JP5298810B2 - Method for quantifying precipitates and / or inclusions in metal materials - Google Patents

Method for quantifying precipitates and / or inclusions in metal materials Download PDF

Info

Publication number
JP5298810B2
JP5298810B2 JP2008303353A JP2008303353A JP5298810B2 JP 5298810 B2 JP5298810 B2 JP 5298810B2 JP 2008303353 A JP2008303353 A JP 2008303353A JP 2008303353 A JP2008303353 A JP 2008303353A JP 5298810 B2 JP5298810 B2 JP 5298810B2
Authority
JP
Japan
Prior art keywords
precipitates
filter
electrolysis
size
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008303353A
Other languages
Japanese (ja)
Other versions
JP2010127789A (en
Inventor
哲史 城代
智治 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008303353A priority Critical patent/JP5298810B2/en
Publication of JP2010127789A publication Critical patent/JP2010127789A/en
Application granted granted Critical
Publication of JP5298810B2 publication Critical patent/JP5298810B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for quantifying fine nanometer-sized precipitates and the like in a metal material by size. <P>SOLUTION: The method for quantifying a precipitate and the like in a metal material includes: an electrolysis step of electrolyzing a metal sample in an electrolytic solution; an immersion step of immersing a remaining part of the metal sample extracted from the electrolytic solution in a dispersive solution; a separation step of filtering the precipitate and the like separated in the dispersive solution by a filter at least once; and a quantification step of quantifying a focused element content of the precipitate and the like captured by the filter. The relationship between the electrolyzed quantity and the quantified focused element content is determined by repeatedly performing the electrolysis step to the quantification step while changing the electrolyzed quantity of the metal sample in the electrolysis step. The focused element content of the precipitate and the like, when the electrolyzed quantity is extrapolated to 0, is determined to be the focused element content of the precipitate and the like having a size larger than a size defined from a filter hole size. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、金属材料中の析出物および/または介在物(以下、析出物等という)の定量方法、特にナノメートルサイズの微細な析出物等を大きさ別に定量する方法に関する。   The present invention relates to a method for quantifying precipitates and / or inclusions (hereinafter referred to as precipitates) in a metal material, and more particularly to a method for quantifying fine precipitates having a nanometer size by size.

金属材料中に存在する析出物等は、その形態、大きさ、ならびに分布によっては材料の諸特性、例えば、機械的性質や電磁気的性質などに大きな影響を及ぼす。特に、鉄鋼の分野においては、近年、析出物等を利用して鋼材の特性を向上させる技術が著しく発展し、それに伴って製造工程における析出物等の制御が重要になってきている。   Precipitates and the like present in a metal material have a great influence on various properties of the material, such as mechanical properties and electromagnetic properties, depending on the form, size, and distribution. In particular, in the field of steel, in recent years, techniques for improving the properties of steel materials using precipitates and the like have been remarkably developed, and accordingly, control of precipitates and the like in the manufacturing process has become important.

一般に、鋼材に含有される析出物等には、大きさや組成によって、特性を向上させるもの、特性を低下させるもの、あるいは特性に寄与しないものがあるが、所望の特性の鋼材を製造するためには、一定の大きさや組成の析出物等を安定して生成させることが重要となる。例えば、析出強化型高張力鋼板では、微細な析出物等を生成させて鋼板の高張力化が図られているが、最近では、サブナノメートルからナノメートルサイズの極めて微細な析出物等の制御が行われている。そのため、ナノメートルからサブミクロンメートルサイズの析出物等に対して、大きさ別に含有される元素を特定し、定量可能な方法が強く求められている。   Generally, precipitates and the like contained in steel materials include those that improve properties, those that degrade properties, or those that do not contribute to properties, depending on the size and composition, in order to produce steel materials with desired properties. It is important to stably generate precipitates having a certain size and composition. For example, in precipitation-strengthened high-tensile steel sheets, fine precipitates are generated to increase the tension of the steel sheet. Has been done. Therefore, there is a strong demand for a method capable of specifying and quantifying elements contained by size for precipitates of nanometer to submicrometer size.

鋼材中の析出物等を定量する技術として、非特許文献1には、酸分解法、ハロゲン法、電解法などが挙げられており、特に、図1に示した手順で行われる電解法が優れていることが示されている。この電解法では、電解液中で鉄マトリックスを溶解させ、電解液中に分離された析出物等を回収する固液分離手段として、フィルタを用い、比較的小さな析出物等の凝集と比較的大きな析出物等によるフィルタ孔の閉塞とを組み合わせて、すなわち、比較的大きな析出物等によるフィルタ孔の閉塞により、凝集した比較的小さな析出物等をフィルタ上に堆積させてケークろ過(堆積した析出物等自身がさらにフィルタとして作用するろ過機構)が機能されて、全ての析出物等が回収される。そのため、析出物等の総量を定量することは可能であるが、析出物等の大きさ別に関する知見を得ることはできない。   Non-Patent Document 1 includes acid decomposition method, halogen method, electrolysis method, etc. as techniques for quantifying precipitates and the like in steel materials, and in particular, the electrolysis method performed by the procedure shown in FIG. 1 is excellent. It is shown that. In this electrolysis method, a filter is used as a solid-liquid separation means for recovering precipitates separated in the electrolytic solution by dissolving the iron matrix in the electrolytic solution, and relatively small aggregates and relatively large aggregates. Combined with blockage of filter holes due to deposits, etc., that is, due to blockage of filter holes due to relatively large precipitates, etc., relatively small aggregates etc. aggregated on the filter and cake filtered (deposited deposits) The filtration mechanism in which the filter itself functions as a filter is further functioned, and all precipitates and the like are collected. Therefore, although it is possible to quantify the total amount of precipitates and the like, it is not possible to obtain knowledge regarding the size of the precipitates and the like.

一方、析出物等を大きさ別に分けて定量する技術は、非特許文献1に記載の方法を土台として幾つか提案されているが、いずれも析出物等の凝集解消やケーク層(フィルタ上の析出物等の堆積層)の形成防止を主眼としている。例えば、特許文献1には、鋼材中の非金属介在物を化学的に液体中に分離し、ろ過時に、金属フィルタを用いて効果的に超音波を付与して、非金属介在物の凝集解消とケーク層の形成防止を図り、非金属介在物を大きさ別に分別する技術が開示されている。しかしながら、特許文献1の技術は、数ミクロンメートル以上の粗大な非金属介在物に対しては有効な手法だが、ナノメートルからサブミクロンメートルサイズの極めて微細な析出物等に適用するには問題がある。これは、微細な粒子ほど液体中で強い凝集性を示すため、ナノメートルからサブミクロンメートルサイズの析出物等の凝集体に対しては、超音波を付与してもその凝集を解消させることが難しく、また、超音波の効果を十分に発揮させるためのナノメートルからサブミクロンメートルサイズのフィルタ孔を有する金属フィルタが存在しないためである。特許文献2には、フィルタ孔径1μm以下の有機質フィルタを用い、超音波振動を付与して1μm以下の析出物等を分別する技術が開示されている。しかし、特許文献2の技術では、特許文献1の場合と同様、超音波による1μm以下の微細な析出物等の凝集解消は困難である。また、有機質フィルタは金属フィルタと違い、材質的に超音波の伝播や反射が不十分なため、フィルタ孔の閉塞を超音波振動によって解消させることができず、前述のフィルタ上にケーク層が形成され、フィルタ孔径通りの析出物の分別がなされない。非特許文献2には、フィルタ孔径の異なるフィルタを用い、ろ過を2回して、銅合金中の析出物等を大きさ別に分別する技術が開示されている。しかし、非特許文献2の技術でも、析出物等の凝集やケーク層の形成に関する問題が解決されておらず、大きさ別の定量を行うことができない。
特公昭53-37595号公報 特開昭58-119383号公報 日本鉄鋼協会「鉄鋼便覧第四版(CD-RM)」第四巻2編3.5 日本金属学会「まてりあ」第45巻第1号52頁(2006)
On the other hand, several techniques for quantifying precipitates by size are proposed based on the method described in Non-Patent Document 1, all of which are used to eliminate aggregation of precipitates and cake layers (on the filter). The main purpose is to prevent the formation of deposits. For example, in Patent Document 1, nonmetallic inclusions in steel materials are chemically separated into liquid, and during filtration, ultrasonic waves are effectively applied using a metal filter to eliminate aggregation of nonmetallic inclusions. And a technique for separating non-metallic inclusions according to size in order to prevent formation of a cake layer. However, the technique of Patent Document 1 is an effective method for coarse non-metallic inclusions of several micrometers or more, but there are problems in applying it to extremely fine precipitates of nanometer to submicrometer size. is there. This is because finer particles exhibit stronger agglomeration properties in liquids, so that aggregation can be eliminated even when ultrasonic waves are applied to aggregates such as precipitates of nanometer to submicrometer size. This is because it is difficult and there is no metal filter having filter holes of nanometer to submicrometer size in order to sufficiently exert the effect of ultrasonic waves. Patent Document 2 discloses a technique that uses an organic filter having a filter pore diameter of 1 μm or less and applies ultrasonic vibration to separate precipitates of 1 μm or less. However, in the technique of Patent Document 2, as in Patent Document 1, it is difficult to eliminate aggregation of fine precipitates of 1 μm or less using ultrasonic waves. In addition, unlike metal filters, organic filters are not sufficiently propagated and reflected by ultrasonic waves, so the clogging of filter holes cannot be eliminated by ultrasonic vibration, and a cake layer is formed on the aforementioned filter. Thus, the precipitates according to the filter pore diameter are not separated. Non-Patent Document 2 discloses a technique for separating precipitates and the like in a copper alloy according to size by using filters with different filter pore diameters and performing filtration twice. However, even the technique of Non-Patent Document 2 does not solve the problems related to the aggregation of precipitates and the formation of a cake layer, and cannot be quantified by size.
Japanese Patent Publication No.53-37595 JP 58-119383 A Japan Iron and Steel Association "Steel Handbook 4th Edition (CD-RM)" Vol. 4, 2 3.5 The Japan Institute of Metals “Materia” Vol. 45, No. 1, p. 52 (2006)

以上のように、従来技術においては、析出物等の凝集とケーク層の形成の問題があり、ナノメートルからサブミクロンメートルサイズ(特に、大きさ1μm以下、より望ましくは大きさ200nm以下)の析出物等を、大きさ別に定量することができない。   As described above, in the prior art, there is a problem of agglomeration of precipitates and the formation of a cake layer, and precipitation of nanometer to submicrometer size (particularly, size 1 μm or less, more preferably size 200 nm or less). Things cannot be quantified by size.

本発明は、かかる事情を鑑みてなされたもので、金属材料中に含まれるナノメートルサイズの微細な析出物等を大きさ別に定量する方法を提供することを課題とする。   This invention is made | formed in view of this situation, and makes it a subject to provide the method of quantifying the nanometer-sized fine deposits etc. which are contained in a metal material according to magnitude | size.

図1に示した非特許文献1に開示される電解抽出法は、鉄マトリクスを溶解することで、鋼中析出物等を安定的に回収することができる方法であり、析出物等を回収し定量する標準的な方法(以下、標準法という)とみなされている。そして、前述した特許文献1、2は、この標準法に基づいている。しかし、標準法をはじめとする従来の方法では、上述したようにさまざまな問題がある。そこで、本発明者らは、従来の標準法にとらわれない方法を発明すべく、鋭意研究を行った。以下に、得られた知見を示す。   The electrolytic extraction method disclosed in Non-Patent Document 1 shown in FIG. 1 is a method capable of stably recovering precipitates in steel, etc. by dissolving an iron matrix. It is regarded as a standard method for quantification (hereinafter referred to as standard method). Patent Documents 1 and 2 described above are based on this standard method. However, the conventional methods including the standard method have various problems as described above. Therefore, the present inventors have intensively studied to invent a method that is not confined to the conventional standard method. The obtained findings are shown below.

上述の標準法の問題点を整理すると、分離された析出物等の分散媒として析出物等に対して分散性の低いメタノールを用いていること、および全量回収に適した閉塞しやすいフィルタを用いていることに根本的な問題点があり、これにより微細な析出物等を大きさ別に分別することが妨げられていたものと推測される。つまり、析出物等に対して分散性の低いメタノールを分散媒としているため、微細な析出物等は容易に凝集してしまい、超音波などの物理的作用を与えたとしても、その凝集を完全に解消させることは不可能であり、その上、閉塞しやすいフィルタを用いれば、凝集した析出物等がフィルタ孔を閉塞してケーク層が形成されやすくなるので、ナノメートルからサブミクロンメートルサイズの析出物等を大きさ別に分別することが困難になると考えられる。   To sort out the problems of the above-mentioned standard method, methanol that has low dispersibility with respect to precipitates, etc. is used as a dispersion medium for separated precipitates, etc., and a filter that is easy to close is suitable for total recovery. It is presumed that there was a fundamental problem in that the separation of fine precipitates and the like by size was hindered. In other words, since methanol, which has low dispersibility with respect to precipitates, is used as a dispersion medium, fine precipitates easily agglomerate, and even if a physical action such as ultrasonic waves is applied, the aggregation is completely eliminated. In addition, if a filter that easily closes is used, agglomerated precipitates close the filter pores and a cake layer is easily formed. It is thought that it becomes difficult to sort precipitates by size.

そこで、本発明者らは、先ず、析出物等の凝集を解消するために、析出物等の分散媒について検討したところ、水溶液系分散媒(以下、分散性を有する溶液と呼ぶ。)による電気化学的作用によって、大きさ1μm以下の析出物等に対しても分散性を付与できることを見出した。   Accordingly, the present inventors first examined a dispersion medium such as precipitates in order to eliminate aggregation of precipitates and the like, and found that electricity by an aqueous dispersion medium (hereinafter referred to as a solution having dispersibility) was used. It has been found that dispersibility can be imparted to precipitates having a size of 1 μm or less by chemical action.

しかし、標準法で用いられている電解液の主成分は分散性の低いメタノールであるので、析出物等に分散性を付与するためには、析出物等を電解液から分散性を有する溶液へ移す必要がある。そのためには、析出物等と電解液とを分離させる固液分離操作が必要となる。そこで、従来の標準法にしたがい、電解液中の析出物等と分散媒(具体的にはメタノール)中に分離した析出物等とを回収するために行われている固液分離手段としての「ろ過」操作を行ったところ、ろ過によって析出物等の一部(特に、大きさ200nm以下のサブナノメートルからナノメートルサイズの微細なもの)が失われる可能性があることがわかった。   However, since the main component of the electrolytic solution used in the standard method is methanol with low dispersibility, in order to impart dispersibility to the precipitate, etc., the precipitate is changed from the electrolytic solution to a solution having dispersibility. It is necessary to move. For this purpose, a solid-liquid separation operation for separating the precipitate and the electrolytic solution is required. Therefore, according to the conventional standard method, as a solid-liquid separation means that is performed to recover the precipitates in the electrolytic solution and the precipitates separated in the dispersion medium (specifically methanol). When the “filtration” operation was performed, it was found that some of the precipitates (particularly, sub-nanometers having a size of 200 nm or less to fine ones having a nanometer size) may be lost by the filtration.

この結果を踏まえて、従来から行われている標準法以外の固液分離手段を得るべく、鋼材試料を用いてさらに検討した。その結果、電解中および/または電解後は、ほぼ全ての析出物等が鋼材試料に付着したままの状態であることを知見した。これは従来にない全く新しい知見であり、この知見から、電解中および/または電解後に鋼材試料の残部を電解液から取り出せば、容易に固液分離を実現できることになる。そして、凝集の問題解決のための上記知見を組み合わせて、分散性を有する溶液中に析出物等を分離すれば、析出物等の凝集を解消できることになる。この付着現象の詳細については不明であるが、電解中および/または電解後における鋼材試料と析出物等の電気的作用によるものと推測される。   Based on this result, in order to obtain solid-liquid separation means other than the conventional standard method, further examination was performed using steel samples. As a result, it was found that almost all precipitates and the like remain attached to the steel material sample during and / or after electrolysis. This is a completely new knowledge that has not been obtained so far. From this knowledge, solid-liquid separation can be easily realized if the remainder of the steel material sample is taken out from the electrolyte during and / or after electrolysis. Then, by combining the above findings for solving the aggregation problem and separating the precipitates in the dispersible solution, the aggregation of the precipitates can be eliminated. Although details of this adhesion phenomenon are unknown, it is presumed to be due to the electrical action of the steel material sample and precipitates during and / or after electrolysis.

このように、鋼材試料に付着した析出物等を、分散性を有する溶液中で電気化学的作用によって高度に分散させることで、析出物等の凝集を解消することができる。その結果、特許文献1や2のように、溶媒(水やメタノールを含む)中での超音波という物理的作用をろ過の際に付与することは必要でなくなり、超音波の使用が妨げていた脆弱な材質や構造のフィルタやメタノールの使用が妨げていた非水溶媒溶解性フィルタの適用も可能となる。   In this manner, precipitates and the like attached to the steel material sample are highly dispersed by an electrochemical action in a solution having dispersibility, whereby aggregation of the precipitates and the like can be eliminated. As a result, as in Patent Documents 1 and 2, it is no longer necessary to apply the physical action of ultrasonic waves in a solvent (including water and methanol) during filtration, which hinders the use of ultrasonic waves. It is also possible to apply a filter having a fragile material or structure or a non-aqueous solvent-soluble filter that has prevented the use of methanol.

なお、本発明においては、本発明の範囲が金属試料の残部に付着した析出物等のみを分析する場合に限定されない。すなわち、金属試料の残部に付着した析出物等に加え、何らかの理由で電解液に含まれた析出物等の分析結果を加えることもできる。これにより、分析値がより正確になる場合もある。   In the present invention, the scope of the present invention is not limited to the case of analyzing only the deposits and the like attached to the remainder of the metal sample. That is, in addition to precipitates and the like attached to the remainder of the metal sample, analysis results such as precipitates contained in the electrolytic solution for some reason can be added. Thereby, the analysis value may be more accurate.

次に、本発明者らは、ケーク層の形成の問題について検討を重ねた結果、通過するフィルタの同一面積に対する、電解時における金属試料から分離する析出物の密度を減らしていくと、フィルタ孔の閉塞が起きにくくなりケーク層の形成が抑制されること、および金属試料から分離する析出物の密度と金属試料の電解量には正の相関があること、に着目し、電解量と析出物等の定量結果との関係を求め、電解量を0に外挿したときの定量値を用いれば、析出物等を大きさ別に定量できることを見出した。以下に、その詳細を説明する。   Next, as a result of repeated investigations on the problem of the formation of the cake layer, the inventors have reduced the density of precipitates separated from the metal sample during electrolysis with respect to the same area of the filter to pass through, Focusing on the fact that the clogging of the metal sample is less likely to occur and the formation of the cake layer is suppressed, and that the density of the precipitate separated from the metal sample and the amount of electrolysis of the metal sample have a positive correlation, It was found that the precipitates and the like can be quantified by size by using the quantitative value when the amount of electrolysis is extrapolated to 0 by obtaining the relationship with the quantitative results such as. The details will be described below.

凝集していない析出物等を含む溶液を、所定のフィルタ孔径のフィルタでろ過すると、理想的には、フィルタ孔径と析出物等の大きさに応じて、フィルタに捕集される析出物等とフィルタを通過する析出物等とに分離されるはずである。ところが、実際には、フィルタ孔の閉塞によって、本来通過すべき析出物等がフィルタに捕集されることがある。これは、フィルタ孔径よりも大きな一つの析出物等が一つのフィルタ孔を完全に閉塞できない場合に発生する架橋現象(液体中の移動粒子がフィルタ孔の開口部およびその周辺で阻止され、重なり合ってアーチを形成すること)によるものと考えられる。つまり、この架橋現象によって、ケーク層が形成され、フィルタ孔径未満の大きさの析出物等もフィルタに捕集される。したがって、フィルタに捕集された析出物等を定量しても、フィルタ孔径以上の大きさの析出物等を定量したことにはならない。同様に、本来フィルタを通過するべき析出物等がフィルタ孔の閉塞によってフィルタに捕集されることで、フィルタを通過したろ液中の析出物等を定量しても、フィルタ孔径未満の大きさの析出物等を定量したことにはならない。   When a solution containing precipitates and the like not aggregated is filtered with a filter having a predetermined filter pore size, ideally, the precipitates collected by the filter according to the filter pore size and the size of the precipitates, etc. It should be separated into precipitates and the like passing through the filter. However, in practice, precipitates and the like that should pass through may be collected by the filter due to the blockage of the filter holes. This is a cross-linking phenomenon that occurs when a single precipitate, etc., larger than the filter pore diameter cannot completely close one filter pore (the moving particles in the liquid are blocked and overlapped at the opening of the filter pore and its surroundings). This is probably due to the formation of arches. That is, a cake layer is formed by this cross-linking phenomenon, and precipitates having a size smaller than the filter pore diameter are also collected by the filter. Therefore, even if the precipitates collected by the filter are quantified, the precipitates having a size larger than the filter pore diameter are not quantified. Similarly, the precipitates that should pass through the filter are collected by the filter due to the filter hole clogging, so even if the precipitates in the filtrate that has passed through the filter are quantified, the size is smaller than the filter hole diameter. This does not mean that the amount of precipitates etc. was quantified.

いま、金属試料の電解量mをΔmだけ増加させ、新たな電解量(m+Δm)でフィルタによりろ過すると、電解量Δmに存在する析出物等に対するフィルタ孔の閉塞の影響は電解量mの場合より著しく大きくなる。そのため、フィルタ孔の閉塞がなくケーク層が形成されない理想的な場合には、電解量の多寡に関わらず析出物等の定量結果、すなわち着目元素の含有率は一定となるはずだが、新たな電解量(m+Δm)における着目元素の含有率Cm+Δmは、電解量mにおける着目元素の含有率Cmより大きくなる。反対に、電解量mをΔmだけ減少させ、新たな電解量(m-Δm)でフィルタによりろ過すると、ケーク層の形成が抑制され、新たな電解量(m-Δm)における着目元素の含有率Cm-Δmは、電解量mにおける着目元素の含有率Cmより小さくなる。したがって、次の式(1)および(2)に示すように、電解量mを0にすれば、フィルタ孔の閉塞がなくケーク層が形成されない理想的な場合が達成され、着目元素の含有率が得られることになる。 Now, if the amount of electrolysis m of the metal sample is increased by Δm and filtered through a filter with a new amount of electrolysis (m + Δm), the effect of the filter hole clogging on the precipitates etc. present in the amount of electrolysis Δm It is significantly larger than the case. Therefore, in an ideal case where the filter layer is not clogged and the cake layer is not formed, the quantitative result of precipitates, that is, the content of the element of interest should be constant regardless of the amount of electrolysis. the amount (m + Δm) content C m + Delta] m of the aimed element in is greater than the content of C m of the target element in the electrolyte quantity m. Conversely, if the amount of electrolysis m is reduced by Δm and filtered with a new electrolysis amount (m-Δm), the formation of the cake layer is suppressed, and the content of the element of interest in the new electrolysis amount (m-Δm) C m−Δm is smaller than the content C m of the element of interest in the electrolysis amount m. Therefore, as shown in the following formulas (1) and (2), when the amount of electrolysis m is set to 0, an ideal case where the filter layer is not blocked and the cake layer is not formed is achieved, and the content ratio of the element of interest Will be obtained.

Figure 0005298810
Figure 0005298810

ここで、
Rm:電解量mのときに所定のフィルタ孔径のフィルタに捕集された着目元素の重量、
Fm:電解量mのときに所定のフィルタ孔径のフィルタを通過した着目元素の重量、
CRm:電解量mのときに所定のフィルタ孔径のフィルタに捕集された析出物等から求めた着目元素の含有率(試料の全組成を基準(=1)とする)、
CFm:電解量mのときに所定のフィルタ孔径のフィルタを通過したろ液中の析出物等から求めた着目元素の含有率(試料の全組成を基準(=1)とする)、
CR:試料中の所定のフィルタのフィルタ孔径から定義される大きさ以上の大きさの析出物等に含まれる着目元素の含有率(試料の全組成を基準(=1)とする)、
CF:試料中の所定のフィルタのフィルタ孔径から定義される大きさ未満の大きさの析出物等に含まれる着目元素の含有率(試料の全組成を基準(=1)とする)、
である。ここで、フィルタ孔径から定義される大きさとは、公称のフィルタ孔径のことではなく、実際にフィルタ孔径で捕集される析出物等の最小の大きさのことを意味する。
here,
R m : Weight of the element of interest collected in a filter having a predetermined filter pore size when the amount of electrolysis is m,
F m : Weight of the element of interest that has passed through a filter having a predetermined filter pore size when the amount of electrolysis is m,
C Rm : Content of the element of interest obtained from precipitates collected in a filter having a predetermined filter pore size when the amount of electrolysis is m (the total composition of the sample is set as a reference (= 1)),
C Fm : Content of the element of interest obtained from precipitates in the filtrate that passed through a filter having a predetermined filter pore size when the amount of electrolysis is m (the total composition of the sample is set as a reference (= 1)),
C R : the content of the element of interest contained in precipitates having a size larger than the size defined by the filter pore size of the predetermined filter in the sample (with the total composition of the sample as the reference (= 1)),
C F : Content ratio of the element of interest contained in precipitates having a size less than the size defined by the filter pore size of the predetermined filter in the sample (with the total composition of the sample as the reference (= 1)),
It is. Here, the size defined from the filter hole diameter means not the nominal filter hole diameter but the minimum size of precipitates or the like actually collected by the filter hole diameter.

しかしながら、実際には電解量を0にすることはできないので、電解量mを変化させて、析出物等中の着目元素の含有率を定量し、電解量mと所定のフィルタ孔径のフィルタに捕集された析出物等またはフィルタを通過した析出物等に含まれる着目元素の含有率との関係を求め、電解量を0に外挿して含有率を求めれば、析出物等に含まれる着目元素の含有率を定量できることになる。   However, since the amount of electrolysis cannot actually be reduced to zero, the amount of electrolysis m is varied to quantify the content of the element of interest in the precipitates and the like, and the amount of electrolysis m and a filter with a predetermined filter pore diameter are captured. Find the relationship with the content of the element of interest contained in the collected precipitates, etc. or the precipitate passed through the filter, and extrapolate the amount of electrolysis to 0 to obtain the content, then the element of interest contained in the precipitate, etc. The content of can be quantified.

本発明は、以上の知見に基づきなされたもので、金属試料を電解液中で電解する電解ステップと、前記電解液から取り出した金属試料の残部を分散性を有する溶液に浸漬する浸漬ステップと、前記分散性を有する溶液に分離された析出物等をフィルタにより1回以上ろ過する分別ステップと、前記フィルタに捕集された析出物等に含まれる着目元素の含有率を定量する定量ステップとを備え、前記電解ステップにおいて前記金属試料の電解量を変えて、前記電解ステップから前記定量ステップまでを繰り返し、電解量と定量された着目元素の含有率との関係を求め、前記電解量を0に外挿したときの含有率を前記フィルタのフィルタ孔径から定義される大きさ以上の大きさを有する析出物等に含まれる着目元素の含有率とすることを特徴とする金属材料中の析出物等の定量方法を提供する。   The present invention was made based on the above knowledge, an electrolysis step of electrolyzing a metal sample in an electrolytic solution, an immersion step of immersing the remainder of the metal sample taken out of the electrolytic solution in a solution having dispersibility, A separation step of filtering the precipitate separated into the dispersible solution at least once with a filter, and a quantification step of quantifying the content of the element of interest contained in the precipitate collected in the filter And changing the amount of electrolysis of the metal sample in the electrolysis step, repeating from the electrolysis step to the quantification step, obtaining the relationship between the electrolysis amount and the content of the quantified element of interest, and setting the electrolysis amount to 0 The content rate when extrapolated is the content rate of the element of interest contained in precipitates having a size greater than the size defined from the filter pore diameter of the filter It provides a method of quantifying a precipitate or the like of the genus material.

本発明は、また、金属試料を電解液中で電解する電解ステップと、前記電解液から取り出した金属試料の残部を分散性を有する溶液に浸漬する浸漬ステップと、前記分散性を有する溶液に分離された析出物等をフィルタにより1回以上ろ過する分別ステップと、前記フィルタを通過した析出物等に含まれる着目元素の含有率を定量する定量ステップとを備え、前記電解ステップにおいて前記金属試料の電解量を変えて、前記電解ステップから前記定量ステップまでを繰り返し、電解量と定量された着目元素の含有率との関係を求め、電解量を0に外挿したときの含有率を前記フィルタのフィルタ孔径から定義される大きさ未満の大きさを有する析出物等に含まれる着目元素の含有率とすることを特徴とする金属材料中の析出物等の定量方法を提供する。   The present invention also separates an electrolysis step of electrolyzing a metal sample in an electrolyte solution, an immersion step of immersing the remainder of the metal sample taken out of the electrolyte solution in a solution having dispersibility, and the solution having dispersibility. A separation step of filtering the deposited precipitates etc. once or more with a filter, and a quantification step of quantifying the content of the element of interest contained in the precipitates etc. that have passed through the filter, and in the electrolysis step, The amount of electrolysis was changed and the electrolysis step to the quantification step were repeated to determine the relationship between the amount of electrolysis and the content of the quantified element of interest, and the content when the amount of electrolysis was extrapolated to 0 Providing a method for quantifying precipitates in metal materials characterized by the content of the element of interest contained in precipitates having a size less than the size defined by the filter pore size To.

本発明の定量方法では、分別ステップにおいて、直孔を有し、かつ空隙率が4%以上のフィルタを用いることが好ましい。ここで、直孔とは、一定の開口形状でフィルタ面を貫通しているフィルタ孔のことをいう。また、定量ステップにおいて、金属試料の残部に付着した析出物等を定量することが好ましい。さらに、浸漬ステップにおいて、分散性を有する溶液は、定量対象の析出物等に対するゼータ電位の絶対値が30mV以上であることが好ましい。   In the quantification method of the present invention, it is preferable to use a filter having a straight hole and a porosity of 4% or more in the fractionation step. Here, the straight hole means a filter hole penetrating the filter surface with a certain opening shape. Moreover, it is preferable to quantify the deposits and the like adhering to the remainder of the metal sample in the quantitative step. Furthermore, in the immersion step, the solution having dispersibility preferably has an absolute value of zeta potential of 30 mV or more with respect to the precipitate to be quantified.

本発明によれば、金属材料中に存在する微細な析出物等(特に、大きさ1μm以下、より望ましくは大きさ200nm以下)を損失並びに凝集させることなく分離できるので、析出物等を大きさ別に定量できる。本発明の定量方法で得られた結果は、金属材料の諸性質に関する新たな知見となり、不良品発生の原因解明や新材料の開発等に有益な示唆を与えることになる。   According to the present invention, fine precipitates and the like (especially, a size of 1 μm or less, more preferably a size of 200 nm or less) present in a metal material can be separated without loss and aggregation, so It can be quantified separately. The result obtained by the quantification method of the present invention provides new knowledge about various properties of the metal material, and provides useful suggestions for elucidating the cause of defective products and developing new materials.

本発明の定量方法の特徴は、電解後の析出物等が付着した金属試料の残部を、分散性を有する溶液に浸漬し、試料に付着した析出物等を凝集させずに分離することと、分散性を有する溶液中に分離された析出物等を、フィルタにより分別し、定量することにある。そこで、鋼材試料を例にとって、析出物等を分離するための分散性を有する溶液を最適化する手順と、分離された析出物等をフィルタにより分別し、定量する手順について、以下に詳述する。   The characteristic of the quantitative method of the present invention is that the remainder of the metal sample to which the deposits and the like after electrolysis are attached is immersed in a solution having dispersibility and separated without agglomerating the deposits and the like attached to the sample, The purpose is to separate and quantify precipitates and the like separated in a solution having dispersibility by a filter. Therefore, taking a steel sample as an example, a procedure for optimizing a dispersible solution for separating precipitates and a procedure for separating and quantifying separated precipitates with a filter will be described in detail below. .

1) 分散性を有する溶液の最適化手順
図2に、分散性を有する溶液を最適化する場合の操作フローを示す。分散性を有する溶液の最適化は、図2に示すステップ(1)〜(6)にしたがって行われ、各ステップでは、次のようなことが具体的に行われる。
ステップ(1):鋼材を適当な大きさに加工して、電解用の試料とする。
ステップ(2):電解液とは異なりかつ分散性を有する溶液を、析出物等の分離用として電解液とは別に準備する。ここで、電解用試料の表面に付着した析出物等を分散性溶液中に分散させるには、電解液の半分以下の液量で充分である。なお、分散性を有する溶液の分散剤については、後述する。
ステップ(3):試料を所定量だけ電解する。ここで、所定量とは、適宜設定されるものであり、後述するゼータ電位の測定や元素分析を行える程度の量のことである。また、電解は、図3に示すような電解装置7により行える。この電解装置7は、試料1の固定用治具2、電極3、電解液6、電解液6を入れる為のビーカー4、および電流を供給する定電流電源5を備えている。固定用治具2は定電流電源5の陽極に、電極3は定電流電源5の陰極に接続される。試料1は、固定用治具2に接続され、電解液6中に浸漬される。電極3は、電解液6に浸漬されると共に、電解液6中に浸漬された試料1の表面を覆うように配置される。普通鋼材の試料には、固定用治具2として、永久磁石を用いるのが最も簡便である。ただし、永久磁石は電解液6に接触して溶解するおそれがあるので、電解液6と接触しやすい箇所、図3の2a部に白金板を使用する。電極3も同様に、電解液6による溶解を防ぐために、白金板を用いる。試料1の電解は、定電流電源5より電極3へ電荷を供給することで行う。試料の電解量はクーロン量に比例するので、電流が一定であれば電解時間で決まる。
ステップ(4):電解されずに残った試料を電解液から取り外し、ステップ(2)で準備した分散性を有する溶液中に浸漬して、試料に付着している析出物等を分散性を有する溶液中に分離する。このとき、試料に付着している析出物等を、より効率よく剥離して分散性を有する溶液中に分離するために、試料を分散性を有する溶液中に浸漬したままで超音波を付与することが好ましい。そして、試料を分散性を有する溶液から取り出すが、取り出しの際には、分散性を有する溶液と同一の溶液で試料を洗浄することが好ましい。
ステップ(5):ステップ(4)後の析出物等が分離された分散性を有する溶液のゼータ電位を計測する。
ステップ(6):ステップ(5)で計測したゼータ電位の絶対値が30mVに満たない場合には、分散剤の種類や濃度を変えてステップ(2)から(6)までを繰り返す。一方、ゼータ電位の絶対値が30mV以上に達した場合に、分散性を有する溶液が最適化されたとする。
1) Optimization procedure for a solution having dispersibility Fig. 2 shows an operation flow for optimizing a solution having dispersibility. Optimization of the solution having dispersibility is performed according to steps (1) to (6) shown in FIG. 2, and in each step, the following is specifically performed.
Step (1): A steel material is processed into an appropriate size to obtain a sample for electrolysis.
Step (2): A solution different from the electrolyte and having dispersibility is prepared separately from the electrolyte for separating precipitates and the like. Here, in order to disperse the deposits and the like adhering to the surface of the electrolysis sample in the dispersible solution, the amount of liquid less than half of the electrolyte is sufficient. The dispersant for the solution having dispersibility will be described later.
Step (3): Electrolyze a sample by a predetermined amount. Here, the predetermined amount is set as appropriate, and is an amount capable of performing zeta potential measurement and elemental analysis described later. Electrolysis can be performed by an electrolysis apparatus 7 as shown in FIG. The electrolyzer 7 includes a fixing jig 2 for the sample 1, an electrode 3, an electrolyte solution 6, a beaker 4 for containing the electrolyte solution 6, and a constant current power source 5 for supplying current. The fixing jig 2 is connected to the anode of the constant current power source 5, and the electrode 3 is connected to the cathode of the constant current power source 5. The sample 1 is connected to the fixing jig 2 and immersed in the electrolytic solution 6. The electrode 3 is immersed in the electrolytic solution 6 and is disposed so as to cover the surface of the sample 1 immersed in the electrolytic solution 6. It is most convenient to use a permanent magnet as the fixing jig 2 for the normal steel material sample. However, since the permanent magnet may come into contact with the electrolytic solution 6 and dissolve, a platinum plate is used in the portion 2a in FIG. Similarly, the electrode 3 uses a platinum plate in order to prevent dissolution by the electrolytic solution 6. Electrolysis of the sample 1 is performed by supplying a charge from the constant current power source 5 to the electrode 3. Since the amount of electrolysis of the sample is proportional to the amount of coulomb, it is determined by the electrolysis time if the current is constant.
Step (4): Remove the sample left unelectrolyzed from the electrolyte and immerse it in the solution with dispersibility prepared in step (2) to disperse the deposits adhering to the sample. Separate into solution. At this time, ultrasonic waves are applied while the sample is immersed in the dispersible solution in order to more efficiently separate the deposits and the like adhering to the sample and separate them into the dispersible solution. It is preferable. And although a sample is taken out from the solution which has dispersibility, when taking out, it is preferable to wash | clean a sample with the same solution as the solution which has dispersibility.
Step (5): Measure the zeta potential of the dispersible solution from which the precipitates and the like after step (4) are separated.
Step (6): If the absolute value of the zeta potential measured in step (5) is less than 30 mV, change the type and concentration of the dispersant and repeat steps (2) to (6). On the other hand, it is assumed that a solution having dispersibility is optimized when the absolute value of the zeta potential reaches 30 mV or more.

なお、図2においては、ゼータ電位を測定し、ゼータ電位が30mV以上に達した場合に、その時の分散剤と濃度を、対象析出物等に対する分散性溶液の最適条件と決定したが、本発明の分析方法においては、析出物等が分散性を有する溶液中で凝集することなく十分に分散していれば問題ないので、分散性を有する溶液の最適化の指標としては、ゼータ電位に限定されるものではない。また、分散性を有する溶液とゼータ電位に関して、詳細は後述する。   In FIG. 2, the zeta potential was measured, and when the zeta potential reached 30 mV or more, the dispersant and concentration at that time were determined as the optimum conditions for the dispersible solution with respect to the target precipitate, etc. In this analysis method, there is no problem if the precipitates are sufficiently dispersed without agglomerating in the dispersible solution. Therefore, the optimization index of the dispersible solution is limited to the zeta potential. It is not something. Details of the dispersible solution and the zeta potential will be described later.

2) 分離された析出物等の分級、定量手順
図4に、分散性を有する溶液に分離された析出物等を大きさ別に分別し、定量する操作フローを示す。析出物等の分別、定量は、図4に示すステップ(7)〜(10)にしたがって行われ、各ステップでは、次のようなことが具体的に行われる。
ステップ(7):図2の操作で最適化された分散性を有する溶液を用い、図2と同様なステップ(1)〜(4)により析出物等を分散性を有する溶液に分離する。なお、ステップ(3)においては、試料の電解量が予め決定した電解量Wnになるように、クーロン量を設定する。
ステップ(8):析出物等を含む分散性を有する溶液を、所定のフィルタ孔径Dのフィルタを用いてろ過し、フィルタに捕集された析出物等とフィルタを通過した析出物等をそれぞれ酸溶解した後、着目元素の定量を行い、フィルタに捕集された析出物等とフィルタを通過した析出物等に含まれる着目元素の含有率、それぞれCRnとCFnを求める。
ステップ(9):ステップ(7)と(8)の操作を、電解量Wnとは異なる電解量Wn+1で繰り返し、CRn+1とCFn+1を求める。なお、変化させる電解量は、少なくとも2水準、好ましくは4水準である。
ステップ(10):以上の操作で得られたWnとCRnあるいはCFnとの関係を回帰計算により数式化し、電解量Wnが0のときの、すなわち電解量Wnを0に外挿したときのCRあるいはCFを求め、それぞれフィルタ孔径から定義される大きさD以上の大きさの析出物等に含まれる着目元素の含有率、フィルタ孔径から定義される大きさD未満の大きさの析出物等に含まれる着目元素の含有率とする。なお、回帰計算には、一次回帰計算で十分であるが、高次回帰計算を適用することもできる。
2) Classification and quantification procedure of separated precipitates Fig. 4 shows an operation flow for separating and quantifying the separated precipitates by size according to their size. The separation and quantification of precipitates and the like are performed according to steps (7) to (10) shown in FIG. 4, and the following is specifically performed at each step.
Step (7): Using the solution having dispersibility optimized in the operation of FIG. 2, the precipitates and the like are separated into the solution having dispersibility by the same steps (1) to (4) as in FIG. In step (3), the coulomb amount is set so that the amount of electrolysis of the sample becomes a predetermined amount of electrolysis Wn.
Step (8): The dispersible solution containing precipitates and the like is filtered using a filter having a predetermined filter pore diameter D, and the precipitates collected by the filter and the precipitates and the like that have passed through the filter are acidified. After dissolution, the element of interest is quantified, and the contents of the element of interest contained in the precipitate collected by the filter and the precipitate passed through the filter, C R n and C F n are obtained.
Step (9): The operations of steps (7) and (8) are repeated with an electrolysis amount Wn + 1 different from the electrolysis amount Wn to obtain C R n + 1 and C F n + 1. The amount of electrolysis to be changed is at least 2 levels, preferably 4 levels.
Step (10): The relationship between Wn and C R n or C F n obtained by the above operation is formulated by regression calculation, and the amount of electrolysis Wn is 0, that is, the amount of electrolysis Wn is extrapolated to 0 CR or C F is obtained, and the content of the element of interest contained in precipitates having a size greater than or equal to the size D defined by the filter pore diameter, the size less than the size D defined by the filter pore size, respectively. The content of the element of interest contained in the precipitates of Note that linear regression calculation is sufficient for regression calculation, but higher-order regression calculation can also be applied.

以上のべた本発明の定量方法は、様々な金属材料中の析出物等の定量に適用することができ、特に、大きさ1μm以下の析出物等を多く含んだ鋼材に対して好適であり、大きさ200nm以下の析出物等を多く含んだ鋼材に対してはより好適である。   The quantification method of the present invention described above can be applied to quantification of precipitates in various metal materials, and is particularly suitable for steel materials containing a large amount of precipitates having a size of 1 μm or less, It is more suitable for steel materials containing a large amount of precipitates having a size of 200 nm or less.

3) 分散性を有する溶液について
上記ステップ(2)における分散性を有する溶液について補足する。用いる分散性を有する溶液としては、現状では大きさが1μm以下の微細な析出物等を凝集させずに分離できるものがない。そこで、大きさが1μm以上の粒子等に使用されている分散剤の水溶液を検討したところ、分散剤の種類と濃度と、析出物等の組成、大きさおよび溶液中の析出物等の密度との間に明確な相関は得られなかった。例えば、分散剤としては、酒石酸ナトリウム、クエン酸ナトリウム、ケイ酸ナトリウム、正リン酸カリウム、ポリリン酸ナトリウム、ポリメタリン酸ナトリウム、ヘキサメタリン酸ナトリウム、ピロリン酸ナトリウムなどが好適であるが、分散剤が適切な濃度を超えると析出物等が凝集するという知見が得られた。以上より、分散性を有する溶液を最適化するにあたっては、析出物等の性状や密度あるいはその後の定量方法に応じて分散剤の種類や濃度を適宜最適化することとする。
3) About the solution having dispersibility The solution having dispersibility in the above step (2) will be supplemented. Currently, there is no dispersible solution that can be separated without agglomerating fine precipitates having a size of 1 μm or less. Therefore, when examining an aqueous solution of a dispersant used for particles having a size of 1 μm or more, the type and concentration of the dispersant, the composition and size of the precipitate, and the density of the precipitate in the solution, No clear correlation was obtained. For example, as the dispersant, sodium tartrate, sodium citrate, sodium silicate, orthophosphoric potassium, sodium polyphosphate, sodium polymetaphosphate, sodium hexametaphosphate, sodium pyrophosphate and the like are suitable. The knowledge that precipitates and the like aggregate when the concentration is exceeded was obtained. From the above, when optimizing a solution having dispersibility, the type and concentration of the dispersant are appropriately optimized according to the properties and density of precipitates or the subsequent quantification method.

分散性を有する溶液の最適化の指標として、ゼータ電位を用いた理由は、上記のような分散剤を含有した水溶液を用いる場合は、析出物等の表面電荷と分散性には密接な相関があり、ゼータ電位計などを利用して析出物等表面の電荷状態を把握すると、最適な分散性溶液の条件(分散剤の種類や適切な添加濃度等)を確定することができることがわかった。つまり、析出物等が小さくなるほど、液中での凝集が起こりやすくなるため、適切な分散剤を適切な濃度で添加することで、析出物等表面に電荷が付与され互いに反発して凝集が防止されると考えられる。この結果より、分散性溶液の種類・濃度の決定に際して、ゼータ電位の値を指標として用いることは、簡便な方法でありながら、確実に最適な分散性溶液の条件(分散剤の種類や適切な添加濃度等)を確定することができるという点から望ましいと思われる。そして、開発者らは検討を重ねた結果、ゼータ電位の場合は、析出物等を分散させる観点からはその絶対値が大きければ大きいほど好ましいことがわかった。さらに析出物等の定量においては、概ね絶対値で30mV程度以上の値が得られれば、凝集が防止でき、析出物等の大きさ別の定量が行えることがわかった。   The reason for using the zeta potential as an index for optimizing a solution having dispersibility is that when an aqueous solution containing a dispersant as described above is used, there is a close correlation between the surface charge of the precipitate and the dispersibility. In addition, it was found that the optimum dispersive solution conditions (such as the type of dispersant and the appropriate concentration of addition) can be determined by grasping the surface charge state using a zeta electrometer. In other words, the smaller the precipitates and the like, the easier it is to agglomerate in the liquid. By adding an appropriate dispersant at an appropriate concentration, charges are applied to the surface of the precipitates and repel each other, preventing aggregation. It is thought that it is done. From this result, it is easy to use the value of zeta potential as an index when determining the type and concentration of the dispersible solution, but it is surely the optimum dispersive solution conditions (type of dispersant and appropriate It seems desirable from the point that it is possible to determine the added concentration and the like. As a result of repeated studies, the developers have found that the zeta potential is preferably as large as possible from the viewpoint of dispersing precipitates and the like. Furthermore, in the quantification of precipitates and the like, it was found that if an absolute value of about 30 mV or more was obtained, agglomeration could be prevented and the quantification of precipitates or the like could be performed.

以上より、析出物等の分離用の分散性溶液の種類や濃度を決定するに際しては、ゼータ電位の値を指標として用いることが好ましく、分散性を有する溶液は、定量対象である析出物等に対するゼータ電位の絶対値が30mV以上であることが好ましい。   From the above, when determining the type and concentration of the dispersible solution for separation of precipitates, etc., it is preferable to use the zeta potential value as an index. The absolute value of the zeta potential is preferably 30 mV or more.

4) フィルタについて
上記ステップ(8)におけるフィルタについて補足する。本発明の主眼とする析出物等の大きさ別分別には、フィルタ孔径から定義される大きさ以上の析出物等とフィルタ孔径から定義される大きさ未満の析出物等を確実に分別できることが必要である。そのためには、フィルタの空隙率が4%以上であり、かつフィルタ孔には直孔を有することが好ましい。これは、空隙率が4%未満だと、粗大粒子や凝集粒子による孔の閉塞が起こりやすくなり、フィルタ孔が直孔でないと、析出物等の大きさ別の分離分解能が低下しやすくなるためである。なお、空隙率の算出方法としては、一例として次式(3)のようなものがある。
空隙率=(フィルタ体積-フィルタ重量/比重)/フィルタ体積×100(%)・・・(3)
4) Filters The filter in step (8) above is supplemented. In the size separation of precipitates and the like, which are the main subject of the present invention, it is possible to reliably separate precipitates and the like that are larger than the size defined from the filter pore diameter and precipitates that are less than the size defined from the filter pore diameter. is necessary. For this purpose, it is preferable that the filter has a porosity of 4% or more and the filter hole has a straight hole. This is because if the porosity is less than 4%, the pores are likely to be clogged with coarse particles or aggregated particles, and if the filter pores are not straight holes, the separation resolution by the size of precipitates etc. tends to decrease. It is. As an example of the method for calculating the porosity, the following equation (3) is available.
Porosity = (filter volume-filter weight / specific gravity) / filter volume x 100 (%) (3)

図2に示すステップ(1)から(6)の手順に従って、析出物等中のチタン含有率とゼータ電位の関係を調べた。各操作の具体的な条件は、以下に示す通りであるが、本発明は下記の具体的な条件に制限されるものではない。   According to the procedures of steps (1) to (6) shown in FIG. 2, the relationship between the titanium content in the precipitates and the zeta potential was examined. Specific conditions for each operation are as follows, but the present invention is not limited to the following specific conditions.

質量%で、C:0.09%、Si:0.12%、Mn:1.00%、P:0.010%、S:0.003%、Ti:0.18%、N:0.0039%を含有するチタンを添加した炭素鋼を、図3に示す電解装置を用い、約300mlの10%AA系電解液(10vol%アセチルアセトン-1質量%塩化テトラメチルアンモニウム-メタノール)中で電解した。そして、電解後に残った炭素鋼を、分散性を有する溶液である0〜2000mg/lの範囲に濃度を7水準変化させたヘキサメタリン酸ナトリウム(以下、SHMPと呼ぶ。)水溶液に浸漬し、析出物等を分離し、各濃度でのゼータ電位をゼータ電位計で測定した。その結果、図5に示すように、SHMPの濃度増加に従ってゼータ電位の絶対値が増加していることがわかる。なお、分散性を有する溶液としてピロリン酸ナトリウム水溶液を用いても、図5と同様の傾向が得られた。このように、分散剤の種類や濃度により、ゼータ電位を制御できることがわかる。   Carbon steel added with titanium containing C: 0.09%, Si: 0.12%, Mn: 1.00%, P: 0.010%, S: 0.003%, Ti: 0.18%, N: 0.0039% by mass% The electrolysis apparatus shown in FIG. 3 was used for electrolysis in about 300 ml of 10% AA electrolyte (10 vol% acetylacetone-1 mass% tetramethylammonium chloride-methanol). Then, the carbon steel remaining after the electrolysis is immersed in an aqueous solution of sodium hexametaphosphate (hereinafter referred to as SHMP) whose concentration is changed to 7 levels within a range of 0 to 2000 mg / l which is a dispersible solution, and precipitates The zeta potential at each concentration was measured with a zeta potentiometer. As a result, as shown in FIG. 5, it can be seen that the absolute value of the zeta potential increases as the concentration of SHMP increases. Note that even when a sodium pyrophosphate aqueous solution was used as the dispersible solution, the same tendency as in FIG. 5 was obtained. Thus, it can be seen that the zeta potential can be controlled by the type and concentration of the dispersant.

次に、直孔からなり、電子顕微鏡観察から求めた空隙率が47%で、フィルタ孔径が100nmのフィルタを用い、後述する図4のステップ(7)〜(9)の操作を行い、フィルタ孔径から定義される大きさの析出物等中のチタン含有率(鋼全体に対する割合)を求めた。その結果、図6に示すように、ゼータ電位の絶対値が30mV未満の場合は、ゼータ電位の絶対値が小さいほど、析出物等の凝集が進み、見掛け上析出物等中のチタン含有率が高くなり、ゼータ電位の絶対値が30mV以上になると、析出物等中のチタン含有率は一定となり、析出物等の分散性が良好であることがわかる。   Next, using a filter having a straight hole and a porosity of 47% obtained by electron microscope observation and a filter pore diameter of 100 nm, the operations of steps (7) to (9) in FIG. The titanium content (ratio to the whole steel) in precipitates having a size defined by As a result, as shown in FIG. 6, when the absolute value of the zeta potential is less than 30 mV, the smaller the absolute value of the zeta potential, the more the precipitates are agglomerated, and the titanium content in the precipitates apparently increases. When the absolute value of the zeta potential is increased to 30 mV or higher, the titanium content in the precipitates becomes constant and the dispersibility of the precipitates is good.

なお、本発明の定量方法においては、析出物等が分散性を有する溶液中で凝集することなく十分に分散していれば問題ないので、分散性を有する溶液の最適化の指標としては、ゼータ電位に限定されるものではない。   In the quantification method of the present invention, there is no problem as long as the precipitates are sufficiently dispersed without agglomerating in the dispersible solution. Therefore, as an index of optimization of the dispersible solution, zeta The potential is not limited.

表1に示す組成のチタンを含む炭素鋼塊を2つに分け、試料Pと試料Qとし、試料Pには、1200℃×60分間加熱後水冷する処理を施し、試料Qには、1200℃×60分間加熱後、仕上温度930℃で熱間圧延し、630℃×60分間加熱する処理を施した。処理後両試料を電子顕微鏡観察したところ、表2に示すような窒化チタンと炭化チタンの析出物等が確認された。両試料で観察される大きさが1μm以上の大きな窒化チタンや炭化チタンは鋼の凝固過程で生成し、1200℃の高温下においても溶解することがないため、その量もほぼ同等とみなすことができる。一方、試料Qのみに観察される大きさが10nm前後の微細な炭化チタンは、1200℃×60分間加熱後水冷した試料Pには観察されないことから、熱間圧延時あるいはその後の630℃×60分間加熱時に生成したものとみなすことができる。   The carbon steel ingot containing titanium having the composition shown in Table 1 is divided into two parts, sample P and sample Q. Sample P is heated at 1200 ° C for 60 minutes and then cooled with water, and sample Q is 1200 ° C. After heating for 60 minutes, it was hot-rolled at a finishing temperature of 930 ° C. and heated to 630 ° C. for 60 minutes. When both samples were observed with an electron microscope after the treatment, precipitates of titanium nitride and titanium carbide as shown in Table 2 were confirmed. Large titanium nitride and titanium carbide with a size of 1 μm or more observed in both samples are produced during the solidification process of the steel and do not melt even at a high temperature of 1200 ° C. it can. On the other hand, the fine titanium carbide having a size of about 10 nm observed only in the sample Q is not observed in the sample P that is heated at 1200 ° C. for 60 minutes and then water-cooled. It can be considered that it was produced during heating for a minute.

Figure 0005298810
Figure 0005298810

Figure 0005298810
Figure 0005298810

(発明例)
このような析出物等が生成している試料Pと試料Qを、図3に示す電解装置を用いて、約300mlの10%AA系電解液中で約0.1gの電解量となるように電流密度20mA/cm2で定電流電解した。電解後の試料を分散性を有する0.05質量%のSHMP水溶液50ml中に浸漬し、超音波振動を与えて試料表面に付着した析出物をSHMP水溶液中に分離した。このとき、析出物等が分離されたSHMP水溶液のゼータ電位を測定したところ、約-32mVであった。析出物等が分離されたSHMP水溶液を、フィルタ孔径が100nmで、直孔を有し、空隙率が4%のフィルタAと空隙率が47%のフィルタBを用いて、ろ過した後、フィルタに捕集された析出物等とろ液を乾固して得たフィルタを通過した析出物等を硝酸、過塩素酸並びに硫酸の混合溶液で加熱溶解した後、ICP発光分析法により、それぞれの析出物等中のチタン絶対量を定量した。このチタン絶対量を電解量で除して、フィルタに捕集された析出物等中とフィルタを通過した析出物等中のチタン含有率を求めた。
(Invention example)
Using the electrolysis apparatus shown in FIG. 3, the currents of sample P and sample Q in which such precipitates and the like are generated are adjusted so that the amount of electrolysis is about 0.1 g in about 300 ml of 10% AA-based electrolytic solution. Constant current electrolysis was performed at a density of 20 mA / cm 2 . The electrolyzed sample was immersed in 50 ml of a 0.05% by mass SHMP aqueous solution having dispersibility, and the precipitate adhered to the sample surface was separated into the SHMP aqueous solution by applying ultrasonic vibration. At this time, the zeta potential of the SHMP aqueous solution from which precipitates and the like were separated was measured and found to be about -32 mV. The SHMP aqueous solution from which precipitates and the like were separated was filtered using a filter A having a filter pore diameter of 100 nm, a straight hole, a porosity of 4%, and a porosity of 47%, and then filtered. The collected precipitates and the filtrates obtained by drying the filtrate are heated and dissolved in a mixed solution of nitric acid, perchloric acid and sulfuric acid, and then the respective precipitates are analyzed by ICP emission spectrometry. The absolute amount of titanium in the same was quantified. This titanium absolute amount was divided by the amount of electrolysis, and the titanium content in the precipitate collected in the filter and in the precipitate passed through the filter was determined.

同様な操作を、試料の電解量を0.2g、0.3g、0.5gと変化させて行い、電解量とフィルタに捕集された析出物等中のチタン含有率との関係および電解量とフィルタを通過した析出物等中のチタン含有率との関係を求めた。   The same operation was performed by changing the amount of electrolysis of the sample to 0.2 g, 0.3 g, and 0.5 g. The relationship between the amount of electrolysis and the titanium content in the precipitates collected in the filter, and the amount of electrolysis and the filter The relationship with the titanium content in the precipitates that passed through was determined.

得られたそれぞれの析出物等に対する電解量と析出物等中のチタン含有率の関係を直線近似して、電解量が0gのときのチタン含有率を求め、フィルタに捕集されたフィルタ孔径から定義される大きさ以上の析出物等中のチタン含有率およびフィルタを通過したフィルタ孔径から定義される大きさ未満の析出物等中のチタン含有率とした。なお、ここでのチタン含有率は質量ppmで示され、試料のFeを含む全組成を100質量%とした場合の値である。   Approximate the relationship between the amount of electrolysis and the titanium content in the precipitates for each of the obtained precipitates, and obtain the titanium content when the amount of electrolysis is 0 g. From the filter pore diameter collected in the filter The titanium content in the precipitates and the like having a size not less than the size defined and the titanium content in the precipitates and the like having a size less than the size defined from the filter pore diameter that passed through the filter. Here, the titanium content is expressed in ppm by mass, and is a value when the total composition including Fe of the sample is 100% by mass.

(比較例)
電解後の試料を、SHMP水溶液中の代わりに分散性の低い純水を用いたこととフィルタAのみを用いたこと以外は、発明例と同様な操作を行い、フィルタに捕集されたフィルタ孔径から定義される大きさ以上の析出物等中のチタン含有率およびフィルタを通過したフィルタ孔径から定義される大きさ未満の析出物等中のチタン含有率を求めた。なお、析出物等が分離された純水のゼータ電位を測定したところ、約-0.1mVであった。また、ここでのチタン含有率は質量ppmで示され、試料のFeを含む全組成を100質量%とした場合の値である。
(Comparative example)
The sample after electrolysis was processed in the same manner as the invention example except that pure water with low dispersibility was used instead of the SHMP aqueous solution and only the filter A was used. The titanium content in precipitates and the like having a size greater than or equal to the size of the precipitate and the titanium content in precipitates and the like having a size less than the size defined from the filter pore diameter that passed through the filter were determined. The zeta potential of pure water from which precipitates and the like were separated was measured and found to be about -0.1 mV. The titanium content here is expressed in ppm by mass, and is a value when the total composition including Fe of the sample is 100% by mass.

図7および図8に、大きさが1μm以上の析出物等のみを有する試料Pにおける、電解量とフィルタに捕集された析出物等中のチタン含有率との関係および電解量とフィルタを通過した析出物等中のチタン含有率との関係を示す。これらの図の結果より、フィルタに捕集された析出物等中のチタン含有率およびフィルタを通過した析出物等中のチタン含有率は、いずれも、フィルタの空隙率の異なる発明例や比較例の間で差がなく、また、電解量を変えても一定であることがわかる。したがって、これらの析出物等中のチタン含有率は大きさ別に定量されているとみなすことができる。なお、フィルタ孔径が100nmなので、大きさが1μm以上の析出物等のみを有する試料Pでは、フィルタを通過した析出物等中のチタン含有率は0質量ppmであるはずだが、図8の結果によりそれが裏付けられている。   7 and 8 show the relationship between the amount of electrolysis and the titanium content in the precipitates collected in the filter, and the amount of electrolysis and the filter passing through the filter, in the sample P having only a precipitate of 1 μm or more in size. The relationship with the titanium content rate in the deposited precipitate etc. is shown. From the results of these figures, the titanium content in the precipitates etc. collected in the filter and the titanium content in the precipitates etc. that passed through the filter are both invention examples and comparative examples having different filter porosity. It can be seen that there is no difference between the two, and that even if the amount of electrolysis is changed, it is constant. Therefore, it can be considered that the titanium content in these precipitates and the like is quantified by size. In addition, since the filter pore diameter is 100 nm, in the sample P having only precipitates having a size of 1 μm or more, the titanium content in the precipitates passing through the filter should be 0 mass ppm, but according to the result of FIG. That is supported.

図9および図10に、大きさが1μm以上の析出物等と大きさが10nm前後の析出物等を有する試料Qにおける、電解量とフィルタに捕集された析出物等中のチタン含有率との関係および電解量とフィルタを通過した析出物等中のチタン含有率との関係を示す。図9の結果から、フィルタの空隙率の異なる発明例では、電解量が0gのときのフィルタに捕集された析出物等中のチタン含有率は、空隙率による差がなく、図7に示す試料Pの析出物等中のチタン含有率ともほぼ一致していることがわかる。これは、上述した大きさが1μm以上の析出物等は鋼の凝固過程で生成するという推論を裏付けているとともに、本発明法により析出物等中のチタン含有率を析出物等の大きさ別に定量できることを示している。また、図10の結果からも、フィルタの空隙率の異なる発明例では、電解量が0gのときのフィルタを通過した析出物等中のチタン含有率は、空隙率による差がなく、ほぼ一致しており、本発明法により析出物等中のチタン含有率を析出物等の大きさ別に定量できることがわかる。   9 and 10, in the sample Q having precipitates having a size of 1 μm or more and precipitates having a size of about 10 nm, etc., the amount of electrolysis and the titanium content in the precipitates collected by the filter And the relationship between the amount of electrolysis and the titanium content in the precipitates and the like that have passed through the filter. From the results of FIG. 9, in the inventive examples having different porosity of the filter, the titanium content in the precipitates collected in the filter when the amount of electrolysis is 0 g is not different depending on the porosity, and is shown in FIG. It can be seen that the titanium content in the precipitates of sample P and the like is almost the same. This supports the inference that precipitates with a size of 1 μm or more are generated during the solidification process of steel, and the titanium content in the precipitates by the method of the present invention is classified according to the size of the precipitates. It shows that it can be quantified. Further, from the results of FIG. 10, in the invention examples having different porosity of the filter, the titanium content in the precipitate etc. that passed through the filter when the amount of electrolysis was 0 g was almost the same with no difference due to the porosity. It can be seen that the titanium content in the precipitates and the like can be determined by the size of the precipitates by the method of the present invention.

以上のことから、本発明法では、フィルタ孔径を適当に選択すれば、任意の大きさ別に析出物等の定量を行えると結論できる。特に、空隙率の低いフィルタAを用いた発明例のように、電解量によってチタン含有率が変化しており、フィルタ孔の閉塞によりケーク層が形成されていることが示唆されるような場合であっても、析出物等の大きさ別の定量が可能であることにその特徴がある。   From the above, it can be concluded that, in the method of the present invention, if the filter pore size is appropriately selected, precipitates and the like can be quantified by an arbitrary size. In particular, as in the case of the invention example using the filter A with a low porosity, the titanium content varies depending on the amount of electrolysis, and it is suggested that the cake layer is formed due to the blockage of the filter holes. Even if it exists, the characteristic is that the fixed_quantity | quantitative_assay according to the magnitude | size of deposits etc. is possible.

一方、比較例では、図9に示すように、フィルタに捕集された析出物等中のチタン含有率は、発明例に比べ、著しく高い値を示し、また、図10に示すように、フィルタを通過した析出物等中のチタン含有率はほぼ0である。これは、電解後の試料を分散性の低い純水に浸漬したので、析出物等が凝集して粗大化し、10nm前後の微細な析出物等もフィルタに捕集されたことによる。したがって、比較例では、析出物等の大きさ別の定量を行うことはできない。   On the other hand, in the comparative example, as shown in FIG. 9, the titanium content in the precipitates collected in the filter is significantly higher than that in the invention example, and as shown in FIG. The titanium content in the precipitate and the like that has passed through is almost zero. This is because the electrolyzed sample was immersed in pure water with low dispersibility, so that precipitates and the like aggregated and became coarse, and fine precipitates and the like of around 10 nm were collected by the filter. Therefore, in the comparative example, it is not possible to perform quantification by size of precipitates and the like.

非特許文献1に記載の電解法の操作フローを示す図である。3 is a diagram showing an operation flow of an electrolysis method described in Non-Patent Document 1. FIG. 本発明である分散性を有する溶液を最適化する操作フローの一例を示す図である。It is a figure which shows an example of the operation flow which optimizes the solution which has the dispersibility which is this invention. 本発明である析出物等の定量方法で用いる電解装置の一例を模式的に示す図である。It is a figure which shows typically an example of the electrolysis apparatus used with the determination method of precipitates etc. which are this invention. 本発明である析出物等の定量方法の操作フローの一例を示す図である。It is a figure which shows an example of the operation flow of quantification methods, such as a precipitate which is this invention. ヘキサメタリン酸ナトリウム水溶液濃度とゼータ電位の絶対値との関係を示す図である。It is a figure which shows the relationship between the sodium hexametaphosphate aqueous solution density | concentration and the absolute value of zeta potential. ゼータ電位の絶対値と析出物等中のチタン含有率との関係を示す図である。It is a figure which shows the relationship between the absolute value of zeta potential, and the titanium content rate in a precipitate. 試料Pにおける電解量とフィルタに捕集された析出物等中のチタン含有率との関係を示す図である。It is a figure which shows the relationship between the amount of electrolysis in the sample P, and the titanium content rate in the precipitate etc. which were collected by the filter. 試料Pにおける電解量とフィルタを通過した析出物等中のチタン含有率との関係を示す図である。It is a figure which shows the relationship between the amount of electrolysis in the sample P, and the titanium content rate in the precipitate etc. which passed the filter. 試料Qにおける電解量とフィルタに捕集された析出物等中のチタン含有率との関係を示す図である。It is a figure which shows the relationship between the amount of electrolysis in the sample Q, and the titanium content rate in the precipitate etc. which were collected by the filter. 試料Qにおける電解量とフィルタを通過した析出物等中のチタン含有率との関係を示す図である。It is a figure which shows the relationship between the amount of electrolysis in the sample Q, and the titanium content rate in the precipitate etc. which passed the filter.

符号の説明Explanation of symbols

1 試料
2、2a 固定用治具
3 電極
4 ビーカー
5 定電流電源
6 電解液
7 電解装置
1 sample
2, 2a Fixing jig
3 electrodes
4 Beakers
5 Constant current power supply
6 Electrolyte
7 Electrolyzer

Claims (5)

金属試料を、電解液中で電解する電解ステップと、
前記電解液から取り出した金属試料の残部を、分散性を有する溶液に浸漬する浸漬ステップと、
前記分散性を有する溶液に分離された析出物および/または介在物(以下、析出物等という)を、フィルタにより1回以上ろ過する分別ステップと、
前記フィルタに捕集された析出物等に含まれる着目元素の含有率を定量する定量ステップと、を備え、
前記電解ステップにおいて前記金属試料の電解量を変えて、前記電解ステップから前記定量ステップまでを繰り返し、電解量と定量された着目元素の含有率との関係を求め、前記電解量を0に外挿したときの含有率を、前記フィルタのフィルタ孔径から定義される大きさ以上の大きさを有する析出物等に含まれる着目元素の含有率とすることを特徴とする金属材料中の析出物等の定量方法;
ここで、フィルタ孔径から定義される大きさとは、公称のフィルタ孔径のことではなく、実際にフィルタ孔径で捕集される析出物等の最小の大きさのことを意味する。
An electrolysis step of electrolyzing a metal sample in an electrolyte solution;
An immersion step of immersing the remainder of the metal sample taken out of the electrolyte in a solution having dispersibility;
A separation step of filtering precipitates and / or inclusions (hereinafter referred to as precipitates) separated into the solution having dispersibility one or more times through a filter;
A quantitative step for quantifying the content of the element of interest contained in the precipitate or the like collected in the filter,
The amount of electrolysis of the metal sample is changed in the electrolysis step, and the steps from the electrolysis step to the quantification step are repeated to obtain the relationship between the electrolysis amount and the content of the quantified element of interest, and the electrolysis amount is extrapolated to 0. The content of the target element contained in a precipitate having a size greater than or equal to the size defined by the filter pore diameter of the filter. Quantification method;
Here, the size defined from the filter hole diameter means not the nominal filter hole diameter but the minimum size of precipitates or the like actually collected by the filter hole diameter.
金属試料を、電解液中で電解する電解ステップと、
前記電解液から取り出した金属試料の残部を、分散性を有する溶液に浸漬する浸漬ステップと、
前記分散性を有する溶液に分離された析出物および/または介在物(以下、析出物等という)を、フィルタにより1回以上ろ過する分別ステップと、
前記フィルタを通過した析出物等に含まれる着目元素の含有率を定量する定量ステップと、を備え、
前記電解ステップにおいて前記金属試料の電解量を変えて、前記電解ステップから前記定量ステップまでを繰り返し、電解量と定量された着目元素の含有率との関係を求め、電解量を0に外挿したときの含有率を、前記フィルタのフィルタ孔径から定義される大きさ未満の大きさを有する析出物等に含まれる着目元素の含有率とすることを特徴とする金属材料中の析出物等の定量方法;
ここで、フィルタ孔径から定義される大きさとは、公称のフィルタ孔径のことではなく、実際にフィルタ孔径で捕集される析出物等の最小の大きさのことを意味する。
An electrolysis step of electrolyzing a metal sample in an electrolyte solution;
An immersion step of immersing the remainder of the metal sample taken out of the electrolyte in a solution having dispersibility;
A separation step of filtering precipitates and / or inclusions (hereinafter referred to as precipitates) separated into the solution having dispersibility one or more times through a filter;
A quantitative step for quantifying the content of the element of interest contained in the precipitate or the like that has passed through the filter,
The amount of electrolysis of the metal sample was changed in the electrolysis step, and the steps from the electrolysis step to the quantification step were repeated to obtain the relationship between the electrolysis amount and the content of the quantified element of interest, and the electrolysis amount was extrapolated to 0 Quantification of precipitates and the like in a metal material, characterized in that the content rate is the content of the element of interest contained in precipitates or the like having a size less than the size defined by the filter pore diameter of the filter Method;
Here, the size defined from the filter hole diameter means not the nominal filter hole diameter but the minimum size of precipitates or the like actually collected by the filter hole diameter.
分別ステップにおいて、直孔を有し、かつ空隙率が4%以上のフィルタを用いることを特徴とする請求項1または2に記載の金属材料中の析出物等の定量方法;ここで、直孔とは、一定の開口形状でフィルタ面を貫通しているフィルタ孔のことをいう。   3. The method for quantifying precipitates and the like in a metal material according to claim 1 or 2, wherein a filter having straight holes and a porosity of 4% or more is used in the fractionation step; The term “filter hole” refers to a filter hole penetrating the filter surface with a certain opening shape. 定量ステップにおいて、金属試料の残部に付着した析出物等を定量することを特徴とする請求項1ないし3のいずれか1項に記載の金属材料中の析出物等の定量方法。   4. The method for quantifying precipitates and the like in a metal material according to claim 1, wherein in the quantification step, precipitates and the like adhering to the remainder of the metal sample are quantified. 浸漬ステップにおいて、分散性を有する溶液は、定量対象の析出物等に対するゼータ電位の絶対値が30mV以上であることを特徴とする請求項1ないし4のいずれか1項に記載の金属材料中の析出物等の定量方法。   In the immersion step, the solution having dispersibility is characterized in that the absolute value of the zeta potential with respect to the precipitate to be quantified is 30 mV or more, in the metal material according to any one of claims 1 to 4, Quantitative method for deposits, etc.
JP2008303353A 2008-11-28 2008-11-28 Method for quantifying precipitates and / or inclusions in metal materials Expired - Fee Related JP5298810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008303353A JP5298810B2 (en) 2008-11-28 2008-11-28 Method for quantifying precipitates and / or inclusions in metal materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008303353A JP5298810B2 (en) 2008-11-28 2008-11-28 Method for quantifying precipitates and / or inclusions in metal materials

Publications (2)

Publication Number Publication Date
JP2010127789A JP2010127789A (en) 2010-06-10
JP5298810B2 true JP5298810B2 (en) 2013-09-25

Family

ID=42328295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303353A Expired - Fee Related JP5298810B2 (en) 2008-11-28 2008-11-28 Method for quantifying precipitates and / or inclusions in metal materials

Country Status (1)

Country Link
JP (1) JP5298810B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020447B2 (en) * 2019-03-28 2022-02-16 Jfeスチール株式会社 A method for analyzing inclusions and / or precipitates in a metal sample, and a method for collecting inclusions and / or precipitates in a metal sample.
CN114729854A (en) * 2019-11-25 2022-07-08 杰富意钢铁株式会社 Method for extracting precipitates and/or inclusions, method for quantitatively analyzing precipitates and/or inclusions, and electrolyte
JP7327353B2 (en) * 2020-10-30 2023-08-16 Jfeスチール株式会社 Method for preparing samples for hydrogen analysis in steel, method for analyzing hydrogen in steel, method for predicting brittle deterioration of steel plate due to diffusible hydrogen, and method for verifying inspection results of steel plate
JP7380523B2 (en) * 2020-10-30 2023-11-15 Jfeスチール株式会社 Method for preparing samples for hydrogen analysis in steel, method for hydrogen analysis in steel, method for predicting brittle deterioration due to diffusible hydrogen in steel sheets, and method for certifying inspection results for steel sheets

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021553A (en) * 1999-07-02 2001-01-26 Kawasaki Steel Corp Preparation of sample for analyzing oxide type inclusion in metallic material
JP2004198145A (en) * 2002-12-16 2004-07-15 Kobe Steel Ltd METHOD FOR ANALYZING CaO-CONTAINING INCLUSION IN METAL
JP4008833B2 (en) * 2003-02-27 2007-11-14 日新製鋼株式会社 Quantitative analysis of carbon in steel precipitates
JP4737278B2 (en) * 2008-11-28 2011-07-27 Jfeスチール株式会社 Method for analyzing precipitates and / or inclusions in metal materials
JP5223665B2 (en) * 2008-11-28 2013-06-26 Jfeスチール株式会社 Method for analyzing precipitates and / or inclusions in metal materials

Also Published As

Publication number Publication date
JP2010127789A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP4737278B2 (en) Method for analyzing precipitates and / or inclusions in metal materials
JP4760862B2 (en) Method for analyzing precipitates and / or inclusions in metal materials
KR101163299B1 (en) Method for analysis of metal sample
JP5223665B2 (en) Method for analyzing precipitates and / or inclusions in metal materials
TW201000878A (en) Method of determining particle size distribution of fine particles contained in metallic material
JP5298810B2 (en) Method for quantifying precipitates and / or inclusions in metal materials
RU2703241C1 (en) Method of extracting metal compound particles, a method of analyzing metal compound particles and an electrolytic solution used
RU2698004C1 (en) Device for electrolytic etching and dissolution and a method for extracting particles of a metallic compound
Jin et al. Electrolytic recovery of bismuth and copper as a powder from acidic sulfate effluents using an emew® cell
Dong et al. Sono-electrochemical recovery of metal ions from their aqueous solutions
Macdonald et al. Enhancing sensitivity of manganese detection in drinking water using nanomaterial AuNPs/GP
JP7020447B2 (en) A method for analyzing inclusions and / or precipitates in a metal sample, and a method for collecting inclusions and / or precipitates in a metal sample.
JP4972784B2 (en) Analysis method of fine particles in steel
JP5088305B2 (en) Method for analyzing precipitates and / or inclusions in metal materials
JP6919775B1 (en) Method for extracting precipitates and / or inclusions, method for quantitative analysis of precipitates and / or inclusions, method for preparing electrolytic solution, and replica sample.
JP2019039710A (en) Extraction method of carbide and/or nitride in metal material, analysis method of the carbide and/or nitride, analysis method of quantity of solid solution carbon and/or quantity of solid solution nitrogen in the metal material, and electrolytic solution used therefor
JP2009019956A (en) Analyzing method of precipitate and/or inclusion in metal sample
JP2018130670A (en) Dispersant, dispersant for field flow fractionation, fractionation method of fine particle in steel material and analysis method of fine particle in steel material
WO2021106711A1 (en) Method for extracting precipitates and/or inclusions, method for quantitatively analyzing precipitates and/or inclusions, and electrolyte
WO2010110064A1 (en) Zirconium crucible
Kanna et al. Preparation of an Economic Home-Made Ag/AgCl Electrode from Silver Recovered from Laboratory Wastes
KR100237161B1 (en) Selectively extracting method of carbon and nitrogen precipitation of steel
JP2010126771A (en) Method for manufacturing steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Ref document number: 5298810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees