JP4243651B1 - Magnetic flux shunt control rotating electrical machine system - Google Patents

Magnetic flux shunt control rotating electrical machine system Download PDF

Info

Publication number
JP4243651B1
JP4243651B1 JP2008144181A JP2008144181A JP4243651B1 JP 4243651 B1 JP4243651 B1 JP 4243651B1 JP 2008144181 A JP2008144181 A JP 2008144181A JP 2008144181 A JP2008144181 A JP 2008144181A JP 4243651 B1 JP4243651 B1 JP 4243651B1
Authority
JP
Japan
Prior art keywords
magnetic
pole
armature
bypass
rotating electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008144181A
Other languages
Japanese (ja)
Other versions
JP2009261206A (en
Inventor
義和 市山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURA LABORATORY CORPORATION
Original Assignee
KURA LABORATORY CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURA LABORATORY CORPORATION filed Critical KURA LABORATORY CORPORATION
Priority to JP2008144181A priority Critical patent/JP4243651B1/en
Application granted granted Critical
Publication of JP4243651B1 publication Critical patent/JP4243651B1/en
Publication of JP2009261206A publication Critical patent/JP2009261206A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/641

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

【課題】
磁石励磁回転電機に於いて,エネルギー効率の良い磁束分流制御回転電機システムを提供する。
【解決手段】
隣接する磁性体突極延長部間に偏倚可能な界磁磁石を配置し,界磁磁石からの磁束を電機子側を通る主磁路,及び電機子を通らないバイパス磁路に分流させて主磁路の磁束量を偏倚に応じて変える。主磁路及びバイパス磁路の磁気抵抗を互いに等しくする最小磁気力条件に設定して上記偏倚を妨げる磁気力を抑制或いは最小磁気力条件から外して現れる磁気力を利用して磁束量を制御可能な回転電機システム,磁束量制御方法を提案している。
【選択図】 図1
【Task】
In a magnet-excited rotating electrical machine, an energy efficient magnetic flux shunt control rotating electrical machine system is provided.
[Solution]
A field magnet that can be biased is disposed between adjacent magnetic salient pole extensions, and the magnetic flux from the field magnet is divided into a main magnetic path that passes through the armature and a bypass magnetic path that does not pass through the armature. The amount of magnetic flux in the magnetic path is changed according to the deviation. Set the magnetic resistance of the main magnetic path and bypass magnetic path to the same minimum magnetic force condition to suppress the magnetic force that prevents the above-mentioned deviation, or to control the amount of magnetic flux using the magnetic force that appears outside the minimum magnetic force condition A new rotating electrical machine system and magnetic flux control method are proposed.
[Selection] Figure 1

Description

本発明は,永久磁石界磁を持つ回転電機に関し,特に弱め界磁制御により出力を最適に制御する回転電機システムに関する。   The present invention relates to a rotating electrical machine having a permanent magnet field, and more particularly to a rotating electrical machine system that optimally controls output by field-weakening control.

永久磁石界磁と電機子との相対的回転によって電磁的に生ずる電力を取り出す発電機或いは電機子に供給する電流によって生ずる磁界と永久磁石界磁との相互作用により永久磁石界磁と電機子との相対的回転を生ずる電動機等の回転電機はエネルギー効率に優れ,永久磁石の技術的進歩に伴い日常的に広く使われている。しかしそのような回転電機は、界磁からの磁束が一定であるので電動機として用いられるにしても発電機として用いられるにしても広い回転速度範囲で常に最適の出力が得られる訳ではない。すなわち,電動機の場合は高速回転域では逆起電力(発電電圧)が高すぎる結果となって制御が困難となり,弱め界磁制御として界磁強度を弱める種々の手段が提案されている。また発電機の場合,広い回転速度範囲に於いて発電電圧を所定のレベルとする為に専ら界磁電流制御による定電圧発電或いは半導体による発電電圧の定電圧化回路が用いられている。   The permanent magnet field and the armature are caused by the interaction between the permanent magnet field and the magnetic field generated by the generator or the armature that extracts the electromagnetically generated power by the relative rotation of the permanent magnet field and the armature. Rotating electrical machines such as motors that generate relative rotation are excellent in energy efficiency and are widely used on a daily basis with the technical progress of permanent magnets. However, since such a rotating electrical machine has a constant magnetic flux from the field, even if it is used as an electric motor or a generator, an optimum output is not always obtained in a wide rotational speed range. In other words, in the case of an electric motor, the back electromotive force (generated voltage) is too high in the high-speed rotation range, making control difficult, and various means for weakening field strength have been proposed as field weakening control. In the case of a generator, constant voltage power generation based on field current control or a constant voltage generation circuit using a semiconductor is used exclusively to bring the generated voltage to a predetermined level in a wide rotational speed range.

電動機では進み位相電流による弱め界磁制御が広く採用されているが,回転に直接寄与しない電流を流す為にエネルギー損失を大とする。永久磁石励磁に制御用電流励磁を併用する場合は回転電機の構造を複雑にし,その上にエネルギー損失を伴う。さらに発電機の場合,大電力での定電圧化電子回路のコスト負担が大であるとの問題があった。したがって,回転電機装置の構成を工夫して電子回路制御を最小限に留めて装置全体としてのコストを低減する方策は以前から求められ,種々の提案が為されてきた。   In electric motors, field-weakening control based on lead phase current is widely adopted, but energy loss is increased because a current that does not directly contribute to rotation flows. When the control current excitation is used in combination with the permanent magnet excitation, the structure of the rotating electrical machine is complicated, and energy loss is additionally caused. Furthermore, in the case of generators, there is a problem that the cost burden of constant voltage electronic circuits with large power is large. Therefore, measures for reducing the cost of the entire apparatus by devising the configuration of the rotating electrical machine and minimizing the electronic circuit control have been sought before, and various proposals have been made.

上記提案例に界磁回転子を二分し,二つの界磁回転子を周方向に相対偏倚させて実効的に界磁強度を制御する方法がある(特許文献1)。前記相対偏倚は機構的に保持出来るので制御の為のエネルギー損失は少ない長所はあるが,電機子に流入する界磁強度の絶対値は変わらないので高速回転域で渦電流損が大きい欠点がある。他の提案例に界磁磁石を含む磁気回路の磁気抵抗を変えて磁束を制御する装置がある(特許文献2,3)。更に他の提案例として界磁磁石を短絡制御する装置がある(特許文献4,5,6)。一般に磁石を含む磁気回路に可動部分が存在する場合,磁気回路を流れる磁束を大にする方向(磁気抵抗を小にする方向)に可動部分を偏倚させようとする磁気力が存在する。界磁磁石は回転電機装置に於いて,力を発生し或いは電力を発生する源泉である。機械的な偏倚により磁気回路の磁気抵抗を制御する或いは界磁磁石を短絡する回転電機装置の提案例に於いて上記磁気力は回転電機の出力に比例し,偏倚制御に大きな力を要すると共に部材の振動或いはハンチング等を招来して精密な制御を困難にする。さらに大出力のアクチュエータ,過分な機械強度を伴う機構等を必要として実現には困難を伴っている。
米国特許3713015「ALTERNATING CURRENT GENERATOR HAVING A TWIN PM ROTOR WHICH IS ADJUSTABLE IN RESPONSE TO OUTPUT VOLTAGE」 特開2004−320864「同期回転電機及びその制御方法」 特開2004−328944「磁束制御型発電機」 米国特許4885493「Output voltage control apparatus of a permanent magnet alternator」 特開2004−357357「永久磁石形モータ及び洗濯機」 特開2006−246662「永久磁石式回転機」
In the above proposed example, there is a method of effectively controlling the field strength by dividing the field rotator in half and relatively biasing the two field rotators in the circumferential direction (Patent Document 1). Although the relative bias can be mechanically maintained, there is an advantage that the energy loss for control is small, but the absolute value of the field strength flowing into the armature does not change, so there is a disadvantage that the eddy current loss is large in the high-speed rotation range. . Another proposed example is an apparatus that controls magnetic flux by changing the magnetic resistance of a magnetic circuit including a field magnet (Patent Documents 2 and 3). As another proposed example, there is a device that controls the short-circuit of a field magnet (Patent Documents 4, 5, and 6). In general, when a movable part exists in a magnetic circuit including a magnet, there is a magnetic force that tends to bias the movable part in a direction in which the magnetic flux flowing through the magnetic circuit is increased (a direction in which the magnetic resistance is reduced). A field magnet is a source for generating force or power in a rotating electrical machine. In the proposed example of the rotating electrical machine device that controls the magnetic resistance of the magnetic circuit by mechanical bias or short-circuits the field magnet, the magnetic force is proportional to the output of the rotating electrical machine and requires a large force for bias control and the member This causes vibration or hunting of the machine and makes precise control difficult. Furthermore, it is difficult to realize because it requires a high-power actuator and a mechanism with excessive mechanical strength.
US Patent 3713015 "ALTERNATING CURRENT GENERATOR HAVING A TWIN PM ROTOR WHICH IS ADJUSTABLE IN RESPONSE TO OUTPUT VOLTAGE" Japanese Patent Application Laid-Open No. 2004-320864 “Synchronous Rotating Electric Machine and Control Method Therefor” JP 2004-328944 "Flux control generator" US Pat. No. 4,885,493 “Output voltage control apparatus of a permanent magnet alternator” Japanese Patent Application Laid-Open No. 2004-357357 “Permanent Magnet Type Motor and Washing Machine” JP 2006-246661 “Permanent Magnet Rotating Machine”

したがって,本発明が解決しようとする課題は,(1)界磁磁石を減磁させる懸念が少ない事,(2)磁束量制御に必要な力を小さく抑える事等の条件を考慮して磁束量制御を容易として出力を最適に制御できる回転電機システム及び磁束量制御方法を提供する事である。   Therefore, the problems to be solved by the present invention are as follows: (1) There is less concern about demagnetizing the field magnet, and (2) the amount of magnetic flux in consideration of conditions such as minimizing the force required for controlling the amount of magnetic flux. To provide a rotating electrical machine system and a magnetic flux amount control method capable of controlling the output optimally with easy control.

本発明による回転電機システム及び磁束量制御方法は,電機子側に流入させる磁束量を機械的偏倚により変える事が出来る。その具体的な内容は以下の通りである。   The rotating electrical machine system and the magnetic flux amount control method according to the present invention can change the amount of magnetic flux flowing into the armature side by mechanical deviation. The specific contents are as follows.

請求項1の発明による回転電機システムは,電機子コイルを有する電機子と,電機子と対向して相対回転可能で且つ電機子と対向して周方向に配置された複数の磁性体突極を有する界磁部とを有する回転電機であって,界磁部には表面磁極部と励磁部とが配置され,表面磁極部は電機子との対向面に複数の磁性体突極が周方向に配置されると共に電機子に面しない側に磁性体突極延長部及びバイパス磁極が配置され,励磁部は周方向磁化を持つ界磁磁石が隣接する磁性体突極延長部間及び隣接するバイパス磁極間に配置され,隣接する界磁磁石は互いに周方向磁化を反転させて隣接する磁性体突極を互いに異極に磁化し,界磁磁石には磁性体突極延長部に流入した磁束が電機子,隣接磁性体突極を介して環流する主磁路及びバイパス磁極に流入した磁束が隣接バイパス磁極を介して主として界磁部内で環流するバイパス磁路とが並列に接続され,表面磁極部或いは励磁部の何れかが可動磁極部として界磁磁石が磁性体突極延長部と対向する面積及びバイパス磁極と対向する面積の和が一定に保たれながら前記それぞれの対向面積を変える事が出来るよう可動磁極部が残余に対して相対偏倚可能に構成され,回転電機システムの出力が最適化されるように前記出力に応じて可動磁極部が偏倚して電機子に流れる磁束量が制御される事を特徴とする。   According to a first aspect of the present invention, there is provided a rotating electrical machine system comprising: an armature having an armature coil; and a plurality of magnetic salient poles that are relatively rotatable facing the armature and arranged in the circumferential direction facing the armature. A rotating electric machine having a field part having a surface magnetic pole part and an excitation part, wherein the surface magnetic pole part has a plurality of magnetic salient poles in a circumferential direction on a surface facing the armature. The magnetic salient pole extension and the bypass magnetic pole are arranged on the side not facing the armature, and the exciting part is between the adjacent magnetic salient pole extensions and adjacent bypass magnetic poles with the field magnet having circumferential magnetization. Adjacent field magnets are arranged between each other and their circumferential magnetizations are reversed to magnetize adjacent magnetic salient poles to different polarities. Magnetic flux flowing into the magnetic salient pole extension is Flow to the main magnetic path and the bypass magnetic pole that circulates through the magnetic pole A bypass magnetic path in which the magnetic flux circulates mainly in the field part via the adjacent bypass magnetic pole is connected in parallel, and either the surface magnetic pole part or the excitation part serves as a movable magnetic pole part, and the field magnet is a magnetic salient pole extension The movable magnetic pole portion is configured to be able to be biased relative to the remainder so that the respective opposed areas can be changed while the sum of the area facing the bypass magnetic pole and the area facing the bypass magnetic pole is kept constant. The movable magnetic pole portion is biased according to the output so that the amount of magnetic flux flowing through the armature is controlled so as to be optimized.

上記構成に於いて,界磁磁石に磁性体突極延長部及びバイパス磁極が微小間隙を介して対向し,磁束は界磁磁石及び磁性体近傍ではそれらの境界面にほぼ直交するので界磁磁石からの磁束はほぼ層流状に磁性体突極延長部及びバイパス磁極に流入し,磁性体突極延長部に分流される磁束量は磁性体突極延長部と界磁磁石の対向面積に比例する。前記微小間隙を可能な限り小にし,さらに界磁磁石との対向面では磁性体突極延長部とバイパス磁極間の間隙も微小に設定すれば前記磁束分布はさらに完全な層流状に近くなり,磁束量の精密な制御が可能になる。また,バイパス磁路の接続により界磁磁石に繋がる磁気抵抗の変動は小さくなるので可動磁極部の偏倚を妨げる磁気力は抑制され,主磁路に流入する磁束量を変更しても界磁磁石にはバイパス磁路が接続されているので界磁磁石が減磁されるリスクは避けられる。   In the above configuration, the magnetic salient pole extension and the bypass magnetic pole face the field magnet through a minute gap, and the magnetic flux is substantially perpendicular to the boundary surface between the field magnet and the magnetic body. The magnetic flux from the magnetic flux flows into the magnetic salient pole extension and bypass magnetic pole in an almost laminar manner, and the amount of magnetic flux shunted to the magnetic salient pole extension is proportional to the opposing area of the magnetic salient pole extension and the field magnet To do. If the minute gap is made as small as possible and the gap between the magnetic salient pole extension and the bypass magnetic pole is set to be small on the surface facing the field magnet, the magnetic flux distribution becomes more completely laminar. , Precise control of the amount of magnetic flux becomes possible. In addition, since the fluctuation of the magnetic resistance connected to the field magnet is reduced by the connection of the bypass magnetic path, the magnetic force that prevents the displacement of the movable magnetic pole portion is suppressed, and the field magnet can be changed even if the amount of magnetic flux flowing into the main magnetic path is changed. Since a bypass magnetic path is connected to, the risk of demagnetizing the field magnet is avoided.

可動磁極部の偏倚手段には種々の手段が適用可能である。例えば,半固定機構として予め手動で設定する機構手段,遠心力を利用するガバナ機構,回転子内にアクチュエータを有する機構手段或いは回転子外からの外力により偏倚させる機構手段等がある。   Various means can be applied to the biasing means of the movable magnetic pole portion. For example, there are a mechanism means that is manually set in advance as a semi-fixed mechanism, a governor mechanism that utilizes centrifugal force, a mechanism means that has an actuator in the rotor, a mechanism means that is biased by an external force from outside the rotor, and the like.

回転電機には,界磁部が回転し電機子が静止する構造及びその逆の構造,さらに円筒状の電機子と界磁部が径方向に空隙を介して対向する構造,或いは略円盤状の電機子と界磁部が軸方向に空隙を介して対向する構造等のいずれの構造も存在する。本発明は永久磁石励磁の界磁部を持つ上記何れの構造の回転電機システムにも適用される。また,回転電機は電機子コイルへの電流を入力として回転力を出力とすれば電動機であり,回転力を入力として電機子コイルから電流を出力すれば発電機である。電動機或いは発電機に於いて最適の磁極構成は存在するが,可逆的であり,上記の回転電機システムは電動機,発電機の何れにも適用される。   The rotating electric machine has a structure in which the field part rotates and the armature stops and vice versa, and a cylindrical armature and the field part face each other with a gap in the radial direction, or a substantially disk-like structure. There are any structures such as a structure in which the armature and the field part face each other in the axial direction with a gap. The present invention is also applicable to a rotating electrical machine system having any of the above structures having a field portion for exciting a permanent magnet. A rotating electric machine is an electric motor if a current to the armature coil is input and a rotational force is output, and a rotating electric machine is a generator if a current is output from the armature coil using the rotational force as an input. There is an optimum magnetic pole configuration in the electric motor or the generator, but it is reversible, and the rotating electrical machine system described above is applied to both the electric motor and the generator.

請求項2の発明は,請求項1記載の回転電機システムに於いて,バイパス磁路の磁気抵抗と主磁路の磁気抵抗とを互いにほぼ等しくする最小磁気力条件に設定される事を特徴とする。主磁路の磁気抵抗は磁性体突極と磁性体歯との相対位置により変動するが,本発明で主磁路の磁気抵抗は磁性体突極と磁性体歯間の各相対位置に関して平均化された値としている。バイパス磁路内には磁気的な空隙或いは狭隘部等で構成する磁気抵抗調整部分を有してバイパス磁路の磁気抵抗を設定する。両磁路の磁気抵抗を等しく設定することで界磁磁石に繋がる磁路の磁気抵抗は一定に保たれるので可動磁極部の偏倚を妨げる磁気力は最小となる。「ほぼ等しい」の意味は前記偏倚に用いるアクチュエータの出力以下に前記偏倚を妨げる磁気力を抑制するよう両磁路の磁気抵抗を最小磁気力条件に設定する事である。   The invention of claim 2 is characterized in that, in the rotating electrical machine system according to claim 1, the minimum magnetic force condition is set such that the magnetic resistance of the bypass magnetic path and the magnetic resistance of the main magnetic path are substantially equal to each other. To do. The magnetic resistance of the main magnetic path varies depending on the relative position between the magnetic salient pole and the magnetic tooth, but in the present invention, the magnetic resistance of the main magnetic path is averaged for each relative position between the magnetic salient pole and the magnetic tooth. Value. The bypass magnetic path has a magnetoresistive adjustment portion constituted by a magnetic gap or a narrow portion, and the magnetic resistance of the bypass magnetic path is set. By setting the magnetic resistances of both magnetic paths equal, the magnetic resistance of the magnetic path connected to the field magnet is kept constant, so that the magnetic force that prevents the displacement of the movable magnetic pole portion is minimized. The meaning of “substantially equal” is to set the reluctance of both magnetic paths to the minimum magnetic force condition so as to suppress the magnetic force that prevents the deviation below the output of the actuator used for the deviation.

前記両磁路の磁気抵抗を最小磁気力条件に設定する事で両磁路間の磁束漏洩を小さく抑制し,前記偏倚を妨げる磁気力を小さく抑制する事が出来るが,磁路の磁気抵抗を変動させる要因は多い。すなわち,量産段階で部品寸法は設定公差内でばらついて各磁路の磁気抵抗を変動させ,磁路間の磁束漏洩が無視できない場合は可動磁極部の偏倚位置が各磁路の磁気抵抗に影響し,磁性体の透磁率は温度の影響を受けやすいので各磁路の磁気抵抗は変化する。更にまた電機子コイルに電流が流れると主磁路の磁気抵抗は実効的に変動する。このように各磁路の磁気抵抗は変動するので回転電機システムの仕様に合わせて回転子の静止状態或いは平均的な運転条件に於いて両磁路の磁気抵抗を最小磁気力条件に設定する。   By setting the magnetic resistance of both magnetic paths to the minimum magnetic force condition, the magnetic flux leakage between the two magnetic paths can be suppressed to a small value, and the magnetic force that prevents the deviation can be suppressed to a small value. There are many factors to fluctuate. In other words, when the part size varies within the set tolerance at the mass production stage, the magnetic resistance of each magnetic path is fluctuated. However, since the magnetic permeability of the magnetic material is susceptible to temperature, the magnetic resistance of each magnetic path changes. Furthermore, when a current flows through the armature coil, the magnetic resistance of the main magnetic path effectively varies. Since the magnetic resistance of each magnetic path thus varies, the magnetic resistance of both magnetic paths is set to the minimum magnetic force condition in accordance with the specifications of the rotating electrical machine system in the stationary state of the rotor or the average operating condition.

請求項3の発明は,請求項1記載の回転電機システムに於いて,交流磁束が通り難いよう界磁磁石から磁性体突極に至る磁路は磁性体突極より渦電流損を大とする材質を含んで構成される事を特徴とする。電機子コイルを流れる電流により主磁路の磁気抵抗を実効的に変え,可動磁極部の偏倚に要する力を小とできるが,磁性体突極と磁性体歯の位置に応じて切り替わる電流に応答する高い周波数帯での磁気抵抗変動は可動磁極の振動或いは主磁路及びバイパス磁路間の脈動的な磁束漏洩を誘発して望ましい事ではない。したがって,後者の高い周波数帯での交流磁束は通り難い構成として平滑化する。界磁磁石から磁性体突極に至る磁路の磁気抵抗に周波数特性を持たせ,可動磁極部の偏倚に際して必要な低周波数帯の磁気抵抗変化を許容できるよう磁性体突極延長部の透磁率,導電率及び寸法諸元を設定する。   According to a third aspect of the present invention, in the rotating electrical machine system according to the first aspect, the magnetic path from the field magnet to the magnetic salient pole has a larger eddy current loss than the magnetic salient pole so that the AC magnetic flux does not easily pass. It is characterized by being composed of materials. Although the magnetic resistance of the main magnetic path is effectively changed by the current flowing through the armature coil, the force required for biasing the movable magnetic pole can be reduced, but it responds to the current that changes depending on the position of the magnetic salient pole and magnetic tooth. Magnetic resistance fluctuation in a high frequency band is undesirable because it induces vibration of the movable magnetic pole or pulsating magnetic flux leakage between the main magnetic path and the bypass magnetic path. Therefore, the latter AC magnetic flux in the high frequency band is smoothed so that it is difficult to pass. The magnetic permeability of the magnetic salient pole extension is set so that the magnetic resistance of the magnetic path from the field magnet to the magnetic salient pole has a frequency characteristic, and the change in the magnetic resistance of the low frequency band necessary for biasing the movable magnetic pole can be allowed. , Set the conductivity and dimensions.

請求項4の発明は,前記表面磁極部と励磁部の磁束量制御に関連する具体的な構成の一つであり,請求項1記載の回転電機システムに於いて,バイパス磁極は磁性体突極の延長方向に配置され,励磁部を可動磁極部として周方向と直交する面内を偏倚可能に構成される事を特徴とする。界磁磁石は周方向に隣接する磁性体突極延長部のそれぞれ及び周方向に隣接するバイパス磁極のそれぞれに対向しながら周方向と直交する面内を偏倚する。偏倚の方法には上記面内で回転偏倚,平行偏倚等の種々の形態が可能である。バイパス磁極及び磁性体突極延長部の配置及び形状は界磁磁石が磁性体突極延長部と対向する面積及びバイパス磁極と対向する面積の和が一定に保たれながら前記それぞれの対向面積を変える事が出来るよう設定する。   The invention of claim 4 is one of the specific configurations related to the magnetic flux amount control of the surface magnetic pole part and the excitation part. In the rotating electrical machine system according to claim 1, the bypass magnetic pole is a magnetic salient pole. It is arranged in the extending direction, and it is characterized in that it can be displaced in a plane perpendicular to the circumferential direction with the exciting part as a movable magnetic pole part. The field magnet deviates in the plane orthogonal to the circumferential direction while facing each of the magnetic salient pole extensions adjacent in the circumferential direction and each of the bypass magnetic poles adjacent in the circumferential direction. Various methods, such as a rotational bias and a parallel bias, can be used for the biasing method within the plane. The arrangement and shape of the bypass magnetic pole and the magnetic salient pole extension are changed while the sum of the area where the field magnet faces the magnetic salient pole extension and the area facing the bypass magnetic pole is kept constant. Set to be able to do things.

請求項5の発明は,前記表面磁極部と励磁部の磁束量制御に関連する具体的な構成の一つであり,請求項1記載の回転電機システムに於いて,界磁部及び電機子は径方向に対向し,磁性体突極延長部は軸方向に周期的な切除部分を有して切除部分にバイパス磁極が配置され,励磁部に於いて周方向磁化を持つ界磁磁石と非磁性体とが周期的に交互に軸方向に配置され,励磁部を可動磁極部として軸方向に偏倚可能に構成される事を特徴とする。界磁部及び電機子が径方向に対向する回転電機に於いて,軸方向に磁性体突極延長部とバイパス磁極とを交互に配置し,周方向に隣接するそれらの間に界磁磁石と非磁性体を交互に配置して界磁磁石と非磁性体とを軸方向に偏倚させる事により磁性体歯に流入する磁束量を制御する。界磁磁石を含む励磁部を軸方向に偏倚させるので偏倚制御手段をシンプルに構成出来る。   The invention of claim 5 is one of specific configurations related to the magnetic flux amount control of the surface magnetic pole part and the excitation part. In the rotating electrical machine system according to claim 1, the field part and the armature include Opposite to the radial direction, the magnetic salient pole extension has a periodic cut part in the axial direction, a bypass magnetic pole is arranged in the cut part, and a field magnet with circumferential magnetization in the excitation part and non-magnetic The body is periodically and alternately arranged in the axial direction, and the exciter is configured as a movable magnetic pole so that it can be biased in the axial direction. In a rotating electrical machine in which the field portion and the armature are opposed in the radial direction, magnetic salient pole extensions and bypass magnetic poles are alternately arranged in the axial direction, and the field magnet and the armature are adjacent to each other in the circumferential direction. The amount of magnetic flux flowing into the magnetic material teeth is controlled by alternately arranging the non-magnetic materials and biasing the field magnet and the non-magnetic material in the axial direction. Since the excitation part including the field magnet is biased in the axial direction, the bias control means can be configured simply.

請求項6の発明は,請求項1記載の回転電機システムに於いて,さらに主磁路或いはバイパス磁路の磁気抵抗を調整する磁気抵抗調整手段を有し,可動磁極部の偏倚に必要な力を小とするよう主磁路或いはバイパス磁路の磁気抵抗が調整される事を特徴とする。本発明は磁気抵抗調整手段を有して回転電機の製造後或いは運転中に主磁路或いはバイパス磁路の磁気抵抗を調整して可動磁極部の偏倚制御時に前記偏倚に必要な力を小として精密な磁束量制御を可能にしている。磁気抵抗調整手段により可動磁極部の偏倚制御時に前記偏倚に必要な力を小とする方法は,主磁路とバイパス磁路の磁気抵抗を最小磁気力条件に調整する事,或いは可動磁極部の偏倚をアシストする方向の磁気力を発生させるよう主磁路とバイパス磁路の磁気抵抗を最小磁気力条件からずらして調整する事がある。磁路を形成する寸法諸元の変更制御及び磁路に巻回したコイルへの通電制御等による磁気抵抗調整手段,方法を具体的に提案している。さらに温度或いは磁気飽和等を利用して磁性体の磁気特性を制御する方法もある。   A sixth aspect of the present invention is the rotating electrical machine system according to the first aspect, further comprising a magnetic resistance adjusting means for adjusting a magnetic resistance of the main magnetic path or the bypass magnetic path, and a force necessary for biasing the movable magnetic pole portion. The magnetic resistance of the main magnetic path or the bypass magnetic path is adjusted so as to reduce. The present invention has a magnetic resistance adjusting means to adjust the magnetic resistance of the main magnetic path or the bypass magnetic path after manufacturing or during operation of the rotating electric machine so as to reduce the force required for the deviation during the deviation control of the movable magnetic pole portion. Enables precise magnetic flux control. The method for reducing the force required for the deviation when the movable magnetic pole is controlled by the magnetic resistance adjusting means is to adjust the magnetic resistance of the main magnetic path and the bypass magnetic path to the minimum magnetic force condition, The magnetic resistance of the main magnetic path and the bypass magnetic path may be adjusted by shifting from the minimum magnetic force condition so as to generate a magnetic force in the direction of assisting the bias. The magnetic resistance adjusting means and method are specifically proposed by changing the dimensions of the magnetic path and controlling the energization of the coil wound around the magnetic path. There is also a method of controlling the magnetic properties of the magnetic material by utilizing temperature or magnetic saturation.

請求項7の発明は,請求項6記載の回転電機システムに於いて,可動磁極部を偏倚させる際に磁気抵抗調整手段によりバイパス磁路の磁気抵抗と主磁路の磁気抵抗とは最小磁気力条件にほぼ等しくなるよう調整される事を特徴とする。可動磁極部を偏倚させる際にバイパス磁路と主磁路の磁気抵抗を最小磁気力条件に調整すれば,偏倚を妨げる磁気力を最小に出来る。前記偏倚に用いるアクチュエータの出力以下に偏倚を妨げる磁気力を抑制して回転電機の運転条件により各磁路の磁気抵抗が初期値から変動する場合でも精密な磁束量制御を可能にする。   According to a seventh aspect of the present invention, in the rotating electrical machine system according to the sixth aspect, the magnetic resistance of the bypass magnetic path and the magnetic resistance of the main magnetic path are reduced by the magnetic resistance adjusting means when the movable magnetic pole portion is biased. It is characterized by being adjusted so as to be almost equal to the conditions. If the magnetic resistance of the bypass magnetic path and the main magnetic path is adjusted to the minimum magnetic force condition when the movable magnetic pole portion is biased, the magnetic force that prevents the bias can be minimized. The magnetic force that prevents the bias is suppressed below the output of the actuator used for the bias, and the magnetic flux amount can be precisely controlled even when the magnetic resistance of each magnetic path varies from the initial value depending on the operating conditions of the rotating electrical machine.

請求項8の発明は,請求項6記載の回転電機システムに於いて,電機子を流れる磁束量を増加する時に最小磁気力条件より主磁路の磁気抵抗は小に或いはバイパス磁路の磁気抵抗は大に磁気抵抗調整手段によって調整され,電機子を流れる磁束量を減少させる時に最小磁気力条件より主磁路の磁気抵抗は大に或いはバイパス磁路の磁気抵抗は小に磁気抵抗調整手段によって調整され,同時に可動磁極部が偏倚される事を特徴とする。主磁路或いはバイパス磁路の磁気抵抗差に応じて現れる磁気力は最小磁気力条件を境に方向が変わる。関係するパラメータを最小磁気力条件を基準に所定量ずらして磁気力を発生させる事により偏倚をアシストする磁気力を安定的に得る事が出来る。最小磁気力条件は回転電機の運転状態によって変わり,運転中に学習的に取得する或いは予め設定されたマップデータから取得する。   According to an eighth aspect of the present invention, in the rotating electrical machine system according to the sixth aspect, when the amount of magnetic flux flowing through the armature is increased, the magnetic resistance of the main magnetic path is smaller than the minimum magnetic force condition or the magnetic resistance of the bypass magnetic path. Is adjusted by the magnetic resistance adjusting means, and when the amount of magnetic flux flowing through the armature is reduced, the magnetic resistance of the main magnetic path is made large or the magnetic resistance of the bypass magnetic path is made small by the magnetic resistance adjusting means from the minimum magnetic force condition. It is adjusted and the movable magnetic pole part is biased at the same time. The direction of the magnetic force that appears according to the magnetic resistance difference of the main magnetic path or the bypass magnetic path changes with the minimum magnetic force condition as a boundary. By generating a magnetic force by shifting a related parameter by a predetermined amount based on the minimum magnetic force condition, a magnetic force that assists in the bias can be stably obtained. The minimum magnetic force condition varies depending on the operating state of the rotating electrical machine, and is acquired by learning during operation or from preset map data.

請求項9の発明は,請求項6記載の回転電機システムに於いて,さらに主磁路及びバイパス磁路の磁気抵抗が最小磁気力条件から外れる事により可動磁極部に加わる磁気力検知手段を有し,間歇的に変えられた磁気抵抗調整手段に関係するパラメータ,或いは通常の運転中に変わる前記パラメータと前記磁気力との関係を監視し,前記磁気力を小とする前記パラメータを最小磁気力条件パラメータとして設定される事を特徴とする。主磁路及びバイパス磁路の磁気抵抗は,可動磁極部の偏倚位置の影響を受け,温度による磁気特性変化,さらに経時的な磁気特性変化等の影響を受ける。本発明は主磁路及びバイパス磁路の磁気抵抗が最小磁気力条件から外れる事で現れる磁気力の検知手段を有し,最小磁気力条件となるパラメータを学習的に取得してそれらのパラメータを更新する。   The ninth aspect of the present invention is the rotating electrical machine system according to the sixth aspect, further comprising magnetic force detection means applied to the movable magnetic pole portion when the magnetic resistance of the main magnetic path and the bypass magnetic path deviates from the minimum magnetic force condition. The parameter relating to the magnetic resistance adjusting means changed intermittently or the relation between the parameter changing during normal operation and the magnetic force is monitored, and the parameter for reducing the magnetic force is set to the minimum magnetic force. It is set as a condition parameter. The magnetic resistance of the main magnetic path and the bypass magnetic path is affected by the deviation position of the movable magnetic pole, and is also affected by changes in the magnetic characteristics due to temperature and changes over time. The present invention has means for detecting magnetic force that appears when the magnetic resistance of the main magnetic path and bypass magnetic path deviates from the minimum magnetic force condition. Update.

請求項10の発明は,請求項6記載の回転電機システムに於いて,磁気抵抗調整手段をバイパス磁路内に配置された空隙に於ける空隙長を調整する空隙長調整手段で構成し,可動磁極部の偏倚に必要な力を小とするようバイパス磁路の磁気抵抗が調整される事を特徴とする。空隙長調整手段はバイパス磁路に設けた空隙を構成する部材の位置を変えて空隙長を変える構成とする。回転電機の組み立て後の調整,或いはアクチュエータを用いて動作中に調整制御する。回転子の加速或いは減速動作を含まないので連続的な界磁制御を可能にする。   According to a tenth aspect of the present invention, in the rotating electrical machine system according to the sixth aspect, the magnetoresistive adjusting means is composed of a gap length adjusting means for adjusting a gap length in a gap arranged in the bypass magnetic path, and is movable. The magnetic resistance of the bypass magnetic path is adjusted so as to reduce the force required for biasing the magnetic pole portion. The gap length adjusting means is configured to change the gap length by changing the position of the member constituting the gap provided in the bypass magnetic path. Adjustment after the assembly of the rotating electrical machine or adjustment control during operation using an actuator. Since it does not include the acceleration or deceleration operation of the rotor, continuous field control is possible.

請求項11の発明は,請求項6記載の回転電機システムに於いて,磁気抵抗調整手段を回転子を加速或いは減速する方向の予め定められた電流を電機子コイルに供給して主磁路の磁気抵抗を調整する手段で構成し,可動磁極部を偏倚する際に可動磁極部の偏倚に必要な力を小とするよう電機子コイルに予め定められた電流を供給して実効的に主磁路の磁気抵抗が調整される事を特徴とする。回転子を加速或いは減速駆動する場合は主磁路の磁気抵抗が実効的にそれぞれ小,大となる。可動磁極部の偏倚制御時に駆動回路を電機子コイルに接続し,回転子を加速或いは減速方向に駆動する電流を電機子コイルに供給して主磁路の磁気抵抗を実効的に調整する。   According to the eleventh aspect of the present invention, in the rotating electrical machine system according to the sixth aspect, the magnetic resistance adjusting means supplies a predetermined current in the direction of accelerating or decelerating the rotor to the armature coil to It is composed of means for adjusting the magnetic resistance, and when the movable magnetic pole part is biased, a predetermined current is supplied to the armature coil so as to reduce the force necessary for biasing the movable magnetic pole part, thereby effectively The magnetic resistance of the road is adjusted. When the rotor is driven to accelerate or decelerate, the magnetic resistance of the main magnetic path is effectively reduced and increased, respectively. A drive circuit is connected to the armature coil during deflection control of the movable magnetic pole portion, and a current for driving the rotor in the acceleration or deceleration direction is supplied to the armature coil to effectively adjust the magnetic resistance of the main magnetic path.

請求項12の発明は,請求項6記載の回転電機システムに於いて,磁気抵抗調整手段を予め定められた定電流負荷とし,可動磁極部を偏倚する際に定電流負荷は電機子コイルに接続され,可動磁極部の前記偏倚に必要な力を小とするよう誘起電圧により予め定められた電流を流し,実効的に主磁路の磁気抵抗が調整される事を特徴とする。回転電機が発電機である場合,電機子コイルには鎖交する磁束の変化を妨げる方向の電圧が誘起され,負荷インピーダンスに応じた電流が流れ,実効的に主磁路の磁気抵抗は大となる。主磁路の磁気抵抗を最小磁気力条件より小に設定し,可動磁極部の偏倚制御時に誘起電圧により所定電流が流れるよう制御する所定の定電流負荷を電機子コイルに接続し,電機子コイルに流す電流を調整して主磁路の磁気抵抗を実効的に静止時の値より大として調整する。定電流負荷を実現する手段には種々の方法があり,電機子コイルへの誘起電圧により所定の電流が電機子コイルを流れるよう制御する定電流回路,或いは回転数毎に定めた所定インピーダンスを有する負荷等がある。   According to a twelfth aspect of the present invention, in the rotating electrical machine system according to the sixth aspect, the magnetic resistance adjusting means is a predetermined constant current load, and the constant current load is connected to the armature coil when the movable magnetic pole portion is biased. In addition, the magnetic resistance of the main magnetic path is effectively adjusted by passing a current predetermined by the induced voltage so as to reduce the force required for the bias of the movable magnetic pole portion. When the rotating electrical machine is a generator, the armature coil is induced with a voltage in a direction that hinders the change of interlinkage magnetic flux, a current corresponding to the load impedance flows, and the magnetic resistance of the main magnetic path is effectively large. Become. The armature coil is connected to a predetermined constant-current load that controls the main magnetic path to be smaller than the minimum magnetic force condition and controls the induced current to flow by the induced voltage during bias control of the movable magnetic pole. Is adjusted so that the magnetic resistance of the main magnetic path is effectively larger than the value at rest. There are various methods for realizing a constant current load, and a constant current circuit for controlling a predetermined current to flow through the armature coil by an induced voltage to the armature coil, or a predetermined impedance determined for each rotation speed. There are loads.

請求項13の発明は,請求項1記載の回転電機システムに於いて,さらに可動磁極部の偏倚規制手段を有し,界磁磁石が磁性体突極延長部と対向する面積及びバイパス磁極と対向する面積の和が一定に保たれながら前記それぞれの面積が変わる範囲内に可動磁極部の相対偏倚量が規制される事を特徴とする。これにより可動磁極部の相対偏倚量と主磁路に分流される磁束量とが比例し,界磁制御をシンプルに出来る。   According to a thirteenth aspect of the present invention, in the rotating electrical machine system according to the first aspect, the magnetic pole portion further includes a bias restricting means, and the field magnet faces the magnetic salient pole extension and the bypass magnetic pole portion. The relative deviation amount of the movable magnetic pole portion is regulated within a range in which the respective areas change while the sum of the areas to be maintained is constant. As a result, the relative deviation amount of the movable magnetic pole portion is proportional to the amount of magnetic flux shunted to the main magnetic path, and the field control can be simplified.

請求項14の発明は,請求項1記載の回転電機システムに於いて,さらに可動磁極部の偏倚位置を保持する手段を有し,間歇的に電機子を流れる磁束量が制御される事を特徴とする。可動磁極部の偏倚制御手段は電源オフの状態,エネルギーを消費しない状態で可動磁極部の偏倚位置を保持する構成とし,磁束量の変更時のみ可動磁極部の偏倚制御を行い,エネルギー消費を抑え高いエネルギー効率の回転電機システムを実現する。   A fourteenth aspect of the present invention is the rotating electrical machine system according to the first aspect, further comprising means for holding the bias position of the movable magnetic pole portion, and the amount of magnetic flux flowing through the armature is controlled intermittently. And The bias control means of the movable magnetic pole is configured to hold the bias position of the movable magnetic pole while the power is off and energy is not consumed. By controlling the bias of the movable magnetic pole only when the amount of magnetic flux is changed, energy consumption is reduced. Realize a highly energy efficient rotating electrical machine system.

請求項15の発明は,表面磁極部の構成を示す一つであり,請求項1記載の回転電機システムに於いて,表面磁極部に於いて電機子と対向する面には,電機子に対向して磁性体突極と磁気空隙部とが周方向に交互に配置されている事を特徴とする。シンプルな磁性体突極構成であり,励磁部に於ける磁束量制御の範囲を大にできる。   The invention of claim 15 is one of the structures of the surface magnetic pole part. In the rotating electrical machine system according to claim 1, the surface of the surface magnetic pole part that faces the armature faces the armature. The magnetic salient poles and the magnetic gaps are alternately arranged in the circumferential direction. It has a simple magnetic salient pole configuration and can increase the range of magnetic flux control at the excitation part.

請求項16の発明は,表面磁極部の構成を示す一つであり,請求項1記載の回転電機システムに於いて,表面磁極部に於いて電機子と対向する面には,磁性体突極と略周方向の磁化を持つ永久磁石が周方向に交互に配置され,隣接する磁性体突極を互いに逆方向に磁化するよう隣接する永久磁石は互いに磁化を反転して配置され,励磁部と永久磁石とが磁性体突極を磁化する極性は同じになるよう配置されている事を特徴とする。永久磁石により磁束バリアを構成でき,磁石トルク及びリラクタンストルクを利用する電動機に適する。   According to a sixteenth aspect of the present invention, there is provided a configuration of the surface magnetic pole portion. In the rotating electrical machine system according to the first aspect, the surface of the surface magnetic pole portion facing the armature has a magnetic salient pole. And permanent magnets with substantially circumferential magnetization are alternately arranged in the circumferential direction, and adjacent permanent magnets are arranged with their magnetizations reversed so as to magnetize adjacent magnetic salient poles in opposite directions. The permanent magnet and the magnetic salient pole are magnetized so as to have the same polarity. A magnetic flux barrier can be configured with permanent magnets, and is suitable for motors that use magnet torque and reluctance torque.

請求項17の発明は,表面磁極部の構成を示す一つであり,請求項1記載の回転電機システムに於いて,集合永久磁石は中間磁性体突極の両側面に同一の略周方向磁化を持つ永久磁石板を配置した等価永久磁石とし,表面磁極部に於いて電機子と対向する面には,磁性体突極と集合永久磁石が周方向に交互に配置され,隣接する磁性体突極を互いに逆方向に磁化するよう隣接する集合永久磁石は互いに磁化を反転して配置され,励磁部と集合永久磁石とが磁性体突極を磁化する極性は同じになるよう配置されている事を特徴とする。磁性体突極の中間に周方向磁化を持つ等価永久磁石を有する構造で隣接する磁性体突極は互いに異極に磁化されている。集合永久磁石と界磁磁石とが同じ極性で磁性体突極を磁化するよう界磁磁石を配置する。電機子側に流れる磁束は集合永久磁石による界磁磁束に界磁磁石による界磁磁束とを加算して制御する。   The invention according to claim 17 is one of the configurations of the surface magnetic pole portion, and in the rotating electrical machine system according to claim 1, the collective permanent magnet has the same substantially circumferential magnetization on both sides of the intermediate magnetic salient pole. Equivalent permanent magnets with permanent magnet plates with magnetic poles, and magnetic salient poles and collective permanent magnets are alternately arranged in the circumferential direction on the surface of the surface magnetic pole part facing the armature. Adjacent collective permanent magnets are arranged so that their magnetizations are reversed so that the poles are magnetized in opposite directions, and the magnetized magnet and the collective permanent magnet are arranged so that the polarities of magnetizing the magnetic salient poles are the same. It is characterized by. Adjacent magnetic salient poles are magnetized differently from each other in a structure having an equivalent permanent magnet having circumferential magnetization in the middle of the magnetic salient poles. The field magnets are arranged so that the assembly permanent magnet and the field magnet magnetize the magnetic salient pole with the same polarity. The magnetic flux flowing on the armature side is controlled by adding the field magnetic flux by the field magnet to the field magnetic flux by the collective permanent magnet.

請求項18の発明は,請求項1から請求項17記載の何れかの回転電機システムに於いて,さらに制御装置を有し,回転力を入力とし,発電電力を出力とする回転電機システムであって,制御装置により電機子コイルに誘起される発電電圧が所定の値より大の時は可動磁極部が偏倚されて界磁磁石と磁性体突極延長部とが対向する面積を小とされ,発電電圧が所定の値より小の時は可動磁極部が偏倚されて界磁磁石と磁性体突極延長部とが対向する面積を大とされ,発電電圧が所定の値に制御される事を特徴とする。広範な回転速度範囲で定電圧の発電電圧を得る事が出来,高価な電圧制御装置を不要とし,エネルギー効率を向上出来る。   The invention of claim 18 is the rotating electrical machine system according to any one of claims 1 to 17, further comprising a control device, wherein the rotating power is input and the generated power is output. When the generated voltage induced in the armature coil by the control device is larger than a predetermined value, the movable magnetic pole portion is biased to reduce the area where the field magnet and the magnetic salient pole extension face each other. When the generated voltage is smaller than a predetermined value, the movable magnetic pole portion is biased to increase the area where the field magnet and the magnetic salient pole extension face each other, and the generated voltage is controlled to a predetermined value. Features. A constant generation voltage can be obtained over a wide range of rotation speeds, and an expensive voltage control device is not required, improving energy efficiency.

請求項19の発明は,請求項1から請求項17記載の何れかの回転電機システムに於いて,さらに制御装置を有し,電機子コイルへの供給電流を入力とし,回転力を出力とする回転電機システムであって,制御装置により回転速度が所定の値より大で電機子を流れる磁束量を減少させる時には可動磁極部が偏倚されて界磁磁石と磁性体突極延長部とが対向する面積を小とされ,回転速度が所定の値より小で電機子を流れる磁束量を増大させる時には可動磁極部が偏倚されて界磁磁石と磁性体突極延長部とが対向する面積を大として回転力が最適に制御される事を特徴とする。広範な回転速度範囲で電動機システムとしての出力を最適に制御する。   The nineteenth aspect of the present invention is the rotating electrical machine system according to any one of the first to seventeenth aspects, further comprising a control device, wherein the supply current to the armature coil is input and the rotational force is output. In a rotating electrical machine system, when the rotational speed is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced by the control device, the movable magnetic pole portion is biased so that the field magnet and the magnetic salient pole extension portion face each other. When the area is small and the amount of magnetic flux flowing through the armature is increased when the rotational speed is smaller than a predetermined value, the movable magnetic pole part is biased so that the area where the field magnet and the magnetic salient pole extension face each other is large. It is characterized in that the rotational force is optimally controlled. The output of the motor system is optimally controlled over a wide rotational speed range.

請求項20の発明は,請求項1から請求項17記載の何れかの回転電機システムに於いて,さらに制御装置を有し,電機子コイルへの供給電流を入力とし,回転力を出力とする回転電機システムであって,回転速度を減少させる場合には制御装置により電機子を流れる磁束量を大とされるよう可動磁極部が偏倚されて界磁磁石と磁性体突極延長部とが対向する面積が大とされて回転エネルギーが発電電力として取り出される事を特徴とする。回生制動の能力を改善して総合的なエネルギー効率を向上させる事が出来る。
請求項21の発明は,電機子コイルを有する電機子と,電機子と対向して相対回転可能で且つ電機子と対向して周方向に配置された複数の磁性体突極を有する界磁部とを有し界磁部は表面磁極部と励磁部とを有し,表面磁極部は電機子との対向面に複数の磁性体突極を周方向に有すると共に電機子に面しない側に磁性体突極延長部及びバイパス磁極を有し,励磁部は隣接する磁性体突極を互いに逆極性に磁化するよう配置された界磁磁石を有して構成される回転電機の電機子を流れる磁束量を制御する磁束量制御方法であって,励磁部は周方向磁化を持つ界磁磁石を周方向に隣接する磁性体突極延長部間及び周方向に隣接するバイパス磁極間に配置し,界磁磁石の一方の磁極から磁性体突極延長部に流入する磁束が電機子及び隣接する磁性体突極を介して他方の磁極に環流する主磁路及び界磁磁石の一方の磁極からバイパス磁極に流入する磁束が主として界磁部内で隣接するバイパス磁極を介して他方の磁極に環流するバイパス磁路を界磁磁石に並列に接続し,表面磁極部或いは励磁部の何れかを可動磁極部として界磁磁石が磁性体突極延長部と対向する面積及びバイパス磁極と対向する面積の和を一定に保ちながら前記それぞれの面積を変えるよう可動磁極部を残余に対して相対的に偏倚可能に構成し,可動磁極部を偏倚させて電機子を流れる磁束量を制御する。
A twentieth aspect of the present invention is the rotating electrical machine system according to any one of the first to seventeenth aspects, further comprising a control device, wherein the supply current to the armature coil is input and the rotational force is output. In a rotating electrical machine system, when the rotational speed is decreased, the movable magnetic pole portion is biased so that the amount of magnetic flux flowing through the armature is increased by the control device, and the field magnet and the magnetic salient pole extension portion face each other. It is characterized in that the rotating area is made large and rotational energy is taken out as generated power. Regenerative braking capability can be improved to improve overall energy efficiency.
According to a twenty-first aspect of the present invention, there is provided a field portion having an armature having an armature coil and a plurality of magnetic salient poles which are relatively rotatable facing the armature and arranged in the circumferential direction facing the armature. The field part has a surface magnetic pole part and an excitation part, and the surface magnetic pole part has a plurality of magnetic salient poles in the circumferential direction on the surface facing the armature and on the side not facing the armature. It has a magnetic salient pole extension part and a bypass magnetic pole, and the excitation part flows through the armature of a rotating electric machine configured to have field magnets arranged to magnetize adjacent magnetic salient poles in opposite polarities. A magnetic flux amount control method for controlling a magnetic flux amount, wherein an exciting part is configured by arranging a field magnet having circumferential magnetization between magnetic salient pole extensions adjacent in the circumferential direction and between bypass magnetic poles adjacent in the circumferential direction . Magnetic flux that flows from one magnetic pole of the field magnet into the magnetic salient pole extension is The main magnetic path that circulates to the other magnetic pole via the salient pole and the magnetic flux that flows into the bypass magnetic pole from one magnetic pole of the field magnet mainly circulates to the other magnetic pole via the adjacent bypass magnetic pole in the field part. The path is connected in parallel to the field magnet, and either the surface magnetic pole part or the excitation part is used as the movable magnetic pole part, and the sum of the area where the field magnet faces the magnetic salient pole extension and the area where the bypass magnetic pole faces is constant. The movable magnetic pole portion is configured to be able to be biased relative to the rest so as to change the respective areas while maintaining the same, and the movable magnetic pole portion is biased to control the amount of magnetic flux flowing through the armature.

磁石励磁回転電機システムに於ける磁束量制御方法であって,磁性体突極を励磁する界磁磁石に磁性体突極及び電機子側を通る主磁路及び電機子側を通らないバイパス磁路とが並列に接続され,主磁路に接続される磁性体突極延長部及びバイパス磁路に接続されるバイパス磁極と界磁磁石の磁極との対向面積を機構偏倚により変えて主磁路,すなわち電機子側を流れる磁束量を制御する。界磁磁石に磁性体突極延長部及びバイパス磁極が対向しているので界磁磁石からの磁束は層流状に磁性体突極延長部及びバイパス磁極に流入し,磁性体突極延長部に分流される磁束量はほぼ磁性体突極延長部と界磁磁石の対向面積に比例する。バイパス磁路の接続により界磁磁石に繋がる磁気抵抗の変動は小さくなるので可動磁極部の偏倚を妨げる磁気力は抑制され,主磁路を流れる磁束量を変更しても界磁磁石には常に磁路が接続されているので界磁磁石が減磁される懸念は少ない。   A magnetic flux amount control method in a magnet-excited rotating electrical machine system, wherein a field magnet that excites a magnetic salient pole passes through a magnetic salient pole and an armature side, and a bypass magnetic path that does not pass through the armature side Are connected in parallel, and the magnetic salient pole extension connected to the main magnetic path and the opposing area of the bypass magnetic pole connected to the bypass magnetic path and the magnetic pole of the field magnet are changed by the mechanism deviation, That is, the amount of magnetic flux flowing on the armature side is controlled. Since the magnetic salient pole extension and the bypass magnetic pole face the field magnet, the magnetic flux from the field magnet flows into the magnetic salient pole extension and the bypass magnetic pole in a laminar flow, and enters the magnetic salient pole extension. The amount of magnetic flux to be shunted is substantially proportional to the facing area of the magnetic salient pole extension and the field magnet. By connecting the bypass magnetic path, the fluctuation of the magnetic resistance connected to the field magnet is reduced, so that the magnetic force that prevents the displacement of the movable magnetic pole is suppressed, and even if the amount of magnetic flux flowing through the main magnetic path is changed, the field magnet is always Since the magnetic path is connected, there is little concern that the field magnet will be demagnetized.

請求項22の発明は,請求項21記載の磁束量制御方法に於いて以下のステップを含む。バイパス磁路の磁気抵抗及び主磁路の磁気抵抗が互いにほぼ等しいとする最小磁気力条件に設定する。両磁路の磁気抵抗を等しく設定することで界磁磁石に繋がる磁路の磁気抵抗は一定に保たれるので可動磁極部の偏倚を妨げる磁気力は最小となる。「ほぼ等しい」の意味は前記偏倚に用いるアクチュエータの出力以下に前記偏倚を妨げる磁気力を抑制するよう両磁路の磁気抵抗を最小磁気力条件に設定する事である。各磁路の磁気抵抗は回転電機の運転条件によって変動し,界磁制御の仕様により静止状態或いは平均的な運転条件に於いてバイパス磁路及び主磁路の磁気抵抗を最小磁気力条件に設定する。バイパス磁路の磁気抵抗と主磁路の磁気抵抗とが最小磁気力条件に近い状態では主磁路とバイパス磁路間の磁束短絡を小としてさらに精密な磁束分流制御を実現できる。   According to a twenty-second aspect of the present invention, the magnetic flux amount control method according to the twenty-first aspect includes the following steps. The minimum magnetic force condition is set such that the magnetic resistance of the bypass magnetic path and the magnetic resistance of the main magnetic path are substantially equal to each other. By setting the magnetic resistances of both magnetic paths equal, the magnetic resistance of the magnetic path connected to the field magnet is kept constant, so that the magnetic force that prevents the displacement of the movable magnetic pole portion is minimized. The meaning of “substantially equal” is to set the reluctance of both magnetic paths to the minimum magnetic force condition so as to suppress the magnetic force that prevents the deviation below the output of the actuator used for the deviation. The magnetic resistance of each magnetic path varies depending on the operating conditions of the rotating electrical machine, and the magnetic resistance of the bypass magnetic path and the main magnetic path is set to the minimum magnetic force condition in a stationary state or an average operating condition according to the field control specifications. In a state where the magnetic resistance of the bypass magnetic path and the magnetic resistance of the main magnetic path are close to the minimum magnetic force condition, the magnetic flux short circuit between the main magnetic path and the bypass magnetic path can be made small, and more precise magnetic flux shunt control can be realized.

請求項23の発明は,請求項21記載の磁束量制御方法に於いて以下のステップを含む。さらに主磁路或いはバイパス磁路の磁気抵抗を調整する磁気抵抗調整手段を有し,可動磁極部の偏倚に必要な力を小とするよう主磁路或いはバイパス磁路の磁気抵抗を調整する。本発明は回転電機の製造後或いは運転中に主磁路或いはバイパス磁路の磁気抵抗を調整して可動磁極部の偏倚制御時に前記偏倚に必要な力を小として精密な磁束量制御を可能にする。磁気抵抗調整手段の具体的な構成には磁路を形成する寸法諸元の変更制御,磁路に巻回したコイルへの通電制御,温度或いは磁気飽和等を利用する磁性体の磁気特性制御等がある。磁気抵抗調整手段により可動磁極部の偏倚制御時に前記偏倚に必要な力を小とする方法は,主磁路とバイパス磁路の磁気抵抗を偏倚を妨げる磁気力を最小にする最小磁気力条件に調整する,或いは可動磁極部の偏倚をアシストする方向の磁気力を発生させるよう主磁路とバイパス磁路の磁気抵抗を最小磁気力条件から外して調整する。後者は偏倚に必要な力をさらに小と出来るが,偏倚制御手段の駆動方向切換と共に磁気抵抗調整手段の調整方向切換を同期させる必要があり,磁束量制御方法の仕様に応じて選択する。   According to a twenty-third aspect of the present invention, the magnetic flux amount control method according to the twenty-first aspect includes the following steps. Further, the magnetic resistance adjusting means for adjusting the magnetic resistance of the main magnetic path or the bypass magnetic path is provided, and the magnetic resistance of the main magnetic path or the bypass magnetic path is adjusted so as to reduce the force necessary for the deviation of the movable magnetic pole portion. The present invention makes it possible to adjust the magnetic resistance of the main magnetic path or the bypass magnetic path after manufacturing or during operation of the rotating electric machine, and to control the amount of magnetic flux precisely by reducing the force required for the deviation during the deviation control of the movable magnetic pole portion. To do. The specific configuration of the magnetoresistive adjustment means includes control of changing the dimensions of the magnetic path, control of energization of the coil wound around the magnetic path, and control of the magnetic properties of the magnetic material using temperature, magnetic saturation, etc. There is. The method of reducing the force necessary for the bias when the bias control of the movable magnetic pole portion is controlled by the magnetoresistive adjustment means is to set the magnetic resistance of the main magnetic path and the bypass magnetic path to the minimum magnetic force condition that minimizes the magnetic force that prevents the bias. The magnetic resistance of the main magnetic path and the bypass magnetic path is adjusted from the minimum magnetic force condition so as to adjust or generate a magnetic force in the direction of assisting the deviation of the movable magnetic pole portion. The latter can further reduce the force required for biasing, but it is necessary to synchronize the switching of the driving direction of the bias control means and the adjustment direction switching of the magnetic resistance adjusting means, and the selection is made according to the specifications of the magnetic flux amount control method.

請求項24の発明は,請求項23記載の磁束量制御方法に於いて以下のステップを含む。可動磁極部を偏倚させる際に磁気抵抗調整手段によりバイパス磁路の磁気抵抗と主磁路の磁気抵抗とを最小磁気力条件に調整する。可動磁極部を偏倚させる際にバイパス磁路と主磁路の磁気抵抗を最小磁気力条件に調整すれば,偏倚を妨げる磁気力を最小に出来る。前記偏倚に用いるアクチュエータの出力以下に偏倚を妨げる磁気力を抑制して回転電機の運転条件により各磁路の磁気抵抗が初期値から変動する場合でも精密な磁束量制御を可能にする。   According to a twenty-fourth aspect of the present invention, the magnetic flux amount control method according to the twenty-third aspect includes the following steps. When the movable magnetic pole portion is biased, the magnetic resistance adjusting means adjusts the magnetic resistance of the bypass magnetic path and the magnetic resistance of the main magnetic path to the minimum magnetic force condition. If the magnetic resistance of the bypass magnetic path and the main magnetic path is adjusted to the minimum magnetic force condition when the movable magnetic pole portion is biased, the magnetic force that prevents the bias can be minimized. The magnetic force that prevents the bias is suppressed below the output of the actuator used for the bias, and the magnetic flux amount can be precisely controlled even when the magnetic resistance of each magnetic path varies from the initial value depending on the operating conditions of the rotating electrical machine.

請求項25の発明は,請求項23記載の磁束量制御方法に於いて以下のステップを含む。電機子を流れる磁束量を増加する時に磁気抵抗調整手段は最小磁気力条件より主磁路の磁気抵抗を小に或いはバイパス磁路の磁気抵抗を大に調整し,電機子を流れる磁束量を減少させる時に磁気抵抗調整手段は最小磁気力条件より主磁路の磁気抵抗を大に或いはバイパス磁路の磁気抵抗を小に調整し,同時に可動磁極部を偏倚させる。主磁路或いはバイパス磁路の磁気抵抗差に応じて現れる磁気力は最小磁気力条件を境に方向が変わる。関係するパラメータを最小磁気力条件を基準に所定量ずらして磁気力を発生させる事により偏倚をアシストする磁気力を安定的に得る事が出来る。最小磁気力条件は回転電機の運転状態によって変わり,運転中に学習的に取得する或いは予め設定されたマップデータから取得する。   The invention of claim 25 includes the following steps in the magnetic flux amount control method of claim 23. When increasing the amount of magnetic flux flowing through the armature, the magnetic resistance adjusting means adjusts the magnetic resistance of the main magnetic path to be smaller or the magnetic resistance of the bypass magnetic path to be larger than the minimum magnetic force condition, thereby reducing the magnetic flux flowing through the armature. The magnetic resistance adjusting means adjusts the magnetic resistance of the main magnetic path to be larger or the magnetic resistance of the bypass magnetic path to be smaller than the minimum magnetic force condition, and simultaneously biases the movable magnetic pole portion. The direction of the magnetic force that appears according to the magnetic resistance difference of the main magnetic path or the bypass magnetic path changes with the minimum magnetic force condition as a boundary. By generating a magnetic force by shifting a related parameter by a predetermined amount based on the minimum magnetic force condition, a magnetic force that assists in the bias can be stably obtained. The minimum magnetic force condition varies depending on the operating state of the rotating electrical machine, and is acquired by learning during operation or from preset map data.

請求項26の発明は,請求項23記載の磁束量制御方法に於いて以下のステップを含む。さらに主磁路及びバイパス磁路の磁気抵抗が最小磁気力条件から外れる事により可動磁極部に加わる磁気力の検知手段を有し,間歇的に変えられた磁気抵抗調整手段に関係するパラメータ,或いは通常の運転中に変わる前記パラメータと可動磁極部に加わる磁気力との関係を監視し,可動磁極部に加わる磁気力を小とする前記パラメータを最小磁気力条件として設定する。主磁路及びバイパス磁路の磁気抵抗は,可動磁極部の偏倚位置の影響を受け,温度による磁気特性変化,さらに経時的な磁気特性変化等の影響を受ける。本発明は主磁路及びバイパス磁路の磁気抵抗が最小磁気力条件から外れる事で現れる磁気力の検知手段を有し,磁気抵抗調整手段に係わるパラメータを学習的に取得して最小磁気力条件としてそれらのデータを更新する。   According to a twenty-sixth aspect of the present invention, the magnetic flux amount control method according to the twenty-third aspect includes the following steps. Further, the magnetic resistance of the main magnetic path and the bypass magnetic path has a detecting means for detecting the magnetic force applied to the movable magnetic pole part when the magnetic resistance deviates from the minimum magnetic force condition, and the parameter relating to the magnetic resistance adjusting means changed intermittently, or The relationship between the parameter that changes during normal operation and the magnetic force applied to the movable magnetic pole portion is monitored, and the parameter that reduces the magnetic force applied to the movable magnetic pole portion is set as the minimum magnetic force condition. The magnetic resistance of the main magnetic path and the bypass magnetic path is affected by the deviation position of the movable magnetic pole, and is also affected by changes in the magnetic characteristics due to temperature and changes over time. The present invention has means for detecting a magnetic force that appears when the magnetic resistance of the main magnetic path and the bypass magnetic path deviates from the minimum magnetic force condition, and learns parameters related to the magnetic resistance adjusting means to learn the minimum magnetic force condition. Update those data as.

永久磁石励磁の界磁部を有する回転電機システムに於いて,機械的偏倚により界磁磁石の磁束を主磁路及びバイパス磁路に分流制御させるとして,機械的偏倚の障害となる磁気力を抑制し,或いは磁気力を利用して磁束量を制御可能とした。本発明の磁束分流制御回転電機に於いて弱め界磁制御が容易となり,高エネルギー効率で出力を最適に制御する回転電機システムを実現出来る。   In a rotating electrical machine system with a permanent magnet excitation field part, the magnetic force that interferes with mechanical bias is suppressed by controlling the magnetic flux of the field magnet to be divided into the main magnetic path and bypass magnetic path by mechanical bias. Alternatively, the amount of magnetic flux can be controlled using magnetic force. In the magnetic flux shunt control rotary electric machine of the present invention, field weakening control becomes easy, and a rotary electric machine system that optimally controls the output with high energy efficiency can be realized.

以下に本発明による回転電機システムについて,その実施例及び原理作用等を図面を参照しながら説明する。   In the following, a rotating electrical machine system according to the present invention will be described with reference to the drawings, with regard to embodiments, principles and actions.

本発明による回転電機システムの第一実施例を図1から図8までを用いて説明する。第一実施例は,ラジアルギャップ構造の回転電機システムであり,励磁部を軸方向に偏倚制御して電機子を流れる磁束量を制御する。励磁部の偏倚制御時に電機子コイルに予め定めた電流を供給して回転子を加速或いは減速方向に駆動して実効的に主磁路及びバイパス磁路の磁気抵抗を互いに等しくしている。図1は回転電機の縦断面図,図2,3は電機子と回転子との構成を示す断面図,図4は回転子の構成を示す斜視図,図5は磁性体突極とバイパス磁極と界磁磁石との関係を示す断面図,図6は偏倚した励磁部と磁性体突極との関係を示す断面図,図7は主磁路の磁気抵抗調整条件を学習的に取得するタイムチャート,図8は弱め界磁を行う回転電機システムのブロック図をそれぞれ示す。   A first embodiment of a rotating electrical machine system according to the present invention will be described with reference to FIGS. The first embodiment is a rotating electrical machine system having a radial gap structure, and controls the amount of magnetic flux flowing through the armature by controlling the exciter in the axial direction. A predetermined current is supplied to the armature coil during the bias control of the excitation unit to drive the rotor in the acceleration or deceleration direction, thereby effectively making the magnetic resistances of the main magnetic path and the bypass magnetic path equal to each other. 1 is a longitudinal sectional view of a rotating electric machine, FIGS. 2 and 3 are sectional views showing the structure of an armature and a rotor, FIG. 4 is a perspective view showing the structure of the rotor, and FIG. 5 is a magnetic salient pole and bypass magnetic pole. FIG. 6 is a cross-sectional view showing the relationship between the biased excitation part and the magnetic salient pole, and FIG. 7 is a time for learning the magnetic resistance adjustment condition of the main magnetic path in a learning manner. FIG. 8 is a block diagram of a rotating electrical machine system that performs field weakening.

図1はラジアルギャップ構造の回転電機に本発明を適用した実施例を示し,回転軸11がベアリング13を介してハウジング12に回動可能に支持されている。電機子はハウジング12に固定された円筒状磁気ヨーク15と,磁性体歯14と,電機子コイル16とから構成されている。回転子は表面磁極部と励磁部とを含む界磁部17,回転子支持体1bを有し,励磁部18は可動磁極部として軸方向に偏倚するよう構成されている。回転軸11は中空に構成され,中空部1d内に配置された摺動棒1h,プッシュロッド1e,アクチュエータ1f,スプリング19,回転軸11に設けられたスリット1c,スリット1cを介して摺動棒1hに接する励磁部支持体1aは励磁部18を軸方向に偏倚制御する手段を構成している。番号1jはロードセルを,番号1gは回転子に固定された冷却ファンを示す。   FIG. 1 shows an embodiment in which the present invention is applied to a rotating electrical machine having a radial gap structure, and a rotating shaft 11 is rotatably supported by a housing 12 via a bearing 13. The armature includes a cylindrical magnetic yoke 15 fixed to the housing 12, magnetic teeth 14, and an armature coil 16. The rotor includes a field part 17 including a surface magnetic pole part and an excitation part, and a rotor support 1b. The excitation part 18 is configured to be biased in the axial direction as a movable magnetic pole part. The rotating shaft 11 is hollow, and a sliding rod 1h, a push rod 1e, an actuator 1f, a spring 19, and a slit 1c provided on the rotating shaft 11 are arranged in the hollow portion 1d. The exciter support 1a in contact with 1h constitutes a means for controlling the exciter 18 in the axial direction. Reference numeral 1j denotes a load cell, and reference numeral 1g denotes a cooling fan fixed to the rotor.

図2,図3は図1のA−A’に沿う電機子及び回転子の断面図を示す。励磁部18は軸方向に界磁磁石と非磁性体とが交互に配置された構成であり,図2は励磁部18の界磁磁石を含む軸方向位置での電機子及び回転子の断面図を,図3は励磁部18の界磁磁石が含まれない軸方向位置での電機子及び回転子の断面図をそれぞれ示し,相互の関係を説明する為に構成部分の一部に番号が付されている。電機子はハウジング12に固定された円筒状磁気ヨーク15と,円筒状磁気ヨーク15から径方向に延び,周方向に磁気空隙を有する複数の磁性体歯14と,磁性体歯14に巻回された電機子コイル16とを含んでいる。本実施例では9個の電機子コイル16を有し,それらは三相に結線されている。   2 and 3 are sectional views of the armature and the rotor along A-A 'in FIG. The excitation unit 18 has a configuration in which field magnets and non-magnetic materials are alternately arranged in the axial direction, and FIG. 2 is a cross-sectional view of the armature and the rotor at the axial position including the field magnet of the excitation unit 18. FIG. 3 is a sectional view of the armature and the rotor at the axial position where the field magnet of the excitation unit 18 is not included, and some of the components are numbered to explain the mutual relationship. Has been. The armature is wound around the cylindrical magnetic yoke 15 fixed to the housing 12, a plurality of magnetic teeth 14 extending radially from the cylindrical magnetic yoke 15 and having a magnetic gap in the circumferential direction, and the magnetic teeth 14. Armature coil 16. In this embodiment, nine armature coils 16 are provided, which are connected in three phases.

電機子の磁性体歯14先端には径方向に短い可飽和磁性体結合部28を隣接する磁性体歯14先端部間に設けてある。磁性体歯14及び可飽和磁性体結合部28はケイ素鋼板を型で打ち抜いて積層し,電機子コイル16を巻回した後,円筒状磁気ヨーク15と組み合わせて電機子としている。可飽和磁性体結合部28は磁性体歯14と一体として磁性体歯14の支持強度を向上させ,磁性体歯14の不要な振動を抑制させる。可飽和磁性体結合部28の径方向の長さは短く設定して容易に磁気的に飽和する形状としたので電機子コイル16が発生させる磁束或いは界磁磁石からの磁束によって容易に飽和し,その場合に電機子コイル16が発生させる磁束及び界磁磁束の短絡を僅かな量とする。電機子コイル16に電流が供給されると,時間と共に可飽和磁性体結合部28は磁気的に飽和させられて周辺に磁束を漏洩させるが,磁気飽和した可飽和磁性体結合部28に現れる実効的な磁気空隙の境界はクリアではないので漏洩する磁束の分布は緩やかとなり,可飽和磁性体結合部28はこの点でも磁性体歯14に加わる力の時間変化を緩やかにして振動抑制に寄与する。   A saturable magnetic material coupling portion 28 that is short in the radial direction is provided between adjacent magnetic material teeth 14 at the tips of the magnetic teeth 14 of the armature. The magnetic teeth 14 and the saturable magnetic coupling portion 28 are formed by punching and stacking silicon steel plates with a mold, winding the armature coil 16, and then combining with the cylindrical magnetic yoke 15 to form an armature. The saturable magnetic body coupling portion 28 is integrated with the magnetic body teeth 14 to improve the support strength of the magnetic body teeth 14 and suppress unnecessary vibration of the magnetic body teeth 14. Since the length of the saturable magnetic body coupling portion 28 in the radial direction is set to be short and easily magnetically saturated, it is easily saturated by the magnetic flux generated by the armature coil 16 or the magnetic flux from the field magnet. In this case, a short circuit between the magnetic flux generated by the armature coil 16 and the field magnetic flux is set to a small amount. When a current is supplied to the armature coil 16, the saturable magnetic coupling portion 28 is magnetically saturated with time, and magnetic flux leaks to the periphery, but the effective magnetic saturation saturation portion 28 appears in the magnetically saturated saturable magnetic coupling portion 28. Since the boundary of the magnetic gap is not clear, the distribution of the magnetic flux that leaks becomes gentle, and the saturable magnetic body coupling part 28 also contributes to vibration suppression by slowing the time change of the force applied to the magnetic body tooth 14 in this respect as well. .

図2,3に於いて,回転子の界磁部17は表面磁極部と励磁部18とに区分して構成され,表面磁極部は磁性体歯14と対向する面に磁性体突極と磁気空隙部とを周方向に交互に有する構造とし,隣接する磁性体突極を番号21,22で代表させ,磁気空隙部を番号23で示している。磁性体突極21,22は幅の狭い可飽和磁性体部26で連結された構成としてケイ素鋼板を所定の型で打ち抜き,積層して構成されている。磁気空隙部23を含む非磁性体の部分には非磁性で且つ比抵抗の大きい材料,レジン,樹脂等を充填して構成している。   2 and 3, the rotor field portion 17 is divided into a surface magnetic pole portion and an excitation portion 18. The structure has alternating gaps in the circumferential direction, adjacent magnetic salient poles are represented by numerals 21 and 22, and the magnetic gaps are denoted by numeral 23. The magnetic salient poles 21 and 22 are formed by punching and laminating silicon steel plates with a predetermined die as a configuration in which the narrow saturable magnetic portions 26 are connected. The portion of the nonmagnetic material including the magnetic gap 23 is filled with a material, resin, resin or the like that is nonmagnetic and has a large specific resistance.

表面磁極部と励磁部18との関係及び構成はさらに図4,図5をも用いて説明する。図4は3次元的な構成を理解しやすいように励磁部18の一部を引き出して示した分解斜視図である。図5(a)は図2及び図3に於いてB−B’に沿う軸方向の磁性体突極及びバイパス磁極等の断面を示し,図5(b)は図2及び図3に於いてC−C’に沿う軸方向の励磁部18断面を示し,図5(c)は図2及び図3に於いてD−D’で示す周方向の一部に沿う軸方向の磁性体突極延長部及びバイパス磁極及び励磁部18の断面図を示している。   The relationship and configuration between the surface magnetic pole part and the excitation part 18 will be further described with reference to FIGS. FIG. 4 is an exploded perspective view showing a part of the excitation unit 18 so as to facilitate understanding of the three-dimensional configuration. 5A shows a cross section of the magnetic salient pole and bypass magnetic pole in the axial direction along BB 'in FIGS. 2 and 3, and FIG. 5B shows the cross section in FIGS. 5 shows a cross section of the exciting portion 18 in the axial direction along CC ′, and FIG. 5C is an axial magnetic salient pole along a part of the circumferential direction indicated by DD ′ in FIGS. 2 and 3. A cross-sectional view of the extension part, the bypass magnetic pole and the excitation part 18 is shown.

図5(a)に示されるように,磁性体突極21の延長部は軸方向に周期的な切除部を持ち,切除部にバイパス磁極31が配置されている。周方向に隣接する磁性体突極22延長部も同じ構成でバイパス磁極32が配置されている。図2,3,及び図5(a)に示すようにバイパス磁極31,32は円筒状ベース磁極25と微小間隙33を介して磁気的に結合している。   As shown in FIG. 5A, the extension part of the magnetic salient pole 21 has a periodic cut part in the axial direction, and a bypass magnetic pole 31 is arranged in the cut part. An extension portion of the magnetic salient pole 22 adjacent in the circumferential direction has the same configuration, and a bypass magnetic pole 32 is arranged. As shown in FIGS. 2, 3, and 5 (a), the bypass magnetic poles 31 and 32 are magnetically coupled to the cylindrical base magnetic pole 25 through a minute gap 33.

図5(b)及び図4に示されるように,励磁部18は界磁磁石24と非磁性体27を軸方向に交互に有し,周方向に隣接する磁性体突極21延長部と磁性体突極22延長部間,及びバイパス磁極31とバイパス磁極32間に配置されて軸方向に摺動可能に構成されている。   As shown in FIGS. 5B and 4, the excitation unit 18 has field magnets 24 and non-magnetic bodies 27 alternately in the axial direction, and magnetic extension of the magnetic salient poles 21 adjacent in the circumferential direction and magnetic fields. It is arranged between the body salient pole 22 extensions and between the bypass magnetic pole 31 and the bypass magnetic pole 32, and is configured to be slidable in the axial direction.

図5(c)は隣接する磁性体突極21延長部,磁性体突極22延長部,隣接するバイパス磁極31,バイパス磁極32と励磁部18との関係を示す断面図であり,界磁磁石24の両端が周方向に隣接する磁性体突極21延長部,磁性体突極22延長部に対向し,さらに隣接するバイパス磁極31,バイパス磁極32に対向している状態を示している。界磁磁石24内の矢印は磁化方向を示している。   FIG. 5C is a cross-sectional view showing the relationship between the adjacent magnetic salient pole 21 extension portion, magnetic salient pole 22 extension portion, adjacent bypass magnetic pole 31, bypass magnetic pole 32, and excitation portion 18. 24 shows a state in which both ends of 24 face the magnetic salient pole 21 extension and magnetic salient pole 22 extension adjacent to each other in the circumferential direction, and further face the adjacent bypass magnetic pole 31 and bypass magnetic pole 32. The arrow in the field magnet 24 indicates the magnetization direction.

界磁磁石24の一方の磁極から磁性体突極21延長部に流入した磁束が磁性体突極21,磁性体歯14,磁性体突極22,磁性体突極22延長部を介して界磁磁石24の他方の磁極に環流する主磁路と,界磁磁石24の一方の磁極からバイパス磁極31に流入した磁束がベース磁極25,バイパス磁極32を介して界磁磁石24の他方の磁極に環流するバイパス磁路とが界磁磁石24に並列接続される構成であり,励磁部18の軸方向偏倚により界磁磁石24と磁性体突極21延長部及び磁性体突極22延長部との対向面積を変えて主磁路及びバイパス磁路に分流する磁束量を変える事が出来る。バイパス磁路の磁気抵抗はバイパス磁極31,32と円筒状ベース磁極25間の微小間隙33での対向面積及び長さを磁気抵抗調整部分とし,回転電機の静止時に於いて主磁路の磁気抵抗とほぼ等しく設定している。バイパス磁路内及び主磁路内に直列に含まれる界磁磁石数は等しいので両者の磁気抵抗を同じに設定する。これが最小磁気力条件であり,主磁路の磁気抵抗は磁性体突極21と磁性体歯14との相対位置により変動するので平均化した磁気抵抗にバイパス磁路の磁気抵抗をほぼ等しく設定している。   Magnetic flux flowing from one magnetic pole of the field magnet 24 into the extension of the magnetic salient pole 21 passes through the magnetic salient pole 21, the magnetic teeth 14, the magnetic salient pole 22, and the magnetic salient pole 22 extension. The main magnetic path circulating to the other magnetic pole of the magnet 24 and the magnetic flux flowing into the bypass magnetic pole 31 from one magnetic pole of the field magnet 24 to the other magnetic pole of the field magnet 24 via the base magnetic pole 25 and the bypass magnetic pole 32. The circulating bypass magnetic path is connected in parallel to the field magnet 24, and the field magnet 24, the magnetic salient pole 21 extension part, and the magnetic salient pole 22 extension part due to the axial deviation of the excitation part 18 are provided. The amount of magnetic flux shunted to the main magnetic path and the bypass magnetic path can be changed by changing the facing area. The magnetic resistance of the bypass magnetic path is such that the opposing area and length of the minute gap 33 between the bypass magnetic poles 31 and 32 and the cylindrical base magnetic pole 25 is a magnetic resistance adjustment part. Is set to be approximately equal. Since the number of field magnets included in series in the bypass magnetic path and the main magnetic path is equal, both magnetic resistances are set to be the same. This is the minimum magnetic force condition, and the magnetic resistance of the main magnetic path fluctuates depending on the relative position between the magnetic salient pole 21 and the magnetic teeth 14, so the magnetic resistance of the bypass magnetic path is set to be approximately equal to the averaged magnetic resistance. ing.

本実施例に於いて,図5(a),(b)に示すように界磁磁石24の長さ54は磁性体突極21延長部左端からバイパス磁極31左端までの距離51に等しく設定し,磁性体突極21延長部の長さ52及びバイパス磁極31の長さ53は等しく設定している。界磁磁石24は磁性体突極21延長部及びバイパス磁極31に常に対向し,且つ偏倚移動する長さは磁性体突極21延長部の長さ52以内に限定している。したがって,界磁磁石24が磁性体突極21延長部及びバイパス磁極31と対向する面積の和は常に一定であり,且つ主磁路とバイパス磁路の磁気抵抗は等しく(最小磁気力条件)設定されるので界磁磁石24からの総磁束量は常に一定であり,励磁部の軸方向偏倚を妨げる磁気力は理論的に発生しない。   In this embodiment, as shown in FIGS. 5A and 5B, the length 54 of the field magnet 24 is set equal to the distance 51 from the left end of the extension portion of the magnetic salient pole 21 to the left end of the bypass magnetic pole 31. The length 52 of the magnetic salient pole 21 extension and the length 53 of the bypass magnetic pole 31 are set to be equal. The field magnet 24 always faces the extension portion of the magnetic salient pole 21 and the bypass magnetic pole 31, and the length of the displacement is limited to be within the length 52 of the extension portion of the magnetic salient pole 21. Therefore, the sum of the areas where the field magnet 24 faces the extension of the magnetic salient pole 21 and the bypass magnetic pole 31 is always constant, and the magnetic resistances of the main magnetic path and the bypass magnetic path are set equal (minimum magnetic force condition). Therefore, the total amount of magnetic flux from the field magnet 24 is always constant, and no magnetic force that hinders the axial deviation of the exciting portion is theoretically generated.

図6は図5(c)に対応して励磁部18の位置が異なる場合を示している。図6(a)は界磁磁石24が磁性体突極21延長部及び磁性体突極22延長部に最大限の面積で対向し,殆どの磁束を主磁路に供給している状態を示している。図6(b)は界磁磁石24がバイパス磁極31及び32に最大限の面積で対向し,殆どの磁束をバイパス磁路に供給している状態を示している。図6(a),(b)に示した場合の中間状態では界磁磁石24が磁性体突極21延長部及びバイパス磁極31の双方に対向して界磁磁石24からの界磁磁束は磁性体突極21延長部との対向面積に比例して主磁路に流入し,主磁路の磁束量が制御される。   FIG. 6 shows a case where the position of the excitation unit 18 is different corresponding to FIG. FIG. 6A shows a state in which the field magnet 24 is opposed to the extension part of the magnetic salient pole 21 and the extension part of the magnetic salient pole 22 with the maximum area and supplies most of the magnetic flux to the main magnetic path. ing. FIG. 6B shows a state in which the field magnet 24 faces the bypass magnetic poles 31 and 32 with a maximum area and supplies most of the magnetic flux to the bypass magnetic path. In the intermediate state shown in FIGS. 6A and 6B, the field magnet 24 faces both the extension of the magnetic salient pole 21 and the bypass magnetic pole 31, and the field magnetic flux from the field magnet 24 is magnetic. It flows into the main magnetic path in proportion to the area facing the body salient pole 21 extension, and the amount of magnetic flux in the main magnetic path is controlled.

上記構成に於いて,界磁磁石に磁性体突極延長部及びバイパス磁極が微小間隙を介して対向し,磁束は界磁磁石及び磁性体近傍ではそれらの境界面にほぼ直交するので界磁磁石からの磁束はほぼ層流状に磁性体突極延長部及びバイパス磁極に流入し,磁性体突極延長部に分流される磁束量は磁性体突極延長部と界磁磁石の対向面積に比例する。層流状の磁束分布を維持する為に前記微小間隙を可能な限り小とするべく摺動させる事が望ましく,さらに界磁磁石との対向面では磁性体突極延長部とバイパス磁極間の間隙も微小に設定し,対向面から離れた部分では間隙を大にして分流された磁束の短絡を小さくする構成が望ましい。   In the above configuration, the magnetic salient pole extension and the bypass magnetic pole face the field magnet through a minute gap, and the magnetic flux is substantially perpendicular to the boundary surface between the field magnet and the magnetic body. The magnetic flux from the magnetic flux flows into the magnetic salient pole extension and bypass magnetic pole in an almost laminar manner, and the amount of magnetic flux shunted to the magnetic salient pole extension is proportional to the opposing area of the magnetic salient pole extension and the field magnet To do. In order to maintain a laminar magnetic flux distribution, it is desirable to slide the minute gap as small as possible, and on the surface facing the field magnet, the gap between the magnetic salient pole extension and the bypass pole However, it is desirable that the distance between the opposing surfaces is set to be small and the gap is increased to reduce the short circuit of the divided magnetic flux.

図5(a),図5(b)に示すように磁性体突極21延長部,バイパス磁極31の長さは等しく設定され,界磁磁石24の長さを磁性体突極21延長部の長さ及び磁性体突極21延長部,バイパス磁極31間間隙長の和に等しくなるよう設定し,主励磁部18の偏倚量は磁性体突極21延長部の長さ以下としている。   As shown in FIGS. 5A and 5B, the length of the magnetic salient pole 21 extension and the bypass magnetic pole 31 are set to be equal, and the length of the field magnet 24 is set to the length of the magnetic salient pole 21 extension. The length and the extension of the magnetic salient pole 21 are set to be equal to the sum of the gap lengths between the bypass magnetic poles 31, and the amount of deviation of the main excitation portion 18 is equal to or less than the length of the extension of the magnetic salient pole 21.

一般に磁石を含む磁気回路の一部に可動部分が有る場合には磁束量を大にする方向(磁気回路の磁気抵抗を小にする方向と同じ意味である)に可動部分を動かそうとする磁気力が現れる。本発明に先行して界磁磁束を制御する目的で磁気回路の一部を偏倚させて界磁磁石を短絡し或いは磁路の磁気抵抗を変えようとする提案は多い。しかし,界磁磁石はその回転電機に於いて,磁石トルク或いは電力を発生させる源泉であり,前記偏倚を妨げる磁気的な力は大きく,精密な磁束量制御を困難にしていた。上記に説明した本発明の構成により磁気力は小さく抑制され,精密な磁束量制御が可能となる。   Generally, when there is a movable part in a part of the magnetic circuit including the magnet, the magnet that moves the movable part in the direction to increase the amount of magnetic flux (which means the same as the direction to decrease the magnetic resistance of the magnetic circuit). Power appears. Prior to the present invention, for the purpose of controlling the field magnetic flux, there are many proposals for biasing a part of the magnetic circuit to short-circuit the field magnet or change the magnetic resistance of the magnetic path. However, the field magnet is a source for generating magnet torque or electric power in the rotating electric machine, and the magnetic force that prevents the deviation is large, making it difficult to precisely control the amount of magnetic flux. With the configuration of the present invention described above, the magnetic force is suppressed to be small, and precise control of the amount of magnetic flux becomes possible.

本実施例では界磁磁石が微小間隙を介して磁性体突極延長部及びバイパス磁極に対向している。主磁路とバイパス磁路の磁気抵抗を厳密に等しくするのは困難であり,両者の磁気抵抗に差があるとして界磁磁石から磁性体を介して磁性体突極延長部及びバイパス磁極に対向させると,界磁磁石からの磁束はそれぞれの磁路の磁気抵抗に応じて前記磁性体内で分流して主磁路を流れる磁束は界磁磁石と磁性体突極延長部間の対向面積には比例しない事になり,磁束量の制御は困難となる。構造上の制約から界磁磁石から磁性体を介して磁性体突極延長部及びバイパス磁極に対向させる場合には,磁性体として異方性の強い磁性体或いは厚みの薄い磁性体として磁性体内で磁束が分流し難い構成とする。この構成は実質的に界磁磁石の端面で磁束を分流させる点で本発明の趣旨に含まれる。   In the present embodiment, the field magnet is opposed to the magnetic salient pole extension and the bypass magnetic pole through a minute gap. It is difficult to make the magnetic resistances of the main magnetic path and bypass magnetic path exactly the same, and it is assumed that there is a difference between the two magnetic resistances. Then, the magnetic flux from the field magnet is shunted in the magnetic body according to the magnetic resistance of each magnetic path, and the magnetic flux flowing through the main magnetic path is in the opposite area between the field magnet and the magnetic salient pole extension. Since it is not proportional, it is difficult to control the amount of magnetic flux. When facing the magnetic salient pole extension and the bypass magnetic pole through the magnetic material from the field magnet due to structural constraints, the magnetic material is a highly anisotropic magnetic material or a thin magnetic material in the magnetic material. The magnetic flux is difficult to shunt. This configuration is included in the spirit of the present invention in that the magnetic flux is substantially divided at the end face of the field magnet.

励磁部18を軸方向に偏倚させる事により電機子に流れる磁束量を制御できることを説明した。以下では励磁部18を軸方向に偏倚させる手段を図1により説明する。励磁部支持体1aの3つの突部は回転軸11に設けた3個のスリット1cを介して摺動棒1hに接し,摺動棒1hは回転軸11の中空部内を軸方向に摺動可能に構成されてアクチュエータ1fのプッシュロッド1eと接している。スプリング19は回転子支持体1bと励磁部支持体1aとの間に配置されて励磁部支持体1aを右方向に付勢し,アクチュエータ1fはプッシュロッド1eを軸方向左右に駆動させる構成であるので励磁部支持体1a及び界磁磁石24はアクチュエータ1fにより軸方向に偏倚させられる。アクチュエータ1fはステップモータとネジ機構で構成してステップモータを回転駆動する事でプッシュロッド1eを軸方向左右に駆動させ,ステップモータを駆動させない場合はプッシュロッド1eの軸方向位置を保持する構成としている。   It has been described that the amount of magnetic flux flowing through the armature can be controlled by biasing the excitation unit 18 in the axial direction. Hereinafter, a means for biasing the excitation unit 18 in the axial direction will be described with reference to FIG. The three protrusions of the exciter support 1a are in contact with the sliding rod 1h through three slits 1c provided on the rotating shaft 11, and the sliding rod 1h can slide in the hollow portion of the rotating shaft 11 in the axial direction. And is in contact with the push rod 1e of the actuator 1f. The spring 19 is disposed between the rotor support 1b and the exciter support 1a to urge the exciter support 1a to the right, and the actuator 1f drives the push rod 1e to the left and right in the axial direction. Therefore, the excitation unit support 1a and the field magnet 24 are biased in the axial direction by the actuator 1f. The actuator 1f is composed of a step motor and a screw mechanism, and rotates the step motor to drive the push rod 1e to the left and right in the axial direction. When the step motor is not driven, the actuator 1f holds the axial position of the push rod 1e. Yes.

励磁部18の偏倚が図6(a),(b)に示した範囲内に留まれば,界磁磁石24と磁性体突極21延長部,バイパス磁極31それぞれの対向面積の和は一定であり,それらの面積は偏倚に従って変化し,主磁路に分流される磁束量と偏倚量はほぼ比例する。偏倚量が前記範囲を超えても界磁制御を行う事は出来るが,偏倚量と主磁路を流れる磁束量の関係は不定となり,磁束量制御は複雑化する。本実施例では前記範囲内に偏倚量を留めるようスリット1cの位置及び軸方向長さを設定して偏倚規制手段としている。   If the excursion of the exciter 18 remains within the range shown in FIGS. 6A and 6B, the sum of the opposing areas of the field magnet 24, the magnetic salient pole 21 extension, and the bypass magnetic pole 31 is constant. These areas change according to the deviation, and the amount of magnetic flux shunted to the main magnetic path and the amount of deviation are almost proportional. Although the field control can be performed even if the deviation exceeds the above range, the relationship between the deviation and the amount of magnetic flux flowing through the main magnetic path becomes indefinite and the amount of magnetic flux control becomes complicated. In this embodiment, the position of the slit 1c and the length in the axial direction are set so as to keep the amount of deviation within the above range, and the deviation regulating means is used.

主磁路とバイパス磁路の磁気抵抗を最小磁気力条件に設定する事で両磁路間の磁束漏洩を小さく抑制し,前記偏倚を妨げる磁気力を小さく抑制する事が出来るが,磁路の磁気抵抗を変動させる要因は多い。すなわち,量産段階で部品寸法は設定公差内でばらついて各磁路の磁気抵抗を変動させ,磁路間の磁束漏洩が無視できない場合は可動磁極部の偏倚位置が各磁路の磁気抵抗に影響し,磁性体の透磁率は温度の影響を受けやすいので各磁路の磁気抵抗は変化する。更にまた電機子コイルに電流が流れると主磁路の磁気抵抗は実効的に変動する。   By setting the magnetic resistance of the main magnetic path and bypass magnetic path to the minimum magnetic force condition, the magnetic flux leakage between the two magnetic paths can be suppressed to a small level, and the magnetic force that prevents the deviation can be suppressed to a small level. There are many factors that cause the magnetoresistance to fluctuate. In other words, when the part size varies within the set tolerance at the mass production stage, the magnetic resistance of each magnetic path is fluctuated. However, since the magnetic permeability of the magnetic material is susceptible to temperature, the magnetic resistance of each magnetic path changes. Furthermore, when a current flows through the armature coil, the magnetic resistance of the main magnetic path effectively varies.

本実施例では以下のように回転電機の動作中に磁束量制御を間歇的に行っている。回転電機を電動機として電機子コイルに回転子を加速する方向の電流を供給する場合は界磁磁束を引き込み,電機子に流れる磁束量を大としようとし,回転子を減速駆動する場合はその逆になる。したがって,回転子を加速或いは減速駆動する場合は主磁路の磁気抵抗が実効的にそれぞれ小,大となる。主磁路とバイパス磁路の磁気抵抗を互いに等しくするよう電機子コイルに供給する電流を最小磁気力電流とし,可動磁極部の偏倚制御時に電機子コイルに最小磁気力電流を供給して回転子を加速或いは減速方向に駆動して実効的に主磁路及びバイパス磁路の磁気抵抗を等しくさせ,同時にアクチュエータを駆動する。さらに最小磁気力電流は回転電機の運転中に学習的に取得する構成として種々の原因による主磁路の磁気抵抗変化に適応させている。   In this embodiment, the amount of magnetic flux is intermittently controlled during the operation of the rotating electrical machine as follows. When supplying electric current in the direction of accelerating the rotor to the armature coil using the rotating electric machine as an electric motor, the field magnetic flux is drawn to increase the amount of magnetic flux flowing through the armature, and vice versa when the rotor is driven at a reduced speed. become. Therefore, when the rotor is driven to accelerate or decelerate, the magnetic resistance of the main magnetic path effectively becomes small and large, respectively. The current supplied to the armature coil is set to the minimum magnetic force current so that the magnetic resistances of the main magnetic path and the bypass magnetic path are equal to each other, and the minimum magnetic force current is supplied to the armature coil during the displacement control of the movable magnetic pole portion. Is driven in the acceleration or deceleration direction to effectively equalize the magnetic resistances of the main magnetic path and the bypass magnetic path and simultaneously drive the actuator. Furthermore, the minimum magnetic force current is adapted to the change in the magnetic resistance of the main magnetic path due to various causes as a learning acquisition during operation of the rotating electrical machine.

最小磁気力電流を学習的に取得する構成及び手順を図1及び図7を用いて説明する。図1に於いて,番号1jはロードセルを示し,プッシュロッド1eに加えられる力を検出する。主磁路及びバイパス磁路の磁気抵抗に差があると,界磁磁石24は磁気抵抗の小さい側の磁極となる磁性体突極21延長部或いはバイパス磁極31との対向面積を増す方向に偏倚する磁気力を受ける。アクチュエータ1fは軸方向位置を保持しようとするので摺動棒1h,プッシュロッド1e内の圧力は変化し,ロードセル1jにより前記磁気力を検出する事が出来る。   A configuration and procedure for acquiring the minimum magnetic force current in a learning manner will be described with reference to FIGS. In FIG. 1, reference numeral 1j denotes a load cell, which detects a force applied to the push rod 1e. If there is a difference in the magnetic resistance between the main magnetic path and the bypass magnetic path, the field magnet 24 will be biased in the direction of increasing the opposing area with the magnetic salient pole 21 extension or the bypass magnetic pole 31 as the magnetic pole on the side with a smaller magnetic resistance. Receive the magnetic force. Since the actuator 1f tries to maintain the axial position, the pressure in the sliding rod 1h and the push rod 1e changes, and the magnetic force can be detected by the load cell 1j.

図7は間歇的に磁束量を制御するタイムチャートであり,横軸76は時間を示す。番号71は学習区間を示し,番号72は磁束量制御区間を示している。それ以外の時間帯では回転電機が電動機であれば回転駆動を,発電機であれば発電電力の取り出しを行う。学習区間71では電機子コイル16に供給する電流の条件を変えて回転子を駆動し,その期間に於けるロードセル1jの出力を監視する。ロードセル1jの出力が小になる電流が主磁路及びバイパス磁路の磁気抵抗を実効的に互いに等しくする最小磁気力電流であり,この最小磁気力電流を制御装置に記憶或いは設定し直す。   FIG. 7 is a time chart for intermittently controlling the amount of magnetic flux, and the horizontal axis 76 indicates time. Reference numeral 71 represents a learning section, and reference numeral 72 represents a magnetic flux amount control section. In other time periods, if the rotating electrical machine is an electric motor, rotation driving is performed, and if it is a generator, generated electric power is extracted. In the learning section 71, the condition of the current supplied to the armature coil 16 is changed to drive the rotor, and the output of the load cell 1j during that period is monitored. The current at which the output of the load cell 1j becomes small is the minimum magnetic force current that effectively makes the magnetic resistances of the main magnetic path and the bypass magnetic path equal to each other, and this minimum magnetic force current is stored or reset in the control device.

番号72は磁束量を制御する区間であり,前記の学習過程で得られた最小磁気力電流を電機子コイル16に供給し,同時にアクチュエータ1fを制御して励磁部18を軸方向に偏倚させる。主磁路及びバイパス磁路の磁気抵抗は実効的にほぼ等しくされるのでアクチュエータ1fによる上記制御は円滑に行われる。この場合,回転子は短時間であるが駆動されるので回転速度73は変化する。磁束量の制御区間72では回転子が減速され,僅かではあるが,減速されている状態が回転速度73に示されている。番号74は磁束量を示し,学習区間71ではアクチュエータ1fは軸方向位置を保持しているので磁束量74は変化しないが,磁束量制御区間72では磁束量74が変化する様子が示されている。   Reference numeral 72 denotes a section for controlling the amount of magnetic flux. The minimum magnetic force current obtained in the learning process is supplied to the armature coil 16, and at the same time, the actuator 1f is controlled to bias the exciter 18 in the axial direction. Since the magnetic resistances of the main magnetic path and the bypass magnetic path are effectively made substantially equal, the above control by the actuator 1f is performed smoothly. In this case, since the rotor is driven for a short time, the rotational speed 73 changes. In the control section 72 for the amount of magnetic flux, the rotor is decelerated and a slight but decelerated state is shown in the rotation speed 73. Reference numeral 74 indicates the amount of magnetic flux. In the learning section 71, the actuator 1f holds the axial position, so that the magnetic flux amount 74 does not change, but in the magnetic flux amount control section 72, the magnetic flux amount 74 changes. .

番号75は回転電機が発電機である場合に於ける発電電圧を示している。学習区間71及び磁束量制御区間72では発電電力を取り出せないので発電電圧75が途切れている状態を示し,磁束量制御区間72前後では発電電圧75が変化している状態が示されている。本実施例では静止時に於いてバイパス磁路の磁気抵抗を主磁路の磁気抵抗と等しくなるように設定されているので磁束量制御の際に電機子コイル16に供給する最小磁気力電流が回転子を加速或いは減速する程度は小さく抑えられる。   Reference numeral 75 indicates a generated voltage when the rotating electrical machine is a generator. In the learning section 71 and the magnetic flux amount control section 72, since the generated power cannot be taken out, the power generation voltage 75 is interrupted. In this embodiment, since the magnetic resistance of the bypass magnetic path is set to be equal to the magnetic resistance of the main magnetic path at rest, the minimum magnetic force current supplied to the armature coil 16 during the magnetic flux amount control is rotated. The degree to which the child is accelerated or decelerated can be kept small.

本実施例では学習区間71を設定して最小磁気力電流を取得したが,特に学習区間71を設定しない学習方法も可能である。例えば,回転電機が電動機である場合には回転子を駆動する為に電機子に供給される電流とロードセル1j出力との関係を常時監視し,最もロードセル1j出力が小になる電流を最小磁気力電流とする。   In this embodiment, the learning interval 71 is set and the minimum magnetic force current is acquired. However, a learning method that does not set the learning interval 71 is also possible. For example, when the rotating electrical machine is an electric motor, the relationship between the current supplied to the armature to drive the rotor and the output of the load cell 1j is constantly monitored, and the current at which the output of the load cell 1j is the smallest is the minimum magnetic force. Let it be current.

以上,図1から図7に示した回転電機に於いて,励磁部18を軸方向に偏倚制御し,電機子に流れる磁束量を制御できることを示した。以下には磁束量を制御して出力を最適に制御する回転電機システムを,図8のブロック図を用いて説明する。図8は磁束量制御を行う回転電機システムのブロック図を示している。図8に於いて,回転電機81は入力82,出力83を有するとし,制御装置85は回転電機81の出力83及び励磁部18位置を含む状態信号84を入力として制御信号86を介して回転電機81の磁束量を制御する。番号87は電機子コイル16の駆動回路を示す。回転電機81が発電機として用いられるのであれば,入力82は回転力であり,出力83は発電電力となる。回転電機81が電動機として用いられるのであれば,入力82は駆動回路87から電機子コイル16に供給される駆動電流であり,出力83は回転トルク,回転速度となる。   As described above, in the rotating electric machine shown in FIGS. 1 to 7, it has been shown that the excitation unit 18 can be controlled in the axial direction to control the amount of magnetic flux flowing through the armature. A rotating electrical machine system that optimally controls the output by controlling the amount of magnetic flux will be described below with reference to the block diagram of FIG. FIG. 8 is a block diagram of a rotating electrical machine system that performs magnetic flux amount control. In FIG. 8, it is assumed that the rotating electrical machine 81 has an input 82 and an output 83, and the control device 85 rotates via the control signal 86 with the output 83 of the rotating electrical machine 81 and the status signal 84 including the position of the excitation unit 18 as inputs. The amount of magnetic flux of the electric machine 81 is controlled. Reference numeral 87 denotes a drive circuit for the armature coil 16. If the rotating electrical machine 81 is used as a generator, the input 82 is a rotational force and the output 83 is generated power. If the rotating electric machine 81 is used as an electric motor, the input 82 is a driving current supplied from the driving circuit 87 to the armature coil 16, and the output 83 is a rotating torque and a rotating speed.

回転電機装置が電動機として用いられる場合において,弱め界磁制御を行って回転力を最適に制御する電動機システムを説明する。制御装置85は出力83である回転速度が所定の値より大となり電機子に流れる磁束量を小とする時には磁束量制御区間72の時間帯に電機子コイル16に駆動回路87を介して最小磁気力電流を供給して主磁路及びバイパス磁路の磁気抵抗を実効的に互いに等しくし,制御信号86によりアクチュエータ1fを駆動して励磁部18を図6(a),(b)に於いて右方向に偏倚させて界磁磁石24と磁性体突極21延長部とが対向する面積を小にする。偏倚制御後はアクチュエータ1fを停止させて励磁部18の軸方向位置を保持する。回転速度が所定の値より小となり電機子に流れる磁束量を大とする時には磁束量制御区間72の時間帯に電機子コイル16に駆動回路87を介して最小磁気力電流を供給して主磁路及びバイパス磁路の磁気抵抗を実効的に互いに等しくし,制御信号86によりアクチュエータ1fを駆動して励磁部18を図6(a),(b)に於いて左方向に偏倚させて界磁磁石24と磁性体突極21延長部とが対向する面積を大にする。偏倚制御後はアクチュエータ1fを停止させて励磁部18の軸方向位置を保持する。   An explanation will be given of an electric motor system that performs field-weakening control and optimally controls the rotational force when the rotary electric machine device is used as an electric motor. When the rotational speed, which is the output 83, is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the control device 85 causes the armature coil 16 to pass through the drive circuit 87 via the drive circuit 87 during the magnetic flux amount control section 72. A force current is supplied so that the magnetic resistances of the main magnetic path and the bypass magnetic path are effectively made equal to each other, and the actuator 1f is driven by the control signal 86 to make the exciter 18 in FIGS. 6 (a) and 6 (b). The area where the field magnet 24 and the magnetic salient pole 21 extension face each other is made small by biasing in the right direction. After the bias control, the actuator 1f is stopped and the axial position of the excitation unit 18 is held. When the rotational speed is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the minimum magnetic force current is supplied to the armature coil 16 via the drive circuit 87 in the time period of the magnetic flux amount control section 72 and the main magnet. The magnetic resistances of the path and the bypass magnetic path are effectively made equal to each other, the actuator 1f is driven by the control signal 86, and the exciting portion 18 is biased leftward in FIGS. The area where the magnet 24 and the extension of the magnetic salient pole 21 face each other is increased. After the bias control, the actuator 1f is stopped and the axial position of the excitation unit 18 is held.

回転電機装置が発電機として用いられる場合において,弱め界磁制御を行って発電電圧を所定の電圧となるよう制御する定電圧発電機システムを説明する。制御装置85は出力83である発電電圧が所定の値より大となり電機子に流れる磁束量を小とする時には磁束量制御区間72の時間帯に電機子コイル16に駆動回路87を介して最小磁気力電流を供給して主磁路及びバイパス磁路の磁気抵抗を実効的に互いに等しくし,制御信号86によりアクチュエータ1fを駆動して励磁部18を図6(a),(b)に於いて右方向に偏倚させて界磁磁石24と磁性体突極21延長部とが対向する面積を小にする。偏倚制御後はアクチュエータ1fを停止させて励磁部18の軸方向位置を保持する。発電電圧が所定の値より小となり電機子に流れる磁束量を大とする時には磁束量制御区間72の時間帯に電機子コイル16に駆動回路87を介して最小磁気力電流を供給して主磁路及びバイパス磁路の磁気抵抗を実効的に互いに等しくし,制御信号86によりアクチュエータ1fを駆動して励磁部18を図6(a),(b)に於いて左方向に偏倚させて界磁磁石24と磁性体突極21延長部とが対向する面積を大にする。偏倚制御後はアクチュエータ1fを停止させて励磁部18の軸方向位置を保持する。   A constant voltage generator system that performs field weakening control and controls the generated voltage to be a predetermined voltage when the rotating electrical machine apparatus is used as a generator will be described. When the power generation voltage, which is the output 83, is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the control device 85 causes the armature coil 16 to pass through the drive circuit 87 via the drive circuit 87 during the magnetic flux amount control section 72. A force current is supplied so that the magnetic resistances of the main magnetic path and the bypass magnetic path are effectively made equal to each other, and the actuator 1f is driven by the control signal 86 to make the exciter 18 in FIGS. 6 (a) and 6 (b). The area where the field magnet 24 and the magnetic salient pole 21 extension face each other is made small by biasing in the right direction. After the bias control, the actuator 1f is stopped and the axial position of the excitation unit 18 is held. When the generated voltage is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the minimum magnetic force current is supplied to the armature coil 16 via the drive circuit 87 in the time period of the magnetic flux amount control section 72, and the main magnet. The magnetic resistances of the path and the bypass magnetic path are effectively made equal to each other, the actuator 1f is driven by the control signal 86, and the exciting portion 18 is biased leftward in FIGS. The area where the magnet 24 and the extension of the magnetic salient pole 21 face each other is increased. After the bias control, the actuator 1f is stopped and the axial position of the excitation unit 18 is held.

本実施例で採用した主磁路の磁気抵抗の補正手段は回転電機を加速或いは減速駆動を伴うので,長時間に渡って磁束量制御が連続する場合は回転電機の運転に影響を与える可能性がある。しかし,通常の運転状態では回転速度の変化も磁束量の変更制御も連続的に行われるので大きな問題となる事はない。また,予め定めたレベル以上に磁束量を変える場合には複数回に分けて間歇的に実施する手法を取り入れる事で大きな支障が現れる事はない。   The means for correcting the magnetic resistance of the main magnetic path employed in the present embodiment is accompanied by acceleration or deceleration driving of the rotating electrical machine, so that it may affect the operation of the rotating electrical machine when the magnetic flux amount control continues for a long time. There is. However, since a change in rotational speed and a change control of the amount of magnetic flux are continuously performed in a normal operation state, there is no big problem. In addition, when the amount of magnetic flux is changed to a predetermined level or more, there is no big trouble by adopting a method of performing intermittently in multiple times.

主磁路の磁気抵抗を設計値から許容範囲内に納める事が出来る場合には本実施例で採用した運転中に主磁路の磁気抵抗を調整する過程は不要とする事が出来る。また,運転中に於ける主磁路の磁気抵抗が初期状態から大きくずれない場合には回転電機の組み立て後の初期調整設定のみを採用して本実施例で採用した学習過程を省略する事が出来る。回転電機システムの仕様或いは運転条件により本実施例に於ける主磁路の磁気抵抗補正方法を部分的に採用して最適の回転電機システムとする事が出来る。   If the magnetic resistance of the main magnetic path can be kept within the allowable range from the design value, the process of adjusting the magnetic resistance of the main magnetic path during the operation adopted in this embodiment can be made unnecessary. Also, if the magnetic resistance of the main magnetic path during operation does not deviate significantly from the initial state, only the initial adjustment setting after assembly of the rotating electrical machine is adopted, and the learning process adopted in this embodiment may be omitted. I can do it. Depending on the specifications or operating conditions of the rotating electrical machine system, the magnetoresistive correction method for the main magnetic path in this embodiment can be partially adopted to obtain an optimal rotating electrical machine system.

本発明による回転電機システムの第二実施例を図9から図13までを用いて説明する。第二実施例は,ラジアルギャップ構造の回転電機システムであり,励磁部を径方向に偏倚させて電機子を流れる磁束量を制御する。励磁部の偏倚制御時に電機子コイルに定電流負荷を接続し,誘起電圧により予め定めた電流を流して主磁路の磁気抵抗を実効的に調整している。図9は回転電機の縦断面図,図10は電機子と回転子との構成を示す断面図,図11は回転子の一部を拡大した断面図,図12は励磁部の偏倚制御手段の斜視図,図13はスリーブ,回転軸の斜視図を示す。   A second embodiment of the rotating electrical machine system according to the present invention will be described with reference to FIGS. The second embodiment is a rotating electrical machine system having a radial gap structure, and controls the amount of magnetic flux flowing through the armature by biasing the exciting portion in the radial direction. A constant current load is connected to the armature coil during bias control of the excitation unit, and a predetermined current is passed by the induced voltage to effectively adjust the magnetic resistance of the main magnetic path. 9 is a longitudinal sectional view of the rotating electric machine, FIG. 10 is a sectional view showing the structure of the armature and the rotor, FIG. 11 is an enlarged sectional view of a part of the rotor, and FIG. 12 is a bias control means of the excitation unit. FIG. 13 is a perspective view of the sleeve and the rotation shaft.

図9はラジアルギャップ構造の回転電機に本発明を適用した実施例を示し,回転軸11がベアリング13を介してハウジング12に回動可能に支持されている。電機子はハウジング12に固定された円筒状磁気ヨーク15と,磁性体歯14と,電機子コイル16とから構成されている。回転子は表面磁極部91と表面磁極部91内に配置された励磁部とで構成され,励磁部は可動磁極部として径方向に偏倚するよう構成されている。番号92は回転子支持体を示す。励磁部を径方向に偏倚制御する手段は,番号93,94で示すガイドプレート,スライドバー96,円筒状のスリーブ97,スプリング98,回転軸11に設けられた斜交溝99,プッシュロッド1e,摺動棒1h,ハウジング12に固定されたアクチュエータ1fとから構成されている。番号95はガイドプレート93,94を連結する連結棒が摺動する連結孔を示している。   FIG. 9 shows an embodiment in which the present invention is applied to a rotary electric machine having a radial gap structure. A rotating shaft 11 is rotatably supported by a housing 12 via a bearing 13. The armature includes a cylindrical magnetic yoke 15 fixed to the housing 12, magnetic teeth 14, and an armature coil 16. The rotor is composed of a surface magnetic pole part 91 and an excitation part arranged in the surface magnetic pole part 91, and the excitation part is configured to be biased in the radial direction as a movable magnetic pole part. Reference numeral 92 denotes a rotor support. Means for controlling the exciter in the radial direction include guide plates 93 and 94, a slide bar 96, a cylindrical sleeve 97, a spring 98, an oblique groove 99 provided on the rotating shaft 11, a push rod 1e, The sliding bar 1h and the actuator 1f fixed to the housing 12 are included. Reference numeral 95 denotes a connecting hole through which a connecting rod for connecting the guide plates 93 and 94 slides.

図10は図9のE−E’に沿う電機子及び回転子の断面を示し,相互の関係を説明する為に構成部分の一部に番号を付して示している。電機子の構成は第一の実施例と同じであり,説明は省略する。番号10cはガイドプレート93,94を連結する3本の連結棒を示している。   FIG. 10 shows a cross section of the armature and the rotor along the line E-E ′ in FIG. The configuration of the armature is the same as that of the first embodiment, and the description is omitted. Reference numeral 10 c indicates three connecting rods for connecting the guide plates 93 and 94.

図10に於いて,表面磁極部は電機子との対向面に磁性体突極と集合磁石とを周方向に交互に有する構造である。中間磁性体突極103の両側面に磁化方向をほぼ同じくする磁石板105,106が配置構成された集合磁石は磁気的には磁石と等価であり,表面磁極部は一様な磁性体を周方向に等間隔に配置された集合磁石によって区分された磁性体突極101,102及び集合磁石とから構成されている。さらに隣接する磁性体突極101,102は互いに異なる方向に磁化されるよう隣接する集合磁石の略周方向磁化方向は互いに反転して構成されている。磁性体突極101,102それぞれの周方向両側面に配置された磁石板104,105,106,107はV字状の配置であり,磁石板104,105の交差角度,磁石板106,107の交差角度は磁束バリアに好適な角度に設定する。磁石板104,105,106,107に付された矢印は磁石板104,105,106,107の板面にほぼ直交する磁化方向を示す。番号108は磁石板105,106間の磁気抵抗を大にする為の磁気空隙部を示す。   In FIG. 10, the surface magnetic pole portion has a structure having magnetic salient poles and collective magnets alternately in the circumferential direction on the surface facing the armature. The collective magnet in which the magnet plates 105 and 106 having substantially the same magnetization direction are arranged on both sides of the intermediate magnetic salient pole 103 is magnetically equivalent to the magnet, and the surface magnetic pole portion surrounds the uniform magnetic body. The magnetic salient poles 101 and 102 and the collective magnets are divided by the collective magnets arranged at equal intervals in the direction. Furthermore, the adjacent magnetic body salient poles 101 and 102 are configured such that the substantially circumferential magnetization directions of adjacent magnets are reversed so that they are magnetized in different directions. Magnet plates 104, 105, 106, 107 arranged on both sides in the circumferential direction of each of the magnetic salient poles 101, 102 are V-shaped, the crossing angle of the magnet plates 104, 105, the magnet plates 106, 107 The crossing angle is set to an angle suitable for the magnetic flux barrier. Arrows attached to the magnet plates 104, 105, 106, and 107 indicate magnetization directions that are substantially orthogonal to the plate surfaces of the magnet plates 104, 105, 106, and 107. Reference numeral 108 indicates a magnetic gap for increasing the magnetic resistance between the magnet plates 105 and 106.

磁性体突極101,102は内周方向への延長部10d,10eをそれぞれ持ち,それぞれの延長上にバイパス磁極10a,10bが配置されている。界磁磁石109は隣接する磁性体突極延長部10dと磁性体突極延長部10e間,及び隣接するバイパス磁極10a,10b間に径方向に摺動可能に配置されている。さらに界磁磁石109が偏倚する径方向の範囲は周囲の寸法により界磁磁石109が常に磁性体突極延長部10d及びバイパス磁極10aそれぞれと対向するよう規制されている。界磁磁石109は周方向の磁化を持ち,隣接する界磁磁石109の磁化方向は互いに反転して配置されて磁性体突極101,102を互いに異極に磁化している。界磁磁石109内に記載した矢印は磁化方向を示す。本実施例では界磁磁石109及びその支持部分が励磁部を構成し,磁性体突極101,102それぞれを集合磁石及び励磁部が同じ磁化方向に励磁するよう表面磁極部と励磁部の配置が設定されている。   The magnetic salient poles 101 and 102 have extensions 10d and 10e in the inner circumferential direction, and bypass magnetic poles 10a and 10b are arranged on the extensions. The field magnet 109 is slidably disposed between the adjacent magnetic salient pole extension 10d and the magnetic salient pole extension 10e and between the adjacent bypass magnetic poles 10a and 10b. Further, the radial range in which the field magnet 109 is biased is restricted so that the field magnet 109 always faces the magnetic salient pole extension 10d and the bypass magnetic pole 10a, respectively, due to the surrounding dimensions. The field magnet 109 has a magnetization in the circumferential direction, and the magnetization directions of the adjacent field magnets 109 are reversed so as to magnetize the magnetic salient poles 101 and 102 to different polarities. An arrow written in the field magnet 109 indicates the magnetization direction. In this embodiment, the field magnet 109 and its supporting part constitute an exciting part, and the surface magnetic pole part and the exciting part are arranged so that the magnetic salient poles 101 and 102 are excited in the same magnetization direction by the collective magnet and the exciting part. Is set.

集合磁石を構成する磁石板105,106は界磁磁束を発生すると共に周方向に磁気抵抗の大きな領域を形成する為の磁束バリアの役割をもっている。本実施例に於いては励磁部から十分な界磁磁束を供給出来,また磁束量制御が目的であるので磁石板105,106からの界磁磁束は磁束量制御の観点からは障害になる存在である。中間磁性体突極103中に設けたスリットで構成した磁気空隙部108は磁石板105,106の磁束が通る磁路の磁気抵抗を大として電機子側に流れる界磁磁束への磁石板105,106の寄与を小にする為である。これにより,励磁部を表面磁極部に対して径方向に偏倚させ,電機子側に流れる磁束量を広い範囲で制御出来る。   The magnet plates 105 and 106 constituting the collective magnet have a role of a magnetic flux barrier for generating a field magnetic flux and forming a region having a large magnetic resistance in the circumferential direction. In the present embodiment, a sufficient field magnetic flux can be supplied from the excitation unit and the purpose is to control the amount of magnetic flux, so the field magnetic flux from the magnet plates 105 and 106 is an obstacle from the viewpoint of controlling the amount of magnetic flux. It is. The magnetic air gap 108 formed by a slit provided in the intermediate magnetic material salient pole 103 has a large magnetic resistance of a magnetic path through which the magnetic flux of the magnet plates 105 and 106 passes, and the magnet plate 105 to the field magnetic flux flowing to the armature side. This is to make the contribution of 106 small. As a result, the exciting part is biased in the radial direction with respect to the surface magnetic pole part, and the amount of magnetic flux flowing on the armature side can be controlled in a wide range.

本実施例では主磁路とバイパスに加えて集合磁石を通る第三の磁路が界磁磁石109に並列接続されている。磁石板105,106部分を空隙として算出した第三の磁路の磁気抵抗を主磁路の磁気抵抗より大になるよう設定する。本実施例では中間磁性体突極103中に設けた磁気空隙部108により第三の磁路の磁気抵抗を主磁路の磁気抵抗を大として主磁路に流入する磁束量が影響されないよう構成する役割も果たしている。   In this embodiment, in addition to the main magnetic path and the bypass, a third magnetic path passing through the collective magnet is connected in parallel to the field magnet 109. The magnetic resistance of the third magnetic path calculated using the magnet plates 105 and 106 as a gap is set to be larger than the magnetic resistance of the main magnetic path. In the present embodiment, the magnetic air gap 108 provided in the intermediate magnetic salient pole 103 is configured so that the magnetic resistance of the third magnetic path is made large and the magnetic resistance flowing into the main magnetic path is not affected. It also plays a role.

図11は界磁部の一部を拡大した図であって磁束の流れを説明する。磁石板105,106は磁性体突極101をN極に,磁性体突極102をS極に磁化してそれらからの磁束は番号111で示す磁路に沿って流れる。界磁磁石109も磁石板105,106と同じく磁性体突極101をN極に,磁性体突極102をS極に磁化し,磁性体突極延長部10dに流入した磁束は番号112に示す主磁路に沿って図示していない磁性体歯14,隣接する磁性体突極102を通って界磁磁石109に環流する。また界磁磁石109からバイパス磁極10aに流入した磁束は番号113で示すバイパス磁路に沿って隣接するバイパス磁極10bを通って界磁磁石109に環流する。番号115は界磁磁石109の支持部であり,非磁性のステンレススチールで構成している。   FIG. 11 is an enlarged view of a part of the field magnet portion and explains the flow of magnetic flux. The magnet plates 105 and 106 magnetize the magnetic salient pole 101 as an N pole and the magnetic salient pole 102 as an S pole, and the magnetic flux from them magnetizes along a magnetic path indicated by reference numeral 111. Similarly to the magnet plates 105 and 106, the field magnet 109 magnetizes the magnetic salient pole 101 to the N pole and the magnetic salient pole 102 to the S pole, and the magnetic flux flowing into the magnetic salient pole extension 10d is denoted by reference numeral 112. It recirculates to the field magnet 109 through the magnetic teeth 14 (not shown) and the adjacent magnetic salient poles 102 along the main magnetic path. Further, the magnetic flux flowing into the bypass magnetic pole 10a from the field magnet 109 flows back to the field magnet 109 through the bypass magnetic pole 10b adjacent along the bypass magnetic path denoted by reference numeral 113. Reference numeral 115 denotes a support portion for the field magnet 109, which is made of nonmagnetic stainless steel.

隣接するバイパス磁極10a,10bは微小な間隙114を介して対向し,間隙114の間隙長或いは対向する面積を調整してバイパス磁路の磁気抵抗は主磁路の磁気抵抗よりやや大に設定されている。本実施例では回転電機装置の運転中に電機子コイル16に予め定めた定電流負荷を接続して主磁路の磁気抵抗を大としてバイパス磁路の磁気抵抗とほぼ等しい最小磁気力条件に調整する。界磁磁石109を径方向(図11に於いては上下方向)に偏倚させた場合,界磁磁石109の磁極と磁性体突極延長部10d及びバイパス磁極10aそれぞれとの対向する面積の和は一定であり,磁性体突極延長部10d及びバイパス磁極10aそれぞれと接続している主磁路及びバイパス磁路の磁気抵抗は最小磁気力条件に調整されると界磁磁石109に接続される磁気抵抗は一定となり,界磁磁石109の偏倚を妨げる磁気力は小さく抑えられる。   Adjacent bypass magnetic poles 10a and 10b face each other through a minute gap 114, and the magnetic resistance of the bypass magnetic path is set to be slightly larger than the magnetic resistance of the main magnetic path by adjusting the gap length or the area of the gap 114. ing. In this embodiment, a predetermined constant current load is connected to the armature coil 16 during operation of the rotating electrical machine device, and the magnetic resistance of the main magnetic path is increased to adjust to the minimum magnetic force condition substantially equal to the magnetic resistance of the bypass magnetic path. To do. When the field magnet 109 is biased in the radial direction (vertical direction in FIG. 11), the sum of the opposing areas of the magnetic pole of the field magnet 109 and the magnetic salient pole extension 10d and the bypass magnetic pole 10a is as follows. The magnetic resistance of the main magnetic path and the bypass magnetic path connected to the magnetic salient pole extension 10d and the bypass magnetic pole 10a, respectively, and the magnetic resistance connected to the field magnet 109 is adjusted to the minimum magnetic force condition. The resistance is constant, and the magnetic force that prevents the field magnet 109 from being biased is kept small.

界磁磁石109と磁性体突極延長部10d,磁性体突極延長部10e,バイパス磁極10a,10b間には磁気吸引力が働くが,界磁磁石109の偏倚方向とは直交して偏倚を妨げる磁気力とは成らない。また,それらの磁気力は界磁磁石109の両側で逆方向となるので相殺される。界磁磁石109と磁性体突極延長部10d,磁性体突極延長部10e,バイパス磁極10a,10b間の間隙は可能な限り小として上記磁気力を十分に相殺させ,それらの対向面には二硫化モリブデン等の固体潤滑剤を塗布して摩擦力を軽減させる構成としている。   A magnetic attractive force acts between the field magnet 109 and the magnetic salient pole extension 10d, the magnetic salient pole extension 10e, and the bypass magnetic poles 10a and 10b. It is not a magnetic force to block. In addition, since these magnetic forces are in opposite directions on both sides of the field magnet 109, they are canceled out. The gaps between the field magnet 109 and the magnetic salient pole extension 10d, the magnetic salient pole extension 10e, and the bypass magnetic poles 10a and 10b are made as small as possible to sufficiently cancel the magnetic force. It is configured to reduce the frictional force by applying a solid lubricant such as molybdenum disulfide.

励磁部を径方向に偏倚制御する手段は図9,図12,図13を参照して説明する。図12は図9に示した励磁部を径方向に偏倚させるガイドプレート93,94,及びそれらの連結構造を示し,一組の界磁磁石109と支持部115のみを示している。図13(a)はスリーブ97の斜視図を,図13(b)は回転軸11の斜視図をそれぞれ示す。励磁部の径方向への偏倚は,2段階に区分されて行われる。すなわち,アクチュエータ1fがプッシュロッド1eを軸方向左右に駆動してスリーブ97を周方向に偏倚させ,スリーブ97の周方向偏倚をガイドプレート93,94により径方向への偏倚に変換して励磁部を偏倚させる。   Means for controlling the exciter in the radial direction will be described with reference to FIGS. FIG. 12 shows guide plates 93 and 94 for displacing the excitation part shown in FIG. 9 in the radial direction, and their connection structure, and shows only one set of field magnet 109 and support part 115. 13A shows a perspective view of the sleeve 97, and FIG. 13B shows a perspective view of the rotating shaft 11. Deviation in the radial direction of the excitation part is performed in two stages. That is, the actuator 1f drives the push rod 1e to the left and right in the axial direction to bias the sleeve 97 in the circumferential direction, and the circumferential displacement of the sleeve 97 is converted into radial deviation by the guide plates 93 and 94 to Bias.

図9及び図13を参照してアクチュエータ1fがプッシュロッド1eを軸方向左右に駆動してスリーブ97を周方向に偏倚させる構成を説明する。図13(b)に示されるように斜交溝99は回転軸11の軸方向に斜めに延び中空部に貫通する構造であり,図13(a)に示されるようにスリーブ97に固定されたピン131が斜交溝99に貫通係合している。図9に示されるようにスプリング98は回転子の支持部92,スリーブ97間に配置されて右方向にスリーブ97を押すよう付勢され,摺動棒1hはピン131に接触してスリーブ97を同図に於いて左方向にアクチュエータ1f,プッシュロッド1eにより付勢し,スリーブ97は両者の力がバランスする軸方向位置に止まるよう構成されている。アクチュエータ1fがスリーブ97を左右に駆動すると,スリーブ97に固定されたピン131は斜交溝99に係合しているのでスリーブ97を周方向に偏倚させる。さらにスリーブ97の外周には凹状溝132が形成され,ガイドプレート93の内周側突部122が軸方向に摺動可能に係合しているのでスリーブ97の周方向偏倚に従ってガイドプレート93も周方向に偏倚させられる。   A configuration in which the actuator 1f drives the push rod 1e to the left and right in the axial direction to bias the sleeve 97 in the circumferential direction will be described with reference to FIGS. As shown in FIG. 13 (b), the oblique groove 99 has a structure extending obliquely in the axial direction of the rotary shaft 11 and penetrating through the hollow portion, and is fixed to the sleeve 97 as shown in FIG. 13 (a). The pin 131 is engaged with the oblique groove 99 through. As shown in FIG. 9, the spring 98 is disposed between the support portion 92 of the rotor and the sleeve 97 and is urged to push the sleeve 97 in the right direction, and the sliding rod 1h contacts the pin 131 and pushes the sleeve 97. In the figure, the sleeve 97 is configured to be biased to the left by an actuator 1f and a push rod 1e, and to stop at an axial position where the forces of both are balanced. When the actuator 1f drives the sleeve 97 left and right, the pin 131 fixed to the sleeve 97 is engaged with the oblique groove 99, so that the sleeve 97 is biased in the circumferential direction. Further, a concave groove 132 is formed on the outer periphery of the sleeve 97, and the inner peripheral projection 122 of the guide plate 93 is engaged so as to be slidable in the axial direction. Biased in the direction.

図12に示されるようにガイドプレート93,94は3本の連結棒10cで連結されて一体化され,ガイドプレート93が周方向に偏倚されるとガイドプレート94も周方向に偏倚させられる。ガイドプレート93,94には徐々に径を変えながら周方向に延びるガイドグルーブ121が6個配置され,ガイドプレート93,94のガイドグルーブ121には界磁磁石109と支持部115のスライドバー96が摺動可能に配置されている。図12には図をシンプルにする為に一組の界磁磁石109と支持部115のみを示すが,図9に示す実施例では6組の界磁磁石109と支持部115が組み込まれている。界磁磁石109と支持部115は図10に示されるように磁性体突極延長部10d,10e間及びバイパス磁極10a,10b間を径方向に摺動可能に配置され,界磁磁石109と支持部115に固定されたスライドバー96はガイドグルーブ121内を摺動可能に配置されている。ガイドプレート93,94が周方向に偏倚させられると,ガイドグルーブ121内をスライドバー96が摺動して界磁磁石109と支持部115より構成される励磁部を径方向に偏倚させる。   As shown in FIG. 12, the guide plates 93 and 94 are connected and integrated by three connecting rods 10c, and when the guide plate 93 is biased in the circumferential direction, the guide plate 94 is also biased in the circumferential direction. Six guide grooves 121 extending in the circumferential direction while gradually changing the diameter are arranged on the guide plates 93 and 94, and the field magnet 109 and the slide bar 96 of the support portion 115 are provided on the guide grooves 121 of the guide plates 93 and 94. It is slidably arranged. FIG. 12 shows only one set of field magnet 109 and support portion 115 for the sake of simplicity, but in the embodiment shown in FIG. 9, six sets of field magnet 109 and support portion 115 are incorporated. . As shown in FIG. 10, the field magnet 109 and the support portion 115 are arranged so as to be slidable in the radial direction between the magnetic salient pole extension portions 10d and 10e and between the bypass magnetic poles 10a and 10b. The slide bar 96 fixed to the portion 115 is slidably arranged in the guide groove 121. When the guide plates 93 and 94 are biased in the circumferential direction, the slide bar 96 slides in the guide groove 121 and biases the exciting portion composed of the field magnet 109 and the support portion 115 in the radial direction.

アクチュエータ1fがプッシュロッド1e,摺動棒1hを左方向に偏倚させると,スリーブ97は図13(a)に於いて時計回り方向に回転偏倚し,図12に於いてガイドプレート93,94を時計回り方向に偏倚させて界磁磁石109を内径側に偏倚させ,主磁路を流れる磁束量を減少させる。アクチュエータ1fがプッシュロッド1eを右方向に偏倚させた場合には主磁路を流れる磁束量を増大させる事になる。   When the actuator 1f biases the push rod 1e and the sliding rod 1h in the left direction, the sleeve 97 is rotationally biased in the clockwise direction in FIG. 13A, and in FIG. The field magnet 109 is biased in the rotational direction to bias the field magnet 109 toward the inner diameter side, and the amount of magnetic flux flowing through the main magnetic path is reduced. When the actuator 1f biases the push rod 1e in the right direction, the amount of magnetic flux flowing through the main magnetic path is increased.

種々の要因による各磁路の磁気抵抗は変動するが,本実施例では以下のように回転電機の動作中に磁束量制御を間歇的に行って対処している。回転電機が発電機である場合,電機子コイルには鎖交する磁束の変化を妨げる方向の電圧が誘起され,負荷インピーダンスに応じた電流が流れ,実効的に主磁路の磁気抵抗は大となる。主磁路の磁気抵抗を最小磁気力条件より小に設定し,回転電機の組み立て後に主磁路とバイパス磁路との磁気抵抗を最小磁気力条件に等しくさせる為に電機子コイルに接続する定電流負荷を検出し,回転電機内に設定或いは制御データとして記憶させる。これにより回転電機個々に於ける主磁路の磁気抵抗バラツキを調整出来る。,可動磁極部の偏倚制御時に電機子コイルにに定電流負荷を接続して誘起電圧により予め定めた電流を流して主磁路の磁気抵抗を大とする方向に調整し,同時にアクチュエータを駆動する。定電流負荷を実現する手段には種々の方法があり,電機子コイルへの誘起電圧により予め定めた電流が電機子コイルを流れるよう制御する定電流回路,或いは回転数毎に定めた所定インピーダンスを有する負荷等がある。本実施例では定電流回路(図示していない)を用いている。   Although the magnetic resistance of each magnetic path varies due to various factors, in this embodiment, the magnetic flux amount control is intermittently performed during the operation of the rotating electrical machine as described below. When the rotating electrical machine is a generator, the armature coil is induced with a voltage in a direction that hinders the change of interlinkage magnetic flux, a current corresponding to the load impedance flows, and the magnetic resistance of the main magnetic path is effectively large. Become. The magnetic resistance of the main magnetic path is set to be smaller than the minimum magnetic force condition, and after assembling the rotating electric machine, the magnetic resistance of the main magnetic path and the bypass magnetic path is set to be connected to the armature coil in order to equalize the minimum magnetic force condition. The current load is detected and stored in the rotating electrical machine as setting or control data. Thereby, the magnetic resistance variation of the main magnetic path in each rotating electric machine can be adjusted. , At the time of bias control of the movable magnetic pole, a constant current load is connected to the armature coil, a predetermined current is passed by the induced voltage to adjust the direction of increasing the magnetic resistance of the main magnetic path, and the actuator is driven at the same time . There are various methods for realizing a constant current load, and a constant current circuit for controlling a predetermined current to flow through the armature coil by an induced voltage to the armature coil, or a predetermined impedance determined for each rotation speed. There are loads and so on. In this embodiment, a constant current circuit (not shown) is used.

電機子コイルを流れる電流により主磁路の磁気抵抗を実効的に変え,可動磁極部の偏倚に要する力を小とできるが,磁性体突極と磁性体歯の位置に応じて切り替わる電流に応答する高い周波数帯での磁気抵抗変動は可動磁極部の振動或いは主磁路及びバイパス磁路間の脈動的な磁束漏洩を誘発して望ましい事ではない。したがって,後者の高い周波数帯での交流磁束は通り難い構成として平滑化する事が望ましい。本実施例では磁性体突極延長部10d,10eを鉄のブロックで構成して交流磁束を通り難い構成としている。界磁磁石109から磁性体突極101,102に至る磁路の磁気抵抗に周波数特性を持たせ,可動磁極部の偏倚に際して必要な低周波数帯の磁気抵抗変化を許容できるよう磁性体突極延長部10d,10eの透磁率,導電率及び寸法諸元を設定する。また,本実施例では界磁磁石109から分流された磁束が磁性体突極延長部10d,10eとバイパス磁極10a,10bとの間の間隙で短絡し難いように界磁磁石109との対向面を離れた部分では間隙長が大となるよう設定している。さらにまた間隙に配置された導体板は交流磁束を通過し難くする効果を期待できる。   Although the magnetic resistance of the main magnetic path is effectively changed by the current flowing through the armature coil, the force required for biasing the movable magnetic pole can be reduced, but it responds to the current that changes depending on the position of the magnetic salient pole and magnetic tooth. Magnetic resistance fluctuation in a high frequency band is undesirable because it induces vibration of the movable magnetic pole portion or pulsating magnetic flux leakage between the main magnetic path and the bypass magnetic path. Therefore, it is desirable to smooth the AC magnetic flux in the latter high frequency band so that it is difficult to pass through. In this embodiment, the magnetic salient pole extensions 10d and 10e are made of iron blocks so that it is difficult to pass AC magnetic flux. Extending the magnetic salient pole to allow the magnetic resistance of the magnetic path from the field magnet 109 to the magnetic salient poles 101 and 102 to have a frequency characteristic, and to allow the change in magnetoresistance in the low frequency band required when the movable magnetic pole part is biased The magnetic permeability, conductivity, and dimensions of the portions 10d and 10e are set. In the present embodiment, the magnetic flux shunted from the field magnet 109 is opposed to the field magnet 109 so that it is difficult to short-circuit in the gap between the magnetic salient pole extension portions 10d and 10e and the bypass magnetic poles 10a and 10b. The gap length is set to be large in the part away from. Furthermore, the conductor plate arranged in the gap can be expected to have an effect of making it difficult for AC magnetic flux to pass.

以上,図9から図13に示した回転電機に於いて,アクチュエータ1fを駆動制御する事により励磁部を表面磁極部に対して偏倚制御し,磁束量を制御できることを示した。以下には磁束量を制御して出力を最適に制御する回転電機システムを図8のブロック図を用いて説明する。   As described above, in the rotating electrical machine shown in FIG. 9 to FIG. 13, it has been shown that by controlling the driving of the actuator 1 f, the excitation portion can be biased with respect to the surface magnetic pole portion, and the amount of magnetic flux can be controlled. A rotating electrical machine system that optimally controls the output by controlling the amount of magnetic flux will be described below with reference to the block diagram of FIG.

回転電機が電動機として用いられる場合において,弱め界磁制御を行って回転力を最適に制御する電動機システムを説明する。定電流負荷は回転子の減速駆動を伴い,主磁路の磁気抵抗を実効的に大とする方向への調整であり,磁束量制御は以下のステップで実行される。制御装置85は出力83である回転速度が所定の値より大となり電機子に流れる磁束量を小とする時には電機子コイル16に定電流回路(図示していない)を接続して誘起電圧により予め定めた電流を流して実効的に主磁路の磁気抵抗をバイパス磁路の磁気抵抗以上とし,制御信号86によりアクチュエータ1fを左方向に駆動して励磁部を内周方向に偏倚させ,界磁磁石109と磁性体突極延長部10d,磁性体突極延長部10eとが対向する面積を小にする。偏倚制御後はアクチュエータ1fを停止させて偏倚した励磁部の位置を保持する。回転速度が所定の値より小となり電機子に流れる磁束量を大とする時には電機子コイル16への通電を停止し,制御信号86によりアクチュエータ1fを右方向に駆動して励磁部を外周方向に偏倚させ,界磁磁石109と磁性体突極延長部10d,磁性体突極延長部10eとが対向する面積を大にする。偏倚制御後はアクチュエータ1fを停止させて偏倚した励磁部の位置を保持する。   An explanation will be given of an electric motor system that performs field-weakening control and optimally controls the rotational force when the rotating electric machine is used as an electric motor. The constant current load is accompanied by a reduction drive of the rotor and adjustment in a direction that effectively increases the magnetic resistance of the main magnetic path, and the magnetic flux amount control is executed in the following steps. The control device 85 connects a constant current circuit (not shown) to the armature coil 16 to reduce the amount of magnetic flux flowing through the armature when the rotational speed as the output 83 is greater than a predetermined value and reduces the amount of magnetic flux flowing through the armature in advance by the induced voltage. By passing a predetermined current, the magnetic resistance of the main magnetic path is effectively set to be greater than or equal to the magnetic resistance of the bypass magnetic path, and the actuator 1f is driven leftward by the control signal 86 to bias the excitation portion in the inner circumferential direction. The area where the magnet 109, the magnetic salient pole extension 10d, and the magnetic salient pole extension 10e face each other is reduced. After the bias control, the actuator 1f is stopped to hold the biased excitation portion position. When the rotational speed is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the energization to the armature coil 16 is stopped, and the actuator 1f is driven rightward by the control signal 86 to move the excitation unit in the outer circumferential direction. The area where the field magnet 109, the magnetic salient pole extension 10d, and the magnetic salient pole extension 10e face each other is increased. After the bias control, the actuator 1f is stopped to hold the biased excitation portion position.

回転電機が発電機として用いられる場合において,弱め界磁制御を行って発電電圧を所定の電圧となるよう制御する定電圧発電機システムを説明する。定電流負荷は回転子の減速駆動を伴い,主磁路の磁気抵抗を実効的に大とする方向への調整であり,磁束量制御は以下のステップで実行される。制御装置85は出力83である発電電圧が所定の値より大となり電機子に流れる磁束量を小とする時には電機子コイル16に定電流回路(図示していない)を接続して誘起電圧により予め定めた電流を流して実効的に主磁路の磁気抵抗をバイパス磁路の磁気抵抗以上とし,制御信号86によりアクチュエータ1fを左方向に駆動して励磁部を内周方向に偏倚させ,界磁磁石109と磁性体突極延長部10d,磁性体突極延長部10eとが対向する面積を小にする。偏倚制御後はアクチュエータ1fを停止させて偏倚した励磁部の位置を保持する。発電電圧が所定の値より小となり電機子に流れる界磁磁束を大とする時には電機子コイル16に大きなインピーダンス負荷を接続して流れる電流を小とし,制御信号86によりアクチュエータ1fを右方向に駆動して励磁部を外周方向に偏倚させ,界磁磁石109と磁性体突極延長部10d,磁性体突極延長部10eとが対向する面積を大にする。偏倚制御後はアクチュエータ1fを停止させて偏倚した励磁部の位置を保持する。   A constant voltage generator system that performs field weakening control to control a generated voltage to a predetermined voltage when a rotating electrical machine is used as a generator will be described. The constant current load is accompanied by a reduction drive of the rotor and adjustment in a direction that effectively increases the magnetic resistance of the main magnetic path, and the magnetic flux amount control is executed in the following steps. The control device 85 connects a constant current circuit (not shown) to the armature coil 16 to reduce the amount of magnetic flux flowing through the armature when the generated voltage as the output 83 is greater than a predetermined value and reduces the amount of magnetic flux flowing through the armature in advance by the induced voltage. By passing a predetermined current, the magnetic resistance of the main magnetic path is effectively set to be greater than or equal to the magnetic resistance of the bypass magnetic path, and the actuator 1f is driven leftward by the control signal 86 to bias the excitation portion in the inner circumferential direction. The area where the magnet 109, the magnetic salient pole extension 10d, and the magnetic salient extension 10e face each other is reduced. After the bias control, the actuator 1f is stopped to hold the biased excitation portion position. When the generated voltage is lower than a predetermined value and the field magnetic flux flowing through the armature is increased, the current flowing by connecting a large impedance load to the armature coil 16 is decreased, and the actuator 1f is driven rightward by the control signal 86. Thus, the exciting portion is biased in the outer peripheral direction, and the area where the field magnet 109, the magnetic salient pole extension 10d, and the magnetic salient pole extension 10e face each other is increased. After the bias control, the actuator 1f is stopped to hold the biased excitation portion position.

上記システムの制御に於いて,磁束量を増大させる場合には定電流負荷を電機子コイルに接続せず,主磁路の磁気抵抗をバイパス磁路の磁気抵抗より小の状態として現れる磁気力を可動磁極部偏倚へのアシストに利用した。しかし,前記磁気力が大きすぎる場合には,磁束量を増大させる場合にも電機子コイルに定電流負荷を接続して主磁路の磁気抵抗を調整して前記磁気力を小とさせる。   In the control of the above system, when increasing the amount of magnetic flux, the constant current load is not connected to the armature coil, and the magnetic force that appears as a state in which the magnetic resistance of the main magnetic path is smaller than the magnetic resistance of the bypass magnetic path. It was used for assisting the movable magnetic pole part bias. However, when the magnetic force is too large, even when the amount of magnetic flux is increased, a constant current load is connected to the armature coil to adjust the magnetic resistance of the main magnetic path to reduce the magnetic force.

本実施例で採用した主磁路の磁気抵抗調整手段は回転電機の減速駆動を伴うので,長時間に渡って磁束量制御が連続する場合は回転電機の運転に影響を与える可能性がある。しかし,通常の運転状態では回転速度の変化も磁束量の変更制御も連続的に行われるので大きな問題となる事はない。また,経時変化或いは温度変化により主磁路の磁気抵抗変化が大きく見込まれる場合には主磁路の磁気抵抗の補正条件を学習的に取得する構成を採用する。また,回転電機の運転中に主磁路及びバイパス磁路の磁気抵抗を変動させるパラメータは主に電機子コイルに流れる電流条件,回転速度,温度,可動磁極部の偏倚位置等である。これら動作条件を示すパラメータと最適な定電流負荷条件の初期設定条件からの変動量との関係は同一設計の回転電機では統計データに基づいて推定出来る。回転電機の組み立て後に最適な定電流負荷条件と動作条件を示すパラメータとの間のマップデータを作成して設定し,運転中に最適な定電流負荷条件を選定してさらに円滑な磁束量制御を実現する事が出来る。   Since the magnetic resistance adjusting means for the main magnetic path employed in the present embodiment is accompanied by decelerating driving of the rotating electrical machine, there is a possibility of affecting the operation of the rotating electrical machine when the magnetic flux amount control continues for a long time. However, since a change in rotational speed and a change control of the amount of magnetic flux are continuously performed in a normal operation state, there is no big problem. Further, when a large change in the magnetic resistance of the main magnetic path is expected due to a change with time or a change in temperature, a configuration is adopted in which the correction condition for the magnetic resistance of the main magnetic path is acquired by learning. Parameters for changing the magnetic resistance of the main magnetic path and the bypass magnetic path during the operation of the rotating electric machine are mainly the current condition flowing through the armature coil, the rotational speed, the temperature, the displacement position of the movable magnetic pole portion, and the like. The relationship between the parameters indicating these operating conditions and the amount of fluctuation from the initial setting condition of the optimum constant current load condition can be estimated based on statistical data in a rotating electrical machine of the same design. Create and set map data between optimal constant current load conditions and parameters indicating operating conditions after assembly of the rotating electrical machine, select the optimal constant current load conditions during operation, and achieve smoother flux control Can be realized.

本発明による回転電機システムの第三実施例を図14から図17までを用いて説明する。第三実施例は,ラジアルギャップ構造の回転電機システムであり,励磁部を周方向と直交する面内に偏倚制御して電機子を流れる磁束量を制御する。励磁部の偏倚制御時に電機子コイルに最小磁気力電流からずらした電流を供給して磁気力を発生させ,励磁部の偏倚をアシストさせる。図14は回転電機の縦断面図,図15,16は電機子と回転子との構成を示す断面図,図17は励磁部の偏倚手段を示す縦断面図を示す。   A third embodiment of the rotating electrical machine system according to the present invention will be described with reference to FIGS. The third embodiment is a rotary electric machine system having a radial gap structure, and controls the amount of magnetic flux flowing through the armature by controlling the exciter in a plane perpendicular to the circumferential direction. During bias control of the excitation unit, a current shifted from the minimum magnetic force current is supplied to the armature coil to generate a magnetic force to assist the bias of the excitation unit. FIG. 14 is a longitudinal sectional view of the rotating electrical machine, FIGS. 15 and 16 are sectional views showing the configuration of the armature and the rotor, and FIG. 17 is a longitudinal sectional view showing the biasing means of the excitation unit.

図14はラジアルギャップ構造の回転電機に本発明を適用した実施例を示し,回転軸11がベアリング13を介してハウジング12に回動可能に支持されている。電機子はハウジング12に固定された円筒状磁気ヨーク15と,磁性体歯14と,電機子コイル16とから構成されている。回転子は表面磁極部141と表面磁極部141内に配置された励磁部は界磁磁石109及び支持部115を有し,励磁部は可動磁極部として周方向と直交する面内に偏倚するよう構成されている。励磁部を偏倚制御する手段は,番号144,145で示す回転アーム,スライドプレート142,連結棒143,スプリング98,回転軸11に設けられたスリット1c,プッシュロッド1e,摺動棒1h,ハウジング12に固定されたアクチュエータ1fとから構成されている。   FIG. 14 shows an embodiment in which the present invention is applied to a rotating electrical machine having a radial gap structure, and a rotating shaft 11 is rotatably supported by a housing 12 via a bearing 13. The armature includes a cylindrical magnetic yoke 15 fixed to the housing 12, magnetic teeth 14, and an armature coil 16. The rotor has a surface magnetic pole part 141 and an excitation part arranged in the surface magnetic pole part 141, and has a field magnet 109 and a support part 115, and the excitation part is biased in a plane perpendicular to the circumferential direction as a movable magnetic pole part. It is configured. Means for controlling the bias of the exciter include rotating arms indicated by numerals 144 and 145, a slide plate 142, a connecting rod 143, a spring 98, a slit 1c provided on the rotating shaft 11, a push rod 1e, a sliding rod 1h, and a housing 12. The actuator 1f is fixed to the actuator 1f.

図15,16はそれぞれ図14のF−F’,G−G’に沿う電機子及び回転子の断面を示し,相互の関係を説明する為に構成部分の一部に番号を付して示している。電機子の構成は第一の実施例と同じであり,説明は省略する。   FIGS. 15 and 16 show cross sections of the armature and the rotor along the lines FF ′ and GG ′ of FIG. 14, respectively, and in order to explain the mutual relationship, some of the components are shown with numbers. ing. The configuration of the armature is the same as that of the first embodiment, and the description is omitted.

図15に於いて,表面磁極部141は電機子との対向面に磁性体突極と永久磁石とを周方向に交互に有する構造である。表面磁極部141は一様な磁性体を周方向に等間隔に配置された永久磁石153によって区分された磁性体突極151,152及び永久磁石153とから構成されている。さらに隣接する磁性体突極151,152は互いに異なる方向に磁化されるよう隣接する永久磁石153の略周方向磁化方向は互いに反転して構成されている。永久磁石153内に記載した矢印は磁化方向を示す。磁性体突極151,152は内周方向への延長部をそれぞれ持ち,それぞれの延長上にバイパス磁極10a,10bが配置されている。界磁磁石109は隣接する磁性体突極151延長部と磁性体突極152延長部間,及び隣接するバイパス磁極10a,10b間に摺動可能に配置されている。さらに界磁磁石109が偏倚する径方向の範囲は周囲の寸法により界磁磁石109が常に磁性体突極151延長部及びバイパス磁極10aそれぞれと対向するよう規制されている。本実施例では界磁磁石109及びその支持部分が励磁部を構成し,磁性体突極151,152それぞれを永久磁石153及び励磁部が同じ磁化方向に励磁するよう表面磁極部と励磁部の配置が設定されている。これが逆の場合には永久磁石153と界磁磁石109とが閉磁気回路を構成し,励磁部の偏倚制御に際して妨げとなる大きな磁気力を発生させ,精密な制御を困難にする。   In FIG. 15, the surface magnetic pole part 141 has a structure having magnetic salient poles and permanent magnets alternately in the circumferential direction on the surface facing the armature. The surface magnetic pole portion 141 is composed of magnetic salient poles 151 and 152 and a permanent magnet 153 that are divided by a permanent magnet 153 that is a uniform magnetic material arranged at equal intervals in the circumferential direction. Further, adjacent magnetic salient poles 151 and 152 are configured such that the substantially circumferential magnetization directions of adjacent permanent magnets 153 are reversed so as to be magnetized in different directions. The arrow described in the permanent magnet 153 indicates the magnetization direction. The magnetic salient poles 151 and 152 have extensions in the inner circumferential direction, and bypass magnetic poles 10a and 10b are arranged on the extensions. The field magnet 109 is slidably disposed between the adjacent magnetic salient pole 151 extension and the magnetic salient pole 152 extension, and between the adjacent bypass magnetic poles 10a and 10b. Further, the radial range in which the field magnet 109 deviates is restricted by the surrounding dimensions so that the field magnet 109 always faces the extension portion of the magnetic salient pole 151 and the bypass magnetic pole 10a. In this embodiment, the field magnet 109 and its supporting part constitute an exciting part, and the surface magnetic pole part and the exciting part are arranged so that the magnetic salient poles 151 and 152 are excited in the same magnetization direction by the permanent magnet 153 and the exciting part, respectively. Is set. In the opposite case, the permanent magnet 153 and the field magnet 109 constitute a closed magnetic circuit, generating a large magnetic force that hinders the bias control of the excitation unit, and makes precise control difficult.

永久磁石153による界磁磁束への寄与分は励磁部による磁束量の制御範囲を狭くするとの意味に於いては好ましい存在ではない。しかし,磁性体突極先端部の空隙間に永久磁石を配置して空隙部に於ける漏洩磁束を低減する構造,またリラクタンストルクを利用する回転電機に於いて一様な磁性体を周方向に磁化を持つ永久磁石で区分して磁性体突極を形成すると共に磁束バリアとする構造が存在する。本実施例はこのような従来の回転電機に於いて磁束量制御を容易にする実施例として意味がある。第三の実施例は第二の実施例に於いて,集合磁石に替えて永久磁石153を配置した構成であって,励磁部構成,界磁磁石109からの磁束が主磁路及びバイパス磁路に分流する動作原理は第二の実施例と同じであるので説明は省略する。   The contribution of the permanent magnet 153 to the field magnetic flux is not preferable in the sense that the control range of the magnetic flux amount by the excitation unit is narrowed. However, a permanent magnet is placed between the gaps at the tip of the magnetic salient pole to reduce the leakage magnetic flux in the gap, and in a rotating electrical machine that uses reluctance torque, a uniform magnetic substance is arranged in the circumferential direction. There is a structure in which a magnetic salient pole is formed by dividing by a permanent magnet having magnetization and a magnetic flux barrier is formed. This embodiment is meaningful as an embodiment for facilitating the control of the amount of magnetic flux in such a conventional rotating electrical machine. The third embodiment is the same as the second embodiment except that the permanent magnet 153 is arranged instead of the collective magnet, and the excitation section configuration, the magnetic flux from the field magnet 109 is the main magnetic path and the bypass magnetic path. Since the operating principle of diverting to the same is the same as in the second embodiment, a description thereof will be omitted.

本実施例では主磁路とバイパスに加えて永久磁石153を通る第三の磁路が界磁磁石109に並列接続されている。永久磁石153部分を空隙として算出した第三の磁路の磁気抵抗を主磁路の磁気抵抗より大になるよう設定する。本実施例では永久磁石153の長さは十分に大として主磁路に流入する磁束量が影響されない。   In this embodiment, in addition to the main magnetic path and the bypass, a third magnetic path passing through the permanent magnet 153 is connected in parallel to the field magnet 109. The magnetic resistance of the third magnetic path calculated with the permanent magnet 153 portion as a gap is set to be larger than the magnetic resistance of the main magnetic path. In this embodiment, the length of the permanent magnet 153 is sufficiently large so that the amount of magnetic flux flowing into the main magnetic path is not affected.

励磁部を偏倚制御する構成及び動作は図14,16,17を用いて説明する。図14及び図17に示されるように界磁磁石109及び支持部115で構成された励磁部は回転子支持体92と回転アーム144,145により支持されている。回転アーム144,145はピン171により回転子支持体92に,ピン172により励磁部に回動可能に支持され,励磁部は周方向と直交する面内で回転軸11と平行に偏倚可能に構成されている。更に励磁部は連結棒143によりスライドプレート142に連結されている。連結棒143はピン173により励磁部に,ピン174によりスライドプレート142に回動可能に結合され,スライドプレート142の軸方向への偏倚により励磁部が周方向と直交する面内で偏倚させられる構成である。スライドプレート142の3つの突部は回転軸11に設けた3個のスリット1cを介して摺動棒1hに接し,摺動棒1hは回転軸11の中空部内を軸方向に摺動可能に構成されてアクチュエータ1fのプッシュロッド1eと接している。スプリング98は回転子支持体92とスライドプレート142との間に配置されてスライドプレート142を右方向に付勢し,アクチュエータ1fはプッシュロッド1eを軸方向左右に駆動させる構成であるのでスライドプレート142及び界磁磁石109はアクチュエータ1fにより軸方向に偏倚させられる。アクチュエータ1fはステップモータとネジ機構で構成してステップモータを回転駆動する事でプッシュロッド1eを軸方向左右に駆動させ,ステップモータを駆動させない場合はプッシュロッド1eの軸方向位置を保持する構成としている。   The configuration and operation for bias control of the excitation unit will be described with reference to FIGS. As shown in FIG. 14 and FIG. 17, the excitation unit composed of the field magnet 109 and the support unit 115 is supported by the rotor support 92 and the rotation arms 144 and 145. The rotary arms 144 and 145 are rotatably supported on the rotor support 92 by pins 171 and pivotally supported by the excitation unit by pins 172, and the excitation unit can be biased in parallel to the rotary shaft 11 in a plane orthogonal to the circumferential direction. Has been. Further, the excitation unit is connected to the slide plate 142 by a connecting rod 143. The connecting rod 143 is rotatably coupled to the excitation portion by the pin 173 and to the slide plate 142 by the pin 174, and the excitation portion is biased in a plane orthogonal to the circumferential direction by the axial displacement of the slide plate 142. It is. The three protrusions of the slide plate 142 are in contact with the sliding rod 1h through three slits 1c provided on the rotating shaft 11, and the sliding rod 1h is configured to be slidable in the hollow portion of the rotating shaft 11 in the axial direction. And is in contact with the push rod 1e of the actuator 1f. Since the spring 98 is disposed between the rotor support 92 and the slide plate 142 and urges the slide plate 142 to the right, and the actuator 1f is configured to drive the push rod 1e to the left and right in the axial direction, the slide plate 142 is provided. The field magnet 109 is biased in the axial direction by the actuator 1f. The actuator 1f is composed of a step motor and a screw mechanism, and rotates the step motor to drive the push rod 1e to the left and right in the axial direction. When the step motor is not driven, the actuator 1f holds the axial position of the push rod 1e. Yes.

図17(a),17(b)は励磁部を含む回転子の一部の縦断面を拡大して示した図であり,図17(a)は励磁部が径方向外側に偏倚して界磁磁石109が隣接する磁性体突極151延長部と磁性体突極152延長部に最大に面積で対向し,主磁路に流れる磁束量が最大となる状態を示している。この場合,アクチュエータ1fはスライドプレート142を軸と平行に左方向に偏倚させ,界磁磁石109を含む励磁部は軸と平行に左方向に偏倚されると共に径方向外方に偏倚させられている。図17(b)は励磁部が径方向内方に偏倚して界磁磁石109が隣接するバイパス磁極10a,10bに最大に面積で対向し,主磁路に流れる磁束量が最小となる状態を示している。この場合,アクチュエータ1fはスライドプレート142を軸と平行に右方向に偏倚させ,界磁磁石109を含む励磁部は軸と平行に右方向に偏倚されると共に径方向内方に偏倚させられている。   17 (a) and 17 (b) are enlarged views of a longitudinal section of a part of the rotor including the exciting part. FIG. 17 (a) shows the field where the exciting part is biased radially outward. The magnetic magnet 109 opposes the magnetic salient pole 151 extension and the magnetic salient pole 152 extension adjacent to each other at the maximum area, and shows the state where the amount of magnetic flux flowing through the main magnetic path is maximized. In this case, the actuator 1f biases the slide plate 142 in the left direction parallel to the axis, and the excitation part including the field magnet 109 is biased in the left direction parallel to the axis and biased radially outward. . FIG. 17B shows a state in which the exciting portion is biased inward in the radial direction so that the field magnet 109 is opposed to the adjacent bypass magnetic poles 10a and 10b in the maximum area and the amount of magnetic flux flowing through the main magnetic path is minimized. Show. In this case, the actuator 1f biases the slide plate 142 in the right direction parallel to the axis, and the excitation part including the field magnet 109 is biased in the right direction parallel to the axis and biased radially inward. .

励磁部を支持する回転アーム144,145及びピン171,172が配置され,励磁部の偏倚に従って回転アーム144,145及びピン172も偏倚する。回転アーム144,145及びピン171,172が占有するスペースはバイパス磁極10a,10bの一部を切除して割り当てられている。図16は図14に於いて,G−G’に沿う電機子及び回転子の断面図を示し,バイパス磁極10a,10bが微小間隙を介して互いに対向する部分が切除されている。バイパス磁極10a,10bが微小間隙を介して互いに対向する部分の軸方向長さが第二実施例より短くなるが,飽和磁束密度の大きな鉄のブロックで構成されているので互いに対向する部分が磁気的に飽和する懸念はなく,バイパス磁路の磁気抵抗はバイパス磁極10a,10b間の空隙長と共に軸方向長さも考慮して主磁路の磁気抵抗とほぼ等しくなるよう調整されている。   Rotating arms 144 and 145 and pins 171 and 172 for supporting the exciting part are arranged, and the rotating arms 144 and 145 and the pin 172 are also biased according to the biasing of the exciting part. The space occupied by the rotating arms 144 and 145 and the pins 171 and 172 is allocated by cutting off a part of the bypass magnetic poles 10a and 10b. FIG. 16 is a cross-sectional view of the armature and the rotor along G-G ′ in FIG. 14, and the portions where the bypass magnetic poles 10 a and 10 b are opposed to each other through a minute gap are cut away. Although the axial lengths of the portions where the bypass magnetic poles 10a and 10b face each other through a minute gap are shorter than those in the second embodiment, the portions facing each other are magnetic because they are made of iron blocks having a high saturation magnetic flux density. The magnetic resistance of the bypass magnetic path is adjusted to be approximately equal to the magnetic resistance of the main magnetic path in consideration of the axial length as well as the gap length between the bypass magnetic poles 10a and 10b.

主磁路とバイパス磁路の磁気抵抗を等しく設定する条件は最小磁気力条件として可動磁極部の偏倚に抗する磁気力を最小にできる。量産段階では構成部材の寸法は公差内で変動しさらに磁気特性の変動等が存在して主磁路とバイパス磁路の磁気抵抗が最小磁気力条件から外れてしまう事が多く,各種の磁気抵抗調整手段を提案している。本実施例では磁束量制御に際して,電機子コイルに予め定めた電流を供給して可動磁極部の前記偏倚をアシストさせる方向の磁気力を発生させ,偏倚に必要な力を小とする手段,方法を採用している。   The condition for setting the magnetic resistances of the main magnetic path and the bypass magnetic path to be equal can minimize the magnetic force against the deviation of the movable magnetic pole portion as the minimum magnetic force condition. In the mass production stage, the dimensions of components vary within tolerances, and there are also variations in magnetic properties, etc., and the magnetic resistance of the main magnetic path and bypass magnetic path often deviates from the minimum magnetic force condition. Proposed adjustment means. In this embodiment, in controlling the amount of magnetic flux, means and method for supplying a predetermined current to the armature coil to generate a magnetic force in a direction for assisting the deviation of the movable magnetic pole portion and reducing the force necessary for the deviation. Is adopted.

回転子を加速,減速方向に駆動する電流を電機子コイルに供給すると,主磁路の磁気抵抗は実効的にそれぞれ小,大となる。それに伴い主磁路の磁気抵抗がバイパス磁路の磁気抵抗より小或いは大になると可動磁極部は界磁磁石と磁性体突極延長部との対向面積をそれぞれ大,小とする方向の磁気力を受ける。主磁路とバイパス磁路の磁気抵抗を等しくする(最小磁気力条件)電機子コイル電流を最小磁気力電流として次のように偏倚制御を実施する。すなわち,電機子を流れる磁束量を増す場合に磁性体突極延長部と界磁磁石との対向面積を増す方向に偏倚制御手段を駆動すると共に回転子を加速する方向に最小磁気力電流から所定量ずらした電流を電機子コイルに供給し,電機子を流れる磁束量を減じる場合には磁性体突極延長部と界磁磁石との対向面積を減じる方向に偏倚制御手段を駆動すると共に回転子を減速する方向に最小磁気力電流から所定量ずらした電流を電機子コイルに供給して電機子を流れる磁束量を制御する。電機子コイルに流す電流により偏倚制御手段をアシストする磁気力を発生させる構成であって偏倚制御手段に過大なアクチュエータを要する事無く界磁制御を容易とする。   When a current that drives the rotor in the acceleration and deceleration directions is supplied to the armature coil, the magnetic resistance of the main magnetic path effectively becomes small and large, respectively. Accordingly, when the magnetic resistance of the main magnetic path becomes smaller or larger than the magnetic resistance of the bypass magnetic path, the movable magnetic pole portion has a magnetic force in a direction to make the opposing area of the field magnet and the magnetic salient pole extension larger and smaller, respectively. Receive. The magnetic resistance of the main magnetic path and the bypass magnetic path are made equal (minimum magnetic force condition). The bias control is performed as follows with the armature coil current as the minimum magnetic force current. In other words, when the amount of magnetic flux flowing through the armature is increased, the bias control means is driven in the direction to increase the facing area between the magnetic salient pole extension and the field magnet, and the rotor is accelerated from the minimum magnetic force current. When supplying a certain amount of shifted current to the armature coil and reducing the amount of magnetic flux flowing through the armature, the bias control means is driven and the rotor is driven in a direction to reduce the facing area between the magnetic salient pole extension and the field magnet. Is supplied to the armature coil by controlling the amount of magnetic flux flowing through the armature by shifting the current by a predetermined amount from the minimum magnetic force current in the direction of decelerating the armature. The magnetic force for assisting the bias control means is generated by the current flowing through the armature coil, and the field control is facilitated without requiring an excessive actuator for the bias control means.

主磁路とバイパス磁路の磁気抵抗を実効的に等しく(最小磁気力条件)させるよう電機子コイルに供給する最小磁気力電流は回転電機の運転状態に応じてマップデータから取得する。回転電機の運転中に主磁路及びバイパス磁路の磁気抵抗を変動させるパラメータは主に温度,可動磁極部の偏倚位置,回転速度等である。これら動作条件を示すパラメータと最小磁気力電流の初期設定からの変動量との関係は同一設計の回転電機では統計データに基づいて推定出来る。回転電機の組み立て後に最小磁気力電流と動作条件を示すパラメータとの間のマップデータを作成して設定する。   The minimum magnetic force current supplied to the armature coil so as to make the magnetic resistances of the main magnetic path and the bypass magnetic path effectively equal (minimum magnetic force condition) is acquired from the map data according to the operating state of the rotating electric machine. Parameters that fluctuate the magnetic resistance of the main magnetic path and the bypass magnetic path during operation of the rotating electrical machine are mainly temperature, the bias position of the movable magnetic pole portion, the rotational speed, and the like. The relationship between the parameters indicating these operating conditions and the amount of fluctuation from the initial setting of the minimum magnetic force current can be estimated based on statistical data in a rotating electrical machine of the same design. After assembling the rotating electrical machine, map data between the minimum magnetic force current and the parameter indicating the operating condition is created and set.

磁束量を制御して出力を最適に制御する第三の実施例の回転電機システムを,図8のブロック図を用いて説明する。回転電機が電動機として用いられる場合において,弱め界磁制御を行って回転力を最適に制御する電動機システムを説明する。制御装置85は出力83である回転速度が所定の値より大となり電機子に流れる磁束量を小とする時には回転子を減速する方向に最小磁気力電流から予め定めた量をずらした電流を電機子コイル16に供給し,同時に制御信号86によりアクチュエータ1fを駆動して励磁部を右方向に偏倚させて界磁磁石109と磁性体突極151延長部とが対向する面積を小にする。偏倚制御後はアクチュエータ1fを停止させて励磁部の位置を保持する。回転速度が所定の値より小となり電機子に流れる磁束量を大とする時には回転子を加速する方向に最小磁気力電流から予め定めた量をずらした電流を電機子コイル16に供給し,同時に制御信号86によりアクチュエータ1fを駆動して励磁部を左方向に偏倚させて界磁磁石109と磁性体突極151延長部とが対向する面積を大にする。偏倚制御後はアクチュエータ1fを停止させて励磁部の位置を保持する。   A third embodiment of the rotating electrical machine system that controls the amount of magnetic flux to optimally control the output will be described with reference to the block diagram of FIG. An explanation will be given of an electric motor system that performs field-weakening control and optimally controls the rotational force when the rotating electric machine is used as an electric motor. When the rotational speed, which is the output 83, is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the control device 85 generates a current obtained by shifting a predetermined amount from the minimum magnetic force current in the direction of decelerating the rotor. At the same time, the actuator 1f is driven by the control signal 86 by driving the actuator coil 16 to bias the excitation part to the right, thereby reducing the area where the field magnet 109 and the magnetic salient pole 151 extension face each other. After the bias control, the actuator 1f is stopped to hold the position of the excitation unit. When the rotational speed is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, a current shifted by a predetermined amount from the minimum magnetic force current is supplied to the armature coil 16 in the direction of accelerating the rotor. The actuator 1f is driven by the control signal 86 to bias the exciting part in the left direction so that the area where the field magnet 109 and the magnetic salient pole 151 extension face each other is increased. After the bias control, the actuator 1f is stopped to hold the position of the excitation unit.

回転電機が発電機として用いられる場合において,弱め界磁制御を行って発電電圧を所定の電圧となるよう制御する定電圧発電機システムを説明する。制御装置85は出力83である発電電圧が所定の値より大となり電機子に流れる磁束量を小とする時には回転子を減速する方向に最小磁気力電流から予め定めた量をずらした電流を電機子コイル16に供給し,同時に制御信号86によりアクチュエータ1fを駆動して励磁部を右方向に偏倚させて界磁磁石109と磁性体突極151延長部とが対向する面積を小にする。偏倚制御後はアクチュエータ1fを停止させて励磁部の位置を保持する。発電電圧が所定の値より小となり電機子に流れる磁束量を大とする時には回転子を加速する方向に最小磁気力電流から予め定めた量をずらした電流を電機子コイル16に供給し,同時に制御信号86によりアクチュエータ1fを駆動して励磁部18を左方向に偏倚させて界磁磁石109と磁性体突極151延長部とが対向する面積を大にする。偏倚制御後はアクチュエータ1fを停止させて励磁部の位置を保持する。   A constant voltage generator system that performs field weakening control to control a generated voltage to a predetermined voltage when a rotating electrical machine is used as a generator will be described. When the generated voltage, which is the output 83, is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the control device 85 generates a current that is shifted from the minimum magnetic force current by a predetermined amount in the direction of decelerating the rotor. At the same time, the actuator 1f is driven by the control signal 86 to drive the actuator 1f to bias the exciting part in the right direction, thereby reducing the area where the field magnet 109 and the magnetic salient pole 151 extension face each other. After the bias control, the actuator 1f is stopped to hold the position of the excitation unit. When the generated voltage is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, a current that is shifted by a predetermined amount from the minimum magnetic force current is supplied to the armature coil 16 in the direction of accelerating the rotor. The actuator 1 f is driven by the control signal 86 to bias the excitation unit 18 in the left direction so that the area where the field magnet 109 and the magnetic salient pole 151 extension face each other is increased. After the bias control, the actuator 1f is stopped to hold the position of the excitation unit.

上記の磁束量制御は運転状況に応じて磁束量制御のステップを簡略化出来る。すなわち,回転電機が加速駆動中であり,その加速駆動の程度が磁束量制御の為に回転子を加速する程度以上であれば,偏倚制御手段の駆動のみとする事が出来る。減速駆動中であり,その減速駆動の程度が磁束量制御の為に回転子を減速する程度以上であれば,偏倚制御手段の駆動のみとする事が出来る。回転電機を発電機とする場合には常時減速駆動されている電動機と同じ状態であり,磁束量制御のステップを簡略化出来る。最小磁気力電流をマップデータから取得したが,経時変化が大きい場合には学習的に取得する方法としてさらに精密な磁束量制御が可能になる。   The magnetic flux amount control described above can simplify the magnetic flux amount control step in accordance with the operating conditions. That is, if the rotating electrical machine is being accelerated and the degree of acceleration driving is greater than or equal to the degree of acceleration of the rotor for controlling the amount of magnetic flux, only the bias control means can be driven. If decelerating driving is being performed and the degree of decelerating driving is greater than or equal to the degree of decelerating the rotor for controlling the amount of magnetic flux, only the bias control means can be driven. When a rotating electrical machine is used as a generator, it is in the same state as a motor that is always driven at a reduced speed, and the magnetic flux amount control step can be simplified. Although the minimum magnetic force current is acquired from the map data, if the change over time is large, the magnetic flux amount can be controlled more precisely as a learning acquisition method.

本発明による回転電機システムの第四実施例を図18,図19を用いて説明する。第四実施例は,励磁部を周方向と直交する面内で偏倚制御して電機子を流れる磁束量を制御する。また,バイパス磁路内の空隙長を調整してバイパス磁路の磁気抵抗を調整する手段を有する。図18は回転電機の縦断面図,図19は電機子と回転子との構成を示す断面図を示す。   A fourth embodiment of the rotating electrical machine system according to the present invention will be described with reference to FIGS. In the fourth embodiment, the amount of magnetic flux flowing through the armature is controlled by controlling the exciter in a plane orthogonal to the circumferential direction. Also, there is means for adjusting the magnetic resistance of the bypass magnetic path by adjusting the gap length in the bypass magnetic path. FIG. 18 is a longitudinal sectional view of the rotating electrical machine, and FIG. 19 is a sectional view showing the configuration of the armature and the rotor.

図18はラジアルギャップ構造の回転電機に本発明を適用した実施例を示し,回転軸11がベアリング13を介してハウジング12に回動可能に支持されている。電機子の構成は第一実施例と同じである。回転子は第三の実施例とほぼ同じ構成であり,表面磁極部を181とし,バイパス磁極を軸方向左に延ばしてバイパス磁極延長部182として回転子の端面に突出させる構成である。バイパス磁極延長部182は円環状磁気コア183と微小間隙を介して対向し,円環状磁気コア183はハウジング12に固定された磁気コア支持体184にネジ機構で支持され,円環状磁気コア183を回転させる事により軸方向に偏倚する構造である。円環状磁気コア183外周にはネジが配置され,ウオームギア185が噛み合うよう配置されている。励磁部を偏倚制御する手段は,第三の実施例と同じである。番号1jはロードセルを示す。   FIG. 18 shows an embodiment in which the present invention is applied to a rotating electrical machine having a radial gap structure, and a rotating shaft 11 is rotatably supported by a housing 12 via a bearing 13. The configuration of the armature is the same as in the first embodiment. The rotor has substantially the same configuration as that of the third embodiment, and the surface magnetic pole portion is 181 and the bypass magnetic pole is extended to the left in the axial direction so as to protrude from the end face of the rotor as the bypass magnetic pole extension 182. The bypass magnetic pole extension 182 faces the annular magnetic core 183 with a minute gap, and the annular magnetic core 183 is supported by a screw mechanism on a magnetic core support 184 fixed to the housing 12. The structure is biased in the axial direction by rotating. Screws are disposed on the outer periphery of the annular magnetic core 183 so that the worm gear 185 is engaged. The means for controlling the bias of the excitation unit is the same as in the third embodiment. Number 1j indicates a load cell.

図19は図18のH−H’に沿う電機子及び回転子の断面を示し,相互の関係を説明する為に構成部分の一部に番号を付して示している。電機子の構成は第一の実施例と同じであり,説明は省略する。   FIG. 19 shows a cross section of the armature and the rotor along the line H-H ′ in FIG. 18, and in order to explain the mutual relationship, a part of the constituent parts is numbered. The configuration of the armature is the same as that of the first embodiment, and the description is omitted.

図19に於いて,表面磁極部181は一様な磁性体を周方向に等間隔に配置された永久磁石によって区分されて構成され,隣接する磁性体突極を番号191,192及び永久磁石を番号153で代表して示している。さらに隣接する磁性体突極191,192は互いに異なる方向に磁化されるよう隣接する永久磁石153の略周方向磁化方向は互いに反転されている。永久磁石153内に記載した矢印は磁化方向を示す。磁性体突極191,192は内周方向への延長部193,194をそれぞれ持ち,それぞれの延長上にバイパス磁極195,196が配置されている。周方向磁化方向を有する界磁磁石109は隣接する磁性体突極191の延長部193と磁性体突極192の延長部194間,及び隣接するバイパス磁極195,196間に摺動可能に配置されている。さらに界磁磁石109が偏倚する径方向の範囲は周囲の寸法により界磁磁石109が常に磁性体突極延長部193及びバイパス磁極195それぞれと対向するよう規制されている。   In FIG. 19, the surface magnetic pole portion 181 is formed by dividing a uniform magnetic body by permanent magnets arranged at equal intervals in the circumferential direction, and adjacent magnetic body salient poles are numbered 191 and 192 and permanent magnets. The reference numeral 153 is representative. Furthermore, the magnetized poles 191 and 192 adjacent to each other are magnetized in different directions, and the magnetization directions in the substantially circumferential direction of the adjacent permanent magnets 153 are reversed. The arrow described in the permanent magnet 153 indicates the magnetization direction. The magnetic salient poles 191 and 192 have extensions 193 and 194 in the inner circumferential direction, and bypass magnetic poles 195 and 196 are disposed on the extensions. The field magnet 109 having a circumferential magnetization direction is slidably disposed between the extension 193 of the adjacent magnetic salient pole 191 and the extension 194 of the magnetic salient pole 192 and between the adjacent bypass magnetic poles 195 and 196. ing. Further, the radial range in which the field magnet 109 is biased is restricted so that the field magnet 109 always faces the magnetic salient pole extension 193 and the bypass magnetic pole 195, respectively, due to the surrounding dimensions.

本実施例では界磁磁石109及びその支持部115が励磁部を構成し,磁性体突極191,192それぞれを永久磁石153及び励磁部が同じ磁化方向に励磁するよう表面磁極部と励磁部の配置が設定されている。これが逆の場合には永久磁石153と界磁磁石109とが閉磁気回路を構成し,励磁部の偏倚制御に際して妨げとなる大きな磁気力を発生させ,精密な制御を困難にする。磁性体突極延長部193,磁性体突極延長部194は交流磁束が通り難いようにケイ素鋼板の積層体で構成されている磁性体突極191,192より平均的な導電率が大の軟鉄製ブロックで構成されている。励磁部を支持する回転アーム144,145及びピン171,172は励磁部の偏倚に従って偏倚し,それらが占有するスペースはバイパス磁極195,196間に割り当てられている。   In this embodiment, the field magnet 109 and its support part 115 constitute an excitation part, and the surface magnetic pole part and the excitation part are excited so that the magnetic salient poles 191 and 192 are excited in the same magnetization direction by the permanent magnet 153 and the excitation part, respectively. The arrangement is set. In the opposite case, the permanent magnet 153 and the field magnet 109 constitute a closed magnetic circuit, generating a large magnetic force that hinders the bias control of the excitation unit, and makes precise control difficult. The magnetic salient pole extension part 193 and the magnetic substance salient pole extension part 194 have softer average conductivity than the magnetic salient poles 191 and 192 which are formed of a laminated body of silicon steel plates so that an alternating magnetic flux does not easily pass therethrough. It is made up of made blocks. The rotary arms 144 and 145 and the pins 171 and 172 that support the excitation unit are biased according to the bias of the excitation unit, and the space occupied by them is allocated between the bypass magnetic poles 195 and 196.

表面磁極部及び励磁部の構成は第三実施例に類似するが,隣接するバイパス磁極195,196は磁気的に独立に構成されている点が異なっている。図18に示したようにバイパス磁極195,196は回転子の端部に突出するバイパス磁極延長部182(バイパス磁極195,196の軸方向への延長部を代表して示している)を有し,微小間隙を介して円環状磁気コア183と対向している。界磁磁石109からバイパス磁極195に流入した磁束は,バイパス磁極延長部182,円環状磁気コア183,バイパス磁極延長部182,バイパス磁極196を介して界磁磁石109に環流してバイパス磁路を形成している。バイパス磁路の磁気抵抗をバイパス磁極延長部182と円環状磁気コア183間の微小間隙長を調整して主磁路の磁気抵抗とほぼ等しく設定している。界磁磁石109からの磁束はバイパス磁極195,196中を軸方向に流れるのでバイパス磁極195,196は磁束密度が大きく,等方性である鉄のブロックで構成している。さらに,円環状磁気コア183内を磁束は周方向に流れるので渦電流損を減少させる為に円環状磁気コア183はケイ素鋼板帯をスパイラル状に巻いて径方向に積層して構成している。他に比抵抗の大きい磁性体で構成しても良い。表面磁極部及び励磁部のその他の構成は第三実施例と同じであるので磁束が主磁路及びバイパス磁路に分流される動作の説明は省略する。また,界磁磁石109を含む励磁部の偏倚制御手段は第三の実施例と同じであるので説明は略す。   The configuration of the surface magnetic pole part and the excitation part is similar to that of the third embodiment, except that adjacent bypass magnetic poles 195 and 196 are magnetically independent. As shown in FIG. 18, the bypass magnetic poles 195 and 196 have a bypass magnetic pole extension 182 protruding from the end of the rotor (represented as an extension of the bypass magnetic poles 195 and 196 in the axial direction). , Facing the annular magnetic core 183 through a minute gap. The magnetic flux flowing into the bypass magnetic pole 195 from the field magnet 109 circulates to the field magnet 109 via the bypass magnetic pole extension 182, the annular magnetic core 183, the bypass magnetic pole extension 182, and the bypass magnetic pole 196, and passes through the bypass magnetic path. Forming. The magnetic resistance of the bypass magnetic path is set to be approximately equal to the magnetic resistance of the main magnetic path by adjusting the length of the minute gap between the bypass magnetic pole extension 182 and the annular magnetic core 183. Since the magnetic flux from the field magnet 109 flows through the bypass magnetic poles 195 and 196 in the axial direction, the bypass magnetic poles 195 and 196 have a high magnetic flux density and are made of isotropic iron blocks. Further, since the magnetic flux flows in the annular magnetic core 183 in the circumferential direction, the annular magnetic core 183 is formed by spirally winding a silicon steel strip in a radial direction in order to reduce eddy current loss. In addition, a magnetic material having a large specific resistance may be used. Since the other configurations of the surface magnetic pole part and the excitation part are the same as those of the third embodiment, the description of the operation for dividing the magnetic flux into the main magnetic path and the bypass magnetic path is omitted. Further, since the bias control means of the excitation unit including the field magnet 109 is the same as that of the third embodiment, the description thereof is omitted.

種々の要因により各磁路の磁気抵抗は変動し,主磁路とバイパス磁路の磁気抵抗の差が大になると,励磁部の偏倚を妨げる磁気力が大になる。本実施例ではバイパス磁路内の間隙の大きさを調整する事により主磁路及びバイパス磁路の磁気抵抗を互いに等しくさせ,種々の原因による磁路の磁気抵抗変化に適応させて前記偏倚を妨げる磁気力を小さく抑制している。図18に示したウオームギア185を図示していないステップモータで駆動して円環状磁気コア183を回転させて磁気コア支持体184との間のネジ機構により円環状磁気コア183を軸方向に偏倚させ,円環状磁気コア183とバイパス磁極延長部182間の間隙長を変える。   The magnetic resistance of each magnetic path fluctuates due to various factors, and when the difference in the magnetic resistance between the main magnetic path and the bypass magnetic path becomes large, the magnetic force that prevents the exciter bias is increased. In this embodiment, by adjusting the size of the gap in the bypass magnetic path, the magnetic resistances of the main magnetic path and the bypass magnetic path are made equal to each other, and the deviation is adjusted to adapt to the change in the magnetic resistance of the magnetic path due to various causes. The magnetic force to block is suppressed small. The worm gear 185 shown in FIG. 18 is driven by a step motor (not shown) to rotate the annular magnetic core 183, and the annular magnetic core 183 is biased in the axial direction by a screw mechanism between the magnetic core support 184. , The gap length between the annular magnetic core 183 and the bypass magnetic pole extension 182 is changed.

図18に於いて,番号1jはロードセルを示している。主磁路とバイパス磁路の磁気抵抗が最小磁気力条件から外れると,界磁磁石109は磁気抵抗の小さい側の磁極(磁性体突極延長部193或いはバイパス磁極195)と界磁磁石109との対向面積を増す方向に偏倚させる磁気力を受ける。アクチュエータ1fは軸方向位置を保持しようとするのでプッシュロッド1e内の圧力は変化し,ロードセル1jにより前記磁気力を検出する事が出来る。磁気力は主磁路とバイパス磁路の磁気抵抗の差に比例するので磁気力を予め定めた範囲内に収まるよう図示していないステップモータでウオームギア185を駆動して円環状磁気コア183を回転させて磁気コア支持体184との間のネジ機構により円環状磁気コア183を軸方向に偏倚させ,円環状磁気コア183とバイパス磁極延長部182間の間隙長を変える。常に両磁路の磁気抵抗を最小磁気力条件に近く維持できるので精密な磁束量制御が可能である。   In FIG. 18, reference numeral 1j indicates a load cell. When the magnetic resistance of the main magnetic path and the bypass magnetic path deviates from the minimum magnetic force condition, the field magnet 109 has a smaller magnetic resistance (magnetic salient pole extension 193 or bypass magnetic pole 195) and the field magnet 109. It receives a magnetic force that deviates in the direction of increasing the facing area. Since the actuator 1f tries to maintain the axial position, the pressure in the push rod 1e changes, and the magnetic force can be detected by the load cell 1j. Since the magnetic force is proportional to the difference in magnetic resistance between the main magnetic path and the bypass magnetic path, the worm gear 185 is driven by a step motor (not shown) so that the magnetic force falls within a predetermined range to rotate the annular magnetic core 183. The annular magnetic core 183 is biased in the axial direction by a screw mechanism between the magnetic core support 184 and the gap length between the annular magnetic core 183 and the bypass magnetic pole extension 182 is changed. Since the magnetic resistance of both magnetic paths can always be maintained close to the minimum magnetic force condition, precise magnetic flux amount control is possible.

磁束量を制御して出力を最適に制御する回転電機システムを,図8のブロック図を用いて説明する。回転電機が電動機として用いられる場合において,弱め界磁制御を行って回転力を最適に制御する電動機システムを説明する。制御装置85は出力83である回転速度が所定の値より大となり電機子に流れる磁束量を小とする時には制御信号86を介してアクチュエータ1fを駆動して励磁部を右方向に偏倚させて界磁磁石109と磁性体突極延長部193とが対向する面積を小にする。偏倚制御後はアクチュエータ1fを停止させて励磁部の位置を保持する。回転速度が所定の値より小となり電機子に流れる磁束量を大とする時には制御信号86を介してアクチュエータ1fを駆動して励磁部を左方向に偏倚させて界磁磁石109と磁性体突極延長部193とが対向する面積を大にする。偏倚制御後はアクチュエータ1fを停止させて励磁部の位置を保持する。   A rotating electrical machine system that optimally controls the output by controlling the amount of magnetic flux will be described with reference to the block diagram of FIG. An explanation will be given of an electric motor system that performs field-weakening control and optimally controls the rotational force when the rotating electric machine is used as an electric motor. The control device 85 drives the actuator 1f via the control signal 86 and biases the excitation part to the right by driving the actuator 1f via the control signal 86 when the rotation speed of the output 83 is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced. The area where the magnet 109 and the magnetic salient pole extension 193 face each other is reduced. After the bias control, the actuator 1f is stopped to hold the position of the excitation unit. When the rotational speed is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the actuator 1f is driven via the control signal 86 to bias the excitation unit in the left direction, and the field magnet 109 and the magnetic salient pole. The area facing the extension 193 is increased. After the bias control, the actuator 1f is stopped to hold the position of the excitation unit.

回転電機が発電機として用いられる場合において,弱め界磁制御を行って発電電圧を所定の電圧となるよう制御する定電圧発電機システムを説明する。制御装置85は出力83である発電電圧が所定の値より大となり電機子に流れる磁束量を小とする時には制御信号86を介してアクチュエータ1fを駆動して励磁部を右方向に偏倚させて界磁磁石109と磁性体突極延長部193とが対向する面積を小にする。偏倚制御後はアクチュエータ1fを停止させて励磁部の位置を保持する。発電電圧が所定の値より小となり電機子に流れる磁束量を大とする時には制御信号86を介してアクチュエータ1fを駆動して励磁部を左方向に偏倚させて界磁磁石109と磁性体突極延長部193とが対向する面積を大にする。偏倚制御後はアクチュエータ1fを停止させて励磁部の位置を保持する。   A constant voltage generator system that performs field weakening control to control a generated voltage to a predetermined voltage when a rotating electrical machine is used as a generator will be described. The control device 85 drives the actuator 1f via the control signal 86 and biases the excitation part to the right by driving the actuator 1f via the control signal 86 when the generated voltage as the output 83 is larger than a predetermined value and the magnetic flux flowing through the armature is small. The area where the magnet 109 and the magnetic salient pole extension 193 face each other is reduced. After the bias control, the actuator 1f is stopped to hold the position of the excitation unit. When the generated voltage is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the actuator 1f is driven via the control signal 86 to bias the exciting part to the left, and the field magnet 109 and the magnetic salient pole. The area facing the extension 193 is increased. After the bias control, the actuator 1f is stopped to hold the position of the excitation unit.

本発明による回転電機システムの第五実施例を図20から図22までを用いて説明する。第五実施例は,ラジアルギャップ構造で且つアウターロータ構造の回転電機システムであり,励磁部は回転子内に配置されて遠心力を利用して磁束量を制御する。図20は回転電機の縦断面図,図21は電機子と回転子との構成を示す断面図,図22は励磁部構成を示す為に回転子の一部を拡大した断面図をそれぞれ示す。   A fifth embodiment of the rotating electrical machine system according to the present invention will be described with reference to FIGS. The fifth embodiment is a rotating electrical machine system having a radial gap structure and an outer rotor structure, and the excitation unit is disposed in the rotor and controls the amount of magnetic flux using centrifugal force. 20 is a longitudinal sectional view of the rotating electrical machine, FIG. 21 is a sectional view showing the configuration of the armature and the rotor, and FIG. 22 is an enlarged sectional view of a part of the rotor in order to show the configuration of the excitation unit.

図20はアウターロータ構造の回転電機に本発明を適用した実施例を示し,表面磁極部及び励磁部は外周にある回転子に配置されている。基板209に固定軸201が固定され,さらに固定軸201に電機子が固定されている。ロータハウジング202が固定軸201にベアリング203を介して回動可能に支持され,その内側に表面磁極部及び励磁部を含む界磁部207が配置されている。番号20aは外部機器と回転力の伝達の為に回転子のロータハウジング202に設けられたプーリー部を示している。電機子は電機子支持部208上の円筒状磁気ヨーク205と,磁性体歯204と,電機子コイル206とから構成されている。   FIG. 20 shows an embodiment in which the present invention is applied to a rotating electrical machine having an outer rotor structure, and the surface magnetic pole part and the excitation part are arranged on the rotor on the outer periphery. A fixed shaft 201 is fixed to the substrate 209, and an armature is fixed to the fixed shaft 201. A rotor housing 202 is rotatably supported on a fixed shaft 201 via a bearing 203, and a field portion 207 including a surface magnetic pole portion and an exciting portion is disposed inside the rotor housing 202. Reference numeral 20a denotes a pulley portion provided in the rotor housing 202 of the rotor for transmission of rotational force with an external device. The armature includes a cylindrical magnetic yoke 205 on the armature support portion 208, magnetic teeth 204, and an armature coil 206.

図21は図20のI−I’に沿う電機子及び回転子の断面図を示し,相互の関係を説明する為に構成部分の一部に番号を付して示している。電機子は電機子支持部208に固定された円筒状磁気ヨーク205と,円筒状磁気ヨーク205から径方向に延び,周方向に磁気空隙を有する複数の磁性体歯204と,磁性体歯204に巻回された電機子コイル206とから構成されている。本実施例では24個の電機子コイル206より構成され,それらは三相に結線されている。磁性体歯204と円筒状磁気ヨーク205はケイ素鋼板から所定の型で打ち抜かれた後,積層して構成され,電機子コイル206が巻回されている。   FIG. 21 is a cross-sectional view of the armature and the rotor along the line I-I ′ in FIG. 20, and in order to explain the mutual relationship, some of the components are shown with numbers. The armature includes a cylindrical magnetic yoke 205 fixed to the armature support 208, a plurality of magnetic teeth 204 extending in a radial direction from the cylindrical magnetic yoke 205 and having a magnetic gap in the circumferential direction, and a magnetic tooth 204 The armature coil 206 is wound around. In the present embodiment, the armature coil 206 is composed of 24 pieces, which are connected in three phases. The magnetic body teeth 204 and the cylindrical magnetic yoke 205 are formed by punching from a silicon steel plate with a predetermined mold and then laminated, and an armature coil 206 is wound around the magnetic teeth.

図21に於いて,ロータハウジング202の内周側に磁性体歯204に対向して界磁部207が配置されている。界磁部207は表面磁極部と励磁部とから構成され,表面磁極部の磁性体歯204との対向面には磁性体突極211,磁気空隙部213,磁性体突極212,磁気空隙部213が周方向に順次配置されている。さらに表面磁極部は磁性体突極延長部方向の外側にバイパス磁極を有し,隣接する磁性体突極211,212延長部間及び隣接するバイパス磁極215,216間にに界磁磁石214が径方向に摺動可能に配置され,バイパス磁極215,216と微小間隙を介して環状磁気コア217が配置されている。隣接する界磁磁石214は互いに磁化方向を反転するよう配置されて隣接する磁性体突極211,212を互いに異極に磁化する。界磁磁石214内の矢印は磁化方向を示す。番号218は界磁磁石214を内径方向に付勢するスプリングを示し,番号219は非磁性体部分を示している。この構成で界磁磁石214が励磁部に相当する。   In FIG. 21, a field portion 207 is disposed on the inner peripheral side of the rotor housing 202 so as to face the magnetic body teeth 204. The field magnet part 207 is composed of a surface magnetic pole part and an excitation part, and a magnetic material salient pole 211, a magnetic air gap part 213, a magnetic material salient pole 212, a magnetic air gap part on the surface of the surface magnetic pole part facing the magnetic material 204. 213 are sequentially arranged in the circumferential direction. Further, the surface magnetic pole portion has a bypass magnetic pole on the outer side in the direction of the magnetic salient pole extension, and the field magnet 214 has a diameter between the adjacent magnetic salient pole 211 and 212 extensions and between the adjacent bypass magnetic poles 215 and 216. An annular magnetic core 217 is arranged via a bypass magnetic pole 215, 216 and a minute gap. Adjacent field magnets 214 are arranged so as to reverse the magnetization directions of each other, and magnetize adjacent magnetic salient poles 211 and 212 to different polarities. An arrow in the field magnet 214 indicates the magnetization direction. Reference numeral 218 indicates a spring that urges the field magnet 214 in the inner diameter direction, and reference numeral 219 indicates a non-magnetic portion. In this configuration, the field magnet 214 corresponds to the excitation unit.

図22は界磁磁石214周辺の構成を拡大した断面図で界磁磁束の分流制御の説明を行う。界磁磁石214に並列接続する二つの磁気回路の一方である主磁路は界磁磁石214からの磁束が磁性体突極211,磁性体歯204,磁性体突極212を介して環流する磁路であり,他方のバイパス磁路は界磁磁石214からの磁束がバイパス磁極215,円筒状磁気コア217,バイパス磁極216を介して環流する磁路であり,主磁路及びバイパス磁路を流れる磁束をそれぞれ点線222,223で示している。   FIG. 22 is an enlarged cross-sectional view of the configuration around the field magnet 214, and the field flux shunt control will be described. The main magnetic path, which is one of two magnetic circuits connected in parallel to the field magnet 214, is a magnetic flux in which the magnetic flux from the field magnet 214 circulates through the magnetic salient pole 211, the magnetic teeth 204, and the magnetic salient pole 212. The other bypass magnetic path is a magnetic path through which the magnetic flux from the field magnet 214 circulates via the bypass magnetic pole 215, the cylindrical magnetic core 217, and the bypass magnetic pole 216, and flows through the main magnetic path and the bypass magnetic path. The magnetic flux is indicated by dotted lines 222 and 223, respectively.

本実施例では回転電機の平均的な運転条件に於いてバイパス磁極215,216と円筒状磁気コア217間の微小間隙221の対向面積及び間隙長を調整して主磁路とバイパス磁路の磁気抵抗を等しく設定する(最小磁気力条件)。界磁磁石214が磁性体突極211延長部,磁性体突極212延長部と対向する面積及びバイパス磁極215,216と対向する面積との和は常に一定となるので界磁磁石214が径方向に偏倚するに際して妨げとなる磁気力は小さく抑えられる。   In the present embodiment, the opposing area and gap length of the minute gap 221 between the bypass magnetic poles 215 and 216 and the cylindrical magnetic core 217 are adjusted under the average operating conditions of the rotating electrical machine to adjust the magnetism of the main magnetic path and the bypass magnetic path. Set resistance equal (minimum magnetic force condition). Since the sum of the area where the field magnet 214 faces the magnetic salient pole 211 extension and the magnetic salient pole 212 extension and the area facing the bypass magnetic poles 215 and 216 is always constant, the field magnet 214 is in the radial direction. Therefore, the magnetic force that hinders the biasing is suppressed to a small value.

回転子が静止状態或いは低回転速度ではではスプリング218が内径側に界磁磁石214を付勢して界磁磁石214の殆どの面積は磁性体突極211延長部,磁性体突極212延長部に対向し,主磁路を流れる磁束量を最大とさせている。回転子の回転速度が増すと界磁磁石214に働く遠心力がスプリング218に抗して外周側に界磁磁石214を偏倚させ,界磁磁石214がバイパス磁極215,216と対向する面積を増す。磁性体歯204側を通る主磁路の磁束量はほぼ界磁磁石214と磁性体突極211延長部,磁性体突極212延長部との対向面積に比例し,回転子の低回転速度では主磁路の磁束量は多く,高回転速度では主磁路の磁束量は少なくなるよう制御される。主磁路を流れる磁束量と回転速度との関係は界磁磁石214の質量とスプリング218の特性及び不要な振動を低減させる為に設定する界磁磁石214とその周囲との間の摩擦係数で設定される。   When the rotor is stationary or at a low rotation speed, the spring 218 biases the field magnet 214 toward the inner diameter side, so that most of the area of the field magnet 214 is an extension of the magnetic salient pole 211 and an extension of the magnetic salient pole 212. The amount of magnetic flux flowing through the main magnetic path is maximized. When the rotational speed of the rotor increases, the centrifugal force acting on the field magnet 214 resists the spring 218 to bias the field magnet 214 toward the outer peripheral side, and the area where the field magnet 214 faces the bypass magnetic poles 215 and 216 increases. . The amount of magnetic flux in the main magnetic path passing through the magnetic teeth 204 side is approximately proportional to the area of the field magnet 214 facing the extension of the magnetic salient pole 211 and the extension of the magnetic salient pole 212, and at a low rotational speed of the rotor. The amount of magnetic flux in the main magnetic path is large, and the amount of magnetic flux in the main magnetic path is controlled to be small at high rotational speeds. The relationship between the amount of magnetic flux flowing through the main magnetic path and the rotational speed is determined by the mass of the field magnet 214, the characteristics of the spring 218, and the coefficient of friction between the field magnet 214 and its surroundings set to reduce unnecessary vibrations. Is set.

本発明による第六実施例を図23を用いて説明する。第六実施例は第一実施例の回転電機システムをハイブリッドカーの発電機兼電動機として用いた回転電機システムである。同図に於いて,番号231は第一の実施例で示した回転電機を示し,回転電機231はハイブリッドカーのエンジン232とベルトで回転力を伝達するよう結合された回転軸239を持ち,回転軸239の回転力はトランスミッション233を介して駆動軸23aに伝えられる。制御装置234は上位制御装置からの指令23bを受け,駆動回路235を介して回転電機231を電動機として駆動し,磁束量制御回路236を介して回転電機装置231の磁束量を制御する。更に制御装置234は上位制御装置からの指令23bを受け,電機子コイル16の引き出し線23cに現れる発電電力を整流回路237を介して整流し,バッテリー238を充電する構成としている。   A sixth embodiment according to the present invention will be described with reference to FIG. The sixth embodiment is a rotating electrical machine system using the rotating electrical machine system of the first embodiment as a generator / motor of a hybrid car. In the figure, reference numeral 231 denotes the rotating electric machine shown in the first embodiment, and the rotating electric machine 231 has a rotating shaft 239 coupled to transmit a rotational force by a belt and an engine 232 of the hybrid car. The rotational force of the shaft 239 is transmitted to the drive shaft 23a via the transmission 233. The control device 234 receives the command 23b from the host control device, drives the rotating electrical machine 231 as an electric motor via the drive circuit 235, and controls the magnetic flux amount of the rotating electrical machine device 231 via the magnetic flux amount control circuit 236. Further, the control device 234 receives the command 23b from the host control device, rectifies the generated power appearing on the lead wire 23c of the armature coil 16 through the rectifier circuit 237, and charges the battery 238.

制御装置234は指令23bの指示により駆動回路235を介して回転電機231を電動機として駆動し,エンジン232の回転をアシスト或いは単独で回転軸239を回転駆動させ,トランスミッション233,駆動軸23aを介してハイブリッドカーの駆動力に寄与する。低回転速度域で磁石トルクを強化する必要がある場合は制御装置234が磁束量制御区間72の時間帯に主磁路の磁気抵抗をバイパス磁路の磁気抵抗に実効的に等しくするよう電機子コイル16に駆動回路235を介して最小磁気力電流を供給し,磁束量制御回路236を介して電機子に流れる磁束量を大とするようアクチュエータ1fを駆動して励磁部18を偏倚させて磁性体突極21延長部と界磁磁石24とが対向する面積を大とする。   The control device 234 drives the rotating electrical machine 231 as an electric motor via the drive circuit 235 according to the instruction of the command 23b, assists the rotation of the engine 232, or independently drives the rotating shaft 239 to rotate through the transmission 233 and the driving shaft 23a. Contributes to the driving power of hybrid cars. When it is necessary to reinforce the magnet torque in the low rotational speed region, the armature so that the controller 234 effectively equalizes the magnetic resistance of the main magnetic path to the magnetic resistance of the bypass magnetic path during the time period of the magnetic flux amount control section 72. The minimum magnetic force current is supplied to the coil 16 via the drive circuit 235, and the actuator 1f is driven so as to increase the amount of magnetic flux flowing through the armature via the magnetic flux amount control circuit 236, thereby biasing the exciter 18 and magnetizing it. The area where the body salient pole 21 extension and the field magnet 24 face each other is increased.

高回転速度域で弱め界磁とする場合には制御装置234が磁束量制御区間72の時間帯に主磁路の磁気抵抗をバイパス磁路の磁気抵抗に実効的に等しくするよう電機子コイル16に駆動回路235を介して最小磁気力電流を供給し,磁束量制御回路236を介して電機子に流れる磁束量を小とするようアクチュエータ1fを駆動して励磁部18を偏倚させて磁性体突極21延長部と界磁磁石24とが対向する面積を小とする。   When the field weakening is used in the high rotation speed region, the control device 234 makes the magnetic resistance of the main magnetic path effectively equal to the magnetic resistance of the bypass magnetic path during the time period of the magnetic flux amount control section 72. Is supplied with a minimum magnetic force current via the drive circuit 235, and the actuator 1f is driven so as to reduce the amount of magnetic flux flowing through the armature via the magnetic flux amount control circuit 236, thereby biasing the excitation unit 18 and causing the magnetic material The area where the pole 21 extension and the field magnet 24 face each other is made small.

エンジン232の回転力のみでハイブリッドカーを駆動できる時は,指令23bにより電機子コイル16の引き出し線23cに現れる発電電力を整流回路237を介して直流に変え,バッテリー238を充電させる。その場合に制御装置234は磁束量制御区間72の時間帯に主磁路の磁気抵抗をバイパス磁路の磁気抵抗に実効的に等しくするよう電機子コイル16に駆動回路235を介して最小磁気力電流を供給し,バッテリー238を充電する最適な電圧になるよう磁束量制御回路236を介してアクチュエータ1fを駆動制御する。バッテリー238を充電する場合に回転電機システムを定電圧発電機とする事で発電電圧を変換するコンバータは不要である。また,更にバッテリー238が電圧の種類の異なる複数種のバッテリーで構成される場合でも切り替え回路を付け加えてそれぞれのバッテリーに最適の発電電圧に制御する事で高価なコンバータを不要に出来る。   When the hybrid car can be driven only by the rotational force of the engine 232, the generated power appearing in the lead wire 23c of the armature coil 16 is changed to direct current via the rectifier circuit 237 by the command 23b, and the battery 238 is charged. In that case, the controller 234 causes the armature coil 16 to have a minimum magnetic force via the drive circuit 235 so that the magnetic resistance of the main magnetic path is effectively equal to the magnetic resistance of the bypass magnetic path during the time period of the magnetic flux amount control section 72. The actuator 1f is driven and controlled via the magnetic flux amount control circuit 236 so that an electric current is supplied and an optimum voltage for charging the battery 238 is obtained. When the battery 238 is charged, a converter that converts the generated voltage by using the rotating electrical machine system as a constant voltage generator is unnecessary. Further, even when the battery 238 is composed of a plurality of types of batteries having different voltage types, an expensive converter can be dispensed with by adding a switching circuit to control the power generation voltage optimal for each battery.

本実施例はまたハイブリッドカーの制動時に於けるエネルギー回収システムとしても有効に機能する。指令23bを通じて回生制動の指示を受けると,制御装置234は磁束量制御区間72の時間帯に主磁路の磁気抵抗をバイパス磁路の磁気抵抗に実効的に等しくするよう電機子コイル16に駆動回路235を介して最小磁気力電流を供給し,磁束量制御回路236を介して電機子に流れる磁束量を大とするようアクチュエータ1fを駆動して励磁部18を偏倚させて磁性体突極21延長部と界磁磁石24とが対向する面積を大とし,発電電力でバッテリー238に充電させる。複数のバッテリー238を有する場合には最も充電余力のあるバッテリー238の充電電圧に合わせた発電電圧が得られるよう磁束量制御回路236を介してアクチュエータ1fを駆動制御して電機子に流れる磁束量を制御する。回転電機211は駆動用電動機として用いられる体格であるので回生制動用の発電機として十分な制動力を発生できる。   This embodiment also functions effectively as an energy recovery system when braking a hybrid car. When the regenerative braking instruction is received through the command 23b, the control device 234 drives the armature coil 16 to make the magnetic resistance of the main magnetic path effectively equal to the magnetic resistance of the bypass magnetic path in the time zone of the magnetic flux amount control section 72. The minimum magnetic force current is supplied via the circuit 235, and the actuator 1f is driven so as to increase the amount of magnetic flux flowing through the armature via the magnetic flux amount control circuit 236, thereby biasing the excitation unit 18 and magnetic salient pole 21. The area where the extension portion and the field magnet 24 face each other is increased, and the battery 238 is charged with the generated power. In the case of having a plurality of batteries 238, the actuator 1f is driven and controlled via the magnetic flux amount control circuit 236 so as to obtain a power generation voltage that matches the charging voltage of the battery 238 having the most capacity for charging. Control. Since the rotating electrical machine 211 is a physique used as a drive motor, it can generate a sufficient braking force as a generator for regenerative braking.

本実施例は本発明をハイブリッドカーの発電機兼電動機として用いた回転電機システムであるが,電気自動車に於ける回転電機システムとする事も当然に可能である。その場合には上記実施例に於いてハイブリッドカーのエンジン232を取り除き,本発明による回転電機システムのみで駆動及び制動時に於けるエネルギー回収システムを構成する。   The present embodiment is a rotating electrical machine system in which the present invention is used as a generator / motor of a hybrid car, but it is naturally possible to use a rotating electrical machine system in an electric vehicle. In that case, the engine 232 of the hybrid car is removed in the above embodiment, and the energy recovery system at the time of driving and braking is constituted only by the rotating electrical machine system according to the present invention.

以上,本発明の回転電機システムについて,実施例を挙げて説明した。これらの実施例は本発明の趣旨,目的を実現する例を示したのであって本発明の範囲を限定するわけでは無い。上記実施例を組み合わせる,或いは実施例の一部を組み合わせて本発明の趣旨,目的を実現するシステムを完成させる等が可能な事は勿論である。例えば,上記の実施例に於いて電機子は磁性体歯を有する構造が示されたが,従来のアキシャルギャップ構成の回転電機では磁性体歯を配置しない構造例も存在する。また,ラジアルギャップ構成に於いても電機子構成を円筒状磁気ヨーク上に印刷配線された電機子コイルを配置して磁性体歯を持たない例も存在する。本発明は磁性体歯の有無に拘わらず適用可能であり,回転電機システムの仕様に沿って最適の電気子構成を採用する事が出来る。   The rotating electrical machine system of the present invention has been described with reference to the embodiments. These examples show examples of realizing the gist and purpose of the present invention, and do not limit the scope of the present invention. Of course, it is possible to complete the system that achieves the gist and purpose of the present invention by combining the above-described embodiments, or by combining a part of the embodiments. For example, in the above embodiment, the armature has a structure having magnetic teeth, but there is a structure example in which a magnetic tooth is not arranged in a conventional rotating electric machine having an axial gap configuration. Further, even in the radial gap configuration, there is an example in which the armature configuration is arranged with an armature coil printed and wired on a cylindrical magnetic yoke and does not have magnetic teeth. The present invention can be applied regardless of the presence or absence of magnetic teeth, and can employ an optimum electronic configuration according to the specifications of the rotating electrical machine system.

本発明による回転電機システムは従来の磁石トルク,リラクタンストルクを利用する回転電機の磁石励磁近傍の構成を変えて電機子に流れる磁束量を容易に制御可能とした。同回転電機システムは従来の回転電機と同様に高出力の電動機として利用できる事に加えて実用出来る回転速度範囲を拡大し,更に発電機能を改善し,またその発電機能を制御できる。   The rotating electrical machine system according to the present invention can easily control the amount of magnetic flux flowing through the armature by changing the configuration in the vicinity of magnet excitation of the rotating electrical machine using the conventional magnet torque and reluctance torque. In addition to being able to be used as a high-output motor like the conventional rotating electrical machine, the rotating electrical machine system can expand the practical rotational speed range, further improve the power generation function, and control the power generation function.

移動体の発電機兼電動機システムに用いて,駆動用電動機としては従来以上の回転速度範囲での使用が期待できる他に制動時のエネルギー回収を可能として総合的なエネルギー消費量を改善できる。更に定電圧発電機システムとして広い回転速度範囲で発電電圧を一定に制御できるので定電圧制御回路を不要とし,更に電圧の異なる複数種のバッテリー充電にもコンバータを不要に出来,全体のシステムコストを低減出来る。   It can be used in a generator / motor system for a moving body, and it can be expected to be used in a range of rotational speeds higher than that of a conventional driving motor. In addition, it can recover energy during braking and improve overall energy consumption. In addition, the constant voltage generator system can control the generated voltage uniformly over a wide rotational speed range, eliminating the need for a constant voltage control circuit, and eliminating the need for a converter for charging multiple types of batteries with different voltages, reducing the overall system cost. It can be reduced.

第一の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 1st Example. 図1に示された回転電機の電機子と回転子とを示す断面図である。It is sectional drawing which shows the armature and rotor of a rotary electric machine shown by FIG. 図1に示された回転電機の電機子と回転子とを示す断面図である。It is sectional drawing which shows the armature and rotor of a rotary electric machine shown by FIG. 図1に示された回転電機の回転子構成を示す斜視図である。It is a perspective view which shows the rotor structure of the rotary electric machine shown by FIG. 図1に示された回転電機の励磁部構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the excitation part structure of the rotary electric machine shown by FIG. 図1に示された回転電機の偏倚した励磁部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the biased excitation part of the rotary electric machine shown by FIG. 主磁路の磁気抵抗調整条件を学習的に取得するタイムチャートを示す図である。It is a figure which shows the time chart which acquires the magnetoresistive adjustment conditions of a main magnetic path learning. 弱め界磁制御を行う回転電機システムのブロック図である。It is a block diagram of the rotary electric machine system which performs field-weakening control. 第二の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 2nd Example. 図9に示された回転電機の電機子と回転子とを示す断面図である。It is sectional drawing which shows the armature and rotor of a rotary electric machine shown by FIG. 図9に示された回転電機の回転子の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of rotor of the rotary electric machine shown by FIG. 図9に示された回転電機のガイドプレート組み立ての斜視図である。FIG. 10 is a perspective view of guide plate assembly of the rotating electrical machine shown in FIG. 9. 図9に示された回転電機の(a)はスリーブの斜視図,(b)は回転軸の斜視図である。9A is a perspective view of a sleeve, and FIG. 9B is a perspective view of a rotating shaft of the rotating electrical machine shown in FIG. 第三の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 3rd Example. 図14に示された回転電機の電機子と回転子とを示す断面図である。It is sectional drawing which shows the armature and rotor of a rotary electric machine shown by FIG. 図14に示された回転電機の電機子と回転子とを示す断面図である。It is sectional drawing which shows the armature and rotor of a rotary electric machine shown by FIG. 図14に示された回転電機の励磁部を偏倚させる構成を示し,(a)は励磁部が最外周に偏倚された場合,(b)は励磁部が最内周に偏倚された縦断面図をそれぞれ示す。14 shows a configuration for biasing the excitation part of the rotating electrical machine shown in FIG. 14, where (a) is a longitudinal sectional view in which the excitation part is biased to the outermost periphery, and (b) is a longitudinal sectional view in which the excitation part is biased to the innermost periphery. Respectively. 第四の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 4th Example. 図18に示された回転電機の電機子と回転子とを示す断面図である。It is sectional drawing which shows the armature and rotor of a rotary electric machine shown by FIG. 第五の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by the 5th Example. 図20に示された回転電機の電機子と回転子とを示す断面図である。It is sectional drawing which shows the armature and rotor of a rotary electric machine shown by FIG. 図20に示された回転電機の励磁部を拡大して示す断面図である。It is sectional drawing which expands and shows the excitation part of the rotary electric machine shown by FIG. 第六の実施例による回転電機システムのブロック図である。It is a block diagram of the rotary electric machine system by a 6th Example.

符号の説明Explanation of symbols

11・・・回転軸, 12・・・ハウジング,
13・・・ベアリング, 14・・・磁性体歯,
15・・・円筒状磁気ヨーク, 16・・・電機子コイル,
17・・・界磁部, 18・・・励磁部,
19・・・スプリング, 1a・・・励磁部支持体,
1b・・・回転子支持体, 1c・・・スリット,
1d・・・中空部, 1e・・・プッシュロッド,
1f・・・アクチュエータ, 1g・・・冷却ファン,
1j・・・ロードセル
21,22・・磁性体突極, 23・・・磁気空隙部,
24・・・界磁磁石, 25・・・ベース磁極,
26・・・可飽和磁性体部, 27・・・非磁性体,
28・・・可飽和磁性体結合部
31,32・・バイパス磁極, 33・・・微小間隙
51・・・距離, 52・・・磁性体突極21延長部の長さ,
53・・・バイパス磁極31の長さ, 54・・・界磁磁石24の長さ
71・・・学習区間, 72・・・界磁強度制御区間,
73・・・回転速度, 74・・・界磁磁束量,
75・・・発電電圧, 76・・・時間
81・・・回転電機, 82・・・入力,
83・・・出力, 84・・・状態信号,
85・・・制御装置, 86・・・制御信号,
87・・・駆動制御回路
91・・・表面磁極部, 92・・・回転子支持体,
93,94・・ガイドプレート, 95・・・連結孔,
96・・・スライドバー, 97・・・スリーブ,
98・・・スプリング, 99・・・斜交溝
101,102・・磁性体突極, 103・・・中間磁性体突極,
104,105,106,107・・磁石板,
108・・・磁気空隙部, 109・・・界磁磁石,
10a,10b・・バイパス磁極, 10c・・・連結棒,
10d,10e・・磁性体突極延長部
111・・・磁石板105,106の磁路,
112・・・主磁路, 113・・・バイパス磁路,
114・・・間隙
121・・・ガイドグルーブ, 122・・ガイドプレート93の内周側突部
131・・・ピン, 132・・・凹状溝
141・・・表面磁極部, 142・・・スライドプレート,
143・・・連結棒, 144,145・・回転アーム
151,152・・磁性体突極, 153・・・永久磁石
171,172,173,174・・ピン
181・・・表面磁極部, 182・・・バイパス磁極延長部,
183・・・円環状磁気コア, 184・・・磁気コア支持体,
185・・・ウオームギア
191,192・・磁性体突極, 193,194・・磁性体突極延長部,
195,196・・バイパス磁極
201・・・固定軸, 202・・・ロータハウジング,
203・・・ベアリング, 204・・・磁性体歯,
205・・・円筒状磁気ヨーク, 206・・・電機子コイル,
207・・・磁極部, 208・・・電機子支持部,
209・・・基板, 20a・・・プーリー部
211,212・・磁性体突極, 213・・・磁気空隙部,
214・・・界磁磁石, 215,216・・バイパス磁極,
217・・・環状磁気コア, 218・・・スプリング,
219・・・非磁性体部分
221・・・微小間隙, 222・・・主磁路,
223・・・バイパス磁路
231・・・第一の実施例で示した回転電機,
232・・・ハイブリッドカーのエンジン,
233・・・トランスミッション, 234・・・制御装置,
235・・・駆動回路, 236・・・磁束量制御回路,
237・・・整流回路, 238・・・バッテリー,
239・・・回転軸, 23a・・・駆動軸,
23b・・・上位制御装置からの指令, 23c・・・電機子コイルの引き出し線
11 ... rotating shaft, 12 ... housing,
13 ... Bearings, 14 ... Magnetic teeth,
15 ... cylindrical magnetic yoke, 16 ... armature coil,
17 ... Field part, 18 ... Excitation part,
19 ... spring, 1a ... excitation support,
1b: rotor support, 1c: slit,
1d: hollow part, 1e: push rod,
1f ... Actuator, 1g ... Cooling fan,
1j: Load cells 21, 22 ... Magnetic salient poles, 23 ... Magnetic air gap,
24 ... Field magnet, 25 ... Base magnetic pole,
26: saturable magnetic part, 27 ... non-magnetic substance,
28: Saturable magnetic body coupling part 31, 32 ... Bypass magnetic pole, 33 ... Minute gap 51 ... Distance, 52 ... Length of magnetic salient pole 21 extension part,
53... Length of bypass magnetic pole 31 54. Length of field magnet 24 71... Learning section 72.
73 ... rotational speed, 74 ... field magnetic flux amount,
75 ... Power generation voltage, 76 ... Time 81 ... Rotary electric machine, 82 ... Input,
83 ... Output, 84 ... Status signal,
85 ... Control device, 86 ... Control signal,
87 ... Drive control circuit 91 ... Surface magnetic pole part, 92 ... Rotor support,
93, 94 .. Guide plate, 95 ... Connecting hole,
96 ... slide bar, 97 ... sleeve,
98... Spring, 99... Oblique grooves 101 and 102 .. Magnetic salient pole, 103.
104, 105, 106, 107 .. magnet plate,
108 ... magnetic gap, 109 ... field magnet,
10a, 10b .. Bypass magnetic pole, 10c ... connecting rod,
10d, 10e ··· Magnetic body salient pole extension 111 ··· Magnetic path of magnet plates 105 and 106,
112 ... main magnetic path, 113 ... bypass magnetic path,
114... Gap 121... Guide groove 122... Inner peripheral protrusion 131... Pin of guide plate 93... 132. ,
143... Connecting rods 144, 145... Rotating arms 151 and 152.. Magnetic salient poles 153... Permanent magnets 171, 172, 173 and 174. ..Bypass magnetic pole extension,
183 ... annular magnetic core, 184 ... magnetic core support,
185 ... Worm gears 191, 192 ... Magnetic salient poles, 193, 194 ... Magnetic magnetic salient pole extensions,
195, 196 .. Bypass magnetic pole 201 ... fixed shaft, 202 ... rotor housing,
203 ... bearings, 204 ... magnetic teeth,
205 ... cylindrical magnetic yoke, 206 ... armature coil,
207: Magnetic pole part, 208: Armature support part,
209... Substrate, 20a... Pulley portions 211 and 212 .. magnetic salient poles, 213.
214 ... Field magnet, 215, 216 ... Bypass magnetic pole,
217 ... annular magnetic core, 218 ... spring,
219: Non-magnetic part 221: Minute gap, 222: Main magnetic path,
223: Bypass magnetic path 231: Rotating electric machine shown in the first embodiment,
232 ... Hybrid car engine,
233 ... transmission, 234 ... control device,
235 ... Drive circuit, 236 ... Magnetic flux control circuit,
237 ... Rectifier circuit, 238 ... Battery,
239 ... rotating shaft, 23a ... driving shaft,
23b: Command from the host control device, 23c: Armature coil lead wire

Claims (26)

電機子コイルを有する電機子と,電機子と対向して相対回転可能で且つ電機子と対向して周方向に配置された複数の磁性体突極を有する界磁部とを有する回転電機であって,界磁部には表面磁極部と励磁部とが配置され,表面磁極部は電機子との対向面に複数の磁性体突極が周方向に配置されると共に電機子に面しない側に磁性体突極延長部及びバイパス磁極が配置され,励磁部は周方向磁化を持つ界磁磁石が隣接する磁性体突極延長部間及び隣接するバイパス磁極間に配置され,隣接する界磁磁石は互いに周方向磁化を反転させて隣接する磁性体突極を互いに異極に磁化し,界磁磁石には磁性体突極延長部に流入した磁束が電機子,隣接磁性体突極を介して環流する主磁路及びバイパス磁極に流入した磁束が隣接バイパス磁極を介して主として界磁部内で環流するバイパス磁路とが並列に接続され,表面磁極部或いは励磁部の何れかを可動磁極部として界磁磁石が磁性体突極延長部と対向する面積及びバイパス磁極と対向する面積の和が一定に保たれながら前記それぞれの対向面積を変える事が出来るよう可動磁極部が残余に対して相対偏倚可能に構成され,回転電機システムの出力が最適化されるように前記出力に応じて可動磁極部が偏倚して電機子に流れる磁束量が制御される事を特徴とする回転電機システム A rotary electric machine having an armature having an armature coil and a field portion having a plurality of magnetic salient poles that are relatively rotatable facing the armature and are arranged in the circumferential direction facing the armature. Thus, the surface magnetic pole part and the excitation part are arranged in the field magnet part, and the surface magnetic pole part is arranged on the side facing the armature and on the side not facing the armature while a plurality of magnetic salient poles are arranged in the circumferential direction. A magnetic salient pole extension and a bypass magnetic pole are arranged, and an excitation part is arranged between adjacent magnetic substance salient pole extensions and adjacent bypass magnetic poles, and a field magnet having circumferential magnetization is arranged between adjacent magnetic poles. Magnetic field poles adjacent to each other are magnetized differently from each other by reversing their circumferential magnetization, and the magnetic flux flowing into the magnetic salient pole extension is returned to the field magnet via the armature and adjacent magnetic salient pole. The magnetic flux flowing into the main magnetic path and the bypass magnetic pole The bypass magnetic path that circulates in the field part is connected in parallel, and the field magnet is opposed to the magnetic salient pole extension and the bypass magnetic pole extension with either the surface magnetic pole part or the excitation part as the movable magnetic pole part. The movable magnetic pole portion is configured to be relatively deviated with respect to the remainder so that the respective facing areas can be changed while the sum of the areas to be maintained is constant, and the output so that the output of the rotating electrical machine system is optimized. The rotating magnetic machine system is characterized in that the amount of magnetic flux flowing in the armature is controlled due to the displacement of the movable magnetic pole portion according to 請求項1記載の回転電機システムに於いて,バイパス磁路の磁気抵抗と主磁路の磁気抵抗とを互いにほぼ等しいとする最小磁気力条件に設定される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein a minimum magnetic force condition is set such that the magnetic resistance of the bypass magnetic path and the magnetic resistance of the main magnetic path are substantially equal to each other. 請求項1記載の回転電機システムに於いて,交流磁束が通り難いよう界磁磁石から磁性体突極に至る磁路は磁性体突極より渦電流損を大とする材質を含んで構成される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the magnetic path from the field magnet to the magnetic salient pole includes a material having a larger eddy current loss than the magnetic salient pole so that the alternating magnetic flux does not easily pass. Rotating electrical machine system 請求項1記載の回転電機システムに於いて,バイパス磁極は磁性体突極の延長方向に配置され,励磁部を可動磁極部として周方向と直交する面内を偏倚可能に構成される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the bypass magnetic pole is disposed in an extending direction of the magnetic salient pole, and is configured such that an in-plane orthogonal to the circumferential direction can be deflected by using the exciting portion as a movable magnetic pole portion. Rotating electrical machine system 請求項1記載の回転電機システムに於いて,界磁部及び電機子は径方向に対向し,磁性体突極延長部は軸方向に周期的な切除部分を有して切除部分にバイパス磁極が配置され,励磁部に於いて周方向磁化を持つ界磁磁石と非磁性体とが周期的に交互に軸方向に配置され,励磁部を可動磁極部として軸方向に偏倚可能に構成される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the field portion and the armature face each other in the radial direction, the magnetic salient pole extension portion has a periodic cut portion in the axial direction, and a bypass magnetic pole is formed in the cut portion. The field magnet and the non-magnetic material that are circumferentially magnetized in the excitation part are periodically and alternately arranged in the axial direction, and the excitation part is configured to be movable in the axial direction with the movable magnetic pole part. Rotating electrical machine system characterized by 請求項1記載の回転電機システムに於いて,さらに主磁路或いはバイパス磁路の磁気抵抗を調整する磁気抵抗調整手段を有し,可動磁極部の偏倚に必要な力を小とするよう主磁路或いはバイパス磁路の磁気抵抗が調整される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, further comprising a magnetic resistance adjusting means for adjusting a magnetic resistance of the main magnetic path or the bypass magnetic path so as to reduce a force necessary for biasing the movable magnetic pole portion. Rotating machine system, wherein the magnetic resistance of the path or bypass magnetic path is adjusted 請求項6記載の回転電機システムに於いて,可動磁極部を偏倚させる際に磁気抵抗調整手段によりバイパス磁路の磁気抵抗と主磁路の磁気抵抗とは最小磁気力条件にほぼ等しくなるよう調整される事を特徴とする回転電機システム 7. The rotating electrical machine system according to claim 6, wherein when the movable magnetic pole portion is biased, the magnetic resistance adjusting means adjusts the magnetic resistance of the bypass magnetic path and the magnetic resistance of the main magnetic path to be substantially equal to the minimum magnetic force condition. Rotating electrical machine system characterized by 請求項6記載の回転電機システムに於いて,電機子を流れる磁束量を増加する時に最小磁気力条件より主磁路の磁気抵抗は小に或いはバイパス磁路の磁気抵抗は大に磁気抵抗調整手段によって調整され,電機子を流れる磁束量を減少させる時に最小磁気力条件より主磁路の磁気抵抗は大に或いはバイパス磁路の磁気抵抗は小に磁気抵抗調整手段によって調整され,同時に可動磁極部が偏倚される事を特徴とする回転電機システム 7. The rotating electrical machine system according to claim 6, wherein when the amount of magnetic flux flowing through the armature is increased, the magnetic resistance of the main magnetic path is made smaller or the magnetic resistance of the bypass magnetic path is made larger than the minimum magnetic force condition. When the amount of magnetic flux flowing through the armature is reduced, the magnetic resistance of the main magnetic path is adjusted to be larger than the minimum magnetic force condition or the magnetic resistance of the bypass magnetic path is adjusted to be smaller than the minimum magnetic force condition. Rotating electrical machine system characterized by biasing 請求項6記載の回転電機システムに於いて,さらに主磁路及びバイパス磁路の磁気抵抗が最小磁気力条件から外れる事により可動磁極部に加わる磁気力検知手段を有し,間歇的に変えられた磁気抵抗調整手段に関係するパラメータ,或いは通常の運転中に変わる前記パラメータと前記磁気力との関係を監視し,前記磁気力を小とする前記パラメータが最小磁気力条件パラメータとして設定される事を特徴とする回転電機システム 7. The rotating electrical machine system according to claim 6, further comprising magnetic force detection means applied to the movable magnetic pole portion when the magnetic resistance of the main magnetic path and the bypass magnetic path deviates from the minimum magnetic force condition, and can be changed intermittently. The parameter relating to the magnetic resistance adjusting means or the relationship between the parameter that changes during normal operation and the magnetic force is monitored, and the parameter for reducing the magnetic force is set as the minimum magnetic force condition parameter. Rotating electrical machine system characterized by 請求項6記載の回転電機システムに於いて,磁気抵抗調整手段をバイパス磁路内に配置された空隙に於ける空隙長を調整する空隙長調整手段で構成し,可動磁極部の偏倚に必要な力を小とするようバイパス磁路の磁気抵抗が調整される事を特徴とする回転電機システム 7. The rotating electrical machine system according to claim 6, wherein the magnetoresistive adjusting means is composed of a gap length adjusting means for adjusting a gap length in a gap disposed in the bypass magnetic path, and is necessary for biasing the movable magnetic pole portion. The rotating electrical machine system is characterized in that the magnetic resistance of the bypass magnetic path is adjusted so as to reduce the force. 請求項6記載の回転電機システムに於いて,磁気抵抗調整手段を回転子を加速或いは減速する方向の予め定められた電流を電機子コイルに供給して主磁路の磁気抵抗を調整する手段で構成し,可動磁極部を偏倚する際に可動磁極部の偏倚に必要な力を小とするよう電機子コイルに予め定められた電流を供給して実効的に主磁路の磁気抵抗が調整される事を特徴とする回転電機システム 7. The rotating electrical machine system according to claim 6, wherein the magnetic resistance adjusting means is a means for adjusting a magnetic resistance of the main magnetic path by supplying a predetermined current in a direction for accelerating or decelerating the rotor to the armature coil. The magnetic resistance of the main magnetic path is effectively adjusted by supplying a predetermined current to the armature coil so as to reduce the force required for biasing the movable magnetic pole when the movable magnetic pole is biased. Rotating electrical machine system characterized by 請求項6記載の回転電機システムに於いて,磁気抵抗調整手段を予め定められた定電流負荷とし,可動磁極部を偏倚する際に定電流負荷は電機子コイルに接続され,可動磁極部の前記偏倚に必要な力を小とするよう誘起電圧により予め定められた電流を流し,実効的に主磁路の磁気抵抗が調整される事を特徴とする回転電機システム 7. The rotating electrical machine system according to claim 6, wherein the magnetic resistance adjusting means is a predetermined constant current load, and when the movable magnetic pole portion is biased, the constant current load is connected to the armature coil, A rotating electrical machine system characterized in that a predetermined current is passed by an induced voltage so as to reduce the force required for biasing, and the magnetic resistance of the main magnetic path is effectively adjusted. 請求項1記載の回転電機システムに於いて,さらに可動磁極部の偏倚規制手段を有し,界磁磁石が磁性体突極延長部と対向する面積及びバイパス磁極と対向する面積の和が一定に保たれながら前記それぞれの面積が変わる範囲内に可動磁極部の相対偏倚量が規制される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, further comprising a displacement restricting means for the movable magnetic pole portion, wherein a sum of an area where the field magnet faces the magnetic salient pole extension portion and an area where the magnetic pole portion faces the bypass magnetic pole is constant. A rotating electrical machine system characterized in that the relative deviation amount of the movable magnetic pole portion is regulated within a range in which the respective areas change while being maintained. 請求項1記載の回転電機システムに於いて,さらに可動磁極部の偏倚位置を保持する手段を有し,間歇的に電機子を流れる磁束量が制御される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, further comprising means for holding the bias position of the movable magnetic pole portion, and the amount of magnetic flux flowing through the armature is controlled intermittently. 請求項1記載の回転電機システムに於いて,表面磁極部に於いて電機子と対向する面には,電機子に対向して磁性体突極と磁気空隙部とが周方向に交互に配置されている事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein a magnetic salient pole and a magnetic air gap are alternately arranged in the circumferential direction on the surface of the surface magnetic pole portion facing the armature so as to face the armature. Rotating electrical machine system characterized by 請求項1記載の回転電機システムに於いて,表面磁極部に於いて電機子と対向する面には,磁性体突極と略周方向の磁化を持つ永久磁石が周方向に交互に配置され,隣接する磁性体突極を互いに逆方向に磁化するよう隣接する永久磁石は互いに磁化を反転して配置され,励磁部と永久磁石とが磁性体突極を磁化する極性は同じになるよう配置されている事を特徴とする回転電機システム In the rotating electrical machine system according to claim 1, magnetic salient poles and permanent magnets having substantially circumferential magnetization are alternately arranged in a circumferential direction on a surface of the surface magnetic pole portion facing the armature. Adjacent permanent magnets are arranged with their magnetizations reversed so that adjacent magnetic salient poles are magnetized in opposite directions, and the magnetizing portions and permanent magnets are arranged with the same polarity to magnetize the magnetic salient poles. Rotating electrical machine system characterized by 請求項1記載の回転電機システムに於いて,集合永久磁石は中間磁性体突極の両側面に同一の略周方向磁化を持つ永久磁石板を配置した等価永久磁石とし,表面磁極部に於いて電機子と対向する面には,磁性体突極と集合永久磁石が周方向に交互に配置され,隣接する磁性体突極を互いに逆方向に磁化するよう隣接する集合永久磁石は互いに磁化を反転して配置され,励磁部と集合永久磁石とが磁性体突極を磁化する極性は同じになるよう配置されている事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the collective permanent magnet is an equivalent permanent magnet in which permanent magnet plates having the same substantially circumferential magnetization are arranged on both sides of the intermediate magnetic salient pole. On the surface facing the armature, magnetic salient poles and collective permanent magnets are alternately arranged in the circumferential direction. Adjacent collective permanent magnets reverse their magnetization so that adjacent magnetic salient poles are magnetized in opposite directions. The rotating electrical machine system is characterized in that the magnetizing portion and the assembly permanent magnet are arranged to have the same polarity for magnetizing the magnetic salient pole. 請求項1から請求項17記載の何れかの回転電機システムに於いて,さらに制御装置を有し,回転力を入力とし,発電電力を出力とする回転電機システムであって,制御装置により電機子コイルに誘起される発電電圧が所定の値より大の時は可動磁極部が偏倚されて界磁磁石と磁性体突極延長部とが対向する面積を小とされ,発電電圧が所定の値より小の時は可動磁極部が偏倚されて界磁磁石と磁性体突極延長部とが対向する面積を大とされ,発電電圧が所定の値に制御される事を特徴とする回転電機システム The rotating electrical machine system according to any one of claims 1 to 17, further comprising a control device, wherein the rotational power is an input and the generated electric power is an output. When the generated voltage induced in the coil is greater than a predetermined value, the movable magnetic pole portion is biased to reduce the area where the field magnet and the magnetic salient pole extension face each other, and the generated voltage is less than the predetermined value. When it is small, the movable magnetic pole part is biased to increase the area where the field magnet and the magnetic salient pole extension face each other, and the generated voltage is controlled to a predetermined value. 請求項1から請求項17記載の何れかの回転電機システムに於いて,さらに制御装置を有し,電機子コイルへの供給電流を入力とし,回転力を出力とする回転電機システムであって,制御装置により回転速度が所定の値より大で電機子を流れる磁束量を減少させる時には可動磁極部が偏倚されて界磁磁石と磁性体突極延長部とが対向する面積を小とされ,回転速度が所定の値より小で電機子を流れる磁束量を増大させる時には可動磁極部が偏倚されて界磁磁石と磁性体突極延長部とが対向する面積を大として回転力が最適に制御される事を特徴とする回転電機システム The rotating electrical machine system according to any one of claims 1 to 17, further comprising a control device, wherein the current supplied to the armature coil is input and the rotational force is output. When the control device reduces the amount of magnetic flux flowing through the armature when the rotational speed is higher than a predetermined value, the movable magnetic pole part is biased to reduce the area where the field magnet and the magnetic salient pole extension face each other. When the speed is less than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the movable magnetic pole part is biased, and the rotational force is optimally controlled by increasing the area where the field magnet and the magnetic salient pole extension face each other. Rotating electrical machine system characterized by 請求項1から請求項17記載の何れかの回転電機システムに於いて,さらに制御装置を有し,電機子コイルへの供給電流を入力とし,回転力を出力とする回転電機システムであって,回転速度を減少させる場合には制御装置により電機子を流れる磁束量を大とされるよう可動磁極部が偏倚されて界磁磁石と磁性体突極延長部とが対向する面積が大とされて回転エネルギーが発電電力として取り出される事を特徴とする回転電機システム The rotating electrical machine system according to any one of claims 1 to 17, further comprising a control device, wherein the current supplied to the armature coil is input and the rotational force is output. When the rotational speed is decreased, the movable magnetic pole portion is biased so that the amount of magnetic flux flowing through the armature is increased by the control device, and the area where the field magnet and the magnetic salient pole extension portion face each other is increased. Rotating electrical machinery system characterized in that rotational energy is extracted as generated power 電機子コイルを有する電機子と,電機子と対向して相対回転可能で且つ電機子と対向して周方向に配置された複数の磁性体突極を有する界磁部とを有し界磁部は表面磁極部と励磁部とを有し,表面磁極部は電機子との対向面に複数の磁性体突極を周方向に有すると共に電機子に面しない側に磁性体突極延長部及びバイパス磁極を有し,励磁部は隣接する磁性体突極を互いに逆極性に磁化するよう配置された界磁磁石を有して構成される回転電機の電機子を流れる磁束量を制御する磁束量制御方法であって,励磁部は周方向磁化を持つ界磁磁石を周方向に隣接する磁性体突極延長部間及び周方向に隣接するバイパス磁極間に配置し,界磁磁石の一方の磁極から磁性体突極延長部に流入する磁束が電機子及び隣接する磁性体突極を介して他方の磁極に環流する主磁路及び界磁磁石の一方の磁極からバイパス磁極に流入する磁束が主として界磁部内で隣接するバイパス磁極を介して他方の磁極に環流するバイパス磁路を界磁磁石に並列に接続し,表面磁極部或いは励磁部の何れかを可動磁極部として界磁磁石が磁性体突極延長部と対向する面積及びバイパス磁極と対向する面積の和を一定に保ちながら前記それぞれの面積を変えるよう可動磁極部を残余に対して相対的に偏倚可能に構成し,可動磁極部を偏倚させて電機子を流れる磁束量を制御する。

Has an armature having an armature coil and a field portion having a plurality of magnetic salient pole arranged in the armature and opposite to and armature opposite to the circumferential direction relatively rotatable, field The surface magnetic pole part has a plurality of magnetic salient poles on the surface facing the armature in the circumferential direction and the magnetic salient pole extension on the side not facing the armature. has a bypass magnetic pole, magnetic flux exciting section for controlling the magnetic flux amount flowing in the armature of a rotary electric machine configured with a field magnet arranged to magnetized in opposite polarities adjacent magnetic salient poles each other In the control method, the exciting part is arranged with a field magnet having circumferential magnetization between the magnetic salient pole extensions adjacent in the circumferential direction and between the bypass magnetic poles adjacent in the circumferential direction. The magnetic flux flowing from the magnetic salient pole extension to the other via the armature and the adjacent magnetic salient pole Parallel to the field magnet, the main magnetic path that circulates to the pole and the magnetic flux that flows from one magnetic pole of the field magnet to the bypass magnetic pole mainly circulates to the other magnetic pole via the adjacent bypass magnetic pole in the field part. Each of the surface magnetic pole part and the excitation part as a movable magnetic pole part, while maintaining the sum of the area where the field magnet is opposed to the magnetic salient pole extension and the area where the magnetic pole is opposed to the bypass magnetic pole is kept constant. The movable magnetic pole portion is configured to be relatively biased with respect to the remainder so as to change the magnetic field, and the movable magnetic pole portion is biased to control the amount of magnetic flux flowing through the armature.

請求項21記載の磁束量制御方法に於いて以下のステップを含む。バイパス磁路の磁気抵抗及び主磁路の磁気抵抗が互いにほぼ等しいとする最小磁気力条件に設定する。 The magnetic flux amount control method according to claim 21 includes the following steps. The minimum magnetic force condition is set such that the magnetic resistance of the bypass magnetic path and the magnetic resistance of the main magnetic path are substantially equal to each other. 請求項21記載の磁束量制御方法に於いて以下のステップを含む。さらに主磁路或いはバイパス磁路の磁気抵抗を調整する磁気抵抗調整手段を有し,可動磁極部の偏倚に必要な力を小とするよう主磁路或いはバイパス磁路の磁気抵抗を調整する。 The magnetic flux amount control method according to claim 21 includes the following steps. Further, the magnetic resistance adjusting means for adjusting the magnetic resistance of the main magnetic path or the bypass magnetic path is provided, and the magnetic resistance of the main magnetic path or the bypass magnetic path is adjusted so as to reduce the force necessary for the deviation of the movable magnetic pole portion. 請求項23記載の磁束量制御方法に於いて以下のステップを含む。可動磁極部を偏倚させる際に磁気抵抗調整手段によりバイパス磁路の磁気抵抗と主磁路の磁気抵抗とを最小磁気力条件にほぼ等しくなるよう調整する。 The magnetic flux amount control method according to claim 23 includes the following steps. When the movable magnetic pole portion is biased, the magnetic resistance adjusting means adjusts the magnetic resistance of the bypass magnetic path and the magnetic resistance of the main magnetic path to be substantially equal to the minimum magnetic force condition. 請求項23記載の磁束量制御方法に於いて以下のステップを含む。電機子を流れる磁束量を増加する時に磁気抵抗調整手段は最小磁気力条件より主磁路の磁気抵抗を小に或いはバイパス磁路の磁気抵抗を大に調整し,電機子を流れる磁束量を減少させる時に磁気抵抗調整手段は最小磁気力条件より主磁路の磁気抵抗を大に或いはバイパス磁路の磁気抵抗を小に調整し,同時に可動磁極部を偏倚させる。 The magnetic flux amount control method according to claim 23 includes the following steps. When increasing the amount of magnetic flux flowing through the armature, the magnetic resistance adjusting means adjusts the magnetic resistance of the main magnetic path to be smaller or the magnetic resistance of the bypass magnetic path to be larger than the minimum magnetic force condition, thereby reducing the magnetic flux flowing through the armature. The magnetic resistance adjusting means adjusts the magnetic resistance of the main magnetic path to be larger or the magnetic resistance of the bypass magnetic path to be smaller than the minimum magnetic force condition, and simultaneously biases the movable magnetic pole portion. 請求項23記載の磁束量制御方法に於いて以下のステップを含む。さらに主磁路及びバイパス磁路の磁気抵抗が最小磁気力条件から外れる事により可動磁極部に加わる磁気力の検知手段を有し,間歇的に変えられた磁気抵抗調整手段に関係するパラメータ,或いは通常の運転中に変わる前記パラメータと可動磁極部に加わる磁気力との関係を監視し,可動磁極部に加わる磁気力を小とする前記パラメータを最小磁気力条件パラメータとして設定する。 The magnetic flux amount control method according to claim 23 includes the following steps. Further, the magnetic resistance of the main magnetic path and the bypass magnetic path has a detecting means for detecting the magnetic force applied to the movable magnetic pole part when the magnetic resistance deviates from the minimum magnetic force condition, and parameters related to the magnetic resistance adjusting means changed intermittently, or The relationship between the parameter that changes during normal operation and the magnetic force applied to the movable magnetic pole portion is monitored, and the parameter that reduces the magnetic force applied to the movable magnetic pole portion is set as the minimum magnetic force condition parameter.
JP2008144181A 2007-10-29 2008-06-02 Magnetic flux shunt control rotating electrical machine system Expired - Fee Related JP4243651B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144181A JP4243651B1 (en) 2007-10-29 2008-06-02 Magnetic flux shunt control rotating electrical machine system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007280003 2007-10-29
JP2008013524 2008-01-24
JP2008074842 2008-03-24
JP2008144181A JP4243651B1 (en) 2007-10-29 2008-06-02 Magnetic flux shunt control rotating electrical machine system

Publications (2)

Publication Number Publication Date
JP4243651B1 true JP4243651B1 (en) 2009-03-25
JP2009261206A JP2009261206A (en) 2009-11-05

Family

ID=40559934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144181A Expired - Fee Related JP4243651B1 (en) 2007-10-29 2008-06-02 Magnetic flux shunt control rotating electrical machine system

Country Status (1)

Country Link
JP (1) JP4243651B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130219A (en) * 2010-12-17 2012-07-05 Aisin Aw Co Ltd Rotary electric machine
ITUD20120213A1 (en) * 2012-12-07 2014-06-08 Univ Degli Studi Trieste ROTOR FOR A PERMANENT MAGNET ELECTRIC MOTOR

Also Published As

Publication number Publication date
JP2009261206A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
US7999432B2 (en) Field controllable rotating electric machine system with magnetic excitation part
US7567006B2 (en) Field controllable rotating electric machine system with flux shunt control
US8207645B2 (en) Magnetic flux controllable rotating electric machine system
US20090045691A1 (en) Field controllable rotating electric machine system with magnetic excitation part
US8242653B2 (en) Magnetic flux controllable rotating electric machine system
US8373325B2 (en) Rotating electric machine system
KR101091444B1 (en) Flux shunt control rotary electric machine system
EP2466733A2 (en) Synchronous motor
EP2622721A1 (en) Dynamo-electric machine
CN101874338B (en) Flux shunt control rotary electric machine system
KR101118337B1 (en) Magnetic flux distribution control type rotary electrical machine system
JP4150765B1 (en) Magnetic flux shunt control rotating electrical machine system
JP2010172046A (en) Magnetic flux amount variable rotating electric machine system excited by magnet
JP4635829B2 (en) Permanent magnet motor
JP2011050186A (en) Variable magnetic flux rotating electric machine system
JP4243651B1 (en) Magnetic flux shunt control rotating electrical machine system
JP2005073444A (en) Permanent magnet rotary electric machine
JP4238298B1 (en) Magnetic flux shunt control rotating electrical machine system
WO2015186442A1 (en) Magnet excitation rotating electric machine system
JP2009303361A (en) Magnetic flux shunt control rotary electric machine system
JP2009268298A (en) Flux shunt control rotary electric machine system
JP2009273288A (en) Flux shunt control rotary electric machine system
JP2009261216A (en) Rotary electric machine system with flux shunt control
JP2009268299A (en) Flux shunt control rotary electric machine system
JP2011072173A (en) Magnetic flux amount variable rotary electric machine system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees