JP4253414B2 - Aluminum alloy material for engine piston and method of manufacturing aluminum alloy automobile engine piston - Google Patents

Aluminum alloy material for engine piston and method of manufacturing aluminum alloy automobile engine piston Download PDF

Info

Publication number
JP4253414B2
JP4253414B2 JP36921799A JP36921799A JP4253414B2 JP 4253414 B2 JP4253414 B2 JP 4253414B2 JP 36921799 A JP36921799 A JP 36921799A JP 36921799 A JP36921799 A JP 36921799A JP 4253414 B2 JP4253414 B2 JP 4253414B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
engine piston
eutectic
less
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36921799A
Other languages
Japanese (ja)
Other versions
JP2001181769A (en
JP2001181769A5 (en
Inventor
等 村田
一郎 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP36921799A priority Critical patent/JP4253414B2/en
Publication of JP2001181769A publication Critical patent/JP2001181769A/en
Publication of JP2001181769A5 publication Critical patent/JP2001181769A5/ja
Application granted granted Critical
Publication of JP4253414B2 publication Critical patent/JP4253414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、自動車のエンジンピストン用アルミニウム合金材およびアルミニウム合金製エンジンピストンの製造方法に関する。
【0002】
【従来の技術】
自動車のエンジンピストンは、シリンダ内壁と接触して摺動するために耐摩耗性や硬度を要求されるのみならず、摺動により200℃以上に加熱されるために耐熱強度を要求される。一方、車輌の軽量化を図るために、ピストン材料としてアルミニウム合金、例えば4032等のAl−Si系合金の使用が検討されている。
【0003】
【発明が解決しようとする課題】
しかし、従来ピストン材料として用いられているアルミニウム合金は、硬度や耐熱強度が十分でなく使用中の変形が危惧されるものであった。また、熱膨張や材料中の溶質元素の析出による寸法増加が起こり、シリンダとの接触圧力が増加するという問題点もあった。
【0004】
この発明は、このような技術背景に鑑み、高温下でも高い硬度を維持するとともに、寸法変化を抑制しうるエンジンピストン用アルミニウム合金材、およびこのアルミニウム合金材を用いたエンジンピストンの製造方法の提供を目的とする。
【0005】
【課題を解決するための手段】
前記目的を達成するために、この発明のエンジンピストン用アルミニウムニウム合金材は、Si:8.0〜12.0wt%、Cu:8.0〜12.0wt%およびMg:0.1〜2.0wt%を含み、残部Alおよび不純物からなり、共晶Siの平均粒径が50μm以下であり、さらに共晶SiおよびCu系晶出物を合計40%以下の面積率で含有することを特徴とする。
【0006】
また、この発明のアルミニウム合金製エンジンピストンの製造方法は、Si:8.0〜12.0wt%、Cu:8.0〜12.0wt%およびMg:0.1〜2.0wt%を含み、残部Alおよび不純物からなるアルミニウム合金を所要形状に成形し、490〜500℃で2〜4時間溶体化処理後焼入れし、さらに170〜220℃で2時間以上の時効処理を施すことを特徴とする。
【0007】
この発明のエンジンピストン用アルミニウム合金材の化学組成において、各元素の添加意義と含有量の限定理由は次のとおりである。
【0008】
即ち、Siは、母材硬度および耐摩耗性を向上させるとともに熱膨張係数を低下させて高温下における寸法増加を抑制するために添加される。これらの効果を得るために、Siは8wt%以上必要である。ただし、Si初晶が粗大になったり多量になると機械的性質が低下したり、加工工具の摩耗による劣化が激しくなるおそれがあるため、Si含有量は共晶点付近の8.0〜12.0wt%とする。Si含有量の好ましい下限値は10.0wt%、好ましい上限値は12.0wt%である。
【0009】
Cuは、母相に固溶して強度を向上させる効果がある。また、熱処理後にはAl−Cu(−Mg)相を析出して母材強度を向上させる。CuのAlへ最大固溶量は状態図から5.65wt%であるが、所定形状への鋳物製造時または押出用ビレットの鋳造時にCu系晶出物が生じる。このため、固溶・析出強化に有効に働くCu量を十分に確保するために、Cu含有量は最大固溶量を超える8.0〜12.0wt%とする。Cu含有量の好ましい下限値は9.0wt%、好ましい上限値は11.0wt%である。
【0010】
Mgは、SiとMg2Si化合物を形成して、析出により母材強度を向上させる。Mg含有量は、0.1wt%未満では前記効果が乏しく、2.0wt%を超えて多くなっても効果が飽和するため、0.1〜2.0wt%とする。Mg含有量の好ましい下限値は0.2wt%、好ましい上限値は1.0wt%である。
【0011】
さらに、前記エンジンピストン用アルミニウム合金材は、化学組成を上述の範囲に規定した上で、金属組織においては、共晶Siの平均粒径を50μm以下に制御して粗大Si粒子を排除し、さらに共晶SiおよびCu系晶出物を合計40%以下の面積率で含有することによって、機械的性質を向上させ、高温下における高い硬度の維持を実現している。共晶Siの好ましい平均粒径は10μm以下であり、共晶SiおよびCu系晶出物の合計の好ましい面積率は35%以下である。
【0012】
この発明のエンジンピストンの製造方法は、前記組成のアルミニウム合金を材料として所定の熱処理を行うことにより、溶質元素の析出を制御し、材料の強度向上と寸法安定性を実現させるものである。
【0013】
前記熱処理は、材料を所要のピストン形状に成形した後に行う。ピストン形状への成形は、鋳造、押出、鍛造等で行い、鋳造または押出後にさらに鍛造する場合も含む。
【0014】
前記熱処理において、まず490〜500℃で溶体化処理を行う。溶体化処理は、成形後の冷却過程で析出した溶質元素を十分に母材に再固溶させるためにできるだけ高温で処理することが好ましいが、温度が高すぎると共晶融解により材料中に膨れ等の欠陥ができるおそれがあるため、前記温度範囲で行う。溶体化処理温度の特に好ましい下限値は495℃、特に好ましい上限値は500℃である。次いで、水または温水中に焼入れして過飽和固溶体を形成した後、170〜220℃で2時間以上の時効処理を行う。時効温度および時間は製品の要求値によって最適値が異なるが、170℃未満では所要硬度に達するまでに長時間を要し、また220℃.を超えると短時間で過時効となり硬度が低下するため処理時間の制御が困難である。時効温度の特に好ましい下限値は180℃、特に好ましい上限値は200℃である。
【0015】
【実施例】
次に、この発明のエンジンピストン用アルミニウム合金材およびアルミニウム合金製エンジンピストンの製造方法の具体的実施例について詳述する。
[実験例1]
後掲の表1に示す4種類の組成のアルミニウム合金について、8インチビレットを鋳造し、470±5℃で10〜12時間均質化処理した。次いで、該ビレットを380℃に加熱し、押出製品速度2〜2.5m/min、押出比90で押出した。これらの押出材を495℃×2時間の溶体化処理後焼入れし、200±2℃で、それぞれ2時間、4時間、6時間、8時間の時効処理を施して試験材とした。なお、比較例1のアルミニウム合金は、この発明の特徴的成分の一つであるCu含有量が発明の範囲から外れている。
【0016】
各試験材について、硬度(HRB)および常温〜300℃における熱膨張係数を測定した。また、各試験材のうち6時間時効材については、顕微鏡観察により共晶Siの平均粒径、共晶SiおよびCu系晶出物の面積率を測定した。これらの結果を表1に併せて示す。
【0017】
【表1】

Figure 0004253414
【0018】
さらに、各試験材のうち6時間時効材について、200℃または250℃の高温下でそれぞれ200時間保持して硬度変化を調べた。結果を表2に示す。
【0019】
【表2】
Figure 0004253414
【0020】
さらに、各試験材を200℃で200時間保持して寸法変化を調べた。寸法変化は、熱処理後常温で、長さ29mm試験片に対する寸法変化量を測定し、永久伸び(%)として評価した。結果を表3に示す。
【0021】
【表3】
Figure 0004253414
【0022】
表1の結果より、この発明の実施例では熱膨張係数が小さくなって高温下における寸法増加を抑制しうること、ならびに高い硬度が得られることを確認した。また各実施例では、共晶Siの平均粒径はいずれも10μm以下の微細なもので粗大結晶は認められず、共晶SiおよびCu系晶出物が合計が占める面積率は40%以下となった。さらに、表2および表3の結果より、200℃の高温で保持しても高い硬度を維持しうること、寸法変化も抑制しうることを確認した。この寸法変化は、母相中の溶質元素の過飽和度減少に伴い小さくなるので、本発明品を過時効処理として従来品と同様の硬度を確保しつつ寸法変化を抑制する効果も得られる。
【0023】
〔実験例2〕
Si:10.0wt%、Cu:9.1wt%、Mg:0.73wt%、残部Alおよび不純物からなるアルミニウム合金で8インチビレットを鋳造し、470±5℃で10〜12時間均質化処理した。次いで、該ビレットを380℃に加熱し、押出製品速度2〜2.5m/min、押出比5で直径90mmの丸棒に押出し、さらにピストン形状に鍛造した。この鍛造品を495℃×2.5時間の溶体化処理後焼入れし、200±2℃で8時間の時効処理を施した。この熱処理鍛造品について、5つの部位から各4片の試験片を切り取り、硬度を測定した、また、比較例11として一連の熱処理を行わない鍛造品についても硬度を測定した。測定結果を表4に示す。
【0024】
【表4】
Figure 0004253414
【0025】
表4の結果から、成形後に所定の熱処理を施すことにより高い硬度が得られることを確認した。
【0026】
【発明の効果】
以上説明したように、この発明のエンジンピストン用アルミニウム合金材は、Si:8.0〜12.0wt%、Cu:8.0〜12.0wt%およびMg:0.1〜2.0wt%を含み、残部Alおよび不純物からなる組成を有することにより、熱膨張係数を小さくして高温下での寸法変化を抑制できる。また、その組織は、共晶Siの平均粒径が50μm以下であり、さらに共晶SiおよびCu系晶出物を合計40%以下の面積率で含有するものであり、粗大結晶を排除しているため、優れた機械的強度を持ち、高温下でも高い硬度を維持する。
【0027】
また、この発明のアルミニウム合金製エンジンピストンの製造方法は、Si:8.0〜12.0wt%、Cu:8.0〜12.0wt%およびMg:0.1〜2.0wt%を含み、残部Alおよび不純物からなるアルミニウム合金を所要形状に成形し、490〜500℃で2〜4時間溶体化処理後焼入れし、さらに170〜220℃で2時間以上の時効処理を施すものであるから、溶質元素の固溶、析出を製品に要求値によって種々に制御し、高温下でも高い硬度を維持するとともに、溶出元素の析出に伴う寸法変化を抑制できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy material for an engine piston of an automobile and a method for manufacturing an aluminum alloy engine piston.
[0002]
[Prior art]
The engine piston of an automobile is not only required to have wear resistance and hardness in order to slide in contact with the inner wall of the cylinder, but is also required to have heat resistance because it is heated to 200 ° C. or higher by sliding. On the other hand, in order to reduce the weight of the vehicle, the use of an aluminum alloy, for example, an Al—Si alloy such as 4032, as a piston material is being studied.
[0003]
[Problems to be solved by the invention]
However, aluminum alloys conventionally used as piston materials are not sufficient in hardness and heat resistance, and are likely to be deformed during use. There is also a problem that the contact pressure with the cylinder increases due to an increase in size due to thermal expansion or precipitation of solute elements in the material.
[0004]
In view of such a technical background, the present invention provides an aluminum alloy material for engine pistons that can maintain high hardness even at high temperatures and suppress dimensional changes, and a method for manufacturing an engine piston using the aluminum alloy material With the goal.
[0005]
[Means for Solving the Problems]
To achieve the above object, the aluminum alloy material for engine pistons of the present invention has Si: 8.0 to 12.0 wt%, Cu: 8.0 to 12.0 wt%, and Mg: 0.1 to 2. It is characterized by comprising 0 wt%, the balance being Al and impurities, the average particle size of eutectic Si being 50 μm or less, and further containing eutectic Si and Cu-based crystals in an area ratio of 40% or less in total. To do.
[0006]
Moreover, the manufacturing method of the engine piston made from the aluminum alloy of this invention contains Si: 8.0-12.0 wt%, Cu: 8.0-12.0 wt%, and Mg: 0.1-2.0 wt%, An aluminum alloy composed of the remaining Al and impurities is formed into a required shape, quenched after solution treatment at 490 to 500 ° C. for 2 to 4 hours, and further subjected to aging treatment at 170 to 220 ° C. for 2 hours or more. .
[0007]
In the chemical composition of the aluminum alloy material for engine pistons of the present invention, the significance of addition of each element and the reason for limiting the content are as follows.
[0008]
That is, Si is added to improve the base material hardness and wear resistance and to reduce the coefficient of thermal expansion to suppress the increase in dimensions at high temperatures. In order to obtain these effects, Si needs to be 8 wt% or more. However, when the Si primary crystal becomes coarse or large, the mechanical properties may be deteriorated or the deterioration due to wear of the processing tool may be serious. Therefore, the Si content is 8.0 to 12.2. 0 wt%. The preferable lower limit value of the Si content is 10.0 wt%, and the preferable upper limit value is 12.0 wt%.
[0009]
Cu has the effect of improving the strength by dissolving in the matrix. Further, after the heat treatment, an Al—Cu (—Mg) phase is precipitated to improve the base material strength. Although the maximum solid solution amount of Cu in Al is 5.65 wt% from the phase diagram, a Cu-based crystallized product is produced at the time of manufacturing a casting into a predetermined shape or casting an extrusion billet. For this reason, in order to sufficiently secure the amount of Cu that effectively works for solid solution / precipitation strengthening, the Cu content is set to 8.0 to 12.0 wt% exceeding the maximum solid solution amount. The preferable lower limit of the Cu content is 9.0 wt%, and the preferable upper limit is 11.0 wt%.
[0010]
Mg forms Si and a Mg 2 Si compound, and improves the base material strength by precipitation. If the Mg content is less than 0.1 wt%, the above effect is poor, and even if it exceeds 2.0 wt%, the effect is saturated. A preferable lower limit value of the Mg content is 0.2 wt%, and a preferable upper limit value is 1.0 wt%.
[0011]
Furthermore, the aluminum alloy material for engine pistons defines the chemical composition within the above-mentioned range, and in the metal structure, the average particle diameter of eutectic Si is controlled to 50 μm or less to eliminate coarse Si particles, By containing eutectic Si and Cu-based crystals in an area ratio of 40% or less in total, mechanical properties are improved and high hardness is maintained at high temperatures. The preferred average particle diameter of eutectic Si is 10 μm or less, and the preferred total area ratio of eutectic Si and Cu-based crystallized product is 35% or less.
[0012]
In the method for manufacturing an engine piston according to the present invention, by performing a predetermined heat treatment using an aluminum alloy having the above composition as a material, precipitation of a solute element is controlled to improve the strength and dimensional stability of the material.
[0013]
The heat treatment is performed after the material is molded into a required piston shape. The piston shape is formed by casting, extrusion, forging, etc., and includes the case of further forging after casting or extrusion.
[0014]
In the heat treatment, first, a solution treatment is performed at 490 to 500 ° C. The solution treatment is preferably performed at as high a temperature as possible in order to sufficiently re-dissolve the solute elements precipitated in the cooling process after molding in the base material. However, if the temperature is too high, the solution will swell into the material due to eutectic melting. Therefore, it is performed in the above temperature range. A particularly preferred lower limit of the solution treatment temperature is 495 ° C., and a particularly preferred upper limit is 500 ° C. Subsequently, after quenching in water or warm water to form a supersaturated solid solution, an aging treatment is performed at 170 to 220 ° C. for 2 hours or more. The optimum values for the aging temperature and time vary depending on the required value of the product, but if it is less than 170 ° C, it takes a long time to reach the required hardness, and 220 ° C. If it exceeds 1, it will be over-aged in a short time and the hardness will decrease, making it difficult to control the treatment time. A particularly preferred lower limit for the aging temperature is 180 ° C., and a particularly preferred upper limit is 200 ° C.
[0015]
【Example】
Next, specific examples of the aluminum alloy material for engine pistons and the method for producing engine pistons made of aluminum alloy according to the present invention will be described in detail.
[Experiment 1]
For aluminum alloys having four compositions shown in Table 1 below, 8-inch billets were cast and homogenized at 470 ± 5 ° C. for 10-12 hours. The billet was then heated to 380 ° C. and extruded at an extrusion product speed of 2 to 2.5 m / min and an extrusion ratio of 90. These extruded materials were quenched after solution treatment at 495 ° C. × 2 hours, and subjected to aging treatment at 200 ± 2 ° C. for 2, 4, 6, and 8 hours, respectively, to obtain test materials. The aluminum alloy of Comparative Example 1 has a Cu content that is one of the characteristic components of the present invention, which is out of the scope of the invention.
[0016]
About each test material, hardness (HRB) and the thermal expansion coefficient in normal temperature-300 degreeC were measured. Moreover, about the 6-hour aging material among each test material, the average particle diameter of eutectic Si and the area ratio of eutectic Si and Cu-type crystallized substance were measured by microscopic observation. These results are also shown in Table 1.
[0017]
[Table 1]
Figure 0004253414
[0018]
Further, among the test materials, the aging material for 6 hours was held at a high temperature of 200 ° C. or 250 ° C. for 200 hours, and the hardness change was examined. The results are shown in Table 2.
[0019]
[Table 2]
Figure 0004253414
[0020]
Further, each test material was held at 200 ° C. for 200 hours to examine dimensional changes. The dimensional change was evaluated as permanent elongation (%) by measuring the dimensional change for a test piece having a length of 29 mm at room temperature after heat treatment. The results are shown in Table 3.
[0021]
[Table 3]
Figure 0004253414
[0022]
From the results of Table 1, it was confirmed that in the examples of the present invention, the coefficient of thermal expansion was reduced, the increase in dimensions at high temperatures could be suppressed, and high hardness was obtained. Moreover, in each Example, the average particle diameter of eutectic Si is as fine as 10 μm or less, no coarse crystals are observed, and the total area occupied by eutectic Si and Cu-based crystallized substances is 40% or less. became. Furthermore, from the results of Tables 2 and 3, it was confirmed that high hardness can be maintained even when kept at a high temperature of 200 ° C., and that dimensional changes can also be suppressed. Since this dimensional change becomes smaller as the degree of supersaturation of the solute element in the matrix phase decreases, an effect of suppressing the dimensional change can be obtained while securing the same hardness as the conventional product by using the product of the present invention as an overaging treatment.
[0023]
[Experiment 2]
Si: 10.0 wt%, Cu: 9.1 wt%, Mg: 0.73 wt%, an 8-inch billet was cast with an aluminum alloy consisting of the balance Al and impurities, and homogenized at 470 ± 5 ° C. for 10-12 hours. . Next, the billet was heated to 380 ° C., extruded into a round bar having a diameter of 90 mm at an extrusion product speed of 2 to 2.5 m / min and an extrusion ratio of 5, and further forged into a piston shape. This forged product was quenched after solution treatment at 495 ° C. × 2.5 hours, and subjected to aging treatment at 200 ± 2 ° C. for 8 hours. With respect to this heat-treated forged product, four test pieces were cut from each of the five parts, and the hardness was measured. As for Comparative Example 11, the hardness was also measured for a forged product that was not subjected to a series of heat treatments. Table 4 shows the measurement results.
[0024]
[Table 4]
Figure 0004253414
[0025]
From the results in Table 4, it was confirmed that high hardness was obtained by performing a predetermined heat treatment after molding.
[0026]
【The invention's effect】
As described above, the aluminum alloy material for engine pistons of the present invention contains Si: 8.0 to 12.0 wt%, Cu: 8.0 to 12.0 wt%, and Mg: 0.1 to 2.0 wt%. In addition, by having a composition composed of the remaining Al and impurities, the thermal expansion coefficient can be reduced to suppress dimensional changes at high temperatures. Further, the structure has an eutectic Si average particle size of 50 μm or less, and further contains eutectic Si and Cu-based crystals in an area ratio of 40% or less, eliminating coarse crystals. Therefore, it has excellent mechanical strength and maintains high hardness even at high temperatures.
[0027]
Moreover, the manufacturing method of the engine piston made from the aluminum alloy of this invention contains Si: 8.0-12.0 wt%, Cu: 8.0-12.0 wt%, and Mg: 0.1-2.0 wt%, The aluminum alloy composed of the remaining Al and impurities is formed into a required shape, quenched after solution treatment at 490 to 500 ° C. for 2 to 4 hours, and further subjected to aging treatment at 170 to 220 ° C. for 2 hours or more. The solid solution and precipitation of the solute element can be controlled in various ways according to the required values of the product, and high hardness can be maintained even at high temperatures, and the dimensional change accompanying the precipitation of the eluted element can be suppressed.

Claims (6)

Si:8.0〜12.0wt%、Cu:8.0〜12.0wt%およびMg:0.1〜2.0wt%を含み、残部Alおよび不純物からなり、共晶Siの平均粒径が50μm以下であり、さらに共晶SiおよびCu系晶出物を合計40%以下の面積率で含有することを特徴とするエンジンピストン用アルミニウム合金材。  Si: 8.0 to 12.0 wt%, Cu: 8.0 to 12.0 wt%, and Mg: 0.1 to 2.0 wt%, the balance is Al and impurities, and the average grain size of eutectic Si is An aluminum alloy material for an engine piston, which is 50 μm or less and further contains an eutectic Si and Cu-based crystallized material in an area ratio of 40% or less in total. 前記共晶Siの平均粒径が10μm以下である請求項1に記載のエンジンピストン用アルミニウム合金材。The aluminum alloy material for engine pistons according to claim 1, wherein an average particle diameter of the eutectic Si is 10 µm or less. 前記共晶SiおよびCu系晶出物の合計の面積率が35%以下である請求項1または2に記載のエンジンピストン用アルミニウム合金材。The aluminum alloy material for an engine piston according to claim 1 or 2, wherein the total area ratio of the eutectic Si and Cu-based crystallized product is 35% or less. Si:8.0〜12.0Si: 8.0 to 12.0 wtwt %、Cu:8.0〜12.0%, Cu: 8.0 to 12.0 wtwt %およびMg:0.1〜2.0% And Mg: 0.1 to 2.0 wtwt %を含み、残部Alおよび不純物からなるアルミニウム合金を所要形状に成形し、490〜500℃で2〜4時間溶体化処理後焼入れし、さらに170〜220℃で2時間以上の時効処理を施すことを特徴とするアルミニウム合金製エンジンピストンの製造方法。An aluminum alloy composed of the remaining Al and impurities is formed into a required shape, quenched after solution treatment at 490 to 500 ° C. for 2 to 4 hours, and further subjected to aging treatment at 170 to 220 ° C. for 2 hours or more. A method for producing an engine piston made of an aluminum alloy. 前記溶体化処理温度が495〜500℃である請求項4に記載のアルミニウム合金製エンジンピストンの製造方法。The method for producing an engine piston made of aluminum alloy according to claim 4, wherein the solution treatment temperature is 495 to 500 ° C. 前記時効処理温度が180〜200℃である請求項4または5に記載のアルミニウム合金製エンジンピストンの製造方法。The method for producing an aluminum alloy engine piston according to claim 4 or 5, wherein the aging treatment temperature is 180 to 200 ° C.
JP36921799A 1999-12-27 1999-12-27 Aluminum alloy material for engine piston and method of manufacturing aluminum alloy automobile engine piston Expired - Fee Related JP4253414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36921799A JP4253414B2 (en) 1999-12-27 1999-12-27 Aluminum alloy material for engine piston and method of manufacturing aluminum alloy automobile engine piston

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36921799A JP4253414B2 (en) 1999-12-27 1999-12-27 Aluminum alloy material for engine piston and method of manufacturing aluminum alloy automobile engine piston

Publications (3)

Publication Number Publication Date
JP2001181769A JP2001181769A (en) 2001-07-03
JP2001181769A5 JP2001181769A5 (en) 2007-02-15
JP4253414B2 true JP4253414B2 (en) 2009-04-15

Family

ID=18493877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36921799A Expired - Fee Related JP4253414B2 (en) 1999-12-27 1999-12-27 Aluminum alloy material for engine piston and method of manufacturing aluminum alloy automobile engine piston

Country Status (1)

Country Link
JP (1) JP4253414B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005065004A2 (en) * 2004-01-12 2005-07-21 Ks Kolbenschmidt Gmbh Heat-resistant aluminium-silicon piston alloy
CN101082115B (en) * 2007-05-25 2010-05-19 中南大学 Treatment method for providing aluminum alloy with high thermal stability anti-fatigue microstructure
US20120100385A1 (en) 2009-07-03 2012-04-26 Showa Denko K.K. Process for production of roughly shaped material for engine piston
CN111893408A (en) * 2020-07-24 2020-11-06 东风(十堰)有色铸件有限公司 Process for improving dimensional stability of die casting

Also Published As

Publication number Publication date
JP2001181769A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
EP2281909B1 (en) Manufacturing method of an aluminium alloy cast heat sink having a complex structure or a thin walled protion with excellent thermal conductivity
EP1778887B1 (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
US20110116966A1 (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
WO2006014948A2 (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
JP6569531B2 (en) Magnesium alloy and manufacturing method thereof
KR101815032B1 (en) Magnesium alloy and method for producing same
JPH05345945A (en) Aluminum alloy
JP4253414B2 (en) Aluminum alloy material for engine piston and method of manufacturing aluminum alloy automobile engine piston
JP3909543B2 (en) Aluminum alloy extruded material with excellent axial crushing properties
JPH0457738B2 (en)
JPH0713275B2 (en) High-strength stress corrosion cracking resistant aluminum-based powder metallurgy alloy
JPH055146A (en) Aluminum alloy excellent in wear resistance and thermal conductivity
JPH09296245A (en) Aluminum alloy for casting
JPH02149631A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPH055147A (en) Low thermal expansion aluminum alloy excellent in wear resistance
JPH02194142A (en) Al-base alloy powder for sintering
JP2713307B2 (en) Heat treatment method of aluminum powder alloy
EP0643145B1 (en) High strength magnesium-based alloy materials and method for producing the same
JP3958230B2 (en) Aluminum alloy die casting and manufacturing method thereof
JPH02149632A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPH01242749A (en) Heat-resistant aluminum alloy
JP2002226932A (en) Aluminum alloy for heat sink having excellent strength and thermal conductivity and production method therefor
JPS63103046A (en) Aluminum alloy for cold forging
JPH02149633A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JP2021195605A (en) Al-Mn BASED ALUMINUM ALLOY CASTING AND METHOD FOR MANUFACTURING THE SAME

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees