適当である。また、鋼材試料中の鉄の含有量を求めるための方法としては、スパーク放電発光分光分析方法(JIS G1253)、蛍光X線分析方法(JIS G1256)、ICP発光分光分析法およびICP質量分析法等により得られた鉄以外の元素の合計値を100mass%から減算する方法が適当である。   In order to obtain the solid solution amount of the element of interest, it is necessary to measure the absolute amount of the element of interest in the electrolytic solution separated from precipitates and divide by the electrolytic weight of the steel material sample. However, a general electrolytic solution is an organic solvent mainly composed of methanol, and has a high volatility and a liquid amount of several hundred milliliters. Therefore, it is not easy to measure the content of the element of interest. Therefore, after collecting an appropriate amount of 1/10 or less from a large amount of electrolyte and drying it, dissolve it in an appropriate solution to make an aqueous solution, and then measure the element of interest and iron by an appropriate solution analysis method. By multiplying (ie, the measured concentration of the element of interest / the measured concentration of iron) by the iron content in the steel material sample, the solid solution amount of the element of interest in steel was determined. As a method for analyzing the aqueous solution, ICP emission spectroscopy, ICP mass spectrometry, and atomic absorption spectrometry are suitable. In addition, methods for determining the iron content in steel samples include spark discharge emission spectroscopy (JIS G1253), X-ray fluorescence analysis (JIS G1256), ICP emission spectroscopy, ICP mass spectrometry, etc. A method of subtracting the total value of elements other than iron obtained by the method from 100 mass% is appropriate.

本発明の鋼材の製造方法においては、こうして得られた析出物等の組成、サイズおよび着目元素の固溶量のうち少なくとも一つの情報(分析結果)を、製造条件の修正に反映させる。析出物等の組成の結果のみを用いる場合は、例えば、析出物を構成する着目元素の種類とその含有量のうちいずれかで提示可能である。また、析出物等のサイズの結果のみを用いる場合は、例えば、前述の動的光散乱分光分析方法で得られた平均粒径や粒径分布で提示できる。析出物等の組成とサイズの両方の結果を用いる場合は、例えば、析出物等のサイズ別における着目元素の析出物等中の含有量で提示できる。なお、着目元素の析出物等中の含有量とは、例えば、着目する元素に関して、その元素が析出物等としてどれくらい存在しているかを、(a)鋼材全体に対する含有率、(b)着目元素量全体に対する比、(c)着目元素の固溶量に対する比、等、必要に応じて提示できる。また、着目元素の固溶量は、例えば、着目する元素に関して、その元素が固溶した状態でどれくらい存在しているかを、(d)鋼材全体に対する含有率、(e)着目元素量全体に対する比、(f)析出物等中の着目元素の含有量に対する比、等、必要に応じて提示できる。   In the method for producing a steel material of the present invention, at least one piece of information (analysis result) among the composition, size, and solid solution amount of the element of interest obtained in this way is reflected in the modification of the production conditions. In the case where only the result of the composition of the precipitate or the like is used, for example, it can be presented by either the type of the element of interest constituting the precipitate and the content thereof. Further, when only the result of the size of the precipitate or the like is used, for example, the average particle size or the particle size distribution obtained by the above-mentioned dynamic light scattering spectroscopic analysis method can be presented. When using the results of both the composition and the size of the precipitates, for example, it can be presented by the content in the precipitate of the element of interest for each size of the precipitates. It should be noted that the content of the element of interest in the precipitates, for example, for the element of interest, how much the element is present as a precipitate, etc., (a) the content of the steel material as a whole, (b) the element of interest The ratio to the total amount, (c) the ratio to the solid solution amount of the element of interest, etc. can be presented as necessary. In addition, the solid solution amount of the element of interest is, for example, how much the element is present in the solid solution state in terms of (d) the content ratio with respect to the entire steel material, and (e) the ratio with respect to the total amount of element of interest. (F) The ratio to the content of the element of interest in the precipitate or the like can be presented as necessary.

次いで、分析ステップにて得られた前記各情報に基づく分析結果のうちの少なくとも1つが所定の範囲を外れる場合に、析出物等の組成、析出物等のサイズ、着目元素の固溶量の一つ以上が変化する製造条件を少なくとも一つ修正する。そして、修正された製造条件により鋼材を製造する。
上記に基づき、以下に、本発明の実施態様を例示する。
まず、本発明と従来の方法との違いについて図1と図2を基に説明する。図1は、従来の製造条件決定プロセスを示すフロー図である。従来は、実験室段階である程度絞込みができている製造条件をベースに実機試作し、実機と実験室レベルの違いを保証する形で、実機製造での製造条件最適化がなされてきた。従って、最終的な材料試験値が所望特性を満足しなかった場合は、図1に示すようにその都度要因解析し、種々の製造条件について再検討するという必要性があった。
Next, when at least one of the analysis results based on each information obtained in the analysis step is out of a predetermined range, the composition of the precipitates, the size of the precipitates, and the solid solution amount of the element of interest Modify at least one production condition that changes more than one. And steel materials are manufactured with the corrected manufacturing conditions.
Based on the above, embodiments of the present invention will be exemplified below.
First, the difference between the present invention and the conventional method will be described with reference to FIGS. FIG. 1 is a flowchart showing a conventional manufacturing condition determination process. Conventionally, production conditions have been optimized in the production of actual machines by prototyping actual machines based on production conditions that have been narrowed down to some extent at the laboratory stage, and guaranteeing differences between the actual machines and the laboratory level. Therefore, when the final material test value does not satisfy the desired characteristics, there is a need to perform a factor analysis each time as shown in FIG. 1 and to reexamine various manufacturing conditions.

一方、図2は、本発明の実施態様の一つである製造条件決定プロセスを示すフロー図である。本発明においては、図2に示すように所定の範囲を外れ材質はずれを起こした場合、析出物等の組成の情報、析出物等のサイズの情報、着目元素の固溶量の情報のうち少なくとも1つを活用することにより、変更すべき製造条件の絞込みが迅速に行え、絞り込んだ製造条件へフィードバックすることが可能となる。
例えば、材質に大きな影響を及ぼす特に重要な金属元素に関して着目し、その元素の固溶量を求める。そして、この固溶量の値を、目標とする品質・性能を得るためにあらかじめ実験室で検討し決定される標準値もしくは実機で適切に処理された時の標準値と比較し、標準値をもとに設定される許容の範囲(以降、この許容の範囲を所定の範囲と称することとする)内かどうか確認する。そして、所定の範囲を外れる場合に、巻取り温度を再設定する。
例えば、着目元素が析出状態で存在する場合、特に炭化物もしく窒化物として存在する場合には、析出物等の組成の情報および析出物等のサイズの情報のうち少なくとも1つを求め、この値を、所定の範囲と比較する。そして、その結果をもとに、スラブ再加熱条件、熱間加工後の冷却速度を修正する。
例えば、強度780MPa以上の鋼板を製造する際に、強度不足が発生した場合、従来の製造方法では、スラブ加熱条件が適正でないため強化に寄与する微細な析出物等の絶対量が不足しているのか、熱間圧延後巻取り処理にいたる冷却条件が適正でないため再析出した析出物が粗大化しているのかを簡単に判別することが困難であった。そのため、要因と考えられる各工程の条件を再確認するとともに、これらを種々変更しながら強度不足要因を特定する必要があった。しかしながら、本発明の鋼材の製造方法を用いれば、最終製品における着目元素の固溶量もしくは析出物等の組成の情報および析出物等のサイズの情報のうち少なくとも1つを迅速に高精度で求め所定の範囲と比較することで、強度不足要因の絞りこみが効率的に行える。所定の範囲と比較した結果、鋼材の成分組成が適正であるにも関わらず、鋼材に含まれている着目元素の大半が強化に全く有効でない100nm以上のサイズであった場合は、スラブ加熱温度が不足していることが主要因であり、加熱温度の高温化や加熱時間の確保といった製造条件の修正が即座に実施可能である。また、所定の範囲と比較した結果、20nm以上から100nm未満程度の析出物が所定の範囲に比べて多い場合には、熱間圧延後の制御冷却条件が不適切であったことが伺え、冷却条件を修正するように製造条件をフィードバックする。また、100nm以上の粗大な析出物が少ないにも関わらず強化に有効な20nm未満の析出量も確保されていない場合には、析出処理に相当する巻取り条件が変動していることが伺える。この場合は巻取り条件を修正することで、直ちに製造条件へのフィードバックが可能である。
On the other hand, FIG. 2 is a flowchart showing a manufacturing condition determination process which is one embodiment of the present invention. In the present invention, as shown in FIG. 2, when the material is out of the predetermined range and the material is deviated, at least of the information on the composition of the precipitate, the information on the size of the precipitate, and the information on the solid solution amount of the element of interest. By using one, it is possible to quickly narrow down the manufacturing conditions to be changed and to feed back to the narrowed manufacturing conditions.
For example, paying attention to a particularly important metal element that greatly affects the material, the solid solution amount of the element is obtained. Then, the value of this solid solution amount is compared with the standard value determined in advance in the laboratory in order to obtain the target quality and performance, or the standard value when appropriately processed in the actual machine, and the standard value is calculated. It is confirmed whether it is within a permissible range (hereinafter, this permissible range is referred to as a predetermined range). And when it remove | deviates from the predetermined range, winding temperature is reset.
For example, when the element of interest exists in a precipitated state, particularly when it exists as a carbide or nitride, obtain at least one of composition information such as precipitates and size information such as precipitates, and this value Is compared with a predetermined range. And based on the result, slab reheating conditions and the cooling rate after hot working are corrected.
For example, when producing a steel sheet with a strength of 780 MPa or more, if insufficient strength occurs, the conventional production method lacks the absolute amount of fine precipitates that contribute to strengthening because the slab heating conditions are not appropriate. However, it is difficult to easily determine whether the re-deposited precipitates are coarse because the cooling conditions leading to the winding process after hot rolling are not appropriate. Therefore, it was necessary to reconfirm the conditions of each process considered to be a factor, and to specify the cause of insufficient strength while changing these variously. However, if the steel material manufacturing method of the present invention is used, at least one of the solid solution amount of the element of interest in the final product or the composition information such as precipitates and the size information of the precipitates can be obtained quickly and accurately. By comparing with a predetermined range, it is possible to efficiently narrow down the cause of insufficient strength. As a result of comparison with the specified range, when the composition of the steel material is appropriate, but most of the elements of interest contained in the steel material have a size of 100 nm or more that is not effective at all, the slab heating temperature The main factor is that the manufacturing conditions are insufficient, and it is possible to immediately correct manufacturing conditions such as increasing the heating temperature and securing the heating time. In addition, as a result of comparison with the predetermined range, if there are more precipitates of about 20 nm or more and less than 100 nm compared to the predetermined range, it can be said that the controlled cooling conditions after hot rolling were inappropriate. Feedback manufacturing conditions to correct the conditions. In addition, when the amount of precipitation less than 20 nm effective for strengthening is not secured despite the fact that there are few coarse precipitates of 100 nm or more, it can be seen that the winding conditions corresponding to the precipitation treatment are fluctuating. In this case, it is possible to immediately feedback the manufacturing conditions by correcting the winding conditions.

また、本発明では、フィードフォワードによって製品歩留まりを改善することも可能である。
製造工程が非常に長い鋼種を製造する場合、最終製品がスペック外れを生じた場合には、多大な時間とエネルギー損失につながることになる。そのため、このような鋼種を製造する際に、目標特性を得るためには、製造工程途中の鋼板内の状態を調べ後に続く工程の製造条件を修正することが重要となる。
例えば、工程Aにおいて、鋼板内の特定金属元素の析出物等のサイズやその量をモニタリングする。あらかじめラボ実験などによって分かっている20nm以上の析出物の値に対して、モニタリングの値が所定の範囲を満足していれば、後に続く工程Bの条件は変更しない。一方、モニタリングの値が所定の範囲を外れる場合には、その値に応じて、工程Bにおける製造条件(例えば、熱処理時間や温度)を適宜変更し、最終製品板の特性をスペック範囲に制御する。
このようなフィードフォワードを用いて製造する方法は、従来では行われなかった。工程Bの条件を微調整するために必要な工程Aにおける析出状態(情報)を迅速かつ高精度に得ることが従来では困難であったためである。しかし、本発明における鋼材の製造方法を用いれば、特定金属元素の固溶状態、析出状態あるいは析出物等のサイズ情報を迅速かつ正確に得られるため、上述したようにフィードフォワードを用いて製造することが可能となる。
また、本発明の鋼材の製造方法により、工程途中の析出物状態の情報を基に、後に続く工程の修正を行ったとしても修正できない程度に工程途中の析出物状態が所定の範囲を大きく外れてしまった場合には、次工程以降を実施しないというアクションを行うことも可能である。このような処理は、早い段階で製品の良・不良の判定が行なえ、無駄な製造を行なわないとという工業的なメリットが得られる。特に製造工程の長い鋼種においては、メリットが大きい。
In the present invention, the product yield can be improved by feedforward.
In the case of producing a steel type having a very long production process, if the final product is out of specification, a great amount of time and energy are lost. Therefore, in order to obtain the target characteristics when manufacturing such a steel type, it is important to correct the manufacturing conditions of the subsequent process after examining the state in the steel sheet during the manufacturing process.
For example, in step A, the size and the amount of precipitates of specific metal elements in the steel sheet are monitored. If the value of the monitoring satisfies a predetermined range with respect to the value of the precipitate of 20 nm or more that is known in advance by a laboratory experiment or the like, the condition of the subsequent process B is not changed. On the other hand, if the monitoring value is out of the predetermined range, the manufacturing conditions in the process B (for example, heat treatment time and temperature) are appropriately changed according to the value, and the characteristics of the final product plate are controlled within the specification range. .
A method of manufacturing using such feedforward has not been conventionally performed. This is because it has conventionally been difficult to obtain the precipitation state (information) in Step A necessary for finely adjusting the conditions of Step B quickly and with high accuracy. However, if the steel material manufacturing method according to the present invention is used, size information such as a solid solution state, a precipitation state, or a precipitate of a specific metal element can be obtained quickly and accurately. It becomes possible.
Further, according to the steel material manufacturing method of the present invention, the precipitate state during the process greatly deviates from the predetermined range to the extent that it cannot be corrected even if the subsequent process is corrected based on the information of the precipitate state during the process. In the event that it has occurred, it is possible to perform an action of not performing the subsequent steps. Such a process makes it possible to determine whether the product is good or bad at an early stage and to obtain an industrial merit that no wasteful manufacturing is performed. In particular, in the steel type with a long manufacturing process, the merit is great.

表1に示す鋼組成(Fe以外の主要組成のみ示す)からなる鋼素材を溶製し、得られた溶製スラブを1250℃に加熱後、熱延終了温度:890〜920℃で熱間圧延し、600℃近傍(巻取り温度+10℃)まで25〜30℃/sの冷却速度で冷却した。次いで、巻取り温度(CT)575〜675℃にて巻き取り、板厚3mmの熱延板A〜Dを実機熱延機で製造した。   A steel material consisting of the steel composition shown in Table 1 (only the main composition other than Fe is shown) is melted, and the resulting slab is heated to 1250 ° C, followed by hot rolling at a hot rolling end temperature of 890-920 ° C. Then, it was cooled at a cooling rate of 25 to 30 ° C./s to around 600 ° C. (winding temperature + 10 ° C.). Subsequently, it wound up at coiling temperature (CT) 575-675 degreeC, and manufactured the hot-rolled sheet AD of 3 mm in thickness with an actual hot rolling machine.

Figure 0005163450
Figure 0005163450

次いで、鋼A、B、C、Dについて、析出強化元素として重要なTiおよびMoの固溶状態と析出状態を前述した分析方法で調べた。
具体的には、TiおよびMoの析出物のサイズ別定量は以下のように実施した。熱延板から適当な大きさの試験片を切り出し、10%AA系電解液中(10%アセチルアセトン-1%塩化テトラメチルアンモニウム-メタノール)で電流密度20mA/cm2で0.2gだけ定電流電解後、表面に析出物等が付着している試験片を電解液から取り出して、ヘキサメタリン酸ナトリウム水溶液(以下SHMP水溶液)500mg/l中に浸漬し、超音波振動を付与して、析出物等を試験片から剥離しSHPM水溶液中に分離した。この析出物等を含むSHMP水溶液を、フィルタ孔径100nmのフィルタを用いてろ過した後、さらにフィルタ孔径20nmのフィルタを用いてろ過し、ろ過後のフィルタ上の残渣と、ろ液に対してICP発光分光分析装置を用いて分析し、ろ過後のフィルタ上の残渣と、ろ液中のTiおよびMoの絶対量を測定した。次いで、TiおよびMoの絶対量を電解重量で除して、サイズ100nm以上、サイズ20nm以上100nm未満およびサイズ20nm未満に分類された析出物等中に含まれるTiおよびMoの含有量を求めた。なお、電解重量は、析出物等剥離後の試験片に対して重量を測定し、電解前の試験片重量から差し引くことで求めた。このTiとMoの含有量は、試験鋼材の全組成を100mass%とした場合の値である。
さらに、得られた析出物中のTiおよびMoの含有量を、Tiごと、Moごとに合計して、析出Ti量と析出Mo量を算出した。この算出した析出Ti量と析出Mo量をそれぞれ分母とし、サイズ別の含有量から求めた比を析出物のサイズ別比率とした。
また、TiおよびMoの固溶量の定量は以下のように実施した。上記電解後の電解液を分析溶液とし、ICP質量分析法を用いてTi、Moおよび比較元素としてFeの液中濃度を測定した。得られた濃度を基に、Feに対するTiおよびMoの濃度比をそれぞれ算出し、さらに、試料中のFeの含有量を乗じることで、Tiの固溶量およびMoの固溶量を求めた。なお、試料中のFeの含有量は、表1に示したFe以外の組成値の合計を100mass%から減算することで求めることができる。このTiとMoの固溶量は、試験鋼材の全組成を100mass%とした場合の値である。
そして、得られたTiおよびMoの固溶量から、表1に示したTiもしくはMoの総含有量に対する比を求めて固溶比率とした。この固溶比率に関しては、析出物としてサイズ別に定量した結果から算出した析出Ti量もしくは析出Mo量と、TiもしくはMoの総含有量との差をそれぞれの総含有量で除した場合と大差ないことを確認している。
なお、上記の分析をする際には、板厚方向の不均一性をも考慮し、熱延板のL断面から試料を採取して実施した。得られた結果を表2および表3に示す。
Next, for steels A, B, C, and D, the solid solution state and precipitation state of Ti and Mo, which are important as precipitation strengthening elements, were examined by the analysis method described above.
Specifically, the quantification of Ti and Mo precipitates by size was performed as follows. A test piece of appropriate size was cut out from the hot-rolled sheet and subjected to constant current electrolysis by 0.2 g at a current density of 20 mA / cm 2 in 10% AA electrolyte (10% acetylacetone-1% tetramethylammonium chloride-methanol). , Take out the test piece with deposits etc. on the surface from the electrolyte, immerse it in 500mg / l of sodium hexametaphosphate aqueous solution (hereinafter SHMP aqueous solution), and apply ultrasonic vibration to test the deposits etc. It peeled from the piece and separated into an aqueous SHPM solution. This SHMP aqueous solution containing precipitates and the like is filtered using a filter with a filter pore size of 100 nm, and further filtered using a filter with a filter pore size of 20 nm. The residue on the filtered filter and the filtrate are subjected to ICP emission. The analysis was performed using a spectroscopic analyzer, and the residue on the filter after filtration and the absolute amounts of Ti and Mo in the filtrate were measured. Next, the absolute amounts of Ti and Mo were divided by the electrolytic weight, and the contents of Ti and Mo contained in precipitates classified into a size of 100 nm or more, a size of 20 nm or more and less than 100 nm, and a size of less than 20 nm were determined. The electrolytic weight was determined by measuring the weight of the test piece after separation of deposits and the like and subtracting it from the weight of the test piece before electrolysis. The contents of Ti and Mo are values when the total composition of the test steel is 100 mass%.
Further, the Ti and Mo contents in the obtained precipitate were totaled for each Ti and each Mo, and the amount of precipitated Ti and the amount of precipitated Mo were calculated. The calculated amount of precipitated Ti and amount of precipitated Mo were each used as the denominator, and the ratio obtained from the content by size was defined as the ratio by size of the precipitate.
In addition, the determination of the solid solution amount of Ti and Mo was performed as follows. The electrolytic solution after the electrolysis was used as an analysis solution, and the concentrations of Ti, Mo, and Fe as a comparative element in the solution were measured using ICP mass spectrometry. Based on the obtained concentration, the concentration ratios of Ti and Mo to Fe were calculated, respectively, and the solid solution amount of Ti and the solid solution amount of Mo were obtained by multiplying the Fe content in the sample. Note that the Fe content in the sample can be obtained by subtracting the total of composition values other than Fe shown in Table 1 from 100 mass%. The solid solution amounts of Ti and Mo are values when the total composition of the test steel is 100 mass%.
Then, from the obtained solid solution amounts of Ti and Mo, a ratio with respect to the total content of Ti or Mo shown in Table 1 was obtained to obtain a solid solution ratio. About this solid solution ratio, it is not much different from the case where the difference between the amount of precipitated Ti or precipitated Mo calculated from the result of quantification as a precipitate and the total content of Ti or Mo is divided by the total content. I have confirmed that.
In the above analysis, a sample was taken from the L cross section of the hot-rolled sheet in consideration of non-uniformity in the thickness direction. The obtained results are shown in Table 2 and Table 3.

Figure 0005163450
Figure 0005163450

Figure 0005163450
Figure 0005163450

表2および表3の結果より、以下の点が明らかとなった。
鋼Aと鋼B、C、Dの間では、Ti、Moの析出量に大きな差があることが明確である。析出しているTiのうち鋼Aでは析出物等のサイズが100nm以上の粗大なものの比率が析出物等のサイズが20nm未満のものと同等程度ある。しかし、これは鋼Aの析出量自体が少ないために僅かに存在する未固溶析出の影響が強く出ているためである。また、析出物等のサイズが20nm以上〜100nm未満の中間領域の比率が高いわけではない。これらの結果から、鋼Aは熱延工程の重要な条件のうち、スラブ加熱温度や熱延仕上げ温度およびその後の冷却速度に異常があったとは考えられない。鋼Aでは、強度不足の直接の原因となる、強化に有効なサイズ20nm未満の析出物等を積極的に得るための巻取り工程での温度不足が考えられる。
From the results shown in Tables 2 and 3, the following points became clear.
It is clear that there is a large difference in the precipitation amounts of Ti and Mo between steel A and steels B, C and D. Of the precipitated Ti, the ratio of coarse precipitates with a size of 100 nm or more in Steel A is about the same as that of precipitates with a size of less than 20 nm. However, this is because the precipitation amount of the steel A itself is small, so that the influence of slightly existing insoluble precipitation is strong. In addition, the ratio of the intermediate region in which the size of the precipitate or the like is 20 nm to less than 100 nm is not necessarily high. From these results, it is not considered that Steel A had an abnormality in the slab heating temperature, the hot rolling finishing temperature, and the subsequent cooling rate among the important conditions of the hot rolling process. In steel A, it is conceivable that the temperature is insufficient in the winding process for positively obtaining precipitates having a size of less than 20 nm effective for strengthening, which directly causes a lack of strength.

鋼Dについては、Moの析出量においては鋼B、Cとほとんど大差ないが、Tiに着目するとTiの析出量が微増しサイズ20nm未満の析出物中のTi量が微減している。これは、巻取り温度が高く、析出の促進、粗大化および母相組織の回復が進んだ結果である。
鋼BとCではTiとMoの析出状態に大差はなく、製造条件が適切であることが伺える。
For steel D, the precipitation amount of Mo is almost the same as that of steels B and C. However, when attention is paid to Ti, the precipitation amount of Ti slightly increases and the amount of Ti in precipitates of size less than 20 nm slightly decreases. This is a result of the high coiling temperature and the promotion of precipitation, coarsening, and recovery of the matrix structure.
In steel B and C, there is no significant difference in the precipitation state of Ti and Mo, indicating that the manufacturing conditions are appropriate.

次いで、上記にて得られた熱延板について、酸洗したのち、JIS5号引張試験片を採取し機械的特性を調査した。得られた結果を表4に示す。なお、機械的特性は、JIS Z2241に準じて行った。   Next, the hot-rolled sheet obtained above was pickled, and then a JIS No. 5 tensile test piece was collected and examined for mechanical properties. The results obtained are shown in Table 4. The mechanical properties were performed according to JIS Z2241.

Figure 0005163450
Figure 0005163450

表4の結果から、鋼Bおよび鋼Cが、引張強度(TS):800MPa以上、全伸び:(EL) 20%以上を有し、強度、伸びのいずれも良好であり、目標特性をクリアしていた。
鋼Aでは、強度、伸びともに不足していた。
鋼Dでは、全伸び(EL)は確保され良好であるが、引張強度(TS)の低下が認められた。
From the results in Table 4, Steel B and Steel C have tensile strength (TS): 800 MPa or more, total elongation: (EL) 20% or more, both strength and elongation are good, and clear the target characteristics. It was.
In Steel A, both strength and elongation were insufficient.
In Steel D, the total elongation (EL) was secured and good, but a decrease in tensile strength (TS) was observed.

そして、以上の表2、表3および表4の結果から、以下のことが言える。
鋼Aでは、巻取り工程での温度不足により、強度、伸びともに不足していた。
鋼Dでは、巻取り温度が高く、析出の促進、粗大化および母相組織の回復が進んだため、全伸び(EL)は確保され良好であるが、引張強度(TS)の低下が認められた。
より高い引張強度TSと全伸びELを両立する最適な巻取り温度は、サイズ20nm未満の析出物におけるTi量が最も高い鋼B、Cであることがこの分析結果から導き出せる。
以上より、析出強化機構を利用している鋼種において、機械的性質の巻取り温度の依存性について、析出物等の詳細情報によって裏付けすることが可能であることがわかる。
From the results of Table 2, Table 3, and Table 4, the following can be said.
Steel A had insufficient strength and elongation due to insufficient temperature in the winding process.
In Steel D, the coiling temperature is high, the precipitation is accelerated, the coarsening, and the recovery of the matrix structure progresses. Therefore, the total elongation (EL) is secured and good, but the tensile strength (TS) is reduced. It was.
From this analysis result, it can be derived that the optimum winding temperature that achieves both higher tensile strength TS and total elongation EL is the steels B and C having the highest Ti content in precipitates of size less than 20 nm.
From the above, it can be seen that in the steel type using the precipitation strengthening mechanism, the dependency of the mechanical properties on the coiling temperature can be supported by detailed information such as precipitates.

次に、以上の結果をもとに、図2の分析フローに従って、鋼Dについて、製造条件のフィードバックを行った。
上記サイズ別の析出物の分析結果情報より、鋼Dにおいて、伸びが不純分であり劣化した要因は、巻取り温度が高く、析出の促進、粗大化および母相組織の回復が進んだことと考えられる。また、本鋼においては、鋼B、Cにおける巻取り温度が最適と考えられる。そこで、巻取り温度を鋼B、Cにおける巻取り温度付近(630℃)と修正し、それ以外の組成、製造条件は鋼Dと同様として、鋼D’を製造した。そして、上記鋼A〜Dと同様の方法にて機械特性を測定した。また、TiおよびMoの固溶状態と析出状態を上記鋼A〜Dと同様の方法にて分析した。得られた結果を表5に示す。なお、鋼Bの巻取り温度は625℃、鋼Cの巻取り温度は650℃であった。
Next, based on the above results, the manufacturing conditions of Steel D were fed back according to the analysis flow of FIG.
From the analysis result information of precipitates by size, the cause of deterioration in steel D due to impure elongation was that the coiling temperature was high, the precipitation was accelerated, the coarsening, and the recovery of the matrix structure proceeded. Conceivable. Moreover, in this steel, the winding temperature in steels B and C is considered optimal. Therefore, the coiling temperature was modified to be around the coiling temperature (630 ° C.) in steels B and C, and the other compositions and production conditions were the same as for steel D, and steel D ′ was manufactured. And the mechanical characteristic was measured by the method similar to the said steel AD. Moreover, the solid solution state and precipitation state of Ti and Mo were analyzed by the same method as the steels A to D described above. The results obtained are shown in Table 5. The winding temperature of Steel B was 625 ° C, and the winding temperature of Steel C was 650 ° C.

Figure 0005163450
Figure 0005163450

D’は、Dと同じ成分であり、Dの分析結果を踏まえて、巻取り温度を適正な値に制御しなおして製造したものである。表5より、巻取り温度を低めに修正した鋼D’では、鋼Bに匹敵する良好な特性が得られており、巻取り温度を適正に修正することで、鋼Bと同様な析出状態を再確認することができた。
以上のように、得られた析出情報と固溶情報のうち少なくとも1つと機械的特性と製造条件との関係をデータベースとして保有し、当該データベース内で析出情報と固溶情報の標準値を設定して参照すれば、巻取り温度起因の材質はずれを直ちに修正することが可能となる。
D ′ is the same component as D, and is manufactured by controlling the coiling temperature to an appropriate value based on the analysis result of D. According to Table 5, steel D ', which was modified to lower the coiling temperature, had good characteristics comparable to steel B. By appropriately correcting the coiling temperature, the same precipitation state as steel B was obtained. I was able to reconfirm.
As described above, the relationship between at least one of the obtained precipitation information and solid solution information, mechanical properties, and manufacturing conditions is held as a database, and standard values of precipitation information and solid solution information are set in the database. In other words, it is possible to immediately correct the material deviation due to the coiling temperature.

表6に示す鋼組成(Fe以外の主要組成のみ示す)からなる鋼素材を溶製し、得られた溶製スラブを1050〜1200℃に加熱後、熱延終了温度:900〜920℃で熱間圧延し、600℃近傍(巻取り温度+10℃)まで25〜30℃/sの冷却速度で冷却した。次いで、巻取り温度(CT)600〜625℃にて巻き取り、板厚3mmの熱延板P〜Sを実機熱延機で製造した。   A steel material composed of the steel composition shown in Table 6 (only the main composition other than Fe is shown) is melted, and the resulting molten slab is heated to 1050 to 1200 ° C and then heated at a hot rolling end temperature of 900 to 920 ° C. The steel sheet was hot-rolled and cooled at a cooling rate of 25 to 30 ° C./s to around 600 ° C. (winding temperature + 10 ° C.). Subsequently, it wound up at coiling temperature (CT) 600-625 degreeC, and manufactured the hot-rolled sheet PS of 3 mm in thickness with an actual hot rolling machine.

Figure 0005163450
Figure 0005163450

次いで、鋼P、Q、R、Sについて、析出強化元素として重要なTiおよびMoの固溶状態と析出状態を実施例1と同様の分析方法にて調べた。
得られた結果を表7および表8に示す。
Next, for steels P, Q, R, and S, the solid solution state and precipitation state of Ti and Mo important as precipitation strengthening elements were examined by the same analysis method as in Example 1.
The obtained results are shown in Table 7 and Table 8.

Figure 0005163450
Figure 0005163450

Figure 0005163450
Figure 0005163450

表7および表8の結果より、以下の点が明らかとなった。
鋼Rと鋼Sにおいては、Ti、Moともに固溶比率が微減傾向ではあるが、より明瞭な変化としては、特にTiのサイズ100nm以上の比率が他の2鋼種に較べて明らかに増大し、結果的にサイズ20nm未満での比率の低下が著しい。このことは、スラブ加熱温度が低いことによる粗大析出物等の増加が強度不足につながることを示している。
From the results of Tables 7 and 8, the following points became clear.
In steel R and steel S, the solid solution ratios of both Ti and Mo tend to decrease slightly, but as a clearer change, the ratio of Ti size of 100 nm or more is clearly increased compared to the other two steel types, As a result, the decrease in the ratio at a size less than 20 nm is remarkable. This indicates that an increase in coarse precipitates due to the low slab heating temperature leads to insufficient strength.

次いで、上記にて得られた熱延板について、酸洗したのち、JIS5号引張試験片を採取し機械的特性を調査した。得られた結果を表9に示す。   Next, the hot-rolled sheet obtained above was pickled, and then a JIS No. 5 tensile test piece was collected and examined for mechanical properties. Table 9 shows the obtained results.

Figure 0005163450
Figure 0005163450

表9の結果から、鋼Pおよび鋼Qは、引張強度(TS):1000MPa以上、全伸び:(EL)18%以上を有し、強度、伸びのいずれも良好であり、目標特性をクリアしていた。
鋼Rと鋼Sは鋼Pと鋼Qと比較して、全伸び(EL)は余り差がないが引張強度(TS)が明らかに劣っていた。
From the results in Table 9, steel P and steel Q have tensile strength (TS): 1000 MPa or more, total elongation: (EL) 18% or more, both strength and elongation are good, and clear the target characteristics. It was.
Steel R and Steel S were clearly inferior in tensile strength (TS) to Steel P and Steel Q, although there was not much difference in total elongation (EL).

そして、以上の表7、表8および表9の結果から、以下のことが言える。
鋼Rと鋼Sにおいては、スラブ加熱温度が低いによる粗大析出物等の増加により、引張強度(TS)が不足した。
より高い引張強度TSと全伸びELを両立する最適なスラブ加熱温度は、鋼Pおよび鋼Qのスラブ加熱温度であることがこの分析結果から導き出せる。
以上より、機械的性質のスラブ加熱温度の依存性について、析出物等の詳細情報によって裏付けすることが可能であることがわかる。
The following can be said from the results of Tables 7, 8 and 9.
In Steel R and Steel S, tensile strength (TS) was insufficient due to an increase in coarse precipitates due to low slab heating temperature.
It can be derived from this analysis result that the optimum slab heating temperature that achieves both higher tensile strength TS and total elongation EL is the slab heating temperature of steel P and steel Q.
From the above, it can be seen that the dependence of the mechanical properties on the slab heating temperature can be supported by detailed information such as precipitates.

次に、以上の結果をもとに、図2の分析フローに従って、鋼Rについて、製造条件のフィードバックを行った。
上記サイズ別の析出物の分析結果情報より、鋼Rにおいて、引張強度が不純分であり劣化した要因は、スラブ加熱温度が低く、100nm以上の粗大析出物等が増加したことが考えられる。また、本鋼においては、鋼P、Qにおけるスラブ加熱温度が最適と考えられる。そこで、スラブ加熱温度を鋼P、Qにおけるスラブ加熱温度付近(1200℃)と変え、それ以外の組成、製造条件は鋼Rと同様として、鋼R’を製造した。そして、上記鋼P〜Sと同様の方法にて機械特性を測定した。また、TiおよびMoの固溶状態と析出状態を上記鋼P〜Sと同様の方法にて分析した。得られた結果を表10に示す。なお、鋼Pのスラブ加熱温度は1150℃、鋼Qのスラブ加熱温度は1200℃であった。
Next, based on the above result, according to the analysis flow of FIG.
From the analysis result information of the precipitates by size, it can be considered that in Steel R, the tensile strength is impure and the cause of deterioration is that the slab heating temperature is low and coarse precipitates of 100 nm or more are increased. Moreover, in this steel, it is thought that the slab heating temperature in steel P and Q is optimal. Therefore, the slab heating temperature was changed to the vicinity of the slab heating temperature (1200 ° C.) in the steels P and Q, and the other compositions and production conditions were the same as the steel R, and the steel R ′ was manufactured. And the mechanical characteristic was measured by the method similar to the said steel PS. Moreover, the solid solution state and precipitation state of Ti and Mo were analyzed by the same method as the steels P to S described above. Table 10 shows the obtained results. The slab heating temperature of steel P was 1150 ° C, and the slab heating temperature of steel Q was 1200 ° C.

Figure 0005163450
Figure 0005163450

R’は、Rと同じ成分であり、Rの分析結果を踏まえて、スラブ加熱温度を適正な値に制御しなおして製造したものである。表10より、SRTを高めに修正した鋼R’では、鋼Qに匹敵する良好な特性が得られており、SRTを適正に修正することで、鋼Qと同様な析出状態を再確認することができた。
以上のように、得られた析出情報と固溶情報のうち少なくとも1つと機械的特性と製造条件との関係をデータベースとして保有し、当該データベース内で析出情報と固溶情報の標準値を設定して参照すれば、SRT起因の材質はずれを直ちに修正することが可能である。
R ′ is the same component as R, and is manufactured by controlling the slab heating temperature to an appropriate value based on the analysis result of R. From Table 10, steel R 'modified to a higher SRT has good properties comparable to steel Q, and the same precipitation state as steel Q can be reconfirmed by properly modifying SRT. I was able to.
As described above, the relationship between at least one of the obtained precipitation information and solid solution information, mechanical properties, and manufacturing conditions is held as a database, and standard values of precipitation information and solid solution information are set in the database. In other words, it is possible to immediately correct the material deviation caused by SRT.

以上のように、本発明では、熱間圧延条件(圧延パススケジュール、終了温度等)、熱延後の冷却条件さらには冷間圧延後の焼鈍条件等、鋼材中の元素の析出・固溶状態が大きく材質に影響するあらゆる製造パラメータへの適用が可能である。   As described above, in the present invention, hot rolling conditions (rolling pass schedule, end temperature, etc.), cooling conditions after hot rolling, annealing conditions after cold rolling, etc., precipitation / solid solution state of elements in steel It can be applied to all manufacturing parameters that greatly affect the material.

次に、析出物の平均粒径を迅速に評価し、次工程の熱処理条件を変更するフィードフォワードの適用例を説明する。
具体的には、方向性電磁鋼板を対象とした場合の、鋼材の製造方法を記載する。なお、方向性電磁鋼板における重要な特性としては磁気特性があり、この磁気特性に関与する重要なファクターとして、結晶粒径のサイズが挙げられる。更に、この結晶粒径のサイズ決定には析出物の状態が大きく影響するので、析出物の大きさを、迅速・高精度に評価することは工程的に大きなメリットを生じる。すなわち、ある工程において迅速・高精度に析出物サイズを評価することができれば、同じ熱処理条件で製造した際の、次工程における結晶粒径が予測可能となる。そして、評価した析出物サイズが所定の範囲から外れている場合には、次工程の熱処理条件を変更することができる。また、修正が不可能なほどに評価した析出物サイズが所定の範囲を大きく異なる場合には、次工程以降の処理を中止し、不良材に対する次工程以降の無駄な処理を未然に防止することも可能である。
Next, an application example of feedforward in which the average particle diameter of the precipitate is rapidly evaluated and the heat treatment conditions in the next process are changed will be described.
Specifically, a method for manufacturing a steel material for a grain-oriented electrical steel sheet is described. An important characteristic in grain-oriented electrical steel sheets is magnetic characteristics, and an important factor related to the magnetic characteristics is the size of the crystal grain size. Furthermore, since the state of the precipitate greatly affects the determination of the crystal grain size, evaluating the size of the precipitate quickly and with high accuracy has a great merit in the process. That is, if the precipitate size can be evaluated quickly and with high accuracy in a certain process, the crystal grain size in the next process when manufactured under the same heat treatment conditions can be predicted. When the evaluated precipitate size is out of the predetermined range, the heat treatment conditions for the next step can be changed. Also, if the precipitate size evaluated so as to be impossible to correct is significantly different from the predetermined range, the processing after the next step should be stopped to prevent wasteful processing after the next step for defective materials. Is also possible.

これを実現するためには、結晶粒径と高度に相関する指標としての、析出物のサイズを迅速・高精度に評価できることが必要条件となるため、以下の試料・手法でフィードフォワードの可能性について検討した。   In order to achieve this, it is necessary to be able to evaluate the size of precipitates as a highly correlated index with the crystal grain size quickly and with high accuracy. Was examined.

C:0.055mass%、Si:3.15mass%、Mn:0.05mass%、S:0.02mass%およびSn:0.02mass%を含み、残部はFeおよび不可避的不純物よりなる珪素鋼スラブを1380℃で30分加熱後、熱間圧延を施して2.2mmの板厚にしたのち、図3に示す工程に基づき、1000℃前後で1分間の焼鈍工程と圧延工程を二回実施し、板厚0.23mmの試料を製造した。ここで、析出物粒径を意図的に変化させるために、焼鈍工程1および2の温度は表11に示す6水準で変化させた。
(比較例)
上記により得られた試料A、C、Fについて、表面を電解エッチングし、SEMで観察した結果を画像解析処理して粒径分布を求めた。そして、粒径分布に基づき平均値および繰返しの評価を実施した際の精度(1σ)を求めた。得られた結果を焼鈍温度と併せて表11に示す。
(発明例)
上記により得られた試料A〜Fを適当な大きさに切断し、10%AA系電解液(10vol%アセチルアセトン-1mass%塩化テトラメチルアンモニウム-メタノール)中で、約0.2gを電流密度20mA/cm2で定電流電解した。電解後の、表面に析出物が付着している試料片を電解液から取り出して、ヘキサメタリン酸ナトリウム水溶液(500mg/l)(以下、SHMP水溶液と称す)中に浸漬し、超音波振動を付与して、析出物を試料片から剥離しSHMP水溶液中に分離した。次いで、析出物を含むSHMP水溶液を、動的光散乱方式の粒径分布測定装置にて計測し、含まれた析出物の平均粒径値および繰返しの評価を実施した際の精度(1σ)を求めた。得られた結果を表11に併せて示す。
C: 0.055 mass%, Si: 3.15 mass%, Mn: 0.05 mass%, S: 0.02 mass%, and Sn: 0.02 mass%, the balance comprising a silicon steel slab made of Fe and inevitable impurities After heating at 1380 ° C. for 30 minutes and hot rolling to a sheet thickness of 2.2 mm, based on the process shown in FIG. 3, the annealing process and rolling process for 1 minute at around 1000 ° C. are performed twice, A sample having a thickness of 0.23 mm was manufactured. Here, in order to intentionally change the precipitate particle size, the temperatures of the annealing steps 1 and 2 were changed at six levels shown in Table 11.
(Comparative example)
With respect to Samples A, C, and F obtained as described above, the surface was subjected to electrolytic etching, and the result of observation by SEM was subjected to image analysis processing to obtain the particle size distribution. Based on the particle size distribution, the accuracy (1σ) when the average value and repeated evaluation were performed was obtained. The obtained results are shown in Table 11 together with the annealing temperature.
(Invention example)
Samples A to F obtained above were cut to an appropriate size, and about 0.2 g in a 10% AA electrolyte (10 vol% acetylacetone-1 mass% tetramethylammonium chloride-methanol) had a current density of 20 mA / cm. Constant current electrolysis was performed at 2 . After the electrolysis, remove the sample piece with deposits on the surface from the electrolyte and immerse it in an aqueous solution of sodium hexametaphosphate (500 mg / l) (hereinafter referred to as the SHMP aqueous solution) to apply ultrasonic vibration. The precipitate was peeled from the sample piece and separated into an aqueous SHMP solution. Next, the SHMP aqueous solution containing precipitates was measured with a dynamic light scattering type particle size distribution measuring device, and the average particle size value of the included precipitates and the accuracy (1σ) when repeated evaluation was performed Asked. The obtained results are also shown in Table 11.

また、表11には、焼鈍工程3を経た各試料について平均結晶粒径を光学顕微鏡観察によって評価した結果も併せて示した。光学顕微鏡観察は、焼鈍工程3を経た各試料の板面を3%硝酸メタノール溶液にてエッチングし、観察倍率50倍で5視野観察し、切断法によって平均結晶粒径を求めた。   Table 11 also shows the results of evaluating the average crystal grain size of each sample that has undergone the annealing process 3 by observation with an optical microscope. In the optical microscope observation, the plate surface of each sample that passed through the annealing step 3 was etched with a 3% nitric acid / methanol solution, and five visual fields were observed at an observation magnification of 50 times, and an average crystal grain size was determined by a cutting method.

Figure 0005163450
Figure 0005163450

表11より、比較例では、2μm×3μm程度の視野で100視野前後の観察を行ない、視野内に存在する析出物を対象として画像解析処理による粒径分布を算出したが、同じ試料に対する繰返しの計測でありながらばらつき(1σ)が大きく、試料全体を代表した結果であるとはいえないと判断される。また、迅速性の観点からも、工程のフィードフォワードに適用するには充分ではないと考えられる。
一方、本発明例では、比較例にて使用した粒径測定方法に比べ、各工程において熱処理条件を変化させた場合の鋼中の析出物平均粒径および繰り返し精度良く評価できていることがわかる。
From Table 11, in the comparative example, about 100 fields of view were observed in a field of view of about 2 μm × 3 μm, and the particle size distribution was calculated by image analysis processing for precipitates existing in the field of view. Although it is a measurement, the variation (1σ) is large, and it is judged that the result is not representative of the entire sample. Also, from the viewpoint of rapidity, it is considered that it is not sufficient for application to process feedforward.
On the other hand, in the example of the present invention, it can be seen that the average particle size of precipitates in steel when the heat treatment conditions are changed in each step and the repeatability can be evaluated more accurately than the particle size measurement method used in the comparative example. .

次に、試料C、DおよびFに対して、圧延工程2後の析出物の平均粒径測定結果に基づいて、焼鈍工程3の条件を変更し、新たに試料C’D’およびF’を製造し、上記と同様の方法にて析出物粒径、析出物粒径精度、および焼鈍工程3後の結晶粒径を求めた。得られた結果を表12に示す。   Next, for samples C, D and F, based on the average particle size measurement results of the precipitates after rolling step 2, the conditions of annealing step 3 were changed, and samples C'D 'and F' were newly added. The precipitate particle size, the precipitate particle size accuracy, and the crystal particle size after the annealing step 3 were determined by the same method as described above. The results obtained are shown in Table 12.

Figure 0005163450
Figure 0005163450

表12より、焼鈍工程3を経た各試料の結晶粒径が他の鋼と同様に20μm程度に制御されていることがわかる。
このように本発明により圧延工程2を行った後の鋼中に存在する析出物の大きさを繰り返し精度良く評価することができれば、次工程の熱処理条件を変更することにより、適切な結晶粒径の確保が可能であることを示している。
From Table 12, it can be seen that the crystal grain size of each sample after the annealing step 3 is controlled to about 20 μm as in the case of other steels.
Thus, if the size of the precipitates present in the steel after performing the rolling step 2 according to the present invention can be repeatedly evaluated with high accuracy, an appropriate crystal grain size can be obtained by changing the heat treatment conditions in the next step. It is shown that it can be secured.

産業利用の可能性Potential for industrial use

本発明の鋼材の製造方法では、製造条件の最適化(修正)を容易かつ迅速に行うことで所望の材料特性を安定的に得ることができるため、自動車、造船、土木および建築などの材料として好適に用いることができる。   In the steel material manufacturing method of the present invention, since desired material characteristics can be stably obtained by performing optimization (correction) of manufacturing conditions easily and quickly, it can be used as a material for automobiles, shipbuilding, civil engineering and construction. It can be used suitably.

製造条件決定プロセスにおける従来の方法の一例を示した図である。It is the figure which showed an example of the conventional method in a manufacturing condition determination process. 本発明に係る製造条件決定プロセスにおける本発明法の一例を示した図一例を示す図である。It is a figure which shows an example of the figure which showed an example of this invention method in the manufacturing condition determination process which concerns on this invention. 本発明に係る製造条件決定プロセスにおける本発明法の一例を示した図一例を示す図である。It is a figure which shows an example of the figure which showed an example of this invention method in the manufacturing condition determination process which concerns on this invention.

Claims (6)

鋼材を製造する製造ステップAと、製造ステップAにて製造された鋼材における、析出物および/または介在物の組成の情報、析出物および/または介在物のサイズの情報、着目する元素の固溶量の情報を得る分析ステップと、前記分析ステップにて得られた前記各情報に基づく分析結果のうちの少なくとも1つが所定の範囲を外れる場合に、析出物および/または介在物の組成、析出物および/または介在物のサイズ、着目元素の固溶量の一つ以上が変化する製造条件を少なくとも一つ修正する製造条件修正ステップと、前記製造条件修正ステップにて修正された製造条件により鋼材を製造する製造ステップBとを有し、前記分析ステップは、製造された鋼材を有機溶媒系の電解液中で電解し、電解後に、分散性を有する溶液に浸漬して超音波を付与することにより前記鋼材に付着している析出物および/または介在物を分散性を有する溶液中に分離後、該分散性を有する溶液を、一定の開口形状で貫通しているフィルタ孔を有し、かつ空隙率が4%以上のフィルタにより二段以上ろ過することにより、前記析出物および/または介在物をサイズ別に分別して、析出物および/または介在物の組成の情報、析出物および/または介在物のサイズの情報を得る分析をすることを特徴とする鋼材の製造方法。 Manufacturing step A for manufacturing a steel material, information on the composition of precipitates and / or inclusions, information on the size of precipitates and / or inclusions, and solid solution of the element of interest in the steel material manufactured in manufacturing step A An analysis step for obtaining quantity information, and a composition of precipitates and / or inclusions, a precipitate when at least one of analysis results based on the information obtained in the analysis step is out of a predetermined range And / or a manufacturing condition correcting step for correcting at least one manufacturing condition in which one or more of the inclusions and the solid solution amount of the element of interest change, and a steel material according to the manufacturing condition corrected in the manufacturing condition correcting step. It has a manufacturing step B to produce the analysis step is to electrolyze produced steel in an electrolytic solution of an organic solvent system, after the electrolysis, immersed in ultra-sound solution having a dispersibility After separating the precipitates and / or inclusions adhering to the steel material by applying a wave into a solution having dispersibility, the filter hole penetrates the solution having dispersibility in a certain opening shape. The precipitates and / or inclusions are separated according to size by filtering two or more stages through a filter having a porosity of 4% or more, and information on the composition of the precipitates and / or inclusions, precipitates And / or an analysis for obtaining information about the size of inclusions . 前記分析ステップは、鋼材を電解した後の有機溶媒系の電解液を分析し、前記電解液中の着目元素の濃度と鉄の濃度との比を求め、求められた比に前記鋼材の鉄の全濃度を乗じることで、着目元素の固溶量を分析することを特徴とする請求項1に記載の鋼材の製造方法。 The analysis step analyzes an organic solvent-based electrolytic solution after electrolyzing the steel material, determines a ratio between the concentration of the element of interest and the iron concentration in the electrolytic solution, and determines the ratio of the iron of the steel material to the determined ratio. The method for producing a steel material according to claim 1, wherein the solid solution amount of the element of interest is analyzed by multiplying the total concentration. 前記製造ステップAは、熱間加工工程を有し、前記製造条件修正ステップは、前記分析ステップにて得られた着目元素の固溶量が所定の範囲以下の場合、および/または、前記分析ステップにて得られた析出物および/または介在物のサイズが100nm超の析出物に含まれる着目元素の量が所定の範囲以上の場合に、前記熱間加工工程における再加熱温度を修正することを特徴とする請求項1または2に記載の鋼材の製造方法。 The production step A includes a hot working process, and the production condition correction step is performed when the solid solution amount of the element of interest obtained in the analysis step is equal to or less than a predetermined range and / or the analysis step. When the amount of the element of interest contained in the precipitate and / or the inclusion having a size of inclusions of more than 100 nm is a predetermined range or more, the reheating temperature in the hot working step is corrected. The method for producing a steel material according to claim 1 or 2, characterized in that 前記製造ステップAは、熱間加工工程および該熱間加工工程後引き続き行われる冷却工程を有し、前記製造条件修正ステップは、前記分析ステップにて得られた析出物および/または介在物の全体の量に対する、サイズ20〜100nmの析出物および/または介在物の比率が所定の範囲以上の場合に、前記冷却工程における冷却速度を修正することを特徴とする請求項1または2に記載の鋼材の製造方法。 The manufacturing step A includes a hot working process and a cooling process that is performed subsequently after the hot working process, and the manufacturing condition correcting step includes the entire precipitate and / or inclusions obtained in the analyzing step. The steel material according to claim 1 or 2 , wherein a cooling rate in the cooling step is corrected when a ratio of precipitates and / or inclusions having a size of 20 to 100 nm with respect to the amount is not less than a predetermined range. Manufacturing method. 前記製造ステップAは、熱間加工、冷却および特定温度域での中間保持の一連の工程を有し、前記製造条件修正ステップは、前記分析ステップにて得られたサイズ20nm未満の析出物および/または介在物に含まれる着目元素の量が所定の範囲以下で、かつ、前記分析ステップにて得られたサイズ20nm以上の析出物および/または介在物に含まれる着目元素の量が所定の範囲である場合に、前記中間保持工程における中間保持条件を修正することを特徴とする請求項1または2に記載の鋼材の製造方法。 The manufacturing step A includes a series of processes of hot working, cooling, and intermediate holding in a specific temperature range, and the manufacturing condition correcting step includes precipitates having a size of less than 20 nm obtained in the analysis step and / or Alternatively, the amount of the element of interest contained in the inclusion is within a predetermined range, and the amount of the element of interest contained in the precipitate and / or the inclusion having a size of 20 nm or more obtained in the analysis step is within the predetermined range. 3. The method for manufacturing a steel material according to claim 1, wherein the intermediate holding condition in the intermediate holding step is corrected in some cases. 請求項1〜のいずれかの方法により製造され、出荷後に熱処理を行い特性調整することを特徴とする鋼材の製造方法。 A method for producing a steel material, characterized in that the steel material is produced by the method according to any one of claims 1 to 5 and is subjected to heat treatment after shipment to adjust characteristics.
JP2008303355A 2008-11-28 2008-11-28 Steel manufacturing method Expired - Fee Related JP5163450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008303355A JP5163450B2 (en) 2008-11-28 2008-11-28 Steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008303355A JP5163450B2 (en) 2008-11-28 2008-11-28 Steel manufacturing method

Publications (2)

Publication Number Publication Date
JP2010126771A JP2010126771A (en) 2010-06-10
JP5163450B2 true JP5163450B2 (en) 2013-03-13

Family

ID=42327363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303355A Expired - Fee Related JP5163450B2 (en) 2008-11-28 2008-11-28 Steel manufacturing method

Country Status (1)

Country Link
JP (1) JP5163450B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937781B2 (en) * 1978-02-20 1984-09-12 新日本製鐵株式会社 Method and apparatus for electrolytic extraction separation of nonmetallic inclusions in a large amount of metal sample
JP3421942B2 (en) * 1997-07-18 2003-06-30 Jfeエンジニアリング株式会社 Slab for producing cold-rolled steel sheet for cans
JP3421941B2 (en) * 1997-07-18 2003-06-30 Jfeエンジニアリング株式会社 Cold rolled steel sheet for cans
JP3984431B2 (en) * 2001-04-04 2007-10-03 新日本製鐵株式会社 Electrolyte composition for steel materials and method for analyzing inclusions or precipitates thereby
JP2004317203A (en) * 2003-04-14 2004-11-11 Nippon Steel Corp Method of evaluating inclusion and precipitate in metal and evaluation tool therefor
JP4254551B2 (en) * 2003-07-31 2009-04-15 Jfeスチール株式会社 High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP4254550B2 (en) * 2003-07-31 2009-04-15 Jfeスチール株式会社 High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4737278B2 (en) * 2008-11-28 2011-07-27 Jfeスチール株式会社 Method for analyzing precipitates and / or inclusions in metal materials

Also Published As

Publication number Publication date
JP2010126771A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP6499159B2 (en) Copper alloy wire and method for producing the same
TWI691606B (en) Coppor alloy plate and method for producing the same
JP6385507B2 (en) Nb-containing ferritic stainless steel sheet and method for producing the same
KR101152438B1 (en) Method for analysis of metallic material
EP3040430A1 (en) Copper alloy sheet material and method for producing same, and current-carrying component
WO2015162986A1 (en) Material for cylindrical sputtering target
JP2014005534A (en) Steel material having excellent hic resistance and its production method
WO2010061487A1 (en) Method for analyzing metallic material
US20190301983A1 (en) Quality control process to assess the aluminized coating characteristics of hot stamped parts
JP2013124398A (en) Steel sheet for high strength sour resistant line pipe, and material therefor
Nguyen et al. Change of precipitate free zone during long-term creep in 2.25 Cr–1Mo steel
Pirtovšek et al. Three important points that relate to improving the hot workability of ledeburitic tool steels
JP5163450B2 (en) Steel manufacturing method
JP5163451B2 (en) Steel design method
JP5417830B2 (en) Steel quality control method and steel production method
JP5707666B2 (en) Steel quality control method
Ozgowicz The relationship between hot ductility and intergranular fracture in a CuSn6P alloy at elevated temperatures
JP5298810B2 (en) Method for quantifying precipitates and / or inclusions in metal materials
Barbosa et al. Influence of microstructure on pitting corrosion resistance of alloy 904L superaustenitic stainless steel
JP6044247B2 (en) Method for evaluating the resistance to hydrogen cracking of steel materials and steel sheets for high strength sour line pipes with good resistance to hydrogen cracking
JP3893358B2 (en) Phosphor bronze strip with excellent bending workability
CN110205591B (en) Aluminum alloy sputtering target material
JP5417834B2 (en) Steel quality control method and heat-treated steel manufacturing method
CN112424385B (en) Magnesium alloy sheet material and method for producing same
Reese et al. Hydrogen embrittlement of pulse-plated nickel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5163450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees