JP4252069B2 - Ground strengthening method - Google Patents

Ground strengthening method Download PDF

Info

Publication number
JP4252069B2
JP4252069B2 JP2006055105A JP2006055105A JP4252069B2 JP 4252069 B2 JP4252069 B2 JP 4252069B2 JP 2006055105 A JP2006055105 A JP 2006055105A JP 2006055105 A JP2006055105 A JP 2006055105A JP 4252069 B2 JP4252069 B2 JP 4252069B2
Authority
JP
Japan
Prior art keywords
ground
embankment
boring
original
boundary surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006055105A
Other languages
Japanese (ja)
Other versions
JP2007231628A (en
Inventor
俊介 島田
忠雄 小山
Original Assignee
強化土エンジニヤリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 強化土エンジニヤリング株式会社 filed Critical 強化土エンジニヤリング株式会社
Priority to JP2006055105A priority Critical patent/JP4252069B2/en
Publication of JP2007231628A publication Critical patent/JP2007231628A/en
Application granted granted Critical
Publication of JP4252069B2 publication Critical patent/JP4252069B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は地盤強化方法に関し、特に谷間の原地盤の上に盛土する谷埋め盛土によって造成され、宅地や工場建設地、あるいは道路などとして利用される造成地の地盤強化に適用され、地震時や大量降雨時の地滑り災害を防止することができる。   The present invention relates to a ground strengthening method, in particular, it is created by valley filling embankment that fills the original ground of the valley, and is applied to ground strengthening of residential land, factory construction land, or land used for roads, etc. Landslide disasters during heavy rainfall can be prevented.

近年、谷間の原地盤の上に盛土して宅地や工場建設地、あるいは道路などの用地を確保する谷埋め盛土が一般に行われている。谷埋め盛土によって造成された盛土地盤は、原地盤と盛土地盤の地盤性状が自ずと異なり、特に原地盤は盛土地盤に比べてかなり固いため地下水を通しにくく、地下水が原地盤面の上を流れていることが予測される。   In recent years, embankment embankment is generally performed to fill land on the valley ground to secure land such as residential land, factory construction site, or road. The embankment created by the valley filling embankment is different in nature from the ground and the embankment, and the ground is much harder than the embankment, making it difficult for groundwater to pass through. It is predicted that

このため、原地盤と盛土地盤との境界面のせん断強度は小さく、地震などで外力が加わると盛土地盤全体が原地盤との境界面で地滑りを起しやすい。   For this reason, the shear strength of the boundary surface between the original ground and the embankment is small, and when an external force is applied due to an earthquake or the like, the entire embankment tends to landslide at the interface with the original ground.

特に、大雨が降った後などには、盛土地盤に浸透した大量の雨水が、原地盤面の上を上流から下流側へ地下水となって流れることが予測されるため、盛土地盤が飽和状態になり、浸透圧、盛土重量の増加、地盤強度の低下等を来し、境界面付近で大規模な地滑り災害に発展するおそれがある。   In particular, after heavy rain, a large amount of rainwater that has penetrated into the embankment is expected to flow from the upstream to the downstream as groundwater on the original soil surface, so that the embankment is saturated. This may cause osmotic pressure, increase in embankment weight, decrease in ground strength, etc., and may develop into a large-scale landslide disaster near the boundary surface.

従来、このような地滑り災害を未然に防ぐ方法として、例えば図12(a),(b)に図示するような方法が行われている。図12(a)に図示する方法は、盛土地盤20の下流側部に擁壁21を上流側方向に階段状に構築し、各擁壁21から盛土地盤20内にアンカーまたは排水孔22を施工する方法であり、また、図12(b)に図示する方法は、盛土地盤20に集水井戸23を設け、当該集水井戸23から盛土地盤20内に集水用の横ボーリング孔24を削孔する方法である。   Conventionally, as a method for preventing such a landslide disaster, for example, a method illustrated in FIGS. 12A and 12B has been performed. In the method illustrated in FIG. 12A, a retaining wall 21 is constructed in a stepped shape in the upstream direction on the downstream side of the embankment floor 20, and an anchor or drain hole 22 is constructed in each embankment floor 20 from each retaining wall 21. In the method illustrated in FIG. 12B, a water collecting well 23 is provided in the embankment floor 20, and a horizontal boring hole 24 for collecting water is cut into the embankment ground 20 from the water collecting well 23. It is a method of making holes.

特許2509005号Patent 2509005

これらの方法では、盛土地盤そのものの地盤強化は図れても、原地盤と盛土地盤との境界附近で発生する盛土地盤全体の地滑り災害を防ぐには不充分であった。他に、盛土地盤中に固化材を注入して地盤の一部を改良する固結方法や排水孔を削孔する排水方法なども知られている。   Although these methods could strengthen the ground of the embankment itself, it was insufficient to prevent the landslide disaster of the entire embankment that occurred near the boundary between the original ground and the embankment. In addition, there are known a consolidation method for improving a part of the ground by injecting a solidifying material into the embankment and a drainage method for drilling a drain hole.

しかし、固結方法は、地盤が不透水性となるために地下水を貯留する効果になり、かつ不安定な斜面上における作業性や斜面上にある人家などの生活圏内における作業が通常の生活環境を妨げることになるので好ましくない。また、排水孔を削孔する方法も、排水孔を設けるための作業時において同様の問題が生ずる。   However, the consolidation method has the effect of storing groundwater due to the imperviousness of the ground, and workability on unstable slopes and work within a living area such as a house on the slope is a normal living environment. This is not preferable because it interferes with this. In addition, the method of drilling the drainage hole causes the same problem during the work for providing the drainage hole.

さらに、いずれの方法も、特に問題とされる原地盤と盛土地盤との境界部分の地盤対策としては不充分なもので、原地盤面に沿って盛土地盤全体の地滑りを阻止することはできないものであった。   In addition, each method is insufficient as a ground countermeasure at the boundary between the original ground and the embankment, which is particularly problematic, and cannot prevent landslide of the entire embankment along the original ground surface. Met.

本発明は、以上の課題を解決するためになされたもので、特に原地盤と盛土地盤との境界面附近で発生する盛土地盤全体の地滑りを阻止できるようにした地盤強化方法を提供することを目的とする。   The present invention has been made to solve the above problems, and in particular, provides a ground strengthening method capable of preventing the landslide of the entire embankment that occurs near the boundary surface between the original ground and the embankment. Objective.

請求項1記載の地盤強化方法は、原地盤と当該原地盤の上に造成された盛土地盤との境界面付近の盛土地盤内に、複数のボーリング孔を前記原地盤と盛土地盤との境界面の傾斜方向に連続し、かつ前記境界面の傾斜方向と直交する方向に複数列に削孔し、当該ボーリング孔内に固化材を注入して前記境界面の傾斜方向に連続する地盤改良部を形成することを特徴とするものである。   The ground strengthening method according to claim 1 is characterized in that a plurality of bore holes are provided in the boundary surface between the original ground and the embankment in the embankment near the boundary between the original ground and the embankment formed on the original ground. A ground improvement portion that is continuous in the inclination direction of the boundary surface and is drilled in a plurality of rows in a direction orthogonal to the inclination direction of the boundary surface, and a solidifying material is injected into the boring hole to continue in the inclination direction of the boundary surface. It is characterized by forming.

本発明は、地盤性状の違いから特に地滑りが発生しやすいとされる盛土地盤の地盤強化方法であって、斜面状をなす原地盤と当該原地盤の上に盛土して造成された盛土地盤との境界部分に、原地盤の傾斜方向に連続する複数の地盤改良部を複数列に形成することによって盛土地盤の安定化を図るものである。   The present invention is a ground strengthening method for embankment that is particularly likely to cause landslide due to the difference in ground properties, and an embankment that is formed by embankment on the original ground that forms a slope, The embankment is stabilized by forming, in a plurality of rows, a plurality of ground improvement portions that are continuous in the inclination direction of the original ground at the boundary portion.

この場合の地盤改良部は、原地盤の傾斜方向に連続して形成してもよく、あるいは所定間隔おきに所定の長さずつ形成してもよく、さらには上流側と下流側にのみ形成してもよい。また、各地盤改良部の径と間隔、さらに固化材は原地盤と盛土地盤の地盤性状に応じて適宜決定することができる。   In this case, the ground improvement portion may be formed continuously in the inclination direction of the original ground, or may be formed by a predetermined length at predetermined intervals, and further formed only on the upstream side and the downstream side. May be. In addition, the diameter and interval of the ground improvement parts, and the solidification material can be appropriately determined according to the ground properties of the original ground and the embankment.

請求項2記載の地盤強化方法は、谷部に盛土して造成された谷埋め盛土地盤の地盤強化方法であって、原地盤と谷埋め盛土地盤との境界面付近の盛土地盤内に、複数のボーリング孔を前記原地盤と盛土地盤との境界面の傾斜方向に連続し、かつ前記境界面の傾斜方向と直交する方向に複数列に削孔し、当該ボーリング孔内に固化材を注入して前記境界面の傾斜方向に連続する地盤改良部を形成することを特徴とするものである。   The ground strengthening method according to claim 2 is a ground strengthening method of a valley fill land that has been created by embankment in a valley, and a plurality of ground strengthening methods in the vicinity of the boundary surface between the original ground and the valley fill land Are drilled in a plurality of rows in a direction perpendicular to the direction of inclination of the boundary surface, and solidified material is injected into the borehole. Thus, a ground improvement portion that is continuous in the inclination direction of the boundary surface is formed.

本発明は、いわゆる谷埋め盛土によって造成された造成地は、特に原地盤と盛土地盤との境界部分を地下水が流れていることが多いこともあって、盛土地盤全体が地滑りを発生しやすいことから、この境界部分に地盤改良部を形成することで、境界部分における地滑りを未然に防止するようにしたものである。   In the present invention, the ground created by the so-called valley filling embankment is particularly prone to landslides in the whole embankment because groundwater often flows at the boundary between the original ground and the embankment. Therefore, a ground improvement portion is formed in the boundary portion to prevent landslide in the boundary portion.

請求項3記載の地盤強化方法は、請求項1または2記載の地盤強化方法において、ボーリング孔は誘導式曲りボーリングによって削孔することを特徴とするものである。   The ground reinforcing method according to claim 3 is the ground reinforcing method according to claim 1 or 2, wherein the boring hole is drilled by induction bending boring.

なお、ここで用いる誘導式曲りボーリングは、ボーリングヘッドに位置情報を感知する装置を備え、この位置情報を地上で受信し、ボーリングの作業盤上での表示に基いてボーリングヘッドを操作したり、或いはジャイロでボーリングの方向性を操作することができる装置である。   The inductive bending boring used here is equipped with a device that senses position information on the boring head, receives this position information on the ground, operates the boring head based on the display on the boring work panel, Or it is an apparatus which can operate the directionality of a boring with a gyro.

ボーリングの削孔に誘導式曲りボーリングを利用することによりボーリング孔を原地盤と盛土地盤との境界面付近に沿ってきわめて効率的に削孔することができる。これは、斜面の排水面積に対するボーリング本数、ボーリング長が少なくてすみ、かつ排水効果を確実にすることができるためである。   By using inductive bending boring for boring, the boring hole can be drilled very efficiently along the vicinity of the boundary surface between the original ground and the embankment. This is because the number of bores and the bore length for the drainage area of the slope can be reduced, and the drainage effect can be ensured.

請求項4記載の地盤強化方法は、請求項1〜3のいずれかに記載の地盤強化方法において、前記地盤改良部は原地盤の下流側および/または上流側の一定範囲に渡って形成することを特徴とするものである。   The ground reinforcement method according to claim 4 is the ground reinforcement method according to any one of claims 1 to 3, wherein the ground improvement portion is formed over a certain range on the downstream side and / or upstream side of the original ground. It is characterized by.

本発明は、地盤の状況に応じて上流側と下流側の一定範囲に限定的に地盤改良部を形成することで、固化材の無駄な使用を無くして合理的で経済的な地盤強化を可能にしたものである。   The present invention enables rational and economical ground strengthening by eliminating wasteful use of solidification material by forming ground improvement sections limited to a certain range on the upstream and downstream sides according to the ground conditions. It is a thing.

請求項5記載の地盤強化方法は、請求項4記載の地盤強化方法において、上流側の地盤改良部は、境界面の上流側の盛土地盤内に曲りボーリング又は直線ボーリングによって削孔したボーリング孔内に固結材を注入するか、あるいは攪拌混合式または高圧噴射方式によって形成することを特徴とするものである。請求項4記載の地盤安定化方法。   The ground strengthening method according to claim 5 is the ground strengthening method according to claim 4, wherein the upstream ground improvement portion is formed in a borehole formed by bending or straight boring in the embankment ground upstream of the boundary surface. It is characterized in that it is formed by injecting a caking material into the material or by a stirring and mixing method or a high pressure injection method. The ground stabilization method according to claim 4.

上流側の地盤の一部を固結する方法には、曲りボーリングを用いた固化材の注入法の他に、垂直ボーリングまたは斜めボーリングを用いた固化材の注入法、あるいは注入法でなく攪拌混合工法や高圧噴射注入法を利用してもよい。また、上流側の作業性のよい場合や生活居住圏外で固結させればよいし、また列状に固結しなくても上流側で固結させれば、貯留の心配はなく、また表面水の下流側への浸透をその水密性によって遮断できるという効果がある。   In addition to the solidified material injection method using curved boring, solidified material injection method using vertical boring or oblique boring, or agitation mixing instead of the injection method. A construction method or a high-pressure injection injection method may be used. In addition, if upstream workability is good, it is sufficient to solidify outside the living area, and if it is solidified upstream, even if it is not consolidated in line, there is no worry of storage, and the surface There is an effect that permeation of water downstream can be blocked by its water tightness.

請求項6記載の地盤強化方法は、請求項1〜5のいずれか1に記載の地盤強化方法において、境界面の傾斜方向と直交する方向に隣接する地盤改良部と地盤改良との間の原地盤と盛土地盤との境界面付近の盛土地盤内に、排水孔を境界面の傾斜方向に形成することを特徴とするものである。   The ground reinforcement method according to claim 6 is the ground reinforcement method according to any one of claims 1 to 5, wherein the ground improvement portion between the ground improvement portion and the ground improvement adjacent to the direction orthogonal to the inclination direction of the boundary surface is provided. In the embankment near the boundary surface between the ground and the embankment, drainage holes are formed in the inclination direction of the interface.

本発明は特に、大雨時の地滑り災害の防止策としてきわめて有効な方法であり、一般に大雨時およびその直後においては、盛土地盤は飽和状態にあり、地滑り破壊を起し易いが、地下水を強制的に排水することにより盛土地盤の飽和状態化を回避することで大規模な地滑り災害を未然に防止することができる。   In particular, the present invention is a very effective method for preventing landslide disasters during heavy rains. In general, during and after heavy rains, the embankment is in a saturated state and is prone to landslide destruction. By draining to the ground, it is possible to prevent large-scale landslide disasters by avoiding saturation of the embankment.

なお、排水孔はボーリング孔に塩ビ管、鋼管またはコルゲート管などの管に多数の水抜き孔を設けた孔開き管を挿入することにより簡単に形成することができる。また、排水孔は地盤の傾斜方向に例えばS字状に蛇行した状態に削孔してもよい。   The drain hole can be easily formed by inserting a perforated pipe provided with a number of drain holes in a pipe such as a PVC pipe, a steel pipe or a corrugated pipe. Further, the drain hole may be drilled in a state meandering in an S shape, for example, in the inclination direction of the ground.

請求項7記載の地盤強化方法は、請求項6記載の地盤強化方法であって、前記排水孔は前記地盤改良部間に形成することを特徴とするものである。   The ground strengthening method according to claim 7 is the ground reinforcing method according to claim 6, wherein the drain holes are formed between the ground improvement portions.

請求項8記載の地盤強化方法は、請求項1〜7記載の地盤強化方法において、盛土地盤の下流側部に擁壁を構築することを特徴とするものである。この場合の擁壁は、RC構造の他、石やコンクリートブロックなどを積み上げた組積構造や補強土擁壁工などで構築することができる。   The ground reinforcement method according to claim 8 is the ground reinforcement method according to claims 1 to 7, wherein a retaining wall is constructed on the downstream side portion of the embankment. In this case, the retaining wall can be constructed by an RC structure, a masonry structure in which stones, concrete blocks, or the like are stacked, or a reinforced soil retaining wall.

請求項9記載の地盤強化方法は、請求項1〜7のいずれかに記載の地盤強化方法において、盛土地盤にアンカーを施工し、当該アンカーの先端を原地盤に定着することを特徴とするものである。この場合のアンカーには、通常のグランドアンカーやプレストレスを利用したアンカーの他に、例えば鉄筋アンカー(ネイリングアンカー)等を利用することができる。   The ground strengthening method according to claim 9 is the ground reinforcing method according to any one of claims 1 to 7, wherein an anchor is constructed on the embankment and the tip of the anchor is fixed on the original ground. It is. In this case, for example, a reinforcing bar anchor (nailing anchor) or the like can be used in addition to a normal ground anchor or an anchor using prestress.

本工法によれば、棒状の補強材、主に鉄筋、鋼管、形鋼、帯筋などを盛土地盤中に数多く打設して一種の合成補強土塊を形成することにより盛土の強度を直接補強することができる。   According to this construction method, the strength of the embankment is directly reinforced by forming a kind of synthetic reinforced earth block by placing many rod-shaped reinforcements, mainly reinforcing bars, steel pipes, shaped steel, strips, etc. in the embankment. be able to.

本発明は特に、原地盤と盛土地盤との境界部分に地盤改良部を形成して盛土地盤の境界部分を強化することで、盛土地盤の地滑りを未然に防いで地盤の安定化を図ることができる。また、境界部分に地盤改良部と共に排水孔を形成して地下水を強制的に排水するようにしたことで、盛土地盤の安定化をさらに高めることができる。   In particular, the present invention can stabilize the ground by preventing the landslide of the embankment in advance by forming a ground improvement part at the boundary between the original ground and the embankment and strengthening the boundary of the embankment. it can. Moreover, the stabilization of the embankment can be further enhanced by forming a drainage hole in the boundary portion together with the ground improvement part to forcibly drain the groundwater.

また、排水孔は原地盤と盛土地盤との境界部分に誘導式曲りボーリングを利用して削孔することにより、斜面上の生活圏外からボーリング孔を削孔して排水孔を形成し、また当該ボーリング孔内に固化材を注入することにより、生活圏を侵すことなく施工を行うことができ、かつ少ないボーリング数やボーリング延長で、容易にかつ効果的な排水を行うことができる。   In addition, the drainage hole is drilled at the boundary between the original ground and the embankment by using induction bending boring, so that the borehole is drilled from outside the living area on the slope, and the drainage hole is formed. By injecting the solidifying material into the borehole, construction can be performed without invading the living area, and drainage can be performed easily and effectively with a small number of bores and an extended bore.

図1(a),(b)は、傾斜面状をなす原地盤の上に盛土することにより造成された造成宅地を示し、原地盤1の上に盛土地盤2が造成されている。また、原地盤1と盛土地盤2との境界部分Aに複数の地盤改良部3が原地盤1の傾斜方向に沿って複数列に形成されている。   FIGS. 1A and 1B show a built-up residential land created by embankment on an inclined ground surface. A embankment ground 2 is created on the original ground 1. In addition, a plurality of ground improvement portions 3 are formed in a plurality of rows along the inclination direction of the original ground 1 at the boundary portion A between the original ground 1 and the embankment ground 2.

地盤改良部3は、原地盤1と盛土地盤2との境界面付近に沿って原地盤1の傾斜方向に連続し、かつ傾斜方向(勾配方向)と直交する方向に所定間隔おきに複数列に形成されている。   The ground improvement unit 3 is continuous in the inclination direction of the original ground 1 along the boundary surface between the original ground 1 and the embankment 2 and is arranged in a plurality of rows at predetermined intervals in a direction orthogonal to the inclination direction (gradient direction). Is formed.

地盤改良部3は盛土地盤2の境界部分Aに原地盤1の下流側から上流側方向にボーリング孔を削孔し、当該ボーリング孔内に固化材を注入してボーリング孔周辺の地盤を一定範囲に渡って固化することにより形成されている。   The ground improvement part 3 drills a borehole in the boundary part A of the embankment ground 2 from the downstream side of the original ground 1 to the upstream side, and injects a solidified material into the borehole to provide a certain range of ground around the borehole. It is formed by solidifying over.

このように、強度と水密性のある地盤改良部3が原地盤1の斜面に沿って連続して配置される結果、その間は排水ゾーンとなり、固結効果と排水効果が同時に得られ、地盤改良部3が地下水を貯留し、排水を妨げることがないので、境界部分Aの斜面地盤の安定を向上させることができる。   As described above, the ground improvement portion 3 having strength and water tightness is continuously arranged along the slope of the original ground 1, and as a result, a drainage zone is formed between them, and a consolidation effect and a drainage effect are obtained at the same time. Since the part 3 stores groundwater and does not hinder drainage, stability of the slope ground at the boundary portion A can be improved.

図2(a)、(b)は、原地盤1と盛土地盤2との境界部分Aの下流側部に、上記した地盤改良部3が原地盤1の傾斜方向に一定範囲(長さ)に渡って形成されている例を示し、また、図3(a),(b)は、原地盤1と盛土地盤2との境界部分Aの下流側部と上流側部の両方に上記した地盤改良部3が原地盤1の傾斜方向に一定範囲に渡って形成されている例を示したものである。   2 (a) and 2 (b) show the downstream side of the boundary portion A between the original ground 1 and the embankment 2 and the above ground improvement portion 3 is in a certain range (length) in the inclination direction of the original ground 1. 3 (a) and 3 (b) show the ground improvement described above on both the downstream side and the upstream side of the boundary portion A between the original ground 1 and the embankment 2. An example in which the part 3 is formed over a certain range in the inclination direction of the original ground 1 is shown.

なお、上流側の地盤改良部3は、上流側の地盤の一部を任意の方法で固めて形成しておけば、その領域の地上りの滑動力しか作用しないために下流側の固結領域を少なくできるだけでなく、滑動に対する安全率が高められるという効果を生ずる。   Note that the upstream ground improvement section 3 is formed by solidifying a part of the upstream ground by an arbitrary method, so that only the ground sliding force of the area acts, so the downstream consolidated area As a result, the safety factor against sliding can be increased.

この場合、上流側の地盤の一部を固めて地盤改良部3を形成する方法としては、曲りボーリングを利用した固化材の注入法によらなくても、垂直ボーリングや斜めボーリング等の直線ボーリングを利用して固化材を注入する方法、或いは攪拌混合工法や高圧噴射注入工法などを利用してもよい。   In this case, as a method of forming the ground improvement portion 3 by solidifying a part of the ground on the upstream side, straight boring such as vertical boring and oblique boring is performed without using a solidified material injection method using curved boring. You may utilize the method of inject | pouring a solidification material using, a stirring mixing construction method, a high-pressure injection injection construction method, etc.

また、上流側の作業性のよい場合や生活居住圏外で固結させればよいし、また列状に固結しなくても上流側で固結させれば、貯留の心配はなく、また表面水の下流側への浸透をその水密性によって遮断できるという効果がある。   In addition, if upstream workability is good, it is sufficient to solidify outside the living area, and if it is solidified upstream, even if it is not consolidated in line, there is no worry of storage, and the surface There is an effect that permeation of water downstream can be blocked by its water tightness.

さらに、図4(a),(b)は、原地盤1と盛土地盤2との境界部分Aに上記した複数の地盤改良部3が形成され、さらに各地盤改良部3と3との間に排水孔4が原地盤1の傾斜方向に連続して形成されている例を示したものである。   Further, in FIGS. 4A and 4B, a plurality of the ground improvement portions 3 described above are formed at the boundary portion A between the original ground 1 and the embankment 2, and between the various ground improvement portions 3 and 3. An example in which the drain holes 4 are continuously formed in the inclination direction of the original ground 1 is shown.

排水孔4は、地盤改良部3と同様に原地盤1と盛土地盤2との境界部分Aに原地盤1の傾斜方向に連続して形成されている。   The drain hole 4 is continuously formed in the inclination direction of the original ground 1 at the boundary portion A between the original ground 1 and the embankment ground 2 similarly to the ground improvement portion 3.

図5(a),(b)は原地盤1と盛土地盤2との境界部分Aの下流側部に、上記した地盤改良部3が原地盤1の傾斜方向に一定範囲に渡って形成され、かつ各地盤改良部3と3との間に上記した排水孔4が原地盤1の傾斜方向に連続して形成されている例を示したものである。   5 (a) and 5 (b), the above ground improvement part 3 is formed over a certain range in the inclination direction of the original ground 1 on the downstream side portion of the boundary portion A between the original ground 1 and the embankment 2; In addition, an example in which the drainage holes 4 described above are continuously formed in the inclination direction of the original ground 1 between the various ground improvement portions 3 and 3 is shown.

排水孔4は、盛土地盤2の境界部分Aに原地盤1の下流側から上流側方向にボーリング孔を削孔し、当該ボーリング孔内に穴開きパイプを挿入する等して形成されている。なお、孔開きパイプには鋼管や塩ビ管、あるいはコルゲート管などの外周壁に多数の水抜き孔を形成したものが用いられている。   The drain hole 4 is formed by drilling a boring hole in the boundary portion A of the embankment 2 from the downstream side of the original ground 1 to the upstream side, and inserting a perforated pipe into the boring hole. In addition, as the perforated pipe, a steel pipe, a vinyl chloride pipe, a corrugated pipe or the like in which a large number of drain holes are formed is used.

このように、原地盤1と盛土地盤2との境界部分Aに複数の地盤改良部3を原地盤1の傾斜方向に複数列に形成して境界部分Aが補強されていることで、境界部分Aで盛土地盤2の全体が地滑りするのを未然に阻止することができる。   As described above, the boundary portion A is reinforced by forming a plurality of ground improvement portions 3 in a plurality of rows in the inclination direction of the original ground 1 at the boundary portion A between the original ground 1 and the embankment 2. A can prevent the entire embankment 2 from landslide.

また、各地盤改良部3と3の間に排水孔4を形成して境界部分Aの地下水を強制的に排水することにより地下水位を低下させ、盛土地盤2の飽和状態化を回避することで、境界部分Aの地盤の安定化を高めることができ、特に大雨時およびその直後の地滑り災害を未然に防止することができる。   In addition, by forming a drainage hole 4 between the ground improvement parts 3 and 3 and forcibly draining the groundwater at the boundary portion A, the groundwater level is lowered and the saturation of the embankment 2 is avoided. In addition, the stabilization of the ground at the boundary portion A can be enhanced, and in particular, landslide disasters during and after heavy rain can be prevented.

また、原地盤と盛土地盤との境界部分に排水孔を前記原地盤と盛土地盤との境界面付近に沿って原地盤の傾斜方向に連続して形成するこは、特に大雨時の地滑り災害の防止策としてきわめて有効な方法であり、一般に大雨時およびその直後においては、盛土地盤は飽和状態にあり、地滑り破壊を起し易いが、地下水を強制的に排水することにより盛土地盤の飽和状態化を回避することで大規模な地滑り災害を未然に防止することができる。   In addition, the drainage holes at the boundary between the original ground and the embankment are continuously formed in the inclination direction of the original ground along the vicinity of the boundary between the original ground and the embankment. This method is extremely effective as a preventive measure, and in general during and immediately after heavy rain, the embankment is in a saturated state and is prone to landslide destruction, but the embankment is saturated by forcibly draining groundwater. By avoiding this, large-scale landslide disasters can be prevented.

なお、排水孔はボーリング孔に塩ビ管、鋼管またはコルゲート管などの管に多数の水抜き孔を設けた孔開き管を挿入することにより簡単に形成することができる。また、排水孔は地盤の傾斜方向に例えばS字状に蛇行した状態に削孔してもよい。   The drain hole can be easily formed by inserting a perforated pipe provided with a number of drain holes in a pipe such as a PVC pipe, a steel pipe or a corrugated pipe. Further, the drain hole may be drilled in a state meandering in an S shape, for example, in the inclination direction of the ground.

次に、本発明の地盤強化方法の施工手順について説明する。
最初に、図7(a),(b)に図示するように、原地盤1と盛土地盤2との境界部分Aにボーリングを行ってボーリング孔5を削孔する。この場合のボーリングには誘導式曲りボーリングを用い、ボーリング孔5は原地盤1と盛土地盤2との境界面付近に沿って盛土地盤2内に原地盤1の下流側から上流側に向かって連続して削孔する。
Next, the construction procedure of the ground reinforcement method of the present invention will be described.
First, as shown in FIGS. 7A and 7B, the boring hole 5 is drilled by boring the boundary portion A between the original ground 1 and the embankment 2. In this case, the induction-type curved boring is used for boring, and the boring hole 5 is continuous from the downstream side of the original ground 1 to the upstream side in the embankment 2 along the boundary surface between the original ground 1 and the embankment 2. Then drill holes.

具体的には、図示するような盛土掘進用のドリルヘッド6aと掘進方向変更用のテーパ刃6bを先端に備えたボーリングロッド6をケーシング7内に挿入し、ドリルヘッド6aを盛土地盤2内に回転させながら上流方向に押し込んでボーリングを行う。   Specifically, a drilling rod 6b having a drill head 6a for embankment excavation and a tapered blade 6b for changing the excavation direction as shown in the figure is inserted into the casing 7, and the drill head 6a is inserted into the embankment 2 While rotating, push in the upstream direction to perform boring.

その際、ボーリングロッド6の回転を停止し、テーパ刃6bの向きを代えてボーリングの方向を変更することができる。そして、ボーリング孔5が上流側に到達したらケーシング7のみを残し、ボーリングロッド6を引き抜く。   At that time, it is possible to stop the rotation of the boring rod 6 and change the direction of the boring by changing the direction of the tapered blade 6b. When the boring hole 5 reaches the upstream side, only the casing 7 is left and the boring rod 6 is pulled out.

次に、図8(a)に図示するようにボーリング孔5のケーシング内に注入管8を挿入しつつケーシング(図8(a)ではケーシングは省略)を引き抜く。注入管8は、例えば図示するように外管9と当該外管9内に挿入された内管10とから構成され、外管9の先端部分にはゴムスリーブ等からなる逆支弁9aを備えた吐出口9bが外管9の長手方向および周方向に所定間隔おきに形成され、各吐出口9bの両側に膨張パッカ11,11がそれぞれ取り付けられている。   Next, as shown in FIG. 8A, the casing (the casing is omitted in FIG. 8A) is pulled out while the injection tube 8 is inserted into the casing of the bore hole 5. The injection tube 8 is composed of, for example, an outer tube 9 and an inner tube 10 inserted into the outer tube 9 as shown in the figure, and a distal support valve 9a made of a rubber sleeve or the like is provided at the tip of the outer tube 9. Discharge ports 9b are formed at predetermined intervals in the longitudinal direction and the circumferential direction of the outer tube 9, and expansion packers 11 and 11 are attached to both sides of each discharge port 9b.

膨張パッカ11,11は、地上から注入パイプ12aを介して送り込まれた流体(エアまたは液体)または固結液体によって膨張し、ボーリング孔5の孔壁を強く押圧することにより外管9をボーリング孔5内に固定すると共に、ボーリング孔5と外管9との間に密封空間13を形成する構成になっている。この場合の密封空間13はボーリング孔5の孔壁と外管9と左右膨張パッカ11,11とから形成される。   The expansion packers 11 and 11 are expanded by a fluid (air or liquid) or a solidified liquid fed from the ground via the injection pipe 12a, and strongly press the hole wall of the boring hole 5, thereby causing the outer tube 9 to be bored into the boring hole. 5 and a sealed space 13 is formed between the boring hole 5 and the outer tube 9. The sealed space 13 in this case is formed by the hole wall of the boring hole 5, the outer tube 9, and the left and right expansion packers 11 and 11.

一方、内管10の先端部分に膨張パッカ14,14が所定間隔おきに取り付けられている。膨張パッカ14,14は、膨張パッカ11,11と同様に地上から注入パイプ12bを介して送り込まれた流体または固結液体によって膨張し、外管9の内壁を強く押圧することにより内管10を外管9内に固定すると共に、外管9と内管10との間に密封空間15を形成する構成になっている。 なお、この場合の密封空間15は外管9と内管10と左右膨張パッカ14,14とから形成される。   On the other hand, expansion packers 14 and 14 are attached to the distal end portion of the inner tube 10 at predetermined intervals. The expansion packers 14 and 14 are expanded by a fluid or a solidified liquid sent from the ground via the injection pipe 12b in the same manner as the expansion packers 11 and 11, and strongly press the inner wall of the outer tube 9 to thereby press the inner tube 10. While being fixed in the outer tube 9, a sealed space 15 is formed between the outer tube 9 and the inner tube 10. In this case, the sealed space 15 is formed by the outer tube 9, the inner tube 10, and the left and right expansion packers 14 and 14.

このような構成において、注入管8によってボーリング孔5周辺の盛土地盤2中に固化材を注入するには、まず、ボーリング孔5内に注入管8の外管9を挿入する。そして、外管9の各膨張パッカ11,11を当該膨張パッカ11内に流体又は固結液体を注入して膨張させることにより、外管9をボーリング孔5内に固定し、かつ外管9とボーリング孔5との間に密封空間13を形成する。   In such a configuration, in order to inject the solidified material into the embankment board 2 around the borehole 5 by the injection pipe 8, first, the outer pipe 9 of the injection pipe 8 is inserted into the borehole 5. Then, each expansion packer 11, 11 of the outer tube 9 is inflated by injecting a fluid or a consolidated liquid into the expansion packer 11, thereby fixing the outer tube 9 in the borehole 5, and A sealed space 13 is formed between the borehole 5.

次に、外管9内に内管10を挿入し、各膨張パッカ14,14を当該膨張パッカ14にエア又は液体を注入して膨張させることにより、内管10の先端部分を外管9内に固定すると共に、外管9と内管10との間に密封空間15を形成する。   Next, the inner tube 10 is inserted into the outer tube 9, and each expansion packer 14, 14 is inflated by injecting air or liquid into the expansion packer 14. And a sealed space 15 is formed between the outer tube 9 and the inner tube 10.

次に、密封空間15内に注入パイプ12cを介して固化材を高圧で送り込む。密封空間15内に送り込まれた固化材は、外管9の吐出口9bを通って密封空間13内に押し出され、密封空間13周辺の盛土地盤2内に注入される。   Next, the solidified material is fed into the sealed space 15 through the injection pipe 12c at a high pressure. The solidified material fed into the sealed space 15 is pushed into the sealed space 13 through the discharge port 9b of the outer tube 9 and injected into the embankment 2 around the sealed space 13.

なお、膨張パッカ11と14に注入されたエアまたは液体を抜いて膨張パッカ11と14をそれぞれ収縮させることにより、外管9と内管10は再び自由に移動させることができる。   The outer tube 9 and the inner tube 10 can be freely moved again by removing the air or liquid injected into the expansion packers 11 and 14 and contracting the expansion packers 11 and 14 respectively.

この場合、固化材は密封空間13周辺の地盤中に注入されるため、1ヶ所の固化材の注入によって形成される地盤改良部は球状に形成されるが、注入管8を原地盤1の上流側から下流側方向に徐々に引き抜きながら固化材の注入を繰り返し行うことにより、地盤改良部3は原地盤1の上流側から下流側方向に連続して形成することができる。   In this case, since the solidified material is injected into the ground around the sealed space 13, the ground improvement portion formed by the injection of the solidified material at one location is formed in a spherical shape, but the injection pipe 8 is connected upstream of the original ground 1. The ground improvement part 3 can be continuously formed from the upstream side of the original ground 1 to the downstream side by repeatedly injecting the solidified material while gradually pulling it from the side toward the downstream side.

なお、図8(a)の例においては、固化材は複数の密封空間13内に一本の注入管12cによって同時に注入する構成になっているが、内管10内に複数の注入管12cを挿入し、各注入管12cを介して各密封空間13に固化材を同時に注入することもできる。さらに、複数の注入管8を用い、複数のボーリング孔5に同時に固化材を注入することもできる。このように施工することで、地盤改良部3を非常に効率的に形成することができる。   In the example of FIG. 8A, the solidified material is simultaneously injected into the plurality of sealed spaces 13 by one injection tube 12c. However, the plurality of injection tubes 12c are provided in the inner tube 10. It is also possible to insert the solidified material into each sealed space 13 through each injection tube 12c at the same time. Furthermore, it is possible to simultaneously inject the solidified material into the plurality of boring holes 5 using a plurality of injection tubes 8. By constructing in this way, the ground improvement part 3 can be formed very efficiently.

また、膨張パッカ11にエアや液体を注入する代わりにモルタル等の固化材を注入する場合は、外管9は回収せず、原地盤1と盛土地盤2との境界部分Aに埋設し、盛土地盤2の補強材として利用することができる。   When injecting solidified material such as mortar into the expansion packer 11 instead of injecting air or liquid, the outer tube 9 is not collected and is buried in the boundary portion A between the original ground 1 and the embankment 2 and embankment. It can be used as a reinforcing material for the ground 2.

なお、上記において図示しないが、曲りボーリングのボーリングロッド内の1本または複数の流路から注入液を注入しながら、ボーリングロッドを引抜いて地盤を固結してもよいし、また外管から直接注入液を注入してもよいし、また外管から注入しながら外管を引抜いて地盤を固結してもよい。   Although not shown in the above, the ground may be consolidated by pulling out the boring rod while injecting the injecting liquid from one or a plurality of flow paths in the boring rod of the bent boring, or directly from the outer tube. An injection solution may be injected, or the ground may be consolidated by pulling out the outer tube while injecting from the outer tube.

排水孔4は、ボーリング孔5を削孔した後、当該ボーリング孔5内に孔開き管(図省略)を挿入することにより形成することができる。   The drain hole 4 can be formed by cutting a boring hole 5 and then inserting a perforated pipe (not shown) into the boring hole 5.

図8(b)は、ボーリング孔5周辺の盛土地盤2中に固化材を注入する他の方法を示し、この場合の注入管8には、図8(a)で説明した外管9として、膨張パッカ11の無いものを使用し、ボーリング孔5内に外管9を挿入した後、ボーリング孔5と外管9との間に隙間充填材16を充填する。   FIG.8 (b) shows the other method of inject | pouring a solidified material into the embankment board 2 around the boring hole 5, and in this case the injection pipe 8 is as the outer pipe | tube 9 demonstrated in FIG. After using the one without the expansion packer 11 and inserting the outer tube 9 into the borehole 5, the gap filler 16 is filled between the borehole 5 and the outer tube 9.

そして、密封空間15内に注入パイプ12cを介して固化材を送り込む。密封空間15内に送り込まれた固化材は、外管9の吐出口9bから隙間充填材16を破って吐出口9b周辺の盛土地盤2内に注入される。   Then, the solidified material is fed into the sealed space 15 through the injection pipe 12c. The solidified material fed into the sealed space 15 breaks through the gap filler 16 from the discharge port 9b of the outer tube 9 and is injected into the embankment board 2 around the discharge port 9b.

この方法においても、注入管8を原地盤1の上流側から下流側方向に徐々に引き抜きながら固化材の注入を繰り返し行うことにより、地盤改良部3は原地盤1の上流側から下流側方向に連続して形成することができる。   Also in this method, by repeatedly injecting the solidified material while gradually pulling out the injection pipe 8 from the upstream side of the original ground 1 to the downstream side, the ground improvement unit 3 can move from the upstream side of the original ground 1 toward the downstream side. It can be formed continuously.

なお、隙間充填材16を先にボーリング孔5内に充填し、その後から外管9をボーリング孔5内に挿入してもよい。隙間充填材16には例えば低強度のセメントベントナイトを用いることができる。   Alternatively, the gap filling material 16 may be filled in the boring hole 5 first, and then the outer tube 9 may be inserted into the boring hole 5. For example, low-strength cement bentonite can be used for the gap filler 16.

また、図8(a)に示す場合と同様に、固化材は複数の密封空間15内に一本の注入管12cによって同時に注入してもよいし、内管10内に複数の注入管12cを挿入し、各注入管12cを介して各密封空間15に固化材を同時に注入することもできる。   Similarly to the case shown in FIG. 8A, the solidified material may be simultaneously injected into the plurality of sealed spaces 15 by one injection tube 12 c, or the plurality of injection tubes 12 c are inserted into the inner tube 10. It is also possible to insert the solidified material into each sealed space 15 through each injection tube 12c at the same time.

さらに、複数の注入管8を用い、複数のボーリング孔5に同時に固化材を注入することによって三次元多点注入工法を用いることもできる。   Further, a three-dimensional multi-point injection method can be used by using a plurality of injection pipes 8 and simultaneously injecting a solidified material into the plurality of boring holes 5.

なお、当該三次元多点注入工法は、当出願人が所有する特許発明(特許第3724644号)であり、概要を簡単に説明すると、吐出口を有する複数の注入管を地盤中の複数の注入ポイントに埋設し、これらの注入管を通して各注入管の吐出口から地盤改良材を同時に多点注入するようにした地盤注入工法であって、それぞれ独立した駆動源で作動し、かつ集中管理装置で制御される多数のユニットポンプを備えた多連装注入装置を用い、これら多数のユニットボンプが導管を通して複数の注入管と接続され、前記多数のユニットポンプの作動により、地盤改良材を複数の吐出口から地盤中の注入ポイントを通して多点注入するようにしたことを特徴とするものである。   The three-dimensional multi-point injection method is a patented invention (Patent No. 3724644) owned by the present applicant. Briefly speaking, a plurality of injection pipes having discharge ports are formed into a plurality of injection pipes in the ground. It is a ground injection method that is buried at a point and multiple ground injection materials are simultaneously injected from the outlets of each injection pipe through these injection pipes. A multi-injection injection device having a large number of unit pumps to be controlled is used, and the large number of unit pumps are connected to a plurality of injection pipes through a conduit. It is characterized by the fact that multiple injections are made through injection points in the ground.

また本工法は、地盤改良材を貯蔵する貯蔵タンクと当該貯蔵タンクに接続された多連装注入装置と吐出口を有する複数の注入管とを備え、当該多連装注入装置は、一プラント中にそれぞれ独立した駆動源で作動し、かつ集中管理装置で制御される多数のユニットポンプを備えている。また、注入管は地盤の複数の注入ポイントに埋設され、それぞれが前記各ユニットポンプと導管を通して接続されている。さらに、前記多数のユニットポンプは独立し、それぞれ集中管理装置で制御される回転数変速機を備え、前記導管は流量圧力検出器を備えている。   The present construction method also includes a storage tank for storing the ground improvement material, a multi-continuous injection apparatus connected to the storage tank, and a plurality of injection pipes having discharge ports. It is equipped with a number of unit pumps that are operated by independent drive sources and controlled by a centralized management device. The injection pipe is embedded in a plurality of injection points on the ground, and each is connected to each unit pump through a conduit. Further, the multiple unit pumps are independent and each include a rotational speed transmission controlled by a centralized control device, and the conduit includes a flow pressure detector.

そして、前記流量圧力検出器からの流量および/または圧力データの信号を集中管理装置に送信し、前記貯蔵タンク内の地盤改良材を各ユニットポンプの作動により任意の注入速度、注入圧力および注入量で各注入管に圧送し、複数の吐出口から同時に地盤に多点注入することができる。   Then, a flow rate and / or pressure data signal from the flow rate pressure detector is transmitted to a central control device, and the ground improvement material in the storage tank is operated at any injection speed, injection pressure and injection amount by the operation of each unit pump. Thus, it can be pumped to each injection tube, and multiple points can be simultaneously injected into the ground from a plurality of discharge ports.

次に、本発明の地盤強化法の検討結果について説明する。
盛土高さ 5.0 m
盛土長さ 200.0 m
盛土幅 50.0 m
盛土傾斜角 10.0 度
盛土の単位体積重量 γt=17KN/m
モデル地盤 図9(a),(b)
Next, the examination result of the ground reinforcement method of this invention is demonstrated.
Embankment height 5.0 m
Embankment length 200.0 m
Embankment width 50.0 m
Embankment inclination angle 10.0 degrees Unit volume weight of embankment γt = 17KN / m 3
Model ground Fig. 9 (a), (b)

図9(a),(b)において、盛土部αは、地震などで外力が作用することにより原地盤βとの境界面付近に沿って滑り落ちようとする。これを滑り面上に作用する滑りを起そうとする力(以下「滑動せん断力」という)W・sinθという。一方、滑り面にはこれを阻止しようとする力(以下「せん断抵抗力」という)τ・Lが作用する。滑動せん断力W・sinθとせん断抵抗力τ・Lは釣り合った状態(限界状態)にあるものと仮定する。すなわち、安全率Fs=1.0と仮定して本発明の地盤強化方法を検討した。   9 (a) and 9 (b), the embankment portion α attempts to slide down along the vicinity of the boundary surface with the original ground β due to an external force acting due to an earthquake or the like. This is referred to as a force (hereinafter referred to as “sliding shear force”) W · sin θ that causes the slip to act on the sliding surface. On the other hand, a force (hereinafter referred to as “shear resistance force”) τ · L that acts to prevent this acts on the sliding surface. It is assumed that the sliding shear force W · sin θ and the shear resistance force τ · L are in a balanced state (limit state). That is, the ground strengthening method of the present invention was examined on the assumption that the safety factor Fs = 1.0.

図9(a)において、滑動せん断力W・sinθとせん断抵抗力τ・Lが釣り合っていると仮定すると、
Fs=τ・L/W・sinθ=1.0(Fs 安全率) ……式・1
式・1から盛土下部境界面のせん断抵抗τを求める。
In FIG. 9A, assuming that the sliding shear force W · sin θ and the shear resistance force τ · L are balanced,
Fs = τ · L / W · sinθ = 1.0 (Fs safety factor) ...... Formula 1
The shear resistance τ of the embankment lower boundary surface is obtained from Equation 1.

τ・L/W・sinθ=1.0
τ・L=τ・203KN/m
=203・τKN/m
W・sinθ=200.0m×5.0m×17KN/m×sin10°
=17000×0.17365
=17000×0.174
=2.958KN/m
Fs=1.0より
τ・L/W・sinθ=203・τ/2.958
=1.0
よって、せん断抵抗τ=2.958/203
=14.6KN/m
となる。
τ · L / W · sin θ = 1.0
τ · L = τ · 203KN / m
= 203 · τKN / m
W · sin θ = 200.0 m × 5.0 m × 17 KN / m 3 × sin 10 °
= 17000 x 0.17365
= 17000 x 0.174
= 2.958 KN / m
From Fs = 1.0 τ · L / W · sin θ = 203 · τ / 2.958
= 1.0
Therefore, shear resistance τ = 2.958 / 203
= 14.6KN / m 2
It becomes.

前述のとおり、現状で滑動せん断力とせん断抵抗力が安全率Fs=1.0で釣り合った状態を薬液(固化材)注入により地盤強化してその安全率を高め、地盤の安定化を図ることとする。   As mentioned above, the current state where sliding shear force and shear resistance force are balanced with safety factor Fs = 1.0 is strengthened by chemical solution (solidification material) injection to increase the safety factor and stabilize the ground. And

薬液注入には誘導式曲りボーリングを利用し、図8(b)の注入方式で三次元多点注入方法を採用することとし、溶液型恒久グラウト(活性シリカコロイド「パーマロック」強化土エンジニヤリング(株)の登録商標)を用いることもできるし、懸濁型恒久グラウト(超微粒子複合シリカ「ハイブリッドシリカ」強化土エンジニヤリング(株)の登録商標)を用いることもできる。   For the chemical injection, induction bending boring is used, and the three-dimensional multi-point injection method is adopted in the injection method shown in FIG. 8 (b), and the solution type permanent grout (active silica colloid “Perma Lock” reinforced soil engineering ( Registered trademark), or suspension-type permanent grout (registered trademark of ultrafine composite silica “hybrid silica” reinforced soil engineering Co., Ltd.) can also be used.

下記の検討では、注入材には改良の目的を考慮し、恒久的な改良効果が得られる恒久グラウト〔高強度活性シリカコロイド「パーマロック・ハイ」を用いた(表1参照)。   In the following examination, a permanent grout [a high-strength active silica colloid “Permalock High”, which can obtain a permanent improvement effect, was used for the injection material in consideration of the purpose of improvement (see Table 1).

また、三次元多点注入方法による改良地盤のせん断抵抗τを表2のとおりとした。曲りボーリングを応用した三次元多点注入方法による地盤改良の場合、曲りボーリングの精度および性能を考慮して下流側50m、上流側50m、合計100mの地盤強化を行った。 Table 2 shows the shear resistance τ 1 of the improved ground by the three-dimensional multi-point injection method. In the case of ground improvement by a three-dimensional multi-point injection method using curved boring, the ground was strengthened for a total of 100 m, 50 m downstream and 50 m upstream, considering the accuracy and performance of curved boring.

Figure 0004252069
Figure 0004252069

Figure 0004252069
Figure 0004252069

また、三次元多点注入方法の性能から1ノズルからの改良体は直径2.0mの球状改良体として改良範囲を検討した。   In addition, from the performance of the three-dimensional multipoint injection method, the improved body from one nozzle was examined as a spherical improved body having a diameter of 2.0 m, and the improvement range was examined.

安全率Fs=1.5に改良する場合について検討する。
改良面積比率μを算定する。
Fs=τ・L/W・sinθ=1.5の式から
〔μ×τ+(1−μ)×τ〕×203/2.951=1.5
μ=2.958×1.5−14.6×203/203τ−2.964
=1.473/203τ−2.964 …… 式・2
式・2に改良地盤のτを代入してμを算定すると表3のとおりになり、結果としてFs=1.75〜1.8となる。
Consider a case where the safety factor Fs is improved to 1.5.
Calculate the improved area ratio μ.
From the formula of Fs = τ · L / W · sin θ = 1.5 [μ × τ 1 + (1−μ) × τ] × 203 / 2.951 = 1.5
μ = 2.958 × 1.5−14.6 × 203 / 203τ 1 −2.964
= 1.473 / 203τ 1 -2.964 Equation 2
When μ is calculated by substituting τ 1 of the improved ground into Equation 2, the result is as shown in Table 3, resulting in Fs = 1.75 to 1.8.

以上のことから、薬液注入工法(三次元多点注入工法)による地盤強化の改良面積比を表4のとおり設定した。そして、検討結果からモデル地盤での改良範囲は検討して以下のようになった(改良範囲は、図10(a),(b)参照)。なお、表5は安全率Fsが1.5のときの改良率、改良面積および注入孔数を示したものである。   From the above, the improved area ratio of ground reinforcement by the chemical solution injection method (three-dimensional multi-point injection method) was set as shown in Table 4. And the improvement range in a model ground was examined from the examination result, and it became as follows (refer to Drawing 10 (a) and (b) for the improvement range). Table 5 shows the improvement rate, the improvement area, and the number of injection holes when the safety factor Fs is 1.5.

Figure 0004252069
Figure 0004252069

Figure 0004252069
Figure 0004252069

Figure 0004252069
Figure 0004252069

モデル地盤の面積S=50.0×203.0=10.150.0m
必要改良面積S=S×μ
注入孔(地盤改良部)は、本工法の特性により1孔当りの長さ50.0m、改良幅2.0mとして孔数を算定した。
1孔当りの改良面積Sg=2.0×50.0=100.0m
Model ground area S = 50.0 × 203.0 = 10.150.0 m 2
Necessary improvement area S 1 = S × μ
The number of holes in the injection hole (ground improvement part) was calculated with a length of 50.0 m per hole and an improved width of 2.0 m according to the characteristics of this construction method.
Improved area per hole Sg = 2.0 × 50.0 = 100.0 m 2

次に、前記の固化材注入による地盤強化法に排水孔施工による地盤強化法を併用した検討結果について説明する。   Next, a description will be given of the results of examinations in which the ground strengthening method by drainage hole construction is used in combination with the ground strengthening method by injecting the solidifying material.

ここで、排水孔の施工効果により、盛土下部境界面のせん断抵抗力τ=14.6KN/mが70%向上すると考えると、排水孔の施工果面積は、幅3m×長さ50m(+α)/排水孔1本×8本=1200mとなり、これに14.6×0.7を乗ずると12264KNのせん断抵抗力増となり、単位幅当たりでは245KN増となる。 Here, assuming that the shear resistance τ = 14.6 KN / m 2 at the lower boundary of the embankment is improved by 70% due to the construction effect of the drain hole, the construction result area of the drain hole is 3 m wide × 50 m long (+ α ) / 1 drainage hole × 8 = 1200 m 2 , multiplying this by 14.6 × 0.7 increases the shear resistance by 12264 KN and increases by 245 KN per unit width.

したがって、Fs=245KN/2958KN/m=0.08の向上となる。なお、排水孔の設置間隔は固化材注入孔(地盤改良部)との複合効果を考慮して図11(a),(b)のとおりとした。   Therefore, Fs = 245 KN / 2958 KN / m = 0.08. In addition, the installation interval of the drainage holes was set as shown in FIGS. 11A and 11B in consideration of the combined effect with the solidification material injection hole (ground improvement part).

次に、地震時について検討する。
Fs=τ・L/W・sinθ+Kh・W・cosθ
なお、Khは、設計水平震度
モデル地盤は盛土厚が5.0mと比較的浅いので、設計水平震度Kh=0.16として検討した。
Fs=1.5の場合
Fs=τ・L/W・sinθ+Kh・W・cosθ
=〔μ×τ+(1−μ)×τ〕×203/W・sinθ
+Kh・W・cosθ
=〔0.05×250.0+(1−0.05)×14.5〕
×203/2.951×0.16×17.000×cos10
=5.33/5.630
=0.95となる。
Next, consider the time of an earthquake.
Fs = τ · L / W · sinθ + Kh · W · cosθ
Kh is the design horizontal seismic intensity The model ground has a relatively shallow embankment thickness of 5.0 m, so the design horizontal seismic intensity Kh was set to 0.16.
When Fs = 1.5 Fs = τ · L / W · sin θ + Kh · W · cos θ
= [Μ × τ 1 + (1−μ) × τ] × 203 / W · sin θ
+ Kh · W · cosθ
= [0.05 × 250.0 + (1−0.05) × 14.5]
× 203 / 2.951 × 0.16 × 17.000 × cos10
= 5.33 / 5.630
= 0.95.

これに排水による増加分のFs=0.08を加算すると、Fs=1.03となる。なお、上記計算は簡便な設計によったが、改良効果を知るにはこれで充分である。   If Fs = 0.08 of the increase due to drainage is added to this, Fs = 1.03. Although the above calculation is based on a simple design, it is sufficient to know the improvement effect.

また、排水による改良効果は地下水位が低下することによる土粒子間の有効応力が大きくなることによる効果であり、それにより盛土境界面のせん断抵抗力が70%向上するとしたが、基本的には問題ないはずである。また、液状化防止効果も当然期待できる。   In addition, the improvement effect by drainage is the effect by increasing the effective stress between the soil particles due to the lowering of the groundwater level, and thereby the shear resistance of the embankment interface is improved by 70%, but basically There should be no problem. Moreover, naturally the effect of preventing liquefaction can be expected.

本発明は、谷間の原地盤の上に盛土して造成する谷埋め盛土による宅地や工場建設地などの造成地の安定化を図ることができる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to stabilize the creation site such as a residential land or a factory construction site by a valley filling embankment created by embankment on a valley ground.

傾斜地の原地盤の上に盛土して造成され、境界部分に地盤改良部が形成された造成宅地を示し、(a)は縦断面図、(b)は一部平面図である。FIG. 2 shows a built-up residential land that is built by embankment on an original ground of an inclined land and a ground improvement portion is formed at a boundary portion, (a) is a longitudinal sectional view, and (b) is a partial plan view. 傾斜地の原地盤の上に盛土して造成され、境界部分に地盤改良部と排水孔が形成された造成宅地を示し、(a)は縦断面図、(b)は一部平面図である。Fig. 2 shows a built-up residential land that is formed by embankment on an original ground of an inclined land and has a ground improvement portion and a drain hole formed at a boundary portion, (a) is a longitudinal sectional view, and (b) is a partial plan view. 傾斜地の原地盤の上に盛土して造成され、境界部分に地盤改良部が形成された造成宅地を示し、(a)は縦断面図、(b)は一部平面図である。FIG. 2 shows a built-up residential land that is built by embankment on an original ground of an inclined land and a ground improvement portion is formed at a boundary portion, (a) is a longitudinal sectional view, and (b) is a partial plan view. 傾斜地の原地盤の上に盛土して造成され、境界部分に地盤改良部と排水孔が形成された造成宅地を示し、(a)は縦断面図、(b)は一部平面図である。Fig. 2 shows a built-up residential land that is formed by embankment on an original ground of an inclined land and has a ground improvement portion and a drain hole formed at a boundary portion, (a) is a longitudinal sectional view, and (b) is a partial plan view. 傾斜地の原地盤の上に盛土して造成され、境界部分に地盤改良部が形成された造成宅地を示し、(a)は縦断面図、(b)は一部平面図である。FIG. 2 shows a built-up residential land that is built by embankment on an original ground of an inclined land and a ground improvement portion is formed at a boundary portion, (a) is a longitudinal sectional view, and (b) is a partial plan view. 傾斜地の原地盤の上に盛土して造成され、境界部分に地盤改良部と排水孔が形成された造成宅地を示し、(a)は縦断面図、(b)は一部平面図である。Fig. 2 shows a built-up residential land that is formed by embankment on an original ground of an inclined land and has a ground improvement portion and a drain hole formed at a boundary portion, (a) is a longitudinal sectional view, and (b) is a partial plan view. (a),(b)はボーリングロッドの動さを示す原地盤と盛土地盤との境界部分の断面図である。(A), (b) is sectional drawing of the boundary part of the original ground and embankment which shows the motion of a boring rod. (a),(b)は、固化材の注入方法を示す注入管先端部の縦断面図である。(A), (b) is a longitudinal cross-sectional view of the injection tube front-end | tip part which shows the injection method of a solidification material. モデル地盤を示し、(a)は縦断面図、(b)は一部平面図である。A model ground is shown, (a) is a longitudinal cross-sectional view, (b) is a partial plan view. 地盤強化後のモデル地盤を示し、(a)は縦断面図、(b)は一部平面図である。The model ground after ground reinforcement is shown, (a) is a longitudinal cross-sectional view, (b) is a partial plan view. 地盤強化後のモデル地盤を示し、(a)は縦断面図、(b)は一部平面図である。The model ground after ground reinforcement is shown, (a) is a longitudinal cross-sectional view, (b) is a partial plan view. (a),(b)は従来の地盤強化方法の一例を示す縦断面図である。(A), (b) is a longitudinal cross-sectional view which shows an example of the conventional ground reinforcement method.

符号の説明Explanation of symbols

1 原地盤
2 盛土地盤
3 地盤改良部
4 排水孔
5 ボーリング孔
6 ボーリングロッド
6a ドリルヘッド
6b テーパ刃
7 ケーシング
8 注入管
9 外管
9a 逆止弁
9b 吐出口
10 内管
11 膨張パッカ
12a 注入パイプ
12b 注入パイプ
12c 注入パイプ
13 密封空間
14 膨張パッカ
15 密封空間
DESCRIPTION OF SYMBOLS 1 Original ground 2 Embankment 3 Ground improvement part 4 Drain hole 5 Boring hole 6 Boring rod 6a Drill head 6b Tapered blade 7 Casing 8 Injection pipe 9 Outer pipe 9a Check valve 9b Discharge port 10 Inner pipe 11 Expansion packer 12a Injection pipe 12b Injection pipe 12c Injection pipe 13 Sealed space 14 Expansion packer 15 Sealed space

Claims (8)

原地盤と当該原地盤の上に造成された盛土地盤との境界面付近の盛土地盤内に、複数のボーリング孔を前記原地盤と盛土地盤との境界面の傾斜方向に連続し、かつ前記境界面の傾斜方向と直交する方向に複数列に削孔し、当該ボーリング孔内に固化材を注入して前記境界面の傾斜方向に連続する地盤改良部を形成することを特徴とする地盤強化方法。 In the embankment near the boundary surface between the original ground and the embankment created on the original ground , a plurality of boring holes are continued in the inclination direction of the interface between the original ground and the embankment , and the boundary A ground strengthening method comprising drilling holes in a plurality of rows in a direction perpendicular to the surface tilt direction, and injecting solidified material into the bore holes to form a ground improvement portion continuous in the tilt direction of the boundary surface. . 谷部に盛土して造成された谷埋め盛土地盤の地盤強化方法であって、原地盤と谷埋め盛土地盤との境界面付近の盛土地盤内に、複数のボーリング孔を前記原地盤と盛土地盤との境界面の傾斜方向に連続し、かつ前記境界面の傾斜方向と直交する方向に複数列に削孔し、当該ボーリング孔内に固化材を注入して前記境界面の傾斜方向に連続する地盤改良部を形成することを特徴とする地盤強化方法。 A method for strengthening the ground of a valley-filled land created by embankment in a valley, wherein a plurality of boring holes are formed in the bank-ground near the boundary between the original ground and the valley-filled land. Are drilled in a plurality of rows in a direction perpendicular to the tilt direction of the boundary surface, and solidified material is injected into the borehole to continue in the tilt direction of the boundary surface. A ground strengthening method characterized by forming a ground improvement part. 前記ボーリング孔は誘導式曲りボーリングによって削孔することを特徴とする請求項1または2記載の地盤強化方法。   The ground strengthening method according to claim 1 or 2, wherein the boring hole is drilled by induction bending boring. 前記地盤改良部は原地盤の下流側および/または上流側に形成することを特徴とする請求項1〜3のいずれか1に記載の地盤強化方法。 The ground reinforcement method according to any one of claims 1 to 3, wherein the ground improvement part is formed on the downstream side and / or the upstream side of the original ground. 上流側の地盤改良部は、境界面の上流側の盛土地盤内に曲りボーリング又は直線ボーリングによって削孔したボーリング孔内に固結材を注入するか、あるいは攪拌混合式または高圧噴射方式によって形成することを特徴とする請求項4記載の地盤安定化方法。 The ground improvement part on the upstream side is formed by injecting the consolidated material into the borehole drilled by curved boring or straight boring in the embankment upstream of the boundary surface , or by the stirring and mixing method or the high pressure injection method The ground stabilization method of Claim 4 characterized by the above-mentioned. 境界面の傾斜方向と直交する方向に隣接する地盤改良部と地盤改良との間の原地盤と盛土地盤との境界面付近の盛土地盤内に、排水孔を境界面の傾斜方向に形成することを特徴とする請求項1〜5のいずれか1に記載の地盤強化方法。 Form drainage holes in the slope direction of the boundary surface in the embankment near the boundary surface between the ground and embankment between the ground improvement part and the ground improvement adjacent to the direction perpendicular to the tilt direction of the boundary surface. The ground reinforcement method according to any one of claims 1 to 5, wherein: 盛土地盤の下流側に擁壁を構築することを特徴とする請求項1〜6のいずれか1に記載の地盤強化方法。   The ground reinforcing method according to any one of claims 1 to 6, wherein a retaining wall is constructed on the downstream side of the embankment. 盛土地盤にアンカーを施工し、当該アンカーの先端を原地盤に定着することを特徴とする請求項1〜7のいずれか1に記載の地盤強化方法。   The ground reinforcement method according to any one of claims 1 to 7, wherein an anchor is constructed on the embankment and the tip of the anchor is fixed on the original ground.
JP2006055105A 2006-03-01 2006-03-01 Ground strengthening method Expired - Fee Related JP4252069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006055105A JP4252069B2 (en) 2006-03-01 2006-03-01 Ground strengthening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006055105A JP4252069B2 (en) 2006-03-01 2006-03-01 Ground strengthening method

Publications (2)

Publication Number Publication Date
JP2007231628A JP2007231628A (en) 2007-09-13
JP4252069B2 true JP4252069B2 (en) 2009-04-08

Family

ID=38552492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006055105A Expired - Fee Related JP4252069B2 (en) 2006-03-01 2006-03-01 Ground strengthening method

Country Status (1)

Country Link
JP (1) JP4252069B2 (en)

Also Published As

Publication number Publication date
JP2007231628A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
CN104612130B (en) A kind of tunnel bottom lies concealed solution cavity Grouting method
CN203452083U (en) Rotary expanding pile construction equipment and grout feeding device
CN102691296A (en) Pipe pile foundation for static-pressure grouting on pile side and rotary jet grouting at pile bottom and construction method thereof
CN205172598U (en) Pipe curtain spouts a supporting construction soon
CN203334300U (en) Root pile supporting structure
CN103669365A (en) External diagonal-pulling and internal diagonal-bracing herringbone foundation pit supporting pile and construction method thereof
CN109371980A (en) The inverse Extra-Deep Foundation Pit construction method for making to combine with Percussion Piles of spray anchor
JP4252070B2 (en) Ground stabilization method
Brill et al. A ten-year perspective of jet grouting: advancements in applications and technology
CN101629422B (en) Construction method for supporting foundation ditch of reinforced cement earth wall
KR101064340B1 (en) Prevention method of construction for slope land collapse
JP4485674B2 (en) Method for constructing continuous underground wall, method for lowering groundwater level, and method for restoring groundwater level
CN104032763A (en) Combined-type anti-seepage waterstop curtain structure and construction method thereof
JP2008045352A (en) Landslide prevention construction method of valley-filling banking
JP4358207B2 (en) Ground reinforcement method for excavated bottom
JP4252069B2 (en) Ground strengthening method
KR100823980B1 (en) Drain combination paker type pressurization grouting equipment and the upward method using the same
CN105926589A (en) Steel pipe pile applicable to coral reef geology and grouting method of steel pipe pile
CN207080242U (en) Shield tunnel termination bamboo reinforcement grouted anchor bar cup type lateral stiffening feature
US3468131A (en) Retaining structures placed into the ground and their procedures of execution
JP6730121B2 (en) Underground wall construction method
JP2023545249A (en) Methods and systems for underground deployment of materials and equipment
CN209227551U (en) The inverse deep footing groove enclosing structure for making to combine with Percussion Piles of spray anchor
CN205277454U (en) Hole stake method undercut tunnel stagnant water curtain
JP6869862B2 (en) Wall construction method and wall

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees