JP2009268298A - Flux shunt control rotary electric machine system - Google Patents

Flux shunt control rotary electric machine system Download PDF

Info

Publication number
JP2009268298A
JP2009268298A JP2008116918A JP2008116918A JP2009268298A JP 2009268298 A JP2009268298 A JP 2009268298A JP 2008116918 A JP2008116918 A JP 2008116918A JP 2008116918 A JP2008116918 A JP 2008116918A JP 2009268298 A JP2009268298 A JP 2009268298A
Authority
JP
Japan
Prior art keywords
magnetic
pole
bypass
path
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008116918A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ichiyama
義和 市山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURA GIJUTSU KENKYUSHO KK
Kura Gijutsu Kenkyusho KK
Original Assignee
KURA GIJUTSU KENKYUSHO KK
Kura Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURA GIJUTSU KENKYUSHO KK, Kura Gijutsu Kenkyusho KK filed Critical KURA GIJUTSU KENKYUSHO KK
Priority to JP2008116918A priority Critical patent/JP2009268298A/en
Priority to PCT/JP2008/059455 priority patent/WO2009025110A1/en
Priority to CN2008801020965A priority patent/CN101772880B/en
Priority to KR1020107003310A priority patent/KR101118337B1/en
Priority to EP08753086A priority patent/EP2187508A4/en
Priority to US12/136,975 priority patent/US7999432B2/en
Publication of JP2009268298A publication Critical patent/JP2009268298A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flux shunt control rotary electric machine system which is excellent in energy efficiency, in a magnet-excited rotary electric machine. <P>SOLUTION: The magnet-excited rotary electric machine system has an exciting part which collectively excites magnetic material salient poles magnetized into the same kind of polarity, and in a field magnet within the exciting part, a main magnetic path, which circulates the magnetic flux from the field magnet via an armature, and a bypass magnetic path, which circulates it within the magnetic path, are connected with each other in parallel, and it controls the quantity of magnetic flux flowing in the main magnetic path by mechanical bias. Hereby, a rotary electric machine and a magnetic flux quantity control method, which facilitate the control of the quantity of magnetic flux, are materialized. Furthermore, a means and a method for reducing the quantity of short circuit magnetic flux between both magnetic paths by adjusting the magnetic resistance of the above magnetic path and for making the force required for bias small are proposed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は,永久磁石界磁を持つ回転電機に関し,特に弱め界磁制御により出力を最適に制御する回転電機システムに関する。   The present invention relates to a rotating electrical machine having a permanent magnet field, and more particularly to a rotating electrical machine system that optimally controls output by field-weakening control.

永久磁石界磁と電機子との相対的回転によって電磁的に生ずる電力を取り出す発電機,或いは電機子に供給する電流によって生ずる磁界と永久磁石界磁との相互作用により永久磁石界磁と電機子との相対的回転を生ずる電動機等の回転電機装置はエネルギー効率に優れ,永久磁石の技術的進歩に伴い日常的に広く使われている。しかしそのような回転電機は、界磁からの磁束が一定であるので電動機として用いられるにしても発電機として用いられるにしても広い回転速度範囲で常に最適の出力が得られる訳ではない。すなわち,電動機の場合は高速回転域では逆起電力(発電電圧)が高すぎる結果となって制御が困難となり,弱め界磁制御として界磁強度を弱める種々の手段が提案されている。また発電機の場合,広い回転速度範囲に於いて発電電圧を所定のレベルとする為に専ら界磁電流制御による定電圧発電或いは半導体による発電電圧の定電圧化回路が用いられている。   A generator for extracting electric power generated electromagnetically by the relative rotation of the permanent magnet field and the armature, or the permanent magnet field and the armature by the interaction between the magnetic field generated by the current supplied to the armature and the permanent magnet field Rotating electrical machines such as motors that produce relative rotation with the motor are energy efficient and are widely used on a daily basis with the technological advance of permanent magnets. However, since such a rotating electrical machine has a constant magnetic flux from the field, even if it is used as an electric motor or a generator, an optimum output is not always obtained in a wide rotational speed range. In other words, in the case of an electric motor, the back electromotive force (generated voltage) is too high in the high-speed rotation range, making control difficult, and various means for weakening field strength have been proposed as field weakening control. In the case of a generator, constant voltage power generation based on field current control or a constant voltage generation circuit using a semiconductor is used exclusively to bring the generated voltage to a predetermined level in a wide rotational speed range.

電動機では進み位相電流による弱め界磁制御が広く採用されているが,回転に直接寄与しない電流を流す為にエネルギー損失を大とする。永久磁石励磁に制御用電流励磁を併用する場合は回転電機の構造を複雑にし,その上にエネルギー損失を伴う。さらに発電機の場合,大電力での定電圧化電子回路のコスト負担が大であるとの問題があった。したがって,回転電機装置の構成を工夫して電子回路制御を最小限に留めて装置全体としてのコストを低減する方策は以前から求められ,種々の提案が為されてきた。   In electric motors, field-weakening control based on lead phase current is widely adopted, but energy loss is increased because a current that does not directly contribute to rotation flows. When the control current excitation is used in combination with the permanent magnet excitation, the structure of the rotating electrical machine is complicated, and energy loss is additionally caused. Furthermore, in the case of generators, there is a problem that the cost burden of constant voltage electronic circuits with large power is large. Therefore, measures for reducing the cost of the entire apparatus by devising the configuration of the rotating electrical machine and minimizing the electronic circuit control have been sought before, and various proposals have been made.

上記提案例に界磁回転子を二分し,二つの界磁回転子を周方向に相対偏倚させて実効的に界磁強度を制御する方法がある(特許文献1)。前記相対偏倚は機構的に保持出来るので制御の為のエネルギー損失は少ない長所はあるが,電機子に流入する界磁磁束量は変わらないので高速回転域で渦電流損が大きい欠点がある。他の提案例に界磁磁石を含む磁気回路の磁気抵抗を変えて磁束を制御する方法がある(特許文献2,3)。更に他の提案例として界磁磁石を短絡制御する方法がある(特許文献4,5,6)。一般に磁石を含む磁気回路に可動部分が存在する場合,磁気回路を流れる磁束を大にする方向(磁気抵抗を小にする方向)に可動部分を偏倚させようとする磁気力が存在する。界磁磁石は回転電機装置に於いて,力を発生し或いは電力を発生する源泉である。上記提案はこれら力の源泉を直接に制御しようとする試みであって,機構の偏倚制御に大きな力を要すると共に部材の振動或いはハンチング等を招来して精密な制御は難しい。さらに大出力のアクチュエータ,過分な機械強度を伴う制御機構等を必要として実現には困難を伴っている。   In the above proposed example, there is a method of effectively controlling the field strength by dividing the field rotator in half and relatively biasing the two field rotators in the circumferential direction (Patent Document 1). Although the relative bias can be mechanically maintained, there is an advantage that the energy loss for control is small. However, since the amount of field magnetic flux flowing into the armature does not change, there is a disadvantage that the eddy current loss is large in a high-speed rotation region. Another proposed example is a method of controlling magnetic flux by changing the magnetic resistance of a magnetic circuit including a field magnet (Patent Documents 2 and 3). As another proposed example, there is a method of controlling the short-circuit of the field magnet (Patent Documents 4, 5, and 6). In general, when a movable part exists in a magnetic circuit including a magnet, there is a magnetic force that tends to bias the movable part in a direction in which the magnetic flux flowing through the magnetic circuit is increased (a direction in which the magnetic resistance is reduced). A field magnet is a source for generating force or power in a rotating electrical machine. The above proposal is an attempt to directly control the source of these forces, which requires a large force to control the deviation of the mechanism and invites vibration or hunting of the member, and thus it is difficult to control precisely. In addition, it requires a high-power actuator and a control mechanism with excessive mechanical strength, which is difficult to realize.

本願発明者は先に特願2007−212674により,永久磁石界磁の制御方法及び回転電機システムを提案した。これらは界磁磁石に磁束が電機子側を通る主磁路,及び電機子を通らないバイパス磁路を並列に接続する構成として機構偏倚により主磁路に分流する界磁磁束量を変える構造であり,次の特徴がある。すなわち,(1)界磁磁石を減磁させる懸念の無い事,(2)界磁制御に際して機構偏倚を妨げる磁気力発生を抑制できる事,(3)界磁の条件保存が可能な機構手段である事,(4)電機子側への界磁磁束をゼロ近傍にまで減少できて渦電流損を抑制出来る事,(5)電機子と対向する磁性体突極を流れる界磁磁束をゼロ近傍にまで制御して磁性体突極の磁性体全てをリラクタンストルク発生に開放可能な構成である事,等々である。   The present inventor previously proposed a method for controlling a permanent magnet field and a rotating electrical machine system according to Japanese Patent Application No. 2007-212673. These are structures in which the main magnetic path through which the magnetic flux passes through the armature side and the bypass magnetic path that does not pass through the armature are connected in parallel to the field magnet, and the amount of field magnetic flux that is diverted to the main magnetic path is changed by mechanism deviation. There are the following features. That is, (1) there is no fear of demagnetizing the field magnet, (2) it is possible to suppress the generation of magnetic force that hinders mechanism deviation during field control, and (3) mechanism means that can preserve the field conditions. (4) The field magnetic flux to the armature side can be reduced to near zero and eddy current loss can be suppressed, and (5) the field magnetic flux flowing through the magnetic salient pole facing the armature is brought to near zero. The configuration is such that all the magnetic bodies of the magnetic salient poles can be controlled to release reluctance torque, and so on.

しかしながら,量産段階で各部材は公差範囲内でバラツキ,また経時的変化,さらには運転状態により主磁路及びバイパス磁路の磁気抵抗が設計値よりずれる事で磁路の磁気抵抗は変動し,上記機構偏倚を妨げる磁気力が現れる場合がある。また,主磁路とバイパス磁路,それぞれの磁気抵抗間の差が大になると,磁路間の短絡磁束量が大となり,磁束量の分流制御の精度が著しく損なわれる場合がある。
米国特許3713015「ALTERNATING CURRENT GENERATOR HAVING A TWIN PM ROTOR WHICH IS ADJUSTABLE IN RESPONSE TO OUTPUT VOLTAGE」 特開2004−320864「同期回転電機及びその制御方法」 特開2004−328944「磁束制御型発電機」 米国特許4885493「Output voltage control apparatus of a permanent magnet alternator」 特開2004−357357「永久磁石形モータ及び洗濯機」 特開2006−246662「永久磁石式回転機」
However, at the mass production stage, each member varies within the tolerance range, changes over time, and the magnetic resistance of the magnetic path fluctuates due to the deviation of the magnetic resistance of the main magnetic path and bypass magnetic path from the design value depending on the operating condition. A magnetic force that prevents the mechanism deviation may appear. Further, if the difference between the magnetic resistances of the main magnetic path and the bypass magnetic path becomes large, the amount of short-circuit magnetic flux between the magnetic paths becomes large, and the accuracy of the shunt control of the magnetic flux amount may be significantly impaired.
US Patent 3713015 "ALTERNATING CURRENT GENERATOR HAVING A TWIN PM ROTOR WHICH IS ADJUSTABLE IN RESPONSE TO OUTPUT VOLTAGE" Japanese Patent Application Laid-Open No. 2004-320864 “Synchronous Rotating Electric Machine and Control Method Therefor” JP 2004-328944 "Flux control generator" US Pat. No. 4,885,493 “Output voltage control apparatus of a permanent magnet alternator” Japanese Patent Application Laid-Open No. 2004-357357 “Permanent Magnet Type Motor and Washing Machine” JP 2006-246661 “Permanent Magnet Rotating Machine”

したがって,本発明が解決しようとする課題は,主磁路及びバイパス磁路間での短絡磁束量を低減して精密な磁束量制御を可能として出力を最適に制御できる回転電機システム及び磁束量制御方法を提供する事である。   Therefore, the problem to be solved by the present invention is to provide a rotating electrical machine system and a magnetic flux amount control capable of optimally controlling the output by reducing the short-circuit magnetic flux amount between the main magnetic path and the bypass magnetic path and enabling precise magnetic flux amount control. Is to provide a method.

本発明による回転電機システムは,電機子を流れる磁束量を機構偏倚により変える事が出来る。その具体的な構成は以下の通りである。   In the rotating electrical machine system according to the present invention, the amount of magnetic flux flowing through the armature can be changed by mechanism deviation. The specific configuration is as follows.

請求項1の発明は,電機子コイルを有する電機子と,電機子と対向して周方向に配置された複数の磁性体突極を有する表面磁極部と,同種の極性に磁化する磁性体突極グループ毎に一括して磁化する励磁部とからなり,表面磁極部と電機子とは軸を中心に相対的に回転可能である回転電機装置であって,励磁部は界磁磁石及び主磁極及びバイパス磁極を有し,界磁磁石のN極或いはS極の何れか一方の磁極を第一界磁磁極,他方の磁極を第二界磁磁極としたときに第一界磁磁極に主磁極及びバイパス磁極が対向して配置され,第一界磁磁極から主磁極に流入する磁束が磁性体突極及び電機子を介して第二界磁磁極に環流する主磁路及び第一界磁磁極からバイパス磁極に流入する磁束が主として励磁部内で第二界磁磁極に環流するバイパス磁路が界磁磁石に並列に接続され,主磁路とバイパス磁路間の磁気抵抗が主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差より大になるよう構成され,主磁極及びバイパス磁極のユニット或いは界磁磁石の何れかが可動磁極部として第一界磁磁極が主磁極と対向する面積及びバイパス磁極と対向する面積の和が一定に保たれながら前記それぞれの対向面積を変える事が出来るよう可動磁極部が残余に対して相対偏倚可能に構成され,回転電機システムの出力が最適化するように前記出力に応じて可動磁極部が偏倚して主磁路に流れる磁束量が制御される事を特徴とする回転電機システムである。   According to the first aspect of the present invention, there is provided an armature having an armature coil, a surface magnetic pole portion having a plurality of magnetic salient poles arranged in a circumferential direction so as to face the armature, and a magnetic projection magnetized to the same kind of polarity. A rotating electrical machine apparatus in which the surface magnetic pole part and the armature are relatively rotatable about an axis, and the excitation part comprises a field magnet and a main magnetic pole. And a bypass magnetic pole, and the main magnetic pole as the first field magnetic pole when one of the N or S poles of the field magnet is the first field magnetic pole and the other magnetic pole is the second field magnetic pole. The main magnetic path and the first field magnetic pole in which the magnetic flux flowing from the first field magnetic pole to the main magnetic pole circulates to the second field magnetic pole via the magnetic salient pole and armature. Bypass magnetic path in which the magnetic flux flowing into the bypass magnetic pole circulates mainly to the second field magnetic pole in the excitation part The magnetic resistance between the main magnetic path and the bypass magnetic path is greater than the difference between the main magnetic path and the bypass magnetic resistance. Either the bypass magnetic pole unit or the field magnet is used as a movable magnetic pole portion, and the area where the first field magnetic pole faces the main magnetic pole and the sum of the areas facing the bypass magnetic pole are kept constant while the respective facing areas are changed. The movable magnetic pole portion is configured to be able to be biased relative to the rest so that the magnetic flux can flow, and the amount of magnetic flux flowing in the main magnetic path is deviated according to the output so that the output of the rotating electrical machine system is optimized. The rotating electrical machine system is characterized by being controlled.

上記構成に於いて,界磁磁石に主磁極及びバイパス磁極が微小間隙を介して対向し,磁束は界磁磁石及び磁性体近傍ではそれらの境界面にほぼ直交するので界磁磁石からの磁束はほぼ層流状に主磁極及びバイパス磁極に流入し,主磁極に分流される磁束量は主磁極と界磁磁石の対向面積に比例する。さらに主磁路とバイパス磁路間の磁気抵抗が主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差より大になるよう構成されているのでそれぞれの磁路の磁気抵抗間に差が現れる場合でも磁路間の短絡磁束量は小さく抑えられ,磁束量の精密な制御が可能になる。また,主磁路に流入する磁束量を変更しても界磁磁石にはバイパス磁路が接続されているので界磁磁石が減磁されるリスクは避けられる。主磁路の磁気抵抗は磁性体突極と磁性体歯との相対位置により変動するが,本発明で主磁路の磁気抵抗は磁性体突極と磁性体歯間の各相対位置に関して平均化された値を示している。   In the above configuration, the main magnetic pole and the bypass magnetic pole face the field magnet through a minute gap, and the magnetic flux is almost perpendicular to the boundary surface in the vicinity of the field magnet and the magnetic body. The amount of magnetic flux that flows into the main magnetic pole and bypass magnetic pole in a substantially laminar flow and is diverted to the main magnetic pole is proportional to the opposing area of the main magnetic pole and the field magnet. Furthermore, since the magnetic resistance between the main magnetic path and the bypass magnetic path is configured to be greater than the difference between the magnetic resistance of the main magnetic path and the magnetic resistance of the bypass magnetic path, Even when a difference appears, the amount of short-circuit magnetic flux between magnetic paths can be kept small, and precise control of the amount of magnetic flux becomes possible. Even if the amount of magnetic flux flowing into the main magnetic path is changed, the risk of the field magnet being demagnetized is avoided because the bypass magnet path is connected to the field magnet. The magnetic resistance of the main magnetic path varies depending on the relative position between the magnetic salient pole and the magnetic tooth, but in the present invention, the magnetic resistance of the main magnetic path is averaged for each relative position between the magnetic salient pole and the magnetic tooth. Is shown.

しかし,磁路の磁気抵抗を変動させる要因は多い。すなわち,量産段階で部品寸法は設定公差内でばらついて各磁路の磁気抵抗を変動させ,磁路間の磁束漏洩が無視できない場合は可動磁極部の偏倚位置が各磁路の磁気抵抗に影響し,磁性体の透磁率は温度の影響を受けやすいので各磁路の磁気抵抗は変化する。更にまた電機子コイルに電流が流れると主磁路の磁気抵抗は実効的に変動する。このように各磁路の磁気抵抗は変動するので回転電機システムの仕様に合わせて回転子の静止状態或いは平均的な運転条件に於いて主磁路とバイパス磁路間の磁気抵抗が主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差より大になるよう設定する。   However, there are many factors that fluctuate the magnetic resistance of the magnetic path. In other words, when the part size varies within the set tolerance at the mass production stage, the magnetic resistance of each magnetic path is fluctuated. However, since the magnetic permeability of the magnetic material is susceptible to temperature, the magnetic resistance of each magnetic path changes. Furthermore, when a current flows through the armature coil, the magnetic resistance of the main magnetic path effectively varies. Since the magnetic resistance of each magnetic path fluctuates in this way, the magnetic resistance between the main magnetic path and the bypass magnetic path is the main magnetic path in accordance with the specifications of the rotating electrical machine system in the stationary state of the rotor or average operating conditions. And set to be larger than the difference between the magnetic resistance of the bypass magnetic path and the magnetic resistance of the bypass magnetic path.

回転電機には,界磁部が回転し電機子が静止する構造及びその逆の構造,さらに円筒状の電機子と界磁部が径方向に空隙を介して対向する構造,或いは略円盤状の電機子と界磁部が軸方向に空隙を介して対向する構造等のいずれの構造も存在する。本発明は永久磁石励磁の界磁部を持つ上記何れの構造の回転電機にも適用される。また,回転電機は電機子コイルへの電流を入力として回転力を出力とすれば電動機であり,回転力を入力として電機子コイルから電流を出力すれば発電機である。電動機或いは発電機に於いて最適の磁極構成は存在するが,可逆的であり,上記の回転電機システムは電動機,発電機の何れにも適用される。   The rotating electric machine has a structure in which the field part rotates and the armature stops and vice versa, and a cylindrical armature and the field part face each other with a gap in the radial direction, or a substantially disk-like structure. There are any structures such as a structure in which the armature and the field part face each other in the axial direction with a gap. The present invention can be applied to any of the above-described rotating electric machines having a permanent magnet excitation field portion. A rotating electric machine is an electric motor if a current to the armature coil is input and a rotational force is output, and a rotating electric machine is a generator if a current is output from the armature coil using the rotational force as an input. There is an optimum magnetic pole configuration in the electric motor or the generator, but it is reversible, and the rotating electrical machine system described above is applied to both the electric motor and the generator.

請求項2の発明は,請求項1記載の回転電機システムに於いて,バイパス磁路の磁気抵抗及び主磁路の磁気抵抗が互いにほぼ等しいとする最小磁気力条件に設定される事を特徴とする。前記主磁路及びバイパス磁路の磁気抵抗を互いにほぼ等しいとする最小磁気力条件に設定する事により磁路間の短絡磁束量は小さく抑えられる。さらに界磁磁石からの磁束総量は一定に保たれるので可動磁極部の偏倚を妨げる磁気力を小として精密な磁束量制御を可能にする。「ほぼ等しい」の意味は回転電機システムの仕様に沿って前記短絡磁束量が許容レベルに抑えられるよう,或いは前記偏倚に用いるアクチュエータの出力以下に前記偏倚を妨げる磁気力を抑制するよう両磁路の磁気抵抗を最小磁気力条件に設定する事である。   According to a second aspect of the present invention, in the rotating electrical machine system according to the first aspect, the minimum magnetic force condition is set such that the magnetic resistance of the bypass magnetic path and the magnetic resistance of the main magnetic path are substantially equal to each other. To do. By setting the minimum magnetic force condition that the magnetic resistances of the main magnetic path and the bypass magnetic path are substantially equal to each other, the amount of short-circuit magnetic flux between the magnetic paths can be kept small. Further, since the total amount of magnetic flux from the field magnet is kept constant, the magnetic force that prevents the displacement of the movable magnetic pole portion can be reduced to enable precise magnetic flux amount control. The meaning of “substantially equal” is that both magnetic paths are used so that the amount of short-circuit magnetic flux is suppressed to an allowable level in accordance with the specifications of the rotating electrical machine system, or the magnetic force that prevents the bias is suppressed below the output of the actuator used for the bias. Is set to the minimum magnetic force condition.

請求項3の発明は,請求項1記載の回転電機システムに於いて,さらに主磁路或いはバイパス磁路の磁気抵抗を調整する磁気抵抗調整手段を有し,主磁路とバイパス磁路間の磁気抵抗が主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差より大になるよう主磁路或いはバイパス磁路の磁気抵抗が調整される事を特徴とする。前記磁気抵抗調整手段を有して回転電機の製造後或いは運転中に主磁路或いはバイパス磁路の磁気抵抗を調整して主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差を小として精密な磁束量制御を可能にする提案をし,さらに,回転電機の運転条件により変わる磁路の磁気抵抗に適合させる。磁気抵抗調整の具体的な手段,方法として磁路の一部に配置した磁気空隙寸法諸元の変更制御及び磁路に巻回したコイルへの通電制御等を提案している。さらに温度或いは磁気飽和等を利用して磁性体の磁気特性を制御する方法も可能である。   According to a third aspect of the present invention, there is provided the rotating electrical machine system according to the first aspect, further comprising a magnetic resistance adjusting means for adjusting a magnetic resistance of the main magnetic path or the bypass magnetic path, between the main magnetic path and the bypass magnetic path. The magnetic resistance of the main magnetic path or the bypass magnetic path is adjusted so that the magnetic resistance becomes larger than the difference between the magnetic resistance of the main magnetic path and the magnetic resistance of the bypass magnetic path. A difference between the magnetic resistance of the main magnetic path and the magnetic resistance of the bypass magnetic path by adjusting the magnetic resistance of the main magnetic path or the bypass magnetic path after manufacturing or operation of the rotating electrical machine having the magnetic resistance adjusting means. Is proposed to enable precise control of the magnetic flux, and it is adapted to the reluctance of the magnetic path that changes depending on the operating conditions of the rotating electrical machine. As specific means and methods for adjusting the magnetic resistance, a change control of the dimensions of the magnetic air gap arranged in a part of the magnetic path and a control of energizing the coil wound around the magnetic path are proposed. Furthermore, a method of controlling the magnetic characteristics of the magnetic material using temperature or magnetic saturation is also possible.

請求項4の発明は,請求項3記載の回転電機システムに於いて,磁気抵抗調整手段としてバイパス磁路内の空隙に於ける空隙長調整手段を有する事を特徴とする。空隙長調整手段はバイパス磁路に設けた空隙を構成する部材の位置を変えて空隙長を変える。回転電機の組み立て後の調整,或いはアクチュエータを用いて動作中に調整制御する。   According to a fourth aspect of the present invention, in the rotating electrical machine system according to the third aspect of the present invention, the magnetic resistance adjusting means includes air gap length adjusting means in the air gap in the bypass magnetic path. The gap length adjusting means changes the gap length by changing the position of the member constituting the gap provided in the bypass magnetic path. Adjustment after the assembly of the rotating electrical machine or adjustment control during operation using an actuator.

請求項5の発明は,請求項3記載の回転電機システムに於いて,磁気抵抗調整手段としてバイパス磁路に巻回した磁気抵抗調整コイルを有する事を特徴とする。バイパス磁路に磁気抵抗調整コイルを配置し,供給する電流量により実効的にバイパス磁路の磁気抵抗を調整する。   According to a fifth aspect of the present invention, in the rotating electrical machine system according to the third aspect, the magnetic resistance adjusting coil is wound around a bypass magnetic path as the magnetic resistance adjusting means. A magnetoresistive adjustment coil is disposed in the bypass magnetic path, and the magnetic resistance of the bypass magnetic path is effectively adjusted by the amount of current supplied.

請求項6の発明は,請求項3記載の回転電機システムに於いて,さらに主磁路及びバイパス磁路の磁気抵抗が最小磁気力条件から外れる事により可動磁極部に加わる磁気力の検知手段を有し,前記磁気力が予め定められた範囲内になるよう磁気抵抗調整手段により主磁路或いはバイパス磁路の磁気抵抗を調整して主磁路とバイパス磁路間の磁気抵抗が主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差より大とする事を特徴とする。主磁路及びバイパス磁路の磁気抵抗は,可動磁極部の偏倚位置の影響を受け,温度による磁気特性変化,さらに経時的な磁気特性変化等の影響を受ける。本発明は主磁路及びバイパス磁路の磁気抵抗が最小磁気力条件から外れる事で現れる磁気力の検知手段を有し,主磁路及びバイパス磁路の磁気抵抗の差の程度を検知し,磁気抵抗調整手段を制御する。静止状態或いは平均的な運転条件に於いて主磁路及びバイパス磁路の磁気抵抗を最小磁気力条件に設定し,本発明に沿って連続的に主磁路及びバイパス磁路の磁気抵抗を調整すれば,常に磁路間の短絡磁束量を小さく抑え,さらに偏倚を妨げる磁気力を小さく抑える事が出来て精密な磁束量制御を実現できる。   According to a sixth aspect of the present invention, there is provided the rotating electrical machine system according to the third aspect, further comprising means for detecting the magnetic force applied to the movable magnetic pole portion when the magnetic resistance of the main magnetic path and the bypass magnetic path deviates from the minimum magnetic force condition. The magnetic resistance between the main magnetic path and the bypass magnetic path is adjusted by adjusting the magnetic resistance of the main magnetic path or the bypass magnetic path by the magnetic resistance adjusting means so that the magnetic force falls within a predetermined range. It is characterized by being larger than the difference between the magnetic resistance of the bypass magnetic path and the magnetic resistance of the bypass magnetic path. The magnetic resistance of the main magnetic path and the bypass magnetic path is affected by the deviation position of the movable magnetic pole, and is also affected by changes in the magnetic characteristics due to temperature and changes over time. The present invention has a magnetic force detection means that appears when the magnetic resistance of the main magnetic path and the bypass magnetic path deviates from the minimum magnetic force condition, detects the degree of difference in the magnetic resistance of the main magnetic path and the bypass magnetic path, Control the magnetic resistance adjusting means. The magnetic resistance of the main magnetic path and the bypass magnetic path is set to the minimum magnetic force condition in a stationary state or average operating condition, and the magnetic resistance of the main magnetic path and the bypass magnetic path is continuously adjusted according to the present invention. If this is done, the amount of short-circuit magnetic flux between the magnetic paths can always be kept small, and the magnetic force that prevents the bias can be kept small, so that precise magnetic flux amount control can be realized.

請求項7の発明は,請求項1記載の回転電機システムに於いて,磁磁石から磁性体突極に至る磁路の一部が磁性体突極の平均的な導電率より大きい磁性体で構成される事を特徴とする。磁性体突極と磁性体歯との相対関係に応じて電機子コイルに流れる電流により主磁路の磁気抵抗は実効的に脈動し,脈動的な磁路間の磁束漏洩及び磁気力が発生する。本発明は両磁路間の磁束漏洩を小とするよう形状及び配置を設定するのは当然として,さらに界磁磁石から磁性体突極に至る磁路の一部或いは全部を磁性体突極の平均的な導電率より大きい素材で構成して高周波数帯域の交流磁束を通り難い構成を提案している。この構成により磁路間の脈動的な磁束漏洩を減少させて精密な磁束量制御が可能となる。   A seventh aspect of the present invention is the rotating electrical machine system according to the first aspect, wherein a part of the magnetic path from the magnetic magnet to the magnetic salient pole is made of a magnetic material larger than the average conductivity of the magnetic salient pole. It is characterized by being done. The magnetic resistance of the main magnetic path effectively pulsates due to the current flowing through the armature coil according to the relative relationship between the magnetic salient pole and the magnetic teeth, and magnetic flux leakage and magnetic force are generated between the pulsating magnetic paths. . In the present invention, it is natural to set the shape and arrangement so as to reduce the magnetic flux leakage between both magnetic paths, and further, part or all of the magnetic path from the field magnet to the magnetic salient pole It has been proposed that it is made of a material having an average conductivity higher than that of a high frequency band AC magnetic flux. With this configuration, pulsating magnetic flux leakage between magnetic paths can be reduced and precise magnetic flux amount control can be performed.

請求項8の発明は,請求項1記載の回転電機システムに於いて,さらに可動磁極部の偏倚規制手段を有し,界磁磁石の第一界磁磁極が主磁極と対向する面積及びバイパス磁極と対向する面積の和が一定に保たれながら前記それぞれの面積が変わる範囲内に可動磁極部の相対偏倚量が規制される事を特徴とする。可動磁極部の相対偏倚量と主磁極に分流される界磁磁束量とが比例し,磁束量制御をシンプルに出来る。   According to an eighth aspect of the present invention, in the rotating electrical machine system according to the first aspect of the present invention, the movable magnetic pole portion further includes a displacement restricting means, the area where the first field magnetic pole of the field magnet faces the main magnetic pole, and the bypass magnetic pole The relative deviation amount of the movable magnetic pole portion is regulated within a range in which the respective areas change while the sum of the areas facing each other is kept constant. The relative deviation of the movable magnetic pole is proportional to the amount of field magnetic flux shunted to the main pole, simplifying the flux control.

請求項9の発明は,請求項1から請求項8記載の何れかの回転電機システムに於いて,さらに制御装置を有し,回転力を入力とし,発電電力を出力とする回転電機システムであって,制御装置により電機子コイルに誘起される発電電圧が所定の値より大の時は可動磁極部が偏倚されて第一界磁磁極と主磁極とが対向する面積を小とされ,発電電圧が所定の値より小の時は可動磁極部が偏倚されて第一界磁磁極と主磁極とが対向する面積を大とされ,発電電圧が所定の値に制御される事を特徴とする回転電機システムである。広範な回転速度範囲で定電圧の発電電圧を得る事が出来,高価な電圧制御装置を不要とし,エネルギー効率を向上出来る。   The invention according to claim 9 is the rotating electrical machine system according to any one of claims 1 to 8, further comprising a control device, wherein the rotational force is input and the generated power is output. Thus, when the generated voltage induced in the armature coil by the control device is larger than a predetermined value, the movable magnetic pole portion is biased to reduce the area where the first field magnetic pole and the main magnetic pole face each other. Rotation is characterized in that when the value is smaller than a predetermined value, the movable magnetic pole portion is biased to increase the area where the first field magnetic pole and the main magnetic pole face each other, and the generated voltage is controlled to a predetermined value. Electric system. A constant generation voltage can be obtained over a wide range of rotation speeds, and an expensive voltage control device is not required, improving energy efficiency.

請求項10の発明は,請求項1から請求項8記載の何れかの回転電機システムに於いて,さらに制御装置を有し,電機子コイルへの供給電流を入力とし,回転力を出力とする回転電機システムであって,制御装置により回転速度が所定の値より大で電機子を流れる磁束量を減少させる時には可動磁極部が偏倚されて第一界磁磁極と主磁極とが対向する面積を小とされ,回転速度が所定の値より小で電機子を流れる磁束量を増大させる時には可動磁極部が偏倚されて第一界磁磁極と主磁極とが対向する面積を大として回転力が最適に制御される事を特徴とする回転電機システムである。広範な回転速度範囲で電動機としての出力を最適に制御する。   A tenth aspect of the present invention is the rotating electrical machine system according to any one of the first to eighth aspects, further comprising a control device, wherein the current supplied to the armature coil is input and the rotational force is output. In a rotating electrical machine system, when the control device reduces the amount of magnetic flux flowing through the armature when the rotational speed is greater than a predetermined value, the movable magnetic pole portion is biased so that the area where the first field magnetic pole and the main magnetic pole face each other is reduced. When the rotational speed is lower than the predetermined value and the amount of magnetic flux flowing through the armature is increased, the movable magnetic pole part is biased and the area where the first field magnetic pole and the main magnetic pole face each other is increased to optimize the rotational force. It is a rotating electrical machine system characterized by being controlled by The motor output is optimally controlled over a wide rotational speed range.

請求項11の発明は,請求項1から請求項8記載の何れかの回転電機システムに於いて,さらに制御装置を有し,電機子コイルへの供給電流を入力とし,回転力を出力とする回転電機システムであって,回転速度を減少させる場合には制御装置により電機子を流れる磁束量を大とされるよう可動磁極部が偏倚されて第一界磁磁極と主磁極とが対向する面積が大とされて回転エネルギーが発電電力として取り出される事を特徴とする。回生制動の能力を改善して総合的なエネルギー効率を向上させた電動機を提供する。   An eleventh aspect of the present invention is the rotating electrical machine system according to any one of the first to eighth aspects, further comprising a control device, wherein the supply current to the armature coil is input and the rotational force is output. In a rotating electrical machine system, when the rotational speed is reduced, the movable magnetic pole portion is biased so that the amount of magnetic flux flowing through the armature is increased by the control device, and the area where the first field magnetic pole and the main magnetic pole face each other Is characterized in that the rotational energy is taken out as generated power. An electric motor with improved regenerative braking capability and improved overall energy efficiency is provided.

請求項12の発明は,電機子コイルを有する電機子と,電機子と対向して周方向に配置された複数の磁性体突極を有する表面磁極部と,同種の極性に磁化する磁性体突極グループ毎に一括して磁化する励磁部とからなり,表面磁極部と電機子とは軸を中心に相対的に回転可能である回転電機装置の界磁制御方法であって,界磁磁石の一方の磁極から主磁極に流入する磁束が磁性体突極及び電機子を介して界磁磁石の他方の磁極に環流する主磁路及び界磁磁石の一方の磁極からバイパス磁極に流入する磁束が主として励磁部内で界磁磁石の他方の磁極に環流するバイパス磁路を界磁磁石に並列に接続し,主磁路とバイパス磁路間の磁気抵抗が主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差より大にし,主磁極及びバイパス磁極のユニット或いは界磁磁石の何れかを可動磁極部として界磁磁石が主磁極と対向する面積及びバイパス磁極と対向する面積の和を一定に保ちながら前記それぞれの面積を変えるよう可動磁極部を偏倚させて電機子を流れる磁束量を制御する。   According to a twelfth aspect of the present invention, there is provided an armature having an armature coil, a surface magnetic pole portion having a plurality of magnetic salient poles arranged in the circumferential direction so as to face the armature, and a magnetic projection that is magnetized to the same kind of polarity. A field control method for a rotating electrical machine apparatus, in which a surface magnetic pole part and an armature are relatively rotatable about an axis, and each of the field magnets is magnetized at once. The magnetic flux flowing from the magnetic pole to the main magnetic pole circulates to the other magnetic pole of the field magnet via the magnetic salient pole and armature, and the magnetic flux flowing from one magnetic pole of the field magnet to the bypass magnetic pole is mainly excited. A bypass magnetic path that circulates to the other magnetic pole of the field magnet in the section is connected in parallel to the field magnet, and the magnetic resistance between the main magnetic path and the bypass magnetic path is the magnetic resistance of the main magnetic path and the magnetic resistance of the bypass magnetic path. Larger than the difference between the main pole and bypass pole unit. Alternatively, any one of the field magnets is used as a movable magnetic pole portion, and the movable magnetic pole portion is biased so as to change the respective areas while keeping the sum of the area where the field magnet faces the main magnetic pole and the area opposed to the bypass magnetic pole constant. Controls the amount of magnetic flux flowing through the armature.

磁石励磁回転電機システムに於ける磁束量制御方法であって,磁性体突極を励磁する界磁磁石に磁性体突極及び電機子側を通る主磁路及び電機子側を通らないバイパス磁路とが並列に接続され,主磁路に接続される主磁極及びバイパス磁路に接続されるバイパス磁極と界磁磁石の磁極との対向面積を機構偏倚により変えて主磁路,すなわち電機子側を流れる磁束量を制御する。さらに主磁路とバイパス磁路間の磁気抵抗が主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差より大になるよう構成されているので磁路間の短絡磁束量は小さく抑えられ,磁束量の精密な制御が可能になる。また,主磁路を流れる磁束量を変更しても界磁磁石には磁路が接続されているので界磁磁石が減磁される懸念は少ない。   A magnetic flux amount control method in a magnet-excited rotating electrical machine system, wherein a field magnet that excites a magnetic salient pole passes through a magnetic salient pole and an armature side, and a bypass magnetic path that does not pass through the armature side Are connected in parallel, the main magnetic path connected to the main magnetic path, and the opposing area of the bypass magnetic pole connected to the bypass magnetic path and the magnetic pole of the field magnet are changed by the mechanism bias, so that the main magnetic path, that is, the armature side Controls the amount of magnetic flux flowing through. Furthermore, since the magnetic resistance between the main magnetic path and the bypass magnetic path is larger than the difference between the magnetic resistance of the main magnetic path and the magnetic resistance of the bypass magnetic path, the amount of short-circuit magnetic flux between the magnetic paths is small. This makes it possible to control the amount of magnetic flux precisely. Even if the amount of magnetic flux flowing through the main magnetic path is changed, there is little concern that the field magnet will be demagnetized because the magnetic path is connected to the field magnet.

請求項13の発明は,請求項12記載の界磁制御方法に於いて以下のステップを含む。バイパス磁路及び主磁路の磁気抵抗をほぼ等しいとする最小磁気力条件に設定する。前記主磁路及びバイパス磁路の磁気抵抗を互いにほぼ等しいとする最小磁気力条件に設定する事により磁路間の短絡磁束量は小さく抑えられる。さらに界磁磁石からの磁束総量は一定に保たれるので可動磁極部の偏倚を妨げる磁気力を小として精密な磁束量制御を可能にする。   According to a thirteenth aspect of the present invention, the field control method according to the twelfth aspect includes the following steps. The minimum magnetic force condition is set so that the magnetic resistances of the bypass magnetic path and the main magnetic path are substantially equal. By setting the minimum magnetic force condition that the magnetic resistances of the main magnetic path and the bypass magnetic path are substantially equal to each other, the amount of short-circuit magnetic flux between the magnetic paths can be kept small. Further, since the total amount of magnetic flux from the field magnet is kept constant, the magnetic force that prevents the displacement of the movable magnetic pole portion can be reduced to enable precise magnetic flux amount control.

請求項14の発明は,請求項12記載の磁束量制御方法に於いて以下のステップを含む。さらに主磁路或いはバイパス磁路の磁気抵抗を調整する磁気抵抗調整手段を有し,主磁路とバイパス磁路間の磁気抵抗が主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差より大になるよう主磁路或いはバイパス磁路の磁気抵抗を調整する。前記磁気抵抗調整手段を有して回転電機の製造後或いは運転中に主磁路或いはバイパス磁路の磁気抵抗を調整して主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差を小として精密な磁束量制御を可能にする提案をし,さらに,回転電機の運転条件により変わる磁路の磁気抵抗に適合させる。磁気抵抗調整の具体的な手段,方法として磁路の一部に配置した磁気空隙寸法諸元の変更制御及び磁路に巻回したコイルへの通電制御等を提案している。さらに温度或いは磁気飽和等を利用して磁性体の磁気特性を制御する方法も可能である。   According to a fourteenth aspect of the present invention, the magnetic flux amount control method according to the twelfth aspect includes the following steps. Further, the magnetic resistance adjusting means for adjusting the magnetic resistance of the main magnetic path or the bypass magnetic path is provided, and the magnetic resistance between the main magnetic path and the bypass magnetic path is between the magnetic resistance of the main magnetic path and the magnetic resistance of the bypass magnetic path. The magnetic resistance of the main magnetic path or the bypass magnetic path is adjusted so as to be larger than the difference between the two. A difference between the magnetic resistance of the main magnetic path and the magnetic resistance of the bypass magnetic path by adjusting the magnetic resistance of the main magnetic path or the bypass magnetic path after manufacturing or operation of the rotating electrical machine having the magnetic resistance adjusting means. Is proposed to enable precise control of the magnetic flux, and it is adapted to the reluctance of the magnetic path that changes depending on the operating conditions of the rotating electrical machine. As specific means and methods for adjusting the magnetic resistance, a change control of the dimensions of the magnetic air gap arranged in a part of the magnetic path and a control of energizing the coil wound around the magnetic path are proposed. Furthermore, a method of controlling the magnetic characteristics of the magnetic material using temperature or magnetic saturation is also possible.

請求項15の発明は,請求項14記載の磁束量制御方法に於いて以下のステップを含む。さらに主磁路及びバイパス磁路の磁気抵抗が最小磁気力条件から外れる事により可動磁極部に加わる磁気力の検知手段を有し,前記磁気力が予め定められた範囲内になるよう磁気抵抗調整手段により主磁路或いはバイパス磁路の磁気抵抗を調整して主磁路とバイパス磁路間の磁気抵抗が主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差より大とする。主磁路及びバイパス磁路の磁気抵抗は,可動磁極部の偏倚位置の影響を受け,温度による磁気特性変化,さらに経時的な磁気特性変化等の影響を受ける。本発明は主磁路及びバイパス磁路の磁気抵抗が最小磁気力条件から外れる事で現れる磁気力の検知手段を有し,主磁路及びバイパス磁路の磁気抵抗の差の程度を検知し,磁気抵抗調整手段を制御する。静止状態或いは平均的な運転条件に於いて主磁路及びバイパス磁路の磁気抵抗を最小磁気力条件に設定し,本発明に沿って連続的に主磁路及びバイパス磁路の磁気抵抗を調整すれば,常に磁路間の短絡磁束量を小さく抑え,さらに偏倚を妨げる磁気力を小さく抑える事が出来て精密な磁束量制御を実現できる。   A fifteenth aspect of the invention includes the following steps in the magnetic flux amount control method of the fourteenth aspect. In addition, the magnetic resistance of the main magnetic path and the bypass magnetic path is detected by means of detecting the magnetic force applied to the movable magnetic pole when the magnetic resistance deviates from the minimum magnetic force condition, and the magnetic resistance is adjusted so that the magnetic force falls within a predetermined range. The magnetic resistance of the main magnetic path or the bypass magnetic path is adjusted by means so that the magnetic resistance between the main magnetic path and the bypass magnetic path is larger than the difference between the magnetic resistance of the main magnetic path and the magnetic resistance of the bypass magnetic path. . The magnetic resistance of the main magnetic path and the bypass magnetic path is affected by the deviation position of the movable magnetic pole, and is also affected by changes in the magnetic characteristics due to temperature and changes over time. The present invention has a magnetic force detection means that appears when the magnetic resistance of the main magnetic path and the bypass magnetic path deviates from the minimum magnetic force condition, detects the degree of difference in the magnetic resistance of the main magnetic path and the bypass magnetic path, Control the magnetic resistance adjusting means. The magnetic resistance of the main magnetic path and the bypass magnetic path is set to the minimum magnetic force condition in a stationary state or average operating condition, and the magnetic resistance of the main magnetic path and the bypass magnetic path is continuously adjusted according to the present invention. If this is done, the amount of short-circuit magnetic flux between the magnetic paths can always be kept small, and the magnetic force that prevents the bias can be kept small, so that precise magnetic flux amount control can be realized.

永久磁石励磁の回転電機システムに於いて,磁性体突極には励磁部から界磁磁束を供給する構成とし,機構偏倚により界磁磁石の磁束を主磁路及びバイパス磁路に分流制御させるとして,磁路間に於ける磁束量短絡を抑え,さらに機構偏倚の障害となる磁気力を抑制して電機子を流れる磁束量を制御可能とした。磁性体突極及び電機子を通る主磁路の磁気抵抗は回転電機が電動機或いは発電機として動作中に実効的に変動し,更に量産時の部材寸法公差によりばらつく事を考慮し,回転電機の組み立て後或いは動作中に主磁路,バイパス磁路の磁気抵抗の設定条件に実効的に調整制御出来る回転電機システムとした。本発明により種々の要因により量産段階で特性がばらついた場合でも磁路間に於ける磁束短絡は抑制され,前記機構偏倚に際して磁気力は抑制して精密な磁束量制御が可能である。本発明により,永久磁石励磁の回転電機システムに於ける弱め界磁制御が容易となり,高エネルギー効率で出力を最適に制御する回転電機システムを実現出来る。   In the rotating electrical machine system with permanent magnet excitation, the magnetic salient pole is supplied with field magnetic flux from the exciting part, and the magnetic flux of the field magnet is controlled to be shunted to the main magnetic path and bypass magnetic path by mechanism deviation. The amount of magnetic flux flowing through the armature can be controlled by suppressing the magnetic flux short circuit between the magnetic paths and further suppressing the magnetic force that hinders mechanism deviation. The magnetic resistance of the main magnetic path that passes through the magnetic salient pole and armature effectively varies while the rotating electrical machine is operating as a motor or generator, and further varies depending on the member size tolerance during mass production. The rotating electrical machine system can be effectively adjusted and controlled to the setting conditions of the magnetic resistance of the main magnetic path and bypass magnetic path after assembly or during operation. According to the present invention, even when the characteristics vary at the stage of mass production due to various factors, the magnetic flux short circuit between the magnetic paths is suppressed, and the magnetic force can be suppressed and the magnetic flux amount can be precisely controlled when the mechanism is deviated. According to the present invention, field-weakening control in a rotating magnet system with permanent magnet excitation is facilitated, and a rotating electrical machine system that optimally controls output with high energy efficiency can be realized.

以下に本発明による回転電機システムについて,その実施例及び原理作用等を図面を参照しながら説明する。   In the following, a rotating electrical machine system according to the present invention will be described with reference to the drawings, with regard to embodiments, principles and actions.

本発明の第一実施例による回転電機システムを図1から図6を用いて説明する。第一実施例は,磁性体突極と磁気空隙部を周方向に交互に持つシンプルな磁極構成の回転子であり,励磁部を回転子の内部に配置した回転電機システムである。図1は回転電機の縦断面図,図2は電機子と回転子とを示す断面図,図3は回転子の構成を示す分解斜視図,図4は界磁磁石近傍の磁束の流れを示す図,図5は界磁磁石を含む磁気回路のモデル図,図6は弱め界磁制御を行う回転電機システムのブロック図である。   A rotating electrical machine system according to a first embodiment of the present invention will be described with reference to FIGS. The first embodiment is a rotor with a simple magnetic pole configuration having magnetic salient poles and magnetic gaps alternately in the circumferential direction, and is a rotating electrical machine system in which an excitation unit is arranged inside the rotor. 1 is a longitudinal sectional view of a rotating electric machine, FIG. 2 is a sectional view showing an armature and a rotor, FIG. 3 is an exploded perspective view showing the configuration of the rotor, and FIG. 4 shows a flow of magnetic flux in the vicinity of a field magnet. FIG. 5 is a model diagram of a magnetic circuit including a field magnet, and FIG. 6 is a block diagram of a rotating electrical machine system that performs field weakening control.

図1はラジアルギャップ構造の回転電機に本発明を適用した実施例を示し,回転軸11がベアリング13を介してハウジング12に回動可能に支持されている。電機子はハウジング12に固定された円筒状磁気ヨーク15と,円筒状磁気ヨーク15から径方向に延びる複数の磁性体歯14と,磁性体歯14に巻回された電機子コイル16とから構成されている。回転子は磁性体突極と磁気空隙部とが周方向に交互に並ぶ表面磁極部17,隣り合う磁性体突極を軸方向の互いに異なる方向に延長させた第一延長部18,第二延長部19とから構成されている。   FIG. 1 shows an embodiment in which the present invention is applied to a rotating electrical machine having a radial gap structure, and a rotating shaft 11 is rotatably supported by a housing 12 via a bearing 13. The armature includes a cylindrical magnetic yoke 15 fixed to the housing 12, a plurality of magnetic teeth 14 extending in the radial direction from the cylindrical magnetic yoke 15, and an armature coil 16 wound around the magnetic teeth 14. Has been. The rotor includes a surface magnetic pole portion 17 in which magnetic salient poles and magnetic air gap portions are alternately arranged in the circumferential direction, a first extension portion 18 in which adjacent magnetic salient poles are extended in mutually different directions, and a second extension. Part 19.

回転子の表面磁極部17の内側には励磁部が配置されて第一延長部18,第二延長部19に結合し,隣接磁性体突極を互いに異極に磁化している。励磁部の主要部は界磁磁石1a,主磁極1b,バイパス磁極1c,ベース磁極1eから構成され,界磁磁石1aは励磁部支持体1dに固定され,界磁磁石1aと励磁部支持体1dは主磁極1b,バイパス磁極1c及びベース磁極1e間に配置されて可動磁極部として軸方向に摺動可能に構成されている。界磁磁石1a,主磁極1b,バイパス磁極1c,ベース磁極1e及び励磁部支持体1dは円筒状の磁性体で構成されている。   An excitation part is disposed inside the surface magnetic pole part 17 of the rotor and is coupled to the first extension part 18 and the second extension part 19 to magnetize the adjacent magnetic salient poles different from each other. The main part of the excitation part is composed of a field magnet 1a, a main magnetic pole 1b, a bypass magnetic pole 1c, and a base magnetic pole 1e. The field magnet 1a is fixed to the excitation part support 1d, and the field magnet 1a and the excitation part support 1d. Is arranged between the main magnetic pole 1b, the bypass magnetic pole 1c and the base magnetic pole 1e, and is configured to be slidable in the axial direction as a movable magnetic pole portion. The field magnet 1a, the main magnetic pole 1b, the bypass magnetic pole 1c, the base magnetic pole 1e, and the excitation unit support 1d are made of a cylindrical magnetic material.

界磁磁石1aと励磁部支持体1dを軸方向に偏倚させる偏倚制御手段は,主要部をスプリング1g,回転軸11の中空部に収納された制御棒1k,プッシュロッド1m,アクチュエータ1nとから構成され,制御棒1kには励磁部支持体1dに固定したピン1fが回転軸11のスリット1jを介して接する構成である。円筒状の非磁性体1hは界磁磁石1aの偏倚範囲を規制する手段として配置されている。番号1pは冷却用ファンを示す。   The bias control means for biasing the field magnet 1a and the excitation unit support 1d in the axial direction includes a spring 1g as a main part, a control rod 1k housed in a hollow part of the rotating shaft 11, a push rod 1m, and an actuator 1n. The pin 1f fixed to the excitation unit support 1d is in contact with the control rod 1k through the slit 1j of the rotating shaft 11. The cylindrical non-magnetic body 1h is arranged as a means for regulating the deflection range of the field magnet 1a. Reference numeral 1p indicates a cooling fan.

図2は図1のA−A’に沿う電機子及び回転子の断面図を示し,相互の関係を説明する為に構成部分の一部に番号を付して示している。電機子はハウジング12に固定された円筒状磁気ヨーク15と,円筒状磁気ヨーク15から径方向に延び,周方向に磁気空隙を有する複数の磁性体歯14と,磁性体歯14に巻回された電機子コイル16とから構成されている。本実施例では9個の電機子コイル16より構成され,それらは三相に結線されている。電機子の磁性体歯14先端には径方向に短い可飽和磁性体結合部26を隣接する磁性体歯14先端部間に設けてある。磁性体歯74及び可飽和磁性体結合部26はケイ素鋼板を型で打ち抜いて積層し,電機子コイル16を巻回した後,円筒状磁気ヨーク15と組み合わせて電機子としている。   FIG. 2 is a cross-sectional view of the armature and the rotor along A-A ′ in FIG. 1, and in order to explain the mutual relationship, some of the components are shown with numbers. The armature is wound around the cylindrical magnetic yoke 15 fixed to the housing 12, a plurality of magnetic teeth 14 extending radially from the cylindrical magnetic yoke 15 and having a magnetic gap in the circumferential direction, and the magnetic teeth 14. Armature coil 16. In this embodiment, the armature coil 16 is composed of nine pieces, which are connected in three phases. A saturable magnetic material coupling portion 26 that is short in the radial direction is provided between adjacent magnetic material teeth 14 at the tips of the magnetic teeth 14 of the armature. The magnetic teeth 74 and the saturable magnetic coupling portion 26 are formed by punching and stacking a silicon steel plate with a mold, winding the armature coil 16, and then combining with the cylindrical magnetic yoke 15 to form an armature.

可飽和磁性体結合部26は磁性体歯14と一体として磁性体歯14の支持強度を向上させ,磁性体歯14の不要な振動を抑制させる。可飽和磁性体結合部26の径方向の長さは短く設定して容易に磁気的に飽和する形状としたので電機子コイル16が発生させる磁束或いは界磁磁石からの磁束によって容易に飽和し,その場合に電機子コイル16が発生させる磁束及び磁束の短絡を僅かな量とする。電機子コイル16に電流が供給されると,時間と共に可飽和磁性体結合部26は磁気的に飽和させられて周辺に磁束を漏洩させるが,磁気飽和した可飽和磁性体結合部26に現れる実効的な磁気空隙の境界はクリアではないので漏洩する磁束の分布は緩やかとなり,可飽和磁性体結合部26はこの点でも磁性体歯14に加わる力の時間変化を緩やかにして振動抑制に寄与する。   The saturable magnetic material coupling portion 26 is integrated with the magnetic material teeth 14 to improve the support strength of the magnetic material teeth 14 and suppress unnecessary vibration of the magnetic material teeth 14. Since the length of the saturable magnetic body coupling portion 26 in the radial direction is set to be short and easily magnetically saturated, it is easily saturated by the magnetic flux generated by the armature coil 16 or the magnetic flux from the field magnet. In this case, the magnetic flux generated by the armature coil 16 and the short circuit of the magnetic flux are set to a small amount. When a current is supplied to the armature coil 16, the saturable magnetic body coupling portion 26 is magnetically saturated with time, and magnetic flux leaks to the periphery, but the effective magnetic field appears in the magnetically saturated saturable magnetic body coupling portion 26. Since the boundary of the magnetic gap is not clear, the distribution of the magnetic flux that leaks becomes gentle, and the saturable magnetic material coupling part 26 also contributes to vibration suppression by slowing the time change of the force applied to the magnetic material teeth 14 in this respect as well. .

図2に於いて,回転子は磁性体突極と磁気空隙部とを周方向に交互に有する構造とし,隣接する磁性体突極を番号21,22で代表させ,磁気空隙部を番号23で示している。番号24は磁束チャネル部である。本実施例では磁性体突極21,22の断面積は小さいので内周側の空きスペースを利用して可能な限り断面積の大きい磁束チャネル部24として界磁磁束の軸方向伝搬を容易にする構成としている。磁性体突極21,22は幅の狭い可飽和磁性体部25で連結された構成として所定の型でケイ素鋼板を打ち抜き,積層して構成されている。磁気空隙部23を含む非磁性体の部分には非磁性で且つ比抵抗の大きい材料,レジン,樹脂等を充填して構成している。   In FIG. 2, the rotor has a structure in which magnetic salient poles and magnetic gaps are alternately arranged in the circumferential direction. Adjacent magnetic salient poles are represented by numbers 21 and 22, and magnetic gaps are designated by number 23. Show. Reference numeral 24 denotes a magnetic flux channel portion. In this embodiment, the magnetic salient poles 21 and 22 have a small cross-sectional area, so that the magnetic field channel 24 can be easily propagated in the axial direction as the magnetic flux channel portion 24 having the largest possible cross-sectional area by utilizing the empty space on the inner peripheral side. It is configured. The magnetic salient poles 21 and 22 are formed by punching and laminating silicon steel plates with a predetermined type as a structure connected by a narrow saturable magnetic part 25. The portion of the nonmagnetic material including the magnetic gap 23 is filled with a material, resin, resin or the like that is nonmagnetic and has a large specific resistance.

本実施例に於いては,回転子の空きスペースを利用して飽和磁束密度の大きな鉄で構成した断面積が大きい磁束チャネル部24を電機子より遠い側の磁性体突極に配置している。磁性体突極がケイ素鋼板の積層で構成され,積層されたケイ素鋼板の積層方向の磁気抵抗は大きいが,磁束チャネル部24は界磁磁束を回転軸11に沿って伝搬させる事が出来る。   In this embodiment, a magnetic flux channel portion 24 having a large cross-sectional area and made of iron having a high saturation magnetic flux density is disposed on the magnetic salient pole on the side farther from the armature by utilizing the space available in the rotor. . The magnetic salient pole is composed of a stack of silicon steel plates, and the magnetic resistance in the stacking direction of the stacked silicon steel plates is large, but the magnetic flux channel portion 24 can propagate the field magnetic flux along the rotation axis 11.

図3は回転子の構成を示す分解斜視図である。理解を容易にする為に磁性体突極21,22等を有する中心部と磁性体突極の第一,第二延長部18,19とを離して示してある。番号11’は回転軸11を通す穴を示す。第一延長部18は軟鉄をプレス成形して磁性体突極21の延長部分となる磁性体突部31を有して構成され,非磁性体部33は磁性を持たないステンレススチールで形成されている。第二延長部19は軟鉄をプレス成形して磁性体突極22の延長部分となる磁性体突部32を有して構成され,非磁性体部34は磁性を持たないステンレススチールで形成されている。番号35は励磁部の一部を示している。   FIG. 3 is an exploded perspective view showing the configuration of the rotor. In order to facilitate understanding, the central portion having the magnetic salient poles 21 and 22 and the first and second extension portions 18 and 19 of the magnetic salient pole are shown apart. Reference numeral 11 ′ denotes a hole through which the rotary shaft 11 passes. The first extension 18 includes a magnetic protrusion 31 that is an extension of the magnetic salient pole 21 by press-molding soft iron, and the nonmagnetic member 33 is formed of stainless steel having no magnetism. Yes. The second extension 19 is formed by pressing a soft iron and having a magnetic projection 32 that is an extension of the magnetic salient pole 22, and the non-magnetic portion 34 is made of stainless steel having no magnetism. Yes. Reference numeral 35 denotes a part of the excitation unit.

励磁部の構成は図1に縦断面図が示されている。励磁部の主要構成部材は円筒状であり,主磁極1b,バイパス磁極1cが軸方向に並んで配置され,主磁極1bは第二延長部19と結合され,バイパス磁極1cは第一延長部18と微小間隙を介して結合されている。ベース磁極1eは第一延長部18に結合され,さらにベース磁極1eは励磁部支持体1dと微小間隙を介して磁気的に結合されている。界磁磁石1aは励磁部支持体1dに固定されて主磁極1b,バイパス磁極1c及びベース磁極1e間を摺動可能に配置されている。界磁磁石1aは径方向の磁化を持ち,矢印は磁化の方向を示す。   The configuration of the excitation unit is shown in a longitudinal sectional view in FIG. The main component of the exciting part is cylindrical, the main magnetic pole 1b and the bypass magnetic pole 1c are arranged side by side in the axial direction, the main magnetic pole 1b is coupled to the second extension 19, and the bypass magnetic pole 1c is the first extension 18. And are connected through a minute gap. The base magnetic pole 1e is coupled to the first extension 18, and the base magnetic pole 1e is magnetically coupled to the excitation unit support 1d via a minute gap. The field magnet 1a is fixed to the excitation unit support 1d and is slidably disposed between the main magnetic pole 1b, the bypass magnetic pole 1c, and the base magnetic pole 1e. The field magnet 1a has a radial magnetization, and an arrow indicates the magnetization direction.

界磁磁石1aに二つの磁気回路である主磁路及びバイパス磁路が並列に接続されている構成であり,主磁路は主磁極1b,第二延長部19,磁性体突極22,磁性体歯14,磁性体突極21,第一延長部18,ベース磁極1e,励磁部支持体1dで構成され,バイパス磁路はバイパス磁極1c,第一延長部18,ベース磁極1e,励磁部支持体1dで構成される。バイパス磁路の磁気抵抗はバイパス磁極1cと第一延長部18間の微小間隙の長さを調整して主磁路の磁気抵抗の平均値と互いにほぼ等しくなるよう設定してある。界磁磁石1aの軸方向への偏倚に従って,界磁磁石1aが主磁極1b及びバイパス磁極1cと対向する面積の和を一定に保ちながら主磁極1bとの対向面積は変わり,主磁路に流入する磁束量を変える事が出来る。また,その際に界磁磁石1aから流れる磁束総量は一定に保たれるので界磁磁石1aの偏倚に抗する磁気力は理論的に現れない。   The main magnet path and the bypass magnetic path, which are two magnetic circuits, are connected in parallel to the field magnet 1a. The main magnetic path is the main magnetic pole 1b, the second extension 19, the magnetic salient pole 22, and the magnetism. The body teeth 14, the magnetic salient pole 21, the first extension 18, the base magnetic pole 1 e, and the excitation part support 1 d, and the bypass magnetic path is the bypass magnetic pole 1 c, the first extension 18, the base magnetic pole 1 e, and the excitation part support It is composed of a body 1d. The magnetic resistance of the bypass magnetic path is set to be substantially equal to the average value of the magnetic resistance of the main magnetic path by adjusting the length of the minute gap between the bypass magnetic pole 1c and the first extension 18. As the field magnet 1a deviates in the axial direction, the opposing area of the main pole 1b changes and flows into the main magnetic path while keeping the sum of the areas where the field magnet 1a faces the main pole 1b and the bypass pole 1c constant. The amount of magnetic flux to be changed can be changed. In addition, since the total amount of magnetic flux flowing from the field magnet 1a at that time is kept constant, the magnetic force that resists the bias of the field magnet 1a does not appear theoretically.

主磁極1b,バイパス磁極1cの長さは界磁磁石1aの長さより大きいが,円筒状の非磁性体1hにより界磁磁石1aは常に主磁極1b及びバイパス磁極1cと対向するよう偏倚の範囲が規制されている。界磁磁石1aと主磁極1b,バイパス磁極1cそれぞれの対向面積の和は一定であり,それらの面積は偏倚に従って変化し,主磁路に分流される磁束量と界磁磁石1aの偏倚量はほぼ比例する。   The lengths of the main magnetic pole 1b and the bypass magnetic pole 1c are larger than the length of the field magnet 1a. However, the non-magnetic material 1h of the cylindrical shape causes the field magnet 1a to have a range of deviation so that it always faces the main magnetic pole 1b and the bypass magnetic pole 1c. It is regulated. The sum of the opposing areas of the field magnet 1a, the main magnetic pole 1b, and the bypass magnetic pole 1c is constant, and these areas change according to the deviation, and the amount of magnetic flux shunted to the main magnetic path and the amount of deviation of the field magnet 1a are It is almost proportional.

界磁磁石1aからの磁束は層流状に主磁極1b,バイパス磁極1cに流入し,主磁極1bを流れる磁束量は界磁磁石1aと主磁極1bとが対向する面積に比例する。図4は図1に示した界磁磁石1aと主磁極1b,バイパス磁極1cとが対向する部分の拡大図であり,バイパス磁路の磁気抵抗が主磁路の磁気抵抗より小さい場合に於ける界磁磁石1a近傍の磁束分布をモデル的に示している。図に於いて,矢印の向きは界磁磁石1aのN極から磁束が流れ出るとして磁束の流れる方向を示している。界磁磁石1aと主磁極1b及びバイパス磁極1c間の微小空隙41では磁束が界磁磁石1aと主磁極1b及びバイパス磁極1cそれぞれの境界面とほぼ直交して層流状に流れ,番号43は主磁極1bに流入して主磁路に流れる磁束を,番号44はバイパス磁極1cに流入してバイパス磁路を流れる磁束をそれぞれ代表して示している。番号45は界磁磁石1aから主磁極1bに流入した磁束が主磁極1bとバイパス磁極1c間の空隙部42を通ってバイパス磁極1cに流入してバイパス磁路を流れる磁束を代表して示している。このように主磁路とバイパス磁路それぞれの磁気抵抗間の差が大であると,主磁路からバイパス磁路に漏洩する磁束が存在して主磁路を流れる磁束量は必ずしも界磁磁石1aと主磁極1bとが対向する面積に比例しない。   The magnetic flux from the field magnet 1a flows into the main magnetic pole 1b and the bypass magnetic pole 1c in a laminar flow, and the amount of magnetic flux flowing through the main magnetic pole 1b is proportional to the area where the field magnet 1a and the main magnetic pole 1b face each other. FIG. 4 is an enlarged view of a portion where the field magnet 1a, the main magnetic pole 1b, and the bypass magnetic pole 1c shown in FIG. 1 face each other. The magnetic resistance of the bypass magnetic path is smaller than the magnetic resistance of the main magnetic path. The magnetic flux distribution near the field magnet 1a is shown as a model. In the figure, the direction of the arrow indicates the direction in which the magnetic flux flows assuming that the magnetic flux flows out of the N pole of the field magnet 1a. In the minute gap 41 between the field magnet 1a, the main magnetic pole 1b, and the bypass magnetic pole 1c, the magnetic flux flows in a laminar flow substantially orthogonal to the boundary surfaces of the field magnet 1a, the main magnetic pole 1b, and the bypass magnetic pole 1c. The magnetic flux that flows into the main magnetic path 1b through the main magnetic pole 1b and numeral 44 represents the magnetic flux that flows into the bypass magnetic pole 1c and flows through the bypass magnetic path. Reference numeral 45 represents the magnetic flux flowing from the field magnet 1a into the main magnetic pole 1b through the gap 42 between the main magnetic pole 1b and the bypass magnetic pole 1c and flowing into the bypass magnetic path 1c as a representative. Yes. Thus, if the difference between the magnetic resistances of the main magnetic path and the bypass magnetic path is large, there is a magnetic flux leaking from the main magnetic path to the bypass magnetic path, and the amount of magnetic flux flowing through the main magnetic path is not necessarily a field magnet. It is not proportional to the area where 1a and the main pole 1b face each other.

本実施例では主磁路とバイパス磁路間の磁気抵抗を平均的な運転条件に於ける主磁路の磁気抵抗とバイパス磁路の磁気抵抗間の差より大となるよう構成される。主磁路とバイパス磁路間の距離が最も小さいのは主磁極1b,バイパス磁極1c間であるので主磁極1b,バイパス磁極1c間の形状寸法の設定により主磁路とバイパス磁路間の磁気抵抗を設定する。図1,図4に示したように界磁磁石1aから離れた位置では空隙長が大きくなるよう空隙部42の形状を設定し,主磁極1bとバイパス磁極1c間の磁気抵抗を平均的な運転条件に於ける主磁路とバイパス磁路の磁気抵抗間の差より大となるよう寸法を設定している。これにより番号45で示す主磁極1bとバイパス磁極1cとの間で短絡的に漏洩する磁束は減少し,主磁路を流れる磁束量が界磁磁石1aと主磁極1bとが対向する面積に精確に比例する。   In this embodiment, the magnetic resistance between the main magnetic path and the bypass magnetic path is configured to be larger than the difference between the magnetic resistance of the main magnetic path and the magnetic resistance of the bypass magnetic path under average operating conditions. Since the distance between the main magnetic path and the bypass magnetic path is the shortest between the main magnetic pole 1b and the bypass magnetic pole 1c, the magnetism between the main magnetic path and the bypass magnetic path is set by setting the shape and dimension between the main magnetic pole 1b and the bypass magnetic pole 1c. Set the resistance. As shown in FIGS. 1 and 4, the shape of the air gap 42 is set so that the air gap length increases at a position away from the field magnet 1a, and the magnetoresistance between the main magnetic pole 1b and the bypass magnetic pole 1c is averaged. The dimension is set to be larger than the difference between the magnetic resistances of the main magnetic path and the bypass magnetic path under the conditions. As a result, the magnetic flux leaking in a short-circuit between the main magnetic pole 1b and the bypass magnetic pole 1c indicated by numeral 45 is reduced, and the amount of magnetic flux flowing through the main magnetic path is accurately set to the area where the field magnet 1a and the main magnetic pole 1b are opposed to each other. Is proportional to

図5は図2及び図4を用いて説明した主磁路及びバイパス磁路と界磁磁石1aとを含む磁気回路をモデル的に示した図である。界磁磁石1aは多数の電流源が並列接続された集合体として示されて主磁極1b,バイパス磁極1cと対向し,界磁磁石1aから主磁極1bに流入した磁束が磁気抵抗51を流れてベース磁極1eを介して環流する主磁路,バイパス磁極1cに流入した磁束が磁気抵抗52を流れてベース磁極1eを介して環流するバイパス磁路とが示されている。番号53は磁路間の磁気抵抗を,番号54は界磁磁石1aの偏倚する方向をそれぞれ示している。主磁路の磁気抵抗51,バイパス磁路の磁気抵抗52はそれぞれ界磁磁石1aから離れた部分が支配的となる構成であり,両磁路間の距離が最も小さくなるのは主磁極1b,バイパス磁極1c間であるので磁路間の磁気抵抗53は主磁極1b,バイパス磁極1c間に配置されている。図4では磁気抵抗51より磁気抵抗52が小である場合の磁束漏洩の状態を示したが,図5のモデル的な磁気回路より判明するように磁路間の磁気抵抗53を磁気抵抗51と磁気抵抗52との差より大に設定すれば,磁気抵抗53を流れる磁束を減少させる事が出来る。   FIG. 5 is a diagram schematically showing a magnetic circuit including the main magnetic path and the bypass magnetic path described with reference to FIGS. 2 and 4 and the field magnet 1a. The field magnet 1a is shown as an assembly in which a large number of current sources are connected in parallel to face the main magnetic pole 1b and the bypass magnetic pole 1c, and the magnetic flux flowing from the field magnet 1a to the main magnetic pole 1b flows through the magnetic resistance 51. A main magnetic path that circulates through the base magnetic pole 1e and a bypass magnetic path in which the magnetic flux flowing into the bypass magnetic pole 1c flows through the magnetic resistance 52 and circulates through the base magnetic pole 1e are shown. Reference numeral 53 indicates the magnetic resistance between the magnetic paths, and reference numeral 54 indicates the direction in which the field magnet 1a deviates. The magnetic resistance 51 of the main magnetic path and the magnetic resistance 52 of the bypass magnetic path are configured so that the portions away from the field magnet 1a are dominant, and the distance between the two magnetic paths is the smallest in the main magnetic pole 1b, Since it is between the bypass magnetic poles 1c, the magnetic resistance 53 between the magnetic paths is arranged between the main magnetic pole 1b and the bypass magnetic pole 1c. FIG. 4 shows the state of magnetic flux leakage when the magnetic resistance 52 is smaller than the magnetic resistance 51. However, as can be seen from the model magnetic circuit of FIG. If it is set larger than the difference from the magnetic resistance 52, the magnetic flux flowing through the magnetic resistance 53 can be reduced.

本実施例では主磁路及びバイパス磁路それぞれの磁気抵抗の差より両磁路間の磁気抵抗を大に構成して磁路間を短絡的に漏洩する磁束量を抑制する構成としているが,電機子コイル16を流れる電流により主磁路の磁気抵抗は実効的に変動する。回転電機装置をモータとして用いた場合には磁性体突極21,22と磁性体歯14の位置に応じて電機子コイル16に供給する電流,或いは発電機として用いた場合に磁性体突極21,22と磁性体歯14の位置に応じて電機子コイル16に切り替わる電流に応答して高い周波数帯の交流磁束が流れ,実効的に主磁路の磁気抵抗が変動する。前記磁気抵抗変動は主磁路及びバイパス磁路間の脈動的な磁束漏洩を誘発して望ましい事ではない。本実施例では図3に示すように磁性体突極の第一,第二延長部18,19を軟鉄のブロックで構成している。軟鉄製のブロックはケイ素鋼板の積層体で構成された磁性体突極より導電率が大で交流磁束が通り難い。   In this embodiment, the magnetic resistance between the two magnetic paths is made larger by the difference in magnetic resistance between the main magnetic path and the bypass magnetic path, and the amount of magnetic flux leaking in a short circuit between the magnetic paths is suppressed. The magnetic resistance of the main magnetic path is effectively changed by the current flowing through the armature coil 16. When the rotating electrical machine device is used as a motor, the current supplied to the armature coil 16 according to the position of the magnetic salient poles 21 and 22 and the magnetic teeth 14 or the magnetic salient pole 21 when used as a generator. , 22 and the magnetic teeth 14 according to the position of the armature coil 16 in response to the position of the armature coil 16, a high frequency AC magnetic flux flows, and the magnetic resistance of the main magnetic path effectively varies. The magnetoresistance variation is undesirable because it induces pulsating flux leakage between the main magnetic path and the bypass magnetic path. In this embodiment, as shown in FIG. 3, the first and second extensions 18 and 19 of the magnetic salient poles are formed of soft iron blocks. A soft iron block has a higher electrical conductivity than a magnetic salient pole made of a laminated body of silicon steel plates, and it is difficult for AC magnetic flux to pass through.

一般に磁石を含む磁気回路の一部に可動部分が有る場合には磁束量を大にする方向(磁気回路の磁気抵抗を小にする方向と同じ意味である)に可動部分を動かそうとする磁気力が現れる。本発明に先行して界磁磁束を制御する目的で磁気回路の一部を偏倚させて界磁磁石を短絡し或いは磁路の磁気抵抗を変えようとする提案は多い。しかし,界磁磁石はその回転電機に於いて,磁石トルク或いは電力を発生させる源泉であり,前記偏倚を妨げる磁気的な力は大きく,精密な磁束量制御を困難にしていた。上記に説明した本発明の構成により磁気力は小さく抑制され,精密な磁束量制御が可能となる。   Generally, when there is a movable part in a part of the magnetic circuit including the magnet, the magnet that moves the movable part in the direction to increase the amount of magnetic flux (which means the same as the direction to decrease the magnetic resistance of the magnetic circuit). Power appears. Prior to the present invention, for the purpose of controlling the field magnetic flux, there are many proposals for biasing a part of the magnetic circuit to short-circuit the field magnet or change the magnetic resistance of the magnetic path. However, the field magnet is a source for generating magnet torque or electric power in the rotating electric machine, and the magnetic force that prevents the deviation is large, making it difficult to precisely control the amount of magnetic flux. With the configuration of the present invention described above, the magnetic force is suppressed to be small, and precise control of the amount of magnetic flux becomes possible.

本実施例では界磁磁石1aが微小間隙を介して主磁極1b及びバイパス磁極1cに対向する構成である。主磁路とバイパス磁路の磁気抵抗を厳密に等しく構成するのは困難であり,両者の磁気抵抗に差があるとして界磁磁石1aから磁性体を介して主磁極1b及びバイパス磁極1cに対向させると,界磁磁石1aからの磁束はそれぞれの磁路の磁気抵抗に応じて前記磁性体内で分流して主磁路を流れる磁束は界磁磁石1aと主磁極1b間の対向面積には比例しない事になり,磁束量の制御は困難となる。構造上の制約から界磁磁石1aから磁性体を介して主磁極1b及びバイパス磁極1cに対向させる場合には,磁性体として異方性の強い磁性体或いは厚みの薄い磁性体として磁性体内で磁束が分流し難い構成とする。この構成は実質的に界磁磁石1aの端面で磁束を分流させる点で本発明の趣旨に含まれる。   In the present embodiment, the field magnet 1a is configured to face the main magnetic pole 1b and the bypass magnetic pole 1c through a minute gap. It is difficult to configure the magnetic resistance of the main magnetic path and the bypass magnetic path to be exactly the same, and it is opposed to the main magnetic pole 1b and the bypass magnetic pole 1c through the magnetic material from the field magnet 1a because there is a difference in magnetic resistance between the two. Then, the magnetic flux from the field magnet 1a is divided in the magnetic body according to the magnetic resistance of each magnetic path, and the magnetic flux flowing through the main magnetic path is proportional to the facing area between the field magnet 1a and the main magnetic pole 1b. This makes it difficult to control the amount of magnetic flux. When the field magnet 1a is opposed to the main magnetic pole 1b and the bypass magnetic pole 1c through the magnetic material due to structural limitations, the magnetic material has a strong anisotropic magnetic material or a thin magnetic material. However, it is difficult to divert. This configuration is included in the spirit of the present invention in that the magnetic flux is substantially shunted at the end face of the field magnet 1a.

界磁磁石1aを偏倚させる偏倚制御手段の構成を図1により説明する。励磁部支持体1dに固定した3個のピン1fは回転軸11に設けた3個のスリット1jを介して制御棒1kに接し,制御棒1kは回転軸11の中空部内を軸方向に摺動可能に構成されてアクチュエータ1nのプッシュロッド1mと接している。スプリング1gは励磁部支持体1dを右方向に付勢し,アクチュエータ1nはプッシュロッド1mを軸方向左右に偏倚させる構成であるので励磁部支持体1d及び界磁磁石1aはアクチュエータ1nにより軸方向に偏倚させられる。本実施例ではアクチュエータ1nにはステップモータとネジ機構を用い,ステップモータの回転によりプッシュロッド1mは図1に於いて左右に偏倚され,ステップモータを駆動しない場合はプッシュロッド1mの軸方向位置を保存させている。   The configuration of the bias control means for biasing the field magnet 1a will be described with reference to FIG. The three pins 1f fixed to the exciter support 1d are in contact with the control rod 1k through three slits 1j provided on the rotary shaft 11, and the control rod 1k slides in the hollow portion of the rotary shaft 11 in the axial direction. It is configured to be in contact with the push rod 1m of the actuator 1n. The spring 1g urges the excitation unit support 1d to the right, and the actuator 1n biases the push rod 1m to the left and right in the axial direction. Therefore, the excitation unit support 1d and the field magnet 1a are axially moved by the actuator 1n. Be biased. In this embodiment, the actuator 1n uses a step motor and a screw mechanism, and the push rod 1m is biased left and right in FIG. 1 by the rotation of the step motor. When the step motor is not driven, the axial position of the push rod 1m is determined. It is preserved.

以上,図1から図5に示した回転電機に於いて,界磁磁石1aを主磁極1b及びバイパス磁極1cに対して相対偏倚させる事で電機子に流れる磁束量を制御できることを説明した。第一実施例は磁束量を制御して出力を最適化するシステムであり,図6を用いて回転電機システムとしての制御を説明する。図6は磁束量制御を行う回転電機システムのブロック図を示している。図6に於いて,回転電機61は入力62,出力63を有するとし,制御装置65は回転電機61の出力63及び主磁極1b及びバイパス磁極1cの位置を含む状態信号64を入力として制御信号66を介して磁束量を制御する。番号67は電機子コイル16の駆動制御回路を示す。回転電機61が発電機として用いられるのであれば,入力62は回転力であり,出力63は発電電力となる。回転電機61が電動機として用いられるのであれば,入力62は駆動制御回路67から電機子コイル16に供給される駆動電流であり,出力63は回転トルク,回転速度となる。   As described above, in the rotating electrical machine shown in FIGS. 1 to 5, it has been explained that the amount of magnetic flux flowing through the armature can be controlled by making the field magnet 1a relatively displaced with respect to the main magnetic pole 1b and the bypass magnetic pole 1c. The first embodiment is a system that controls the amount of magnetic flux to optimize the output, and the control as a rotating electrical machine system will be described with reference to FIG. FIG. 6 shows a block diagram of a rotating electrical machine system that performs magnetic flux amount control. In FIG. 6, the rotating electrical machine 61 has an input 62 and an output 63, and the control device 65 receives the status signal 64 including the output 63 of the rotating electrical machine 61 and the positions of the main magnetic pole 1b and the bypass magnetic pole 1c as a control signal. The amount of magnetic flux is controlled via 66. Reference numeral 67 denotes a drive control circuit for the armature coil 16. If the rotating electrical machine 61 is used as a generator, the input 62 is a rotational force and the output 63 is generated power. If the rotating electrical machine 61 is used as an electric motor, the input 62 is a drive current supplied from the drive control circuit 67 to the armature coil 16, and the output 63 is a rotational torque and a rotational speed.

回転電機が電動機として用いられる場合において,弱め界磁制御を行って回転力を最適に制御する電動機システムを説明する。制御装置65は出力63である回転速度が所定の値より大となり電機子に流れる磁束量を小とする時には制御信号66がアクチュエータ1nにより,プッシュロッド1mを左方向に偏倚させて主磁極1bと界磁磁石1aの対向面積を小とさせる。回転速度が所定の値より小となり電機子に流れる磁束量を大とする時には制御信号66がアクチュエータ1nにより,プッシュロッド1mを右方向に偏倚させて主磁極1bと界磁磁石1aの対向面積を大とさせる。   An explanation will be given of an electric motor system that performs field-weakening control and optimally controls the rotational force when the rotating electric machine is used as an electric motor. When the rotational speed, which is the output 63, is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the control device 65 causes the actuator 1n to bias the push rod 1m in the left direction so that the main magnetic pole 1b The facing area of the field magnet 1a is made small. When the rotational speed is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the control signal 66 causes the push rod 1m to be biased to the right by the actuator 1n, so that the opposing area of the main magnetic pole 1b and the field magnet 1a is increased. Make it big.

回転電機が発電機として用いられる場合において,弱め界磁制御を行って発電電圧を所定の電圧となるよう制御する定電圧発電システムを説明する。制御装置65は出力63である発電電圧が所定の値より大となり電機子に流れる磁束量を小とする時には制御信号66がアクチュエータ1nにより,プッシュロッド1mを左方向に偏倚させて主磁極1bと界磁磁石1aの対向面積を小とさせる。発電電圧が所定の値より小となり電機子に流れる磁束量を大とする時には制御信号66がアクチュエータ1nにより,プッシュロッド1mを右方向に偏倚させて主磁極1bと界磁磁石1aの対向面積を大とさせる。   A constant voltage power generation system that controls the generated voltage to be a predetermined voltage by performing field-weakening control when the rotating electrical machine is used as a generator will be described. When the generated voltage as the output 63 is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the control device 65 causes the actuator 1n to bias the push rod 1m to the left by the actuator 1n, and the main magnetic pole 1b. The facing area of the field magnet 1a is made small. When the generated voltage is less than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the control signal 66 causes the actuator 1n to bias the push rod 1m in the right direction so that the opposing area of the main pole 1b and the field magnet 1a is increased. Make it big.

本発明の第二実施例による回転電機システムを図7から図11を用いて説明する。第二実施例は,ラジアルギャップ構造で且つアウターロータ構造の単極回転子を持つ回転電機システムである。励磁部は回転電機の静止側に,電機子と軸方向に隣接して配置され,バイパス磁路の磁気抵抗調整手段を有している。図7は回転電機の縦断面図,図8は電機子と回転子とを示す断面図,図9は励磁部構成を示す平面図,図10は回転偏倚した主磁極とバイパス磁極を示す平面図,図11は偏倚制御手段の一部を示す断面図である。   A rotating electrical machine system according to a second embodiment of the present invention will be described with reference to FIGS. The second embodiment is a rotating electrical machine system having a single pole rotor having a radial gap structure and an outer rotor structure. The exciting part is disposed on the stationary side of the rotating electric machine adjacent to the armature in the axial direction, and has a magnetic resistance adjusting means for a bypass magnetic path. 7 is a longitudinal sectional view of the rotating electrical machine, FIG. 8 is a sectional view showing the armature and the rotor, FIG. 9 is a plan view showing the configuration of the excitation unit, and FIG. 10 is a plan view showing the rotationally biased main pole and bypass pole. FIG. 11 is a sectional view showing a part of the bias control means.

図7はアウターロータ構造の回転電機に本発明を適用した実施例を示し,磁性体突極は回転子に配置され,電機子は固定軸に配置されている。基板72に固定軸71が固定され,固定軸71に電機子が固定され,固定軸71にベアリング73を介して回動可能に支持された磁性体である鉄製のロータハウジング79に磁性体突極77が配置されている。電機子は固定軸71に固定された円筒状磁気ヨーク75と,円筒状磁気ヨーク75から径方向に延びる複数の磁性体歯74と,磁性体歯74に巻回された電機子コイル76とから構成されている。回転子のロータハウジング79は外部機器と回転力の伝達の為のプーリー部78を持ち,ロータハウジング79には磁性体歯74に対向して磁性体突極77と磁気空隙部とが周方向に交互に配置されている。   FIG. 7 shows an embodiment in which the present invention is applied to a rotating electrical machine having an outer rotor structure, in which a magnetic salient pole is disposed on a rotor and an armature is disposed on a fixed shaft. A fixed shaft 71 is fixed to the substrate 72, an armature is fixed to the fixed shaft 71, and a magnetic salient pole is mounted on an iron rotor housing 79, which is a magnetic body rotatably supported on the fixed shaft 71 via a bearing 73. 77 is arranged. The armature includes a cylindrical magnetic yoke 75 fixed to the fixed shaft 71, a plurality of magnetic teeth 74 extending radially from the cylindrical magnetic yoke 75, and an armature coil 76 wound around the magnetic teeth 74. It is configured. The rotor housing 79 of the rotor has a pulley portion 78 for transmitting rotational force with an external device. The rotor housing 79 has a magnetic salient pole 77 and a magnetic gap portion facing the magnetic material teeth 74 in the circumferential direction. Alternatingly arranged.

磁性体突極77を磁石励磁する励磁部は,固定軸71を周回し且つ電機子と並んで配置され,主要部を界磁磁石7aと主磁極7bとバイパス磁極7cとベース磁極7dとから構成され,主磁極7bとバイパス磁極7cは励磁部支持部7fに支持され,励磁部支持部7fは固定軸71に回動可能に支持されている。界磁磁石7a内の矢印は磁化の方向を示し,番号7eはバイパス磁極7cの延長部と可動ベース磁極7m間の間隙を示す。間隙7eの空隙長調整手段は,可動ベース磁極7m,電機子支持部7qに設けられたベース磁極調整ネジ7n,アクチュエータ7pとから構成されている。   An exciting part that magnetizes the magnetic salient pole 77 is arranged around the fixed shaft 71 and aligned with the armature, and the main part is composed of a field magnet 7a, a main magnetic pole 7b, a bypass magnetic pole 7c, and a base magnetic pole 7d. The main magnetic pole 7b and the bypass magnetic pole 7c are supported by the excitation portion support portion 7f, and the excitation portion support portion 7f is rotatably supported by the fixed shaft 71. An arrow in the field magnet 7a indicates the direction of magnetization, and a number 7e indicates a gap between the extension of the bypass magnetic pole 7c and the movable base magnetic pole 7m. The gap length adjusting means for the gap 7e includes a movable base magnetic pole 7m, a base magnetic pole adjusting screw 7n provided on the armature support portion 7q, and an actuator 7p.

固定軸71は中空構造として,中空部内に摺動可能に配設された制御棒7gを有し,制御棒7gはアクチュエータ7hにより周方向に偏倚される構成としている。固定軸71に中空部と貫通するスリット部7jを持ち,スリット部7jを介して励磁部支持部7fに固定されたピン7kが制御棒7gと係合して制御棒7gの回転偏倚により励磁部支持部7f,主磁極7b,バイパス磁極7cを回転偏倚させる構成としている。番号7rはトルクセンサーを示す。   The fixed shaft 71 has a hollow structure and has a control rod 7g slidably disposed in the hollow portion, and the control rod 7g is configured to be biased in the circumferential direction by an actuator 7h. The fixed shaft 71 has a slit portion 7j that penetrates the hollow portion, and the pin 7k fixed to the excitation portion support portion 7f through the slit portion 7j engages with the control rod 7g, and the excitation portion is caused by the rotational deviation of the control rod 7g. The support portion 7f, the main magnetic pole 7b, and the bypass magnetic pole 7c are configured to be rotationally biased. Reference numeral 7r denotes a torque sensor.

図8は図7のB−B’に沿う電機子及び回転子の断面図を示し,相互の関係を説明する為に構成部分の一部に番号を付して示している。電機子は電機子支持部7qに固定された円筒状磁気ヨーク75と,円筒状磁気ヨーク75から径方向に延び,周方向に磁気空隙を有する複数の磁性体歯74と,磁性体歯74に巻回された電機子コイル76とから構成されている。第一の実施例では24個の電機子コイル76より構成され,それらは三相に結線されている。磁性体歯74と円筒状磁気ヨーク75はケイ素鋼板から所定の型で打ち抜かれた後,積層して構成され,電機子コイル76が巻回されている。   FIG. 8 is a cross-sectional view of the armature and the rotor along B-B ′ in FIG. 7, and some of the components are numbered for explaining the mutual relationship. The armature includes a cylindrical magnetic yoke 75 fixed to the armature support 7q, a plurality of magnetic teeth 74 extending in a radial direction from the cylindrical magnetic yoke 75 and having a magnetic gap in the circumferential direction, and a magnetic tooth 74 The armature coil 76 is wound. In the first embodiment, the armature coil is composed of 24 armature coils 76, which are connected in three phases. The magnetic teeth 74 and the cylindrical magnetic yoke 75 are formed by punching out from a silicon steel plate with a predetermined mold and then laminated, and an armature coil 76 is wound around the magnetic teeth 74 and the cylindrical magnetic yoke 75.

図8に於いて,回転子はロータハウジング79の内側に磁性体歯74に対向してケイ素鋼板を積層された磁性体突極77が周方向に等間隔に8個配置されている。磁性体突極77間は磁気空隙部であり,単に空隙として構成しているが,高速回転で風損がエネルギー効率或いは音響発生で支障となる時には比抵抗が大で非磁性の樹脂,レジン等を配置する事が出来る。回転子に界磁磁石は配置されていないが,励磁部により磁性体突極77は界磁磁石7aの一方の磁極に,磁性体歯74は他方の磁極に磁気的に結合されて磁化されている。このような構成は単極の回転電機であって,電動機として或いは発電機として使いにくい点はあるが,構成がシンプルであるメリットがある。   In FIG. 8, the rotor has eight magnetic salient poles 77 laminated with silicon steel plates facing the magnetic material teeth 74 inside the rotor housing 79 at equal intervals in the circumferential direction. The gap between the magnetic salient poles 77 is a magnetic gap, which is simply configured as a gap. However, when windage damages energy efficiency or sound generation due to high-speed rotation, the specific resistance is large and nonmagnetic resin, resin, etc. Can be placed. Although no field magnet is arranged on the rotor, the magnetic salient pole 77 is magnetically coupled to one magnetic pole of the field magnet 7a and the magnetic teeth 74 are magnetically coupled to the other magnetic pole and magnetized by the excitation unit. Yes. Such a configuration is a single-pole rotating electric machine, and although it is difficult to use as a motor or a generator, there is an advantage that the configuration is simple.

図9は図7に示した励磁部の構成及び磁束量制御の原理を説明する為の図である。図9(a)は主磁極7b及びバイパス磁極7c側から見た界磁磁石7aを含む平面図であり,図9(b)はロータハウジング79側から見た主磁極7b及びバイパス磁極7cを含む平面図である。図7及び図9(a)に於いて,界磁磁石7aは磁気空隙部91を挟んで周方向に3個配置されている。各界磁磁石7aの磁化方向は図7に矢印で示されるように軸方向であり,界磁磁石7aの二つの磁極を第一界磁磁極,第二界磁磁極として第二界磁磁極はベース磁極7dを介して円筒状磁気ヨーク75に結合され,第一界磁磁極は対向する主磁極7bを介してロータハウジング79に磁気的に結合されている。   FIG. 9 is a diagram for explaining the configuration of the excitation unit shown in FIG. 7 and the principle of magnetic flux amount control. 9A is a plan view including the field magnet 7a viewed from the main magnetic pole 7b and the bypass magnetic pole 7c side, and FIG. 9B includes the main magnetic pole 7b and the bypass magnetic pole 7c viewed from the rotor housing 79 side. It is a top view. In FIG. 7 and FIG. 9A, three field magnets 7a are arranged in the circumferential direction with a magnetic gap 91 therebetween. The magnetization direction of each field magnet 7a is an axial direction as shown by an arrow in FIG. 7, and the second magnetic pole is a base with the two magnetic poles of the field magnet 7a as the first field magnetic pole and the second field magnetic pole. The first magnetic field pole is magnetically coupled to the rotor housing 79 via the opposing main magnetic pole 7b.

図7及び図9(b)に示されるように,界磁磁石7aの第一界磁磁極に微小空隙を介して対向して各主磁極7b及びバイパス磁極7cが周方向に並んで回動可能に配置されている。図9(a),(b)に於いて番号92で示される円筒状磁気コアはバイパス磁極7cに結合されて共に回転偏倚し,図7に示されるように間隙7e,可動ベース磁極7m,円筒状磁気ヨーク75を介してベース磁極7dに接続している。可動ベース磁極7mはベース磁極調整ネジ7nの回転により円筒状磁気ヨーク75に沿って摺動される。   As shown in FIG. 7 and FIG. 9B, the main magnetic pole 7b and the bypass magnetic pole 7c are rotatable in parallel with each other in the circumferential direction so as to face the first field magnetic pole of the field magnet 7a through a minute gap. Is arranged. 9 (a) and 9 (b), the cylindrical magnetic core denoted by reference numeral 92 is coupled to the bypass magnetic pole 7c and is rotationally biased together. As shown in FIG. 7, the gap 7e, the movable base magnetic pole 7m, the cylindrical A magnetic pole 75 is connected to the base magnetic pole 7d. The movable base magnetic pole 7m is slid along the cylindrical magnetic yoke 75 by the rotation of the base magnetic pole adjusting screw 7n.

界磁磁石7aの第一界磁磁極から主磁極7bに流入した界磁磁束はロータハウジング79,磁性体突極77,磁性体歯74,円筒状磁気ヨーク75,ベース磁極7dを介して第二界磁磁極に環流する主磁路を形成し,バイパス磁極7cに流入した磁束は円筒状磁気コア92,間隙7e,可動ベース磁極7m,円筒状磁気ヨーク75,ベース磁極7dを介して第二界磁磁極に環流するバイパス磁路を形成している。間隙7eの対向面積及び間隙長を調整して主磁路の磁気抵抗とバイパス磁路の磁気抵抗とを互いにほぼ等しく設定する。その際,主磁路の磁気抵抗は磁性体突極77と磁性体歯74との相対位置により変動するので平均化した磁気抵抗にバイパス磁路の磁気抵抗とをほぼ等しく設定する。   The field magnetic flux flowing into the main magnetic pole 7b from the first field magnetic pole of the field magnet 7a is secondly passed through the rotor housing 79, the magnetic salient pole 77, the magnetic tooth 74, the cylindrical magnetic yoke 75, and the base magnetic pole 7d. A main magnetic path that circulates in the field magnetic pole is formed, and the magnetic flux flowing into the bypass magnetic pole 7c passes through the second magnetic field via the cylindrical magnetic core 92, the gap 7e, the movable base magnetic pole 7m, the cylindrical magnetic yoke 75, and the base magnetic pole 7d. A bypass magnetic path that recirculates to the magnetic pole is formed. By adjusting the facing area and the gap length of the gap 7e, the magnetic resistance of the main magnetic path and the magnetic resistance of the bypass magnetic path are set substantially equal to each other. At this time, since the magnetic resistance of the main magnetic path varies depending on the relative position between the magnetic salient pole 77 and the magnetic teeth 74, the magnetic resistance of the bypass magnetic path is set substantially equal to the averaged magnetic resistance.

主磁極7b,バイパス磁極7c,円筒状磁気コア92,ベース磁極7d,可動ベース磁極7mには交流磁束が流れ難いよう飽和磁束密度の大きな軟鉄ブロックを主体とする磁性体で構成し,全体をコンパクトに構成する。磁性体突極77はケイ素鋼板の積層で構成され,それより比抵抗が小さく交流磁束が流れ難いので磁路間をスパイク的に短絡漏洩する磁束を抑える事が出来る。界磁磁石7aと主磁極7b及びバイパス磁極7c間の磁気抵抗を小に構成する為に界磁磁石7aと主磁極7b及びバイパス磁極7c間は微小な間隙を介して対向させる或いは界磁磁石7aと主磁極7b及びバイパス磁極7c間は摺動させる構成とする。   The main magnetic pole 7b, the bypass magnetic pole 7c, the cylindrical magnetic core 92, the base magnetic pole 7d, and the movable base magnetic pole 7m are made of a magnetic material mainly composed of a soft iron block having a high saturation magnetic flux density so that AC magnetic flux does not easily flow. Configure. The magnetic salient pole 77 is composed of a stack of silicon steel plates, and has a specific resistance smaller than that, and it is difficult for an alternating magnetic flux to flow. Therefore, it is possible to suppress magnetic flux leaking in a short circuit between magnetic paths. In order to reduce the magnetic resistance between the field magnet 7a and the main magnetic pole 7b and the bypass magnetic pole 7c, the field magnet 7a is opposed to the main magnetic pole 7b and the bypass magnetic pole 7c with a small gap therebetween, or the field magnet 7a. The main magnetic pole 7b and the bypass magnetic pole 7c are slid.

図9(a),図9(b)に於いて,主磁極7b,バイパス磁極7cの周方向角度長は等しく設定され,界磁磁石7aの周方向角度長を主磁極7b,バイパス磁極7c間間隙の周方向角度長及び主磁極7bの周方向角度長の和に等しくなるよう設定し,主磁極7b,バイパス磁極7cの偏倚量は主磁極7bの周方向角度長以下としている。本実施例では主磁極7b,バイパス磁極7cが可動磁極部に対応し,磁極ユニットとして界磁磁石7aに対して偏倚させる。   9A and 9B, the circumferential angle lengths of the main magnetic pole 7b and the bypass magnetic pole 7c are set equal, and the circumferential angle length of the field magnet 7a is set between the main magnetic pole 7b and the bypass magnetic pole 7c. It is set to be equal to the sum of the circumferential angle length of the gap and the circumferential angle length of the main magnetic pole 7b, and the deviation amount of the main magnetic pole 7b and the bypass magnetic pole 7c is set to be equal to or smaller than the circumferential angle length of the main magnetic pole 7b. In this embodiment, the main magnetic pole 7b and the bypass magnetic pole 7c correspond to the movable magnetic pole portion and are biased with respect to the field magnet 7a as a magnetic pole unit.

図10(a),(b)は図9(b)と同じくロータハウジング79側から見た主磁極7b及びバイパス磁極7cを示す平面図であり,それぞれの図は磁極ユニット(主磁極7b及びバイパス磁極7c)と界磁磁石7a間の周方向偏倚が最小,最大の場合,すなわち磁性体突極77と磁性体歯74間の磁束量をそれぞれ最大,最小にする場合を示している。同図に於いて,番号101は界磁磁石7aの周方向に於ける存在領域を示し,図10(a)に示されるように基準位置で界磁磁石7aは主磁極7bの全領域に対向すると共にバイパス磁極7cとは僅かに対向する状態を示している。この場合に界磁磁石7aからの磁束はほぼ全量が主磁極7bを介して磁性体突極77,磁性体歯74間に流れる。   FIGS. 10A and 10B are plan views showing the main magnetic pole 7b and the bypass magnetic pole 7c as viewed from the rotor housing 79 side, as in FIG. 9B. Each figure shows the magnetic pole unit (the main magnetic pole 7b and the bypass magnetic pole 7b). It shows the case where the circumferential deviation between the magnetic pole 7c) and the field magnet 7a is minimum and maximum, that is, the case where the amount of magnetic flux between the magnetic salient pole 77 and the magnetic teeth 74 is maximized and minimized, respectively. In the figure, reference numeral 101 denotes an existing region in the circumferential direction of the field magnet 7a. As shown in FIG. 10A, the field magnet 7a is opposed to the entire region of the main magnetic pole 7b at the reference position. In addition, a state is shown in which the bypass magnetic pole 7c is slightly opposed. In this case, almost all the magnetic flux from the field magnet 7a flows between the magnetic salient pole 77 and the magnetic teeth 74 via the main magnetic pole 7b.

図10(b)は図10(a)に示す基準位置から磁極ユニットが時計回り方向に主磁極7bの周方向角度長に等しい回転偏倚をした場合を示し,界磁磁石7aはバイパス磁極7cの全領域に対向すると共に主磁極7bとは僅かに対向する状態を示している。この場合に界磁磁石7aからの磁束はほぼ全量がバイパス磁極7cを介して円筒状磁気コア92,間隙7e,可動ベース磁極7m,円筒状磁気ヨーク75,ベース磁極7dを介して第二界磁磁極に環流する。   FIG. 10 (b) shows a case where the magnetic pole unit has a rotational deviation equal to the circumferential length of the main magnetic pole 7b in the clockwise direction from the reference position shown in FIG. 10 (a). It shows a state where it faces the entire region and slightly faces the main magnetic pole 7b. In this case, almost all of the magnetic flux from the field magnet 7a passes through the bypass magnetic pole 7c and the cylindrical magnetic core 92, the gap 7e, the movable base magnetic pole 7m, the cylindrical magnetic yoke 75, and the second magnetic field via the base magnetic pole 7d. Return to the magnetic pole.

図10(a),(b)に示した場合の中間状態では界磁磁石7aが主磁極7bとバイパス磁極7cの双方に対向して界磁磁石7aからの磁束は主磁路及びバイパス磁路に分流させられる。界磁磁石7aはほぼ全幅で主磁極7b及びバイパス磁極7cに微小間隙を介して対向し,磁束は界磁磁石7a,主磁極7b,バイパス磁極7cの面に直交して流れるので磁束は界磁磁石7aと主磁極7b,バイパス磁極7cとの間を層流状に流れる事になる。これにより磁束は界磁磁石7aと主磁極7b,バイパス磁極7cそれぞれの対向面積に比例して分流される。さらに界磁磁石7aと主磁極7b,バイパス磁極7cそれぞれの対向面積の和は一定であり,それらの面積は主磁極7bとバイパス磁極7cの偏倚に従って変化する。主磁路及びバイパス磁路の磁気抵抗は互いに等しく設定して界磁磁石7aからの磁束総量は常に一定であるので磁極ユニットの偏倚を妨げる磁気力は理論的には現れない。   In the intermediate state shown in FIGS. 10A and 10B, the field magnet 7a faces both the main magnetic pole 7b and the bypass magnetic pole 7c so that the magnetic flux from the field magnet 7a is the main magnetic path and the bypass magnetic path. To be shunted. The field magnet 7a has a substantially full width and is opposed to the main magnetic pole 7b and the bypass magnetic pole 7c through a minute gap, and the magnetic flux flows perpendicularly to the surfaces of the field magnet 7a, the main magnetic pole 7b, and the bypass magnetic pole 7c. The magnet 7a flows between the main magnetic pole 7b and the bypass magnetic pole 7c in a laminar flow. As a result, the magnetic flux is divided in proportion to the opposing areas of the field magnet 7a, the main magnetic pole 7b, and the bypass magnetic pole 7c. Further, the sum of the opposing areas of the field magnet 7a, the main magnetic pole 7b, and the bypass magnetic pole 7c is constant, and these areas change according to the deviation of the main magnetic pole 7b and the bypass magnetic pole 7c. Since the magnetic resistances of the main magnetic path and the bypass magnetic path are set equal to each other and the total magnetic flux from the field magnet 7a is always constant, the magnetic force that prevents the deviation of the magnetic pole unit does not appear theoretically.

磁極ユニットの位置が図10(a),(b)に示した範囲内に留まれば,界磁磁石7aと主磁極7b,バイパス磁極7cそれぞれの対向面積の和は一定であり,それらの面積は偏倚に従って変化し,主磁路に分流される磁束量は偏倚量にほぼ比例する。前記位置が前記範囲を超えても磁束量制御を行う事は出来るが,偏倚量と主磁路を流れる磁束量の関係は不定となる。本実施例では前記範囲内に磁極ユニットの位置を留めるようスリット7jの周方向位置及び周方向角度長を設定している。   If the position of the magnetic pole unit stays within the range shown in FIGS. 10A and 10B, the sum of the opposing areas of the field magnet 7a, the main magnetic pole 7b, and the bypass magnetic pole 7c is constant, and their areas are The amount of magnetic flux that changes according to the bias and is shunted to the main magnetic path is almost proportional to the amount of bias. Although the amount of magnetic flux can be controlled even if the position exceeds the range, the relationship between the amount of deviation and the amount of magnetic flux flowing through the main magnetic path is indefinite. In this embodiment, the circumferential position and the circumferential angle length of the slit 7j are set so as to keep the position of the magnetic pole unit within the above range.

磁極ユニットを回転偏倚させる事で磁性体突極77,磁性体歯74間に流れる磁束量を制御出来,その際に回転偏倚を妨げる磁気力は理論的に発生しない事を説明した。以下には図7及び図11を用いて磁極ユニットを回転偏倚させる構成を説明する。図11は励磁部支持部7fに固定されたピン7kが制御棒7gと係合する部分を拡大して示す断面図である。ピン7kは3個有り,固定軸71にはスリット7jが設けられ,制御棒7g端面にはピン7kを夫々受け入れる溝部が3個設けられている構造である。固定軸71を励磁部支持部7fに挿通した後,ピン7kを励磁部支持部7fの外周部から打ち込み,ピン7kを固定軸71内の中空部に突出させて固定し,制御棒7gを固定軸71の中空部に挿入して制御棒7g端部の溝部にピン7kを係合させる。   It has been explained that the amount of magnetic flux flowing between the magnetic salient pole 77 and the magnetic teeth 74 can be controlled by rotationally biasing the magnetic pole unit, and no magnetic force that prevents rotational bias is theoretically generated. Below, the structure which rotationally biases a magnetic pole unit is demonstrated using FIG.7 and FIG.11. FIG. 11 is an enlarged cross-sectional view showing a portion where the pin 7k fixed to the excitation portion support portion 7f engages with the control rod 7g. There are three pins 7k, the fixed shaft 71 is provided with slits 7j, and the end face of the control rod 7g is provided with three grooves for receiving the pins 7k. After the fixed shaft 71 is inserted into the excitation portion support portion 7f, the pin 7k is driven from the outer periphery of the excitation portion support portion 7f, and the pin 7k is protruded into the hollow portion in the fixed shaft 71 and fixed, and the control rod 7g is fixed. It inserts in the hollow part of the axis | shaft 71, and engages the pin 7k with the groove part of the control rod 7g end part.

アクチュエータ7hは制御装置からの指示により制御棒7gを回転偏倚させ,ピン7kを介して励磁部支持部7fを回転偏倚させる。その際,スリット7jの周方向位置及び周方向角度長は磁極ユニットを図10(a),(b)で示す範囲内の偏倚量に留める偏倚規制手段として設定してある。アクチュエータ7hはステップモータを使用して磁極ユニットの偏倚位置を保存する構成としているが,他にモータとネジ機構或いはギア機構等を組み合わせて偏倚位置を保存出来る構成とする事も出来る。   The actuator 7h rotationally biases the control rod 7g according to an instruction from the control device, and rotationally biases the excitation unit support 7f via the pin 7k. At that time, the circumferential position and the circumferential angular length of the slit 7j are set as a bias regulating means for retaining the magnetic pole unit within the range shown in FIGS. 10 (a) and 10 (b). The actuator 7h is configured to store the bias position of the magnetic pole unit using a step motor, but may be configured to store the bias position by combining a motor and a screw mechanism or a gear mechanism.

主磁路とバイパス磁路の磁気抵抗を最小磁気力条件に設定する事で両磁路間の磁束漏洩を小さく抑制し,前記偏倚を妨げる磁気力を小さく抑制する事が出来るが,磁路の磁気抵抗を変動させる要因は多い。すなわち,量産段階で部品寸法は設定公差内でばらついて各磁路の磁気抵抗を変動させ,磁路間の磁束漏洩が無視できない場合は磁極ユニットの偏倚位置が各磁路の磁気抵抗に影響し,磁性体の透磁率は温度の影響を受けやすいので各磁路の磁気抵抗は変化する。更にまた電機子コイルに電流が流れると主磁路の磁気抵抗は実効的に変動する。本実施例ではバイパス磁路内の間隙7eの大きさを調整する事により主磁路及びバイパス磁路の磁気抵抗を互いに等しくさせ,種々の原因による磁路の磁気抵抗変化に適応させて両磁路間の磁束漏洩を小さく抑制し,前記偏倚を妨げる磁気力を小さく抑制している。   By setting the magnetic resistance of the main magnetic path and bypass magnetic path to the minimum magnetic force condition, the magnetic flux leakage between the two magnetic paths can be suppressed to a small level, and the magnetic force that prevents the deviation can be suppressed to a small level. There are many factors that cause the magnetoresistance to fluctuate. That is, in the mass production stage, the component dimensions vary within the set tolerances, and the magnetic resistance of each magnetic path is changed. If the magnetic flux leakage between the magnetic paths cannot be ignored, the bias position of the magnetic pole unit affects the magnetic resistance of each magnetic path. Since the magnetic permeability of the magnetic material is easily affected by temperature, the magnetic resistance of each magnetic path changes. Furthermore, when a current flows through the armature coil, the magnetic resistance of the main magnetic path effectively varies. In this embodiment, by adjusting the size of the gap 7e in the bypass magnetic path, the magnetic resistances of the main magnetic path and the bypass magnetic path are made equal to each other, and both magnetic fields are adapted to adapt to the magnetic resistance change of the magnetic path due to various causes. Magnetic flux leakage between the paths is suppressed to a small level, and the magnetic force that prevents the deviation is suppressed to a small level.

バイパス磁路の磁気抵抗を調整する構成及び方法を図7を用いて説明する。図7に於いて,番号7rはトルクセンサーを示している。トルクセンサー7rとしては各種の原理に基づくトルクセンサーを使用する事が出来るが,ストレインゲージが小型で本実施例には適している。アクチュエータ7hは磁束量を変更する為に磁極ユニットを周方向に偏倚させた後は周方向位置を保持する。主磁路とバイパス磁路の磁気抵抗が最小磁気力条件から外れると,磁極ユニットは磁気抵抗の小さい側の磁極(主磁極7b或いはバイパス磁極7c)と界磁磁石7aとの対向面積を増す方向に偏倚させる磁気力を受ける。アクチュエータ7hは周方向位置を保持しようとするので制御棒7gは捻れ,トルクセンサー7rにより前記磁気力を検出する事が出来る。磁気力は主磁路とバイパス磁路の磁気抵抗の差に比例するので磁気力を予め定めた範囲内に収まるようアクチュエータ7pによりベース磁極調整ネジ7nを回転させて可動ベース磁極7mを軸方向前後に移動させて間隙7eの大きさを変化させ,主磁路及びバイパス磁路の磁気抵抗差を調整する。常に両磁路の磁気抵抗を最小磁気力条件に近く維持できるので両磁路間の磁束漏洩を小さく抑制し,さらに磁極ユニットの偏倚を妨げる磁気力が小に抑制されるので,小出力のアクチュエータ7hで磁束量制御が可能である。   A configuration and method for adjusting the magnetic resistance of the bypass magnetic path will be described with reference to FIG. In FIG. 7, reference numeral 7r denotes a torque sensor. Although the torque sensor based on various principles can be used as the torque sensor 7r, the strain gauge is small and suitable for this embodiment. The actuator 7h holds the circumferential position after the magnetic pole unit is biased in the circumferential direction in order to change the amount of magnetic flux. When the magnetic resistance of the main magnetic path and the bypass magnetic path deviates from the minimum magnetic force condition, the magnetic pole unit increases the facing area between the magnetic pole (main magnetic pole 7b or bypass magnetic pole 7c) having a lower magnetic resistance and the field magnet 7a. It receives a magnetic force that biases it. Since the actuator 7h tries to maintain the circumferential position, the control rod 7g is twisted, and the magnetic force can be detected by the torque sensor 7r. Since the magnetic force is proportional to the difference between the magnetic resistances of the main magnetic path and the bypass magnetic path, the base pole adjusting screw 7n is rotated by the actuator 7p so that the magnetic force falls within a predetermined range, and the movable base magnetic pole 7m is moved back and forth in the axial direction. To change the size of the gap 7e to adjust the magnetic resistance difference between the main magnetic path and the bypass magnetic path. Since the magnetic resistance of both magnetic paths can always be maintained close to the minimum magnetic force condition, magnetic flux leakage between both magnetic paths is suppressed to a small level, and the magnetic force that prevents the magnetic pole unit from being biased is suppressed to a small level. The amount of magnetic flux can be controlled in 7 hours.

以上,図7から図11に示した回転電機に於いて,磁極ユニットを界磁磁石7aに対して相対偏倚させる事で電機子に流れる磁束量を制御できることを説明し,さらに磁極ユニットを界磁磁石7aに対して偏倚させる手段方法を説明した。第二の実施例は磁束量を制御して出力を最適化するシステムであり,図6を用いて回転電機システムとしての制御を説明する。   As described above, in the rotating electric machine shown in FIGS. 7 to 11, it has been explained that the magnetic flux amount flowing through the armature can be controlled by making the magnetic pole unit relatively biased with respect to the field magnet 7a. The means for biasing the magnet 7a has been described. The second embodiment is a system for optimizing the output by controlling the amount of magnetic flux, and the control as a rotating electrical machine system will be described with reference to FIG.

回転電機が電動機として用いられる場合において,弱め界磁制御を行って回転力を最適に制御する電動機システムを説明する。制御装置65は出力63である回転速度が所定の値より大となり電機子に流れる磁束量を小とする時には制御信号66,アクチュエータ7h,制御棒7gを介して磁極ユニットを図10(a),図10(b)に於いて時計回り方向に偏倚させ,主磁極7bと界磁磁石7aとの対向面積を小とさせる。回転速度が所定の値より小となり電機子に流れる磁束量を大とする時には制御信号66,アクチュエータ7h,制御棒7gを介して磁極ユニットを反時計回り方向に偏倚させ,主磁極7bと界磁磁石7aとの対向面積を大とさせる。   An explanation will be given of an electric motor system that performs field-weakening control and optimally controls the rotational force when the rotating electric machine is used as an electric motor. When the rotational speed as the output 63 is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the control device 65 moves the magnetic pole unit through the control signal 66, the actuator 7h, and the control rod 7g, as shown in FIG. In FIG. 10B, it is biased in the clockwise direction, and the facing area between the main magnetic pole 7b and the field magnet 7a is made small. When the rotational speed is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the magnetic pole unit is biased counterclockwise via the control signal 66, the actuator 7h, and the control rod 7g, and the main magnetic pole 7b and the field magnet The area facing the magnet 7a is increased.

回転電機が発電機として用いられる場合において,弱め界磁制御を行って発電電圧を所定の電圧となるよう制御する定電圧発電システムを説明する。制御装置65は出力63である発電電圧が所定の値より大となり電機子に流れる磁束量を小とする時には制御信号66,アクチュエータ7h,制御棒7gを介して磁極ユニットを図10(a),図10(b)に於いて時計回り方向に偏倚させ,主磁極7bと界磁磁石7aとの対向面積を小とさせる。発電電圧が所定の値より小となり電機子に流れる磁束量を大とする時には制御信号66,アクチュエータ7h,制御棒7gを介して磁極ユニットを反時計回り方向に偏倚させ,主磁極7bと界磁磁石7aとの対向面積を大とさせる。   A constant voltage power generation system that controls the generated voltage to be a predetermined voltage by performing field-weakening control when the rotating electrical machine is used as a generator will be described. When the generated voltage, which is the output 63, is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the control device 65 moves the magnetic pole unit through the control signal 66, the actuator 7h, and the control rod 7g, as shown in FIG. In FIG. 10B, it is biased in the clockwise direction, and the facing area between the main magnetic pole 7b and the field magnet 7a is made small. When the generated voltage is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the magnetic pole unit is biased counterclockwise via the control signal 66, the actuator 7h, and the control rod 7g, and the main magnetic pole 7b and the field magnet The area facing the magnet 7a is increased.

磁路の磁気抵抗を設計値から許容範囲内に納める事が出来る場合には回転電機の組み立て後に於けるバイパス磁路の磁気抵抗調整は不要とする事が出来る。また,運転中に於ける磁路の磁気抵抗が初期状態から大きくずれない場合には回転電機の組み立て後の初期調整設定のみを採用して本実施例で採用した磁気抵抗の制御過程を省略する事が出来る。回転電機システムの仕様或いは運転条件により本実施例に於けるバイパス磁路の磁気抵抗調整手段を部分的に採用して最適の回転電機システムとする事が出来る。   If the magnetic resistance of the magnetic path can be kept within the allowable range from the design value, the adjustment of the magnetic resistance of the bypass magnetic path after the assembly of the rotating electrical machine can be made unnecessary. Also, when the magnetic resistance of the magnetic path during operation does not deviate significantly from the initial state, only the initial adjustment setting after assembly of the rotating electrical machine is adopted, and the magnetic resistance control process employed in this embodiment is omitted. I can do it. Depending on the specifications or operating conditions of the rotating electrical machine system, the magnetic resistance adjusting means for the bypass magnetic path in this embodiment can be partially adopted to obtain an optimum rotating electrical machine system.

本発明による回転電機システムの第三実施例を図12から図16までを用いて説明する。第三実施例は,ラジアルギャップ構造の回転電機システムである。励磁部は回転子の一方の軸方向に隣接するハウジング側に配置され,バイパス磁路に磁気抵抗調整コイルを有する。図12は回転電機の縦断面図,図13は電機子と回転子とを示す断面図,図14は回転子構造と励磁部配置を示す分解斜視図,図15は励磁部の拡大された縦断面図,図16は励磁部の断面図である。   A third embodiment of the rotating electrical machine system according to the present invention will be described with reference to FIGS. The third embodiment is a rotating electrical machine system having a radial gap structure. The exciting part is arranged on the side of the housing adjacent to one of the rotors in the axial direction, and has a magnetoresistive adjustment coil in the bypass magnetic path. 12 is a longitudinal sectional view of a rotating electric machine, FIG. 13 is a sectional view showing an armature and a rotor, FIG. 14 is an exploded perspective view showing a rotor structure and an excitation part arrangement, and FIG. 15 is an enlarged longitudinal section of the excitation part. FIG. 16 is a sectional view of the excitation part.

図12はラジアルギャップ構造の回転電機に本発明を適用した実施例を示し,回転軸11がベアリング13を介してハウジング12に回動可能に支持されている。電機子の構成は図1に示した第一実施例と同じであるので説明は省略する。回転子の磁極部は磁性体突極と永久磁石とが周方向に交互に並ぶ表面磁極部121,隣り合う磁性体突極を交互に径方向の内周側及び軸方向の右へ延長させた第一延長部122,第二延長部123とから構成されている。回転子右側のハウジング側に励磁部が配置されて回転子の第一延長部122,第二延長部123と空隙を介して対向し,第一延長部122,第二延長部123に磁束を一括して供給し,隣り合う磁性体突極を互いに異極に磁化している。   FIG. 12 shows an embodiment in which the present invention is applied to a rotary electric machine having a radial gap structure, and a rotating shaft 11 is rotatably supported by a housing 12 via a bearing 13. The configuration of the armature is the same as that of the first embodiment shown in FIG. The magnetic pole part of the rotor has surface magnetic pole parts 121 in which magnetic salient poles and permanent magnets are alternately arranged in the circumferential direction, and adjacent magnetic salient poles are alternately extended radially inward and to the right in the axial direction. The first extension part 122 and the second extension part 123 are configured. An exciting part is arranged on the housing side on the right side of the rotor, and faces the first extension part 122 and the second extension part 123 of the rotor through a gap, and magnetic flux is collectively applied to the first extension part 122 and the second extension part 123. The magnetic salient poles adjacent to each other are magnetized in different polarities.

同図に於いて,励磁部の主要部の構成は界磁磁石127,主磁極128,バイパス磁極129から構成されている。主磁極128,バイパス磁極129は励磁部支持体12bに固定され,励磁部支持体12bはハウジング12に固定されている。界磁磁石127及びベース磁極126は可動磁極部として主磁極128,バイパス磁極129で構成される磁極ユニットに対し周方向に摺動可能としてアクチュエータ12dに制御棒12cを介して接続されている。番号12aは非磁性体,番号124は冷却エアーが流動する空洞部,番号12eは環状磁気コア,番号125はバイパス磁路の磁気抵抗調整の為に配置された磁気抵抗調整コイルをそれぞれ示す。   In the figure, the main part of the exciting part is composed of a field magnet 127, a main magnetic pole 128, and a bypass magnetic pole 129. The main magnetic pole 128 and the bypass magnetic pole 129 are fixed to the excitation unit support 12b, and the excitation unit support 12b is fixed to the housing 12. The field magnet 127 and the base magnetic pole 126 are connected to the actuator 12d via the control rod 12c so as to be slidable in the circumferential direction with respect to a magnetic pole unit composed of a main magnetic pole 128 and a bypass magnetic pole 129 as movable magnetic pole portions. Reference numeral 12a denotes a non-magnetic material, reference numeral 124 denotes a cavity through which cooling air flows, reference numeral 12e denotes an annular magnetic core, and reference numeral 125 denotes a magnetic resistance adjusting coil arranged for adjusting the magnetic resistance of the bypass magnetic path.

図13は図12のC−C’に沿う電機子及び回転子の断面図を示し,相互の関係を説明する為に構成部分の一部に番号を付して示している。電機子の構成は第一の実施例と同じであるので説明は省略する。   FIG. 13 is a cross-sectional view of the armature and the rotor along the line C-C ′ in FIG. 12, and in order to explain the mutual relationship, a part of the components are numbered. Since the structure of the armature is the same as that of the first embodiment, description thereof is omitted.

図13に於いて,回転子は磁性体突極と永久磁石とを周方向に交互に有する構造である。回転子の表面磁極部は一様な磁性体を周方向に等間隔に配置された永久磁石133によって区分され,隣接する磁性体突極を代表して磁性体突極131,132として番号を付している。隣接する磁性体突極131,132は内径方向,軸と平行の右方向に交互に延長されてそれぞれ第一延長部122,第二延長部123とする。番号135で示されるように内径方向に延長されて集合された部分は第一延長部122とし,軸方向の右に延長された部分は第二延長部123としている。番号136は非磁性体部分を示す。さらに隣接する磁性体突極131,132は互いに異なる方向に磁化されるよう隣接する永久磁石133の周方向磁化方向は互いに反転して構成されている。永久磁石133に付された矢印は磁化方向を示す。   In FIG. 13, the rotor has a structure having magnetic salient poles and permanent magnets alternately in the circumferential direction. The surface magnetic pole part of the rotor is divided by a permanent magnet 133 having a uniform magnetic body arranged at equal intervals in the circumferential direction, and numbered as magnetic body salient poles 131 and 132 on behalf of adjacent magnetic body salient poles. is doing. Adjacent magnetic salient poles 131 and 132 are alternately extended in the inner diameter direction and the right direction parallel to the axis to be a first extension portion 122 and a second extension portion 123, respectively. As indicated by reference numeral 135, the part extended and assembled in the inner diameter direction is a first extension part 122, and the part extended to the right in the axial direction is a second extension part 123. Reference numeral 136 denotes a non-magnetic part. Further, the adjacent magnetic salient poles 131 and 132 are configured such that the circumferential direction magnetization directions of the adjacent permanent magnets 133 are reversed so as to be magnetized in different directions. The arrow attached to the permanent magnet 133 indicates the magnetization direction.

永久磁石133は磁束を磁性体突極131,132に供給し,周方向に磁気抵抗が大の領域を形成する磁束バリアとなっている。番号134は第一実施例に於ける磁束チャネル部24に相当する磁束チャネル部である。磁性体突極131,132をケイ素鋼板から永久磁石133或いは磁束チャネル部134,非磁性体部分136に相当する部分を打ち抜いて積層した後,永久磁石133を挿入し,磁束チャネル部134には鉄のブロックを挿入して構成する。非磁性体部分136には樹脂,レジン等の比抵抗が大きい非磁性体を充填して構成する。   The permanent magnet 133 supplies a magnetic flux to the magnetic salient poles 131 and 132, and serves as a magnetic flux barrier that forms a region having a large magnetic resistance in the circumferential direction. Reference numeral 134 denotes a magnetic flux channel portion corresponding to the magnetic flux channel portion 24 in the first embodiment. The magnetic salient poles 131 and 132 are laminated by punching out a portion corresponding to the permanent magnet 133 or the magnetic flux channel portion 134 and the nonmagnetic material portion 136 from the silicon steel plate, and then inserting the permanent magnet 133. The block is inserted and configured. The nonmagnetic material portion 136 is configured by filling a nonmagnetic material having a large specific resistance, such as resin or resin.

図14は回転子の構成及び励磁部の配置を示す分解斜視図である。理解を容易にする為に磁性体突極131,132等を有する中心部と磁性体突極の第二延長部123とを離して示し,第二延長部123に間隙を介して対向しハウジング12側に配置されている励磁部145を示している。第二延長部123は軟鉄をプレス成形して磁性体突極132の延長部分となる磁性体突部141を有して構成され,非磁性体部144は磁性を持たないステンレススチールで形成されている。磁性体突部141と一体の環状磁気コア部分142は微小空隙を介して励磁部145のベース磁極126に,第一延長部122と結合されている円筒状磁気コア143は微小空隙を介して主磁極128とそれぞれ対向する構成である。   FIG. 14 is an exploded perspective view showing the configuration of the rotor and the arrangement of the excitation parts. In order to facilitate understanding, the central portion having the magnetic salient poles 131 and 132 and the second extension 123 of the magnetic salient pole are shown separately, and the second extension 123 is opposed to the housing 12 with a gap therebetween. The excitation part 145 arrange | positioned at the side is shown. The second extension 123 includes a magnetic projection 141 that is an extension of the magnetic salient pole 132 by press-molding soft iron, and the non-magnetic portion 144 is formed of stainless steel having no magnetism. Yes. The annular magnetic core portion 142 integral with the magnetic protrusion 141 is connected to the base magnetic pole 126 of the excitation portion 145 via a minute gap, and the cylindrical magnetic core 143 coupled to the first extension portion 122 is mainly interposed via the minute gap. The magnetic poles 128 are opposed to each other.

図15は図12に縦断面図を示した回転子の一部及び励磁部を拡大して示し,図16は励磁部の断面図を示している。図12,図15,図16を用いて励磁部の構成及び磁束量制御の動作原理を説明する。励磁部の主要部は界磁磁石127,磁極ユニット(主磁極128,バイパス磁極129)から構成されている。径方向の磁化を持つ界磁磁石127は3個有り,界磁磁石127と非磁性体12aと周方向に交互に配置されて円筒状磁性体よりなるベース磁極126の内側に固定されている。主磁極128とバイパス磁極129の対が各界磁磁石127に対向して内側に配置されて励磁部支持体12bに固定されている。バイパス磁極129は更に環状磁気コア12eに接続され,環状磁気コア12eはベース磁極126と間隙を介して対向している。さらに主磁極128は円筒状磁気コア143に対向し,ベース磁極126は環状磁気コア部分142に対向している。励磁部を構成する主磁極128,バイパス磁極129,ベース磁極126,環状磁気コア12eに交流磁束は流れ難いように飽和磁束密度の大きい軟鉄ブロックで構成して全体をコンパクトに構成している。   FIG. 15 is an enlarged view of a part of the rotor and the excitation part whose longitudinal sectional view is shown in FIG. 12, and FIG. 16 is a sectional view of the excitation part. The configuration of the excitation unit and the operating principle of the magnetic flux amount control will be described with reference to FIGS. The main part of the exciting part is composed of a field magnet 127 and a magnetic pole unit (main magnetic pole 128, bypass magnetic pole 129). There are three field magnets 127 having radial magnetization. The field magnets 127 and the nonmagnetic bodies 12a are alternately arranged in the circumferential direction and fixed inside the base magnetic pole 126 made of a cylindrical magnetic body. A pair of a main magnetic pole 128 and a bypass magnetic pole 129 is disposed on the inner side so as to face each field magnet 127 and is fixed to the excitation unit support 12b. The bypass magnetic pole 129 is further connected to the annular magnetic core 12e, and the annular magnetic core 12e is opposed to the base magnetic pole 126 via a gap. Further, the main magnetic pole 128 faces the cylindrical magnetic core 143, and the base magnetic pole 126 faces the annular magnetic core portion 142. The main magnetic pole 128, the bypass magnetic pole 129, the base magnetic pole 126, and the annular magnetic core 12e constituting the excitation unit are composed of a soft iron block having a high saturation magnetic flux density so that the alternating magnetic flux does not easily flow, and the entire structure is made compact.

磁性体突極131,132は間に配置された永久磁石133により磁化され,磁性体突極131はN極に,磁性体突極132はS極である。本実施例では励磁部,永久磁石が磁性体突極を同じ極性に磁化するよう励磁部が配置されている。すなわち,励磁部に於いて界磁磁石127は主磁極128をN極に磁化して第一延長部122,磁性体突極131をN極側に励磁する。さらに第二延長部123を介して磁性体突極132をS極側に励磁している。界磁磁石127は磁極ユニットに対して周方向に摺動する構成としてアクチュエータ12dにより偏倚させられる。アクチュエータ12dは界磁磁石127とベース磁極126とをハウジング12に設けた窓を介して3本の制御棒12cで接続して回転偏倚させ,界磁磁石127と主磁極128との対向面積を変える。   The magnetic salient poles 131 and 132 are magnetized by a permanent magnet 133 disposed therebetween, the magnetic salient pole 131 being an N pole, and the magnetic salient pole 132 being an S pole. In this embodiment, the excitation unit and the permanent magnet are arranged so that the magnetic salient pole is magnetized to the same polarity. That is, in the exciting part, the field magnet 127 magnetizes the main magnetic pole 128 to the N pole and excites the first extension part 122 and the magnetic salient pole 131 to the N pole side. Further, the magnetic salient pole 132 is excited to the S pole side through the second extension 123. The field magnet 127 is biased by the actuator 12d so as to slide in the circumferential direction with respect to the magnetic pole unit. The actuator 12d connects the field magnet 127 and the base magnetic pole 126 with the three control rods 12c through a window provided in the housing 12 so as to be rotationally biased, thereby changing the facing area of the field magnet 127 and the main magnetic pole 128. .

界磁磁石127には主磁極128に流入した磁束が円筒状磁気コア143,第一延長部122,磁性体突極121,磁性体歯14,磁性体突極122,第二延長部123,磁性体突部141,環状磁気コア部分142,ベース磁極126を介して界磁磁石127に環流する主磁路と,バイパス磁極129に流入した磁束が環状磁気コア12e及びベース磁極126を介して界磁磁石127に環流するバイパス磁路とが並列に接続される構成であり,界磁磁石127の周方向偏倚に従って主磁路及びバイパス磁路に磁束が分流され,主磁路を流れる磁束量が制御される。本実施例では環状磁気コア12eとベース磁極126との間の空隙長及び対向面積を変えて両磁路の磁気抵抗が互いにほぼ等しくなるよう設定し,前記界磁磁石127の偏倚に抗する磁気力を小としている。   In the field magnet 127, magnetic flux flowing into the main magnetic pole 128 has a cylindrical magnetic core 143, a first extension 122, a magnetic salient pole 121, a magnetic tooth 14, a magnetic salient pole 122, a second extension 123, and a magnetic field. The main magnetic path that circulates to the field magnet 127 via the body protrusion 141, the annular magnetic core portion 142, and the base magnetic pole 126, and the magnetic flux that flows into the bypass magnetic pole 129 passes through the annular magnetic core 12 e and the base magnetic pole 126. The bypass magnetic path circulating in the magnet 127 is connected in parallel, and the magnetic flux is divided into the main magnetic path and the bypass magnetic path in accordance with the circumferential deviation of the field magnet 127, and the amount of magnetic flux flowing through the main magnetic path is controlled. Is done. In the present embodiment, the gap length and the opposed area between the annular magnetic core 12e and the base magnetic pole 126 are changed so that the magnetic resistances of both magnetic paths are substantially equal to each other, and the magnetic field resists the bias of the field magnet 127. The power is small.

本実施例ではアクチュエータ12dにはステップモータを用い,制御棒12cを介して界磁磁石127を偏倚させる。アクチュエータ12dに駆動電流を流さない場合は界磁磁石127の位置を保存して制御に要するエネルギーを小としている。   In this embodiment, a step motor is used as the actuator 12d, and the field magnet 127 is biased via the control rod 12c. When no drive current is supplied to the actuator 12d, the position of the field magnet 127 is preserved to reduce the energy required for control.

種々の要因による各磁路の磁気抵抗は変動し,主磁路とバイパス磁路の磁気抵抗の差が大になると,磁路間の磁束短絡量は増え,界磁磁石127の偏倚を妨げる磁気力が大になる。本実施例ではバイパス磁路を巻回するよう配置された磁気抵抗調整コイル125に流す電流を制御して常に両磁路間の磁気抵抗が主磁路とバイパス磁路の磁気抵抗の差より大にしている。すなわち,回転電機の運転中に主磁路及びバイパス磁路の磁気抵抗を変動させるパラメータは主に電機子コイルに流れる電流,回転速度,温度,可動磁極部の偏倚位置等である。これら動作条件を示すパラメータと最適な電流の初期設定条件からの変動量との関係は同一設計の回転電機では統計データに基づいて推定出来る。回転電機の組み立て後に最適な電流と動作条件を示すパラメータとの間のマップデータを作成して設定し,回転電機の運転条件に応じて最適な電流をマップデータから得て磁気抵抗調整コイル125に供給してバイパス磁路の磁気抵抗を実効的に調整する。   The magnetic resistance of each magnetic path fluctuates due to various factors, and when the difference between the magnetic resistances of the main magnetic path and the bypass magnetic path becomes large, the amount of magnetic flux short-circuit between the magnetic paths increases, and the magnetism that prevents the field magnet 127 from deviating. Power becomes big. In this embodiment, the current flowing through the magnetoresistive adjustment coil 125 arranged so as to wind the bypass magnetic path is controlled so that the magnetic resistance between the two magnetic paths is always larger than the difference in magnetic resistance between the main magnetic path and the bypass magnetic path. I have to. That is, the parameters that fluctuate the magnetic resistance of the main magnetic path and the bypass magnetic path during the operation of the rotating electrical machine are mainly the current flowing through the armature coil, the rotational speed, the temperature, the displacement position of the movable magnetic pole portion, and the like. The relationship between the parameters indicating the operating conditions and the amount of fluctuation from the optimum initial setting condition of the current can be estimated based on statistical data in a rotating electrical machine of the same design. After the rotating electric machine is assembled, map data between the optimum current and the parameter indicating the operating condition is created and set, and the optimum current is obtained from the map data according to the operating condition of the rotating electric machine and is supplied to the magnetoresistive adjustment coil 125. To effectively adjust the magnetic resistance of the bypass magnetic path.

以上,図12から図16に示した回転電機に於いて,界磁磁石127を磁極ユニットに対して相対偏倚させる事で電機子に流れる磁束量を制御できることを説明し,さらに偏倚の手段方法を説明した。第三の実施例は磁束量を制御して出力を最適化するシステムであり,図6を用いて回転電機システムとしての制御を説明する。   As described above, in the rotating electric machine shown in FIGS. 12 to 16, it has been explained that the magnetic flux flowing through the armature can be controlled by making the field magnet 127 relatively biased with respect to the magnetic pole unit. explained. The third embodiment is a system for optimizing the output by controlling the amount of magnetic flux, and the control as a rotating electrical machine system will be described with reference to FIG.

回転電機が電動機として用いられる場合において,弱め界磁制御を行って回転力を最適に制御する電動機システムを説明する。制御装置65は出力63である回転速度が所定の値より大となり電機子に流れる磁束量を小とする時には制御信号66がアクチュエータ12dにより制御棒12cを図16に於いて時計回り方向に偏倚させて主磁極128と界磁磁石127の対向面積を小とさせる。回転速度が所定の値より小となり電機子に流れる磁束量を大とする時には磁気抵抗調整コイル125に所定の電流を供給し,制御信号66がアクチュエータ12dにより制御棒12cを図16に於いて反時計回り方向に偏倚させて主磁極128と界磁磁石127の対向面積を大とさせる。   An explanation will be given of an electric motor system that performs field-weakening control and optimally controls the rotational force when the rotating electric machine is used as an electric motor. When the rotational speed, which is the output 63, is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the control device 65 causes the actuator 12d to bias the control rod 12c clockwise in FIG. Thus, the opposing area of the main magnetic pole 128 and the field magnet 127 is made small. When the rotational speed is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, a predetermined current is supplied to the magnetoresistive adjustment coil 125, and the control signal 66 causes the actuator 12d to move the control rod 12c in FIG. By deviating in the clockwise direction, the opposing area of the main magnetic pole 128 and the field magnet 127 is increased.

回転電機が発電機として用いられる場合において,弱め界磁制御を行って発電電圧を所定の電圧となるよう制御する定電圧発電システムを説明する。制御装置65は出力63である発電電圧が所定の値より大となり電機子に流れる磁束量を小とする時には制御信号66がアクチュエータ12dにより制御棒12cを図16に於いて時計回り方向に偏倚させて主磁極128と界磁磁石127の対向面積を小とさせる。発電電圧が所定の値より小となり電機子に流れる磁束量を大とする時には制御信号66がアクチュエータ12dにより制御棒12cを図16に於いて反時計回り方向に偏倚させて主磁極128と界磁磁石127の対向面積を大とさせる。   A constant voltage power generation system that controls the generated voltage to be a predetermined voltage by performing field-weakening control when the rotating electrical machine is used as a generator will be described. The control device 65 causes the control signal 66 to bias the control rod 12c clockwise in FIG. 16 by the actuator 12d when the generated voltage as the output 63 becomes larger than a predetermined value and the amount of magnetic flux flowing through the armature is reduced. Thus, the opposing area of the main magnetic pole 128 and the field magnet 127 is made small. When the generated voltage is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the control signal 66 causes the actuator 12d to bias the control rod 12c counterclockwise in FIG. The facing area of the magnet 127 is increased.

本発明の第四実施例による回転電機システムを図17を用いて説明する。第四実施例は第一実施例の回転電機システムをハイブリッドカーの発電機兼電動機システムとして用いた回転電機システムである。同図に於いて,番号171は第一実施例で示した回転電機を示し,回転電機171はハイブリッドカーのエンジン172とベルトで回転力を伝達するよう結合された回転軸179を持ち,回転軸179の回転力はトランスミッション173を介して駆動軸17aに伝えられる。制御装置174は上位制御装置からの指令17bを受け,電動機駆動回路175を介して回転電機171を電動機として駆動し,界磁制御回路176を介して回転電機171の界磁強度を制御する。更に制御装置174は上位制御装置からの指令17bを受け,電機子コイル16の引き出し線17cに現れる発電電力を整流回路177を介して整流し,バッテリー178を充電する構成としている。制御装置174は指令17bの指示により電動機駆動回路175を介して回転電機171を電動機として駆動し,エンジン172の回転をアシスト或いは単独で回転軸179を回転駆動させ,トランスミッション173,駆動軸17aを介してハイブリッドカーの駆動力に寄与する。   A rotating electrical machine system according to a fourth embodiment of the present invention will be described with reference to FIG. The fourth embodiment is a rotating electrical machine system using the rotating electrical machine system of the first embodiment as a generator / motor system of a hybrid car. In the figure, reference numeral 171 denotes the rotating electrical machine shown in the first embodiment, and the rotating electrical machine 171 has a rotating shaft 179 coupled to transmit a rotational force with an engine 172 of a hybrid car by a belt. The rotational force of 179 is transmitted to the drive shaft 17a via the transmission 173. The control device 174 receives the command 17 b from the host control device, drives the rotating electrical machine 171 as an electric motor via the motor drive circuit 175, and controls the field strength of the rotating electrical machine 171 via the field control circuit 176. Further, the control device 174 receives the command 17b from the host control device, rectifies the generated power appearing on the lead wire 17c of the armature coil 16 via the rectifier circuit 177, and charges the battery 178. The control device 174 drives the rotating electric machine 171 as an electric motor via an electric motor drive circuit 175 in accordance with an instruction 17b, assists the rotation of the engine 172, or independently drives the rotating shaft 179 to rotate through the transmission 173 and the driving shaft 17a. This contributes to the driving power of the hybrid car.

起動直後の低回転速度域で磁石トルクを強化する必要がある場合は制御装置174が界磁制御回路176を介して電機子の磁性体歯14,回転子の磁性体突極21,22間の磁束量を大とするようアクチュエータ1nによりプッシュロッド1mを右方向に偏倚させて主磁極1bと界磁磁石1aの対向面積を大とさせる。高回転速度域で弱め界磁とする場合には制御装置174が界磁制御回路176を介して電機子の磁性体歯14,回転子の磁性体突極21,22間の磁束量を小とするようアクチュエータ1nによりプッシュロッド1mを左方向に偏倚させて主磁極1bと界磁磁石1aの対向面積を小とさせる。   When it is necessary to reinforce the magnet torque in the low rotational speed range immediately after the start-up, the control device 174 provides the magnetic flux between the armature magnetic teeth 14 and the rotor magnetic salient poles 21 and 22 via the field control circuit 176. The push rod 1m is biased rightward by the actuator 1n so as to increase the size of the main magnetic pole 1b and the field magnet 1a. When the field weakening is used in the high rotation speed range, the control device 174 reduces the magnetic flux between the armature magnetic teeth 14 and the rotor magnetic salient poles 21 and 22 via the field control circuit 176. The push rod 1m is biased leftward by the actuator 1n to reduce the facing area between the main magnetic pole 1b and the field magnet 1a.

エンジン172の回転力のみでハイブリッドカーを駆動できる時は,指令17bにより電機子コイル16の引き出し線17cに現れる発電電力を整流回路177を介して直流に変え,バッテリー178を充電させる。その場合に制御装置174はバッテリー178を充電する最適な電圧になるよう界磁制御回路176を介してアクチュエータ1nを制御する。バッテリー178に充電する場合に回転電機システムを定電圧発電機システムとする事で発電電圧を変換するコンバータは不要である。また,更にバッテリー178が電圧の種類の異なる複数種のバッテリーで構成される場合でも切り替え回路を付け加えてそれぞれのバッテリーに最適の発電電圧に制御する事で高価なコンバータを不要に出来る。   When the hybrid car can be driven only by the rotational force of the engine 172, the generated power appearing on the lead wire 17c of the armature coil 16 is changed to direct current via the rectifier circuit 177 by the command 17b, and the battery 178 is charged. In that case, the control device 174 controls the actuator 1n via the field control circuit 176 so as to obtain an optimum voltage for charging the battery 178. When the battery 178 is charged, a converter that converts the generated voltage is not required by using the rotating electrical machine system as a constant voltage generator system. Further, even when the battery 178 is composed of a plurality of types of batteries having different voltage types, an expensive converter can be eliminated by adding a switching circuit to control the generated power voltage to be optimal for each battery.

本実施例はまたハイブリッドカーの制動時に於けるエネルギー回収システムとしても有効に機能する。指令17bを通じて回生制動の指示を受けると,制御装置174は界磁制御回路176を介して電機子の磁性体歯14,回転子の磁性体突極21,22間の磁束量を大とするようアクチュエータ1nによりプッシュロッド1mを右方向に偏倚させて主磁極1bと界磁磁石1aの対向面積を大とし,発電電力でバッテリー178に充電させる。複数のバッテリー178を有する場合には最も充電余力のあるバッテリー178の充電電圧に合わせた発電電圧が得られるよう界磁制御回路176を介してアクチュエータ1nを制御して電機子の磁性体歯14,回転子の磁性体突極21,22間の磁束量を制御する。回転電機171は駆動用電動機として用いられる体格であるので回生制動用の発電機として十分な制動力を発生できる。   This embodiment also functions effectively as an energy recovery system when braking a hybrid car. When the regenerative braking instruction is received through the command 17b, the controller 174 causes the actuator 1n to increase the amount of magnetic flux between the armature magnetic teeth 14 and the rotor magnetic salient poles 21 and 22 via the field control circuit 176. As a result, the push rod 1m is biased rightward to increase the opposing area of the main magnetic pole 1b and the field magnet 1a, and the battery 178 is charged with generated power. In the case of having a plurality of batteries 178, the actuator 1n is controlled via the field control circuit 176 so as to obtain a power generation voltage that matches the charging voltage of the battery 178 having the most capacity for charging, and the magnetic teeth 14 of the armature and the rotor. The amount of magnetic flux between the magnetic salient poles 21 and 22 is controlled. Since the rotating electrical machine 171 is a physique used as a drive motor, it can generate a sufficient braking force as a generator for regenerative braking.

本実施例は本発明をハイブリッドカーの発電機兼電動機として用いた回転電機システムであるが,電気自動車に於ける回転電機システムとする事も当然に可能である。その場合には上記実施例に於いてハイブリッドカーのエンジン172を取り除き,本発明による回転電機システムのみで電気自動車を駆動し,制動時に於けるエネルギー回収システムを構成する。   The present embodiment is a rotating electrical machine system in which the present invention is used as a generator / motor of a hybrid car, but it is naturally possible to use a rotating electrical machine system in an electric vehicle. In that case, the engine 172 of the hybrid car is removed in the above embodiment, and the electric vehicle is driven only by the rotating electrical machine system according to the present invention to constitute an energy recovery system at the time of braking.

以上,本発明の回転電機システムについて,実施例を挙げて説明した。これらの実施例は本発明の趣旨,目的を実現する例を示したのであって本発明の範囲を限定するわけでは無い。例えば,上記の実施例に於いて電機子は磁性体歯を有する構造が示されたが,従来のアキシャルギャップ構成の回転電機では磁性体歯を配置しない構造例も存在する。また,ラジアルギャップ構成に於いても電機子構成を円筒状磁気ヨーク上に印刷配線された電機子コイルを配置して磁性体歯を持たない例も存在する。本発明は磁性体歯の有無に拘わらず適用可能であり,回転電機の仕様に沿って最適の電気子構成を採用する事が出来る。上記実施例を組み合わせる,或いは実施例の一部を組み合わせて本発明の趣旨,目的を実現するシステムを完成させる等が可能な事は勿論である。   The rotating electrical machine system of the present invention has been described with reference to the embodiments. These examples show examples of realizing the gist and purpose of the present invention, and do not limit the scope of the present invention. For example, in the above embodiment, the armature has a structure having magnetic teeth, but there is a structure example in which a magnetic tooth is not arranged in a conventional rotating electric machine having an axial gap configuration. Further, even in the radial gap configuration, there is an example in which the armature configuration is arranged with an armature coil printed and wired on a cylindrical magnetic yoke and does not have magnetic teeth. The present invention can be applied regardless of the presence or absence of magnetic teeth, and can employ an optimum electronic configuration according to the specifications of the rotating electrical machine. Of course, it is possible to complete the system that achieves the gist and purpose of the present invention by combining the above-described embodiments, or by combining a part of the embodiments.

本発明による回転電機システムは従来の磁石トルク,リラクタンストルクを利用する回転電機の磁石励磁近傍の構成を変えて回転子と電機子間の磁束量を容易に制御可能とした。同回転電機システムは従来の回転電機と同様に高出力の電動機として利用できる事に加えて実用出来る回転速度範囲を拡大し,更に発電機能を改善し,またその発電機能を制御できる。移動体の発電機兼電動機システムに用いて,駆動用電動機としては従来以上の回転速度範囲での使用が期待できる他に制動時のエネルギー回収を可能として総合的なエネルギー消費量を改善できる。更に定電圧発電機システムとして広い回転速度範囲で発電電圧を一定に制御できるので定電圧制御回路を不要とし,更に電圧の異なる複数種のバッテリー充電にもコンバータを不要に出来,全体のシステムコストを低減出来る。   In the rotating electrical machine system according to the present invention, the amount of magnetic flux between the rotor and the armature can be easily controlled by changing the configuration in the vicinity of magnet excitation of the rotating electrical machine using the conventional magnet torque and reluctance torque. In addition to being able to be used as a high-output motor like the conventional rotating electrical machine, the rotating electrical machine system can expand the practical rotational speed range, further improve the power generation function, and control the power generation function. It can be used in a generator / motor system for a moving body, and it can be expected to be used in a range of rotational speeds higher than that of a conventional driving motor. In addition, it can recover energy during braking and improve overall energy consumption. In addition, the constant voltage generator system can control the generated voltage uniformly over a wide rotational speed range, eliminating the need for a constant voltage control circuit, and eliminating the need for a converter for charging multiple types of batteries with different voltages, reducing the overall system cost. It can be reduced.

第一の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 1st Example. 図1に示された回転電機の電機子と回転子とを示す断面図である。It is sectional drawing which shows the armature and rotor of a rotary electric machine shown by FIG. 図1に示された回転電機の回転子と第一,第二延長部を示す斜視図である。It is a perspective view which shows the rotor of a rotary electric machine shown by FIG. 1, and a 1st, 2nd extension part. 図1に示された回転電機の界磁磁石近傍の拡大された縦断面図である。FIG. 2 is an enlarged longitudinal sectional view in the vicinity of a field magnet of the rotating electrical machine shown in FIG. 1. 図1に示された回転電機の界磁磁石を含む磁気回路である。It is a magnetic circuit containing the field magnet of the rotary electric machine shown by FIG. 弱め界磁制御を行う回転電機システムのブロック図である。It is a block diagram of the rotary electric machine system which performs field-weakening control. 第二の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 2nd Example. 図7に示された回転電機の電機子と回転子とを示す断面図である。It is sectional drawing which shows the armature and rotor of a rotary electric machine shown by FIG. 図7に示された回転電機の励磁部構成を示す平面図である。It is a top view which shows the excitation part structure of the rotary electric machine shown by FIG. 図7に示された回転電機の回転偏倚した主磁極とバイパス磁極を示す平面図である。FIG. 8 is a plan view showing a rotationally biased main magnetic pole and bypass magnetic pole of the rotating electrical machine shown in FIG. 7. 図7に示された回転電機の偏倚制御手段の一部を示す断面図である。It is sectional drawing which shows a part of deflection control means of the rotary electric machine shown by FIG. 第三の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 3rd Example. 図12に示された回転電機の電機子と回転子とを示す断面図である。It is sectional drawing which shows the armature and rotor of a rotary electric machine shown by FIG. 図12に示された回転電機の回転子と第二延長部と励磁部を示す斜視図である。It is a perspective view which shows the rotor of the rotary electric machine shown by FIG. 12, a 2nd extension part, and an excitation part. 図12に示された回転電機の回転子と励磁部とを示す縦断面図である。It is a longitudinal cross-sectional view which shows the rotor and excitation part of the rotary electric machine shown by FIG. 図12に示された回転電機の励磁部の断面図である。It is sectional drawing of the excitation part of the rotary electric machine shown by FIG. 第四の実施例による回転電機システムのブロック図である。It is a block diagram of the rotary electric machine system by a 4th Example.

符号の説明Explanation of symbols

11・・・回転軸, 12・・・ハウジング,
13・・・ベアリング, 14・・・磁性体歯,
15・・・円筒状磁気ヨーク, 16・・・電機子コイル,
17・・・表面磁極部, 18・・・第一延長部,
19・・・第二延長部, 1a・・・界磁磁石,
1b・・・主磁極, 1c・・・バイパス磁極,
1d・・・励磁部支持体, 1e・・・ベース磁極,
1f・・・ピン, 1g・・・スプリング,
1h・・・非磁性体, 1j・・・スリット,
1k・・・制御棒, 1m・・・プッシュロッド,
1n・・・アクチュエータ, 1p・・・冷却用ファン
21,22・・磁性体突極, 23・・・磁気空隙部,
24・・・磁束チャネル部, 25・・・可飽和磁性体部,
26・・・可飽和磁性体結合部
31,32・・磁性体突部, 33,34・・非磁性体部,
35・・・励磁部の一部
41・・・微小空隙, 42・・・空隙部,
43・・・主磁路に流れる磁束, 44・・・バイパス磁路を流れる磁束,
45・・・空隙部42を通る磁束
51・・・主磁路の磁気抵抗, 52・・・バイパス磁路の磁気抵抗,
53・・・磁路間の磁気抵抗
61・・・回転電機装置, 62・・・入力,
63・・・出力, 64・・・状態信号,
65・・・制御装置, 66・・・制御信号,
67・・・駆動制御回路
71・・・固定軸, 72・・・基板,
73・・・ベアリング, 74・・・磁性体歯,
75・・・円筒状磁気ヨーク, 76・・・電機子コイル,
77・・・磁性体突極, 78・・・プーリー部,
79・・・ロータハウジング, 7a・・・界磁磁石,
7b・・・主磁極, 7c・・・バイパス磁極,
7d・・・ベース磁極, 7e・・・間隙,
7f・・・励磁部支持体, 7g・・・制御棒,
7h・・・アクチュエータ, 7j・・・スリット部,
7k・・・ピン, 7m・・・可動ベース磁極,
7n・・・ベース磁極調整ネジ, 7p・・・アクチュエータ,
7q・・・電機子支持部, 7r・・・トルクセンサー
91・・・磁気空隙部, 92・・・円筒状磁気コア
101・・・永久磁石7aの存在領域
121・・・表面磁極部, 122・・・第一延長部,
123・・・第二延長部, 124・・・空洞部,
125・・・磁気抵抗調整コイル, 126・・・ベース磁極,
127・・・界磁磁石, 128・・・主磁極,
129・・・バイパス磁極, 12a・・・非磁性体,
12b・・・励磁部支持体, 12c・・・制御棒,
12d・・・アクチュエータ
131,132・・磁性体突極, 133・・・永久磁石,
134・・・磁束チャネル部, 135・・・延長部,
136・・・非磁性体部分
141・・・磁性体突部, 142・・・環状磁気コア部分,
143・・・円筒状磁気コア, 144・・・非磁性体部
171・・・第一の実施例で示した回転電機装置,
172・・・ハイブリッドカーのエンジン,
173・・・トランスミッション, 174・・・制御装置,
175・・・電動機駆動回路, 176・・・界磁制御回路,
177・・・整流回路, 178・・・バッテリー,
179・・・回転軸, 17a・・・駆動軸,
17b・・・上位制御装置からの指令, 17c・・・電機子コイルの引き出し線
11 ... rotating shaft, 12 ... housing,
13 ... Bearings, 14 ... Magnetic teeth,
15 ... cylindrical magnetic yoke, 16 ... armature coil,
17 ... surface magnetic pole part, 18 ... first extension part,
19 ... second extension, 1a ... field magnet,
1b: main magnetic pole, 1c: bypass magnetic pole,
1d: exciter support, 1e: base magnetic pole,
1f ... pin, 1g ... spring,
1h: non-magnetic material, 1j: slit,
1k ... Control rod, 1m ... Push rod,
1n: Actuator, 1p: Cooling fans 21, 22 ... Magnetic salient poles, 23: Magnetic air gap,
24 ... magnetic flux channel part, 25 ... saturable magnetic part,
26... Saturable magnetic material coupling portions 31, 32.. Magnetic material projections 33, 34.
35 ... a part of the excitation part 41 ... a minute gap, 42 ... a gap part,
43 ... magnetic flux flowing in the main magnetic path, 44 ... magnetic flux flowing in the bypass magnetic path,
45... Magnetic flux 51 passing through the air gap 42... Magnetic resistance of the main magnetic path 52.
53... Magnetic resistance 61 between magnetic paths 61...
63 ... Output, 64 ... Status signal,
65 ... Control device, 66 ... Control signal,
67... Drive control circuit 71... Fixed axis, 72.
73 ... bearings, 74 ... magnetic teeth,
75 ... cylindrical magnetic yoke, 76 ... armature coil,
77 ... magnetic salient pole, 78 ... pulley part,
79 ... Rotor housing, 7a ... Field magnet,
7b: main magnetic pole, 7c: bypass magnetic pole,
7d: base magnetic pole, 7e: gap,
7f ... excitation support, 7g ... control rod,
7h: Actuator, 7j: Slit,
7k ... pin, 7m ... movable base magnetic pole,
7n: Base magnetic pole adjustment screw, 7p: Actuator,
7q: armature support, 7r: torque sensor 91 ... magnetic air gap, 92 ... cylindrical magnetic core 101 ... existence area 121 of permanent magnet 7a ... surface magnetic pole part, 122 ... First extension part,
123 ... second extension part, 124 ... cavity part,
125: Magnetoresistive adjustment coil, 126: Base magnetic pole,
127 ... Field magnet, 128 ... Main pole,
129: Bypass magnetic pole, 12a: Non-magnetic material,
12b ... excitation support, 12c ... control rod,
12d ... Actuators 131, 132 ... Magnetic salient poles, 133 ... Permanent magnets,
134 ... magnetic flux channel part, 135 ... extension part,
136... Non-magnetic portion 141... Magnetic projection, 142.
143... Cylindrical magnetic core, 144... Non-magnetic body portion 171... Rotating electrical machine apparatus shown in the first embodiment,
172 ... Hybrid car engine,
173 ... Transmission, 174 ... Control device,
175 ... Electric motor drive circuit, 176 ... Field control circuit,
177 ... Rectifier circuit, 178 ... Battery,
179 ... rotating shaft, 17a ... driving shaft,
17b: Command from the host controller, 17c: Armature coil lead wire

Claims (15)

電機子コイルを有する電機子と,電機子と対向して周方向に配置された複数の磁性体突極を有する表面磁極部と,同種の極性に磁化する磁性体突極グループ毎に一括して磁化する励磁部とからなり,表面磁極部と電機子とは軸を中心に相対的に回転可能である回転電機装置であって,励磁部は界磁磁石及び主磁極及びバイパス磁極を有し,界磁磁石のN極或いはS極の何れか一方の磁極を第一界磁磁極,他方の磁極を第二界磁磁極としたときに第一界磁磁極に主磁極及びバイパス磁極が対向して配置され,第一界磁磁極から主磁極に流入する磁束が磁性体突極及び電機子を介して第二界磁磁極に環流する主磁路及び第一界磁磁極からバイパス磁極に流入する磁束が主として励磁部内で第二界磁磁極に環流するバイパス磁路が界磁磁石に並列に接続され,主磁路とバイパス磁路間の磁気抵抗が主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差より大になるよう構成され,主磁極及びバイパス磁極のユニット或いは界磁磁石の何れかが可動磁極部として第一界磁磁極が主磁極と対向する面積及びバイパス磁極と対向する面積の和が一定に保たれながら前記それぞれの対向面積を変える事が出来るよう可動磁極部が残余に対して相対偏倚可能に構成され,回転電機システムの出力が最適化するように前記出力に応じて可動磁極部が偏倚して主磁路に流れる磁束量が制御される事を特徴とする回転電機システム An armature having an armature coil, a surface magnetic pole portion having a plurality of magnetic salient poles arranged in the circumferential direction facing the armature, and a magnetic salient pole group magnetized to the same polarity A rotating electric machine device comprising a magnetizing exciting part, wherein the surface magnetic pole part and the armature are relatively rotatable about an axis, the exciting part having a field magnet, a main magnetic pole and a bypass magnetic pole, When either the N pole or S pole of the field magnet is the first field magnetic pole and the other magnetic pole is the second field magnetic pole, the main magnetic pole and the bypass magnetic pole face the first field magnetic pole. A magnetic flux flowing from the first field magnetic pole to the main magnetic pole through the magnetic salient pole and armature to the second field magnetic pole, and a magnetic flux flowing from the first field magnetic pole to the bypass magnetic pole Is bypassed in parallel with the field magnet. The magnetic resistance between the main magnetic path and the bypass magnetic path is configured to be larger than the difference between the magnetic resistance of the main magnetic path and the magnetic resistance of the bypass magnetic path. Any one of the magnets can be used as a movable magnetic pole part, and the movable magnetic pole can be changed so that the sum of the area where the first field magnetic pole faces the main magnetic pole and the area where the magnetic pole faces the bypass magnetic pole is kept constant. The magnetic pole portion is configured to be able to be biased relative to the remainder, and the amount of magnetic flux flowing in the main magnetic path is controlled by biasing the movable magnetic pole portion according to the output so that the output of the rotating electrical machine system is optimized. Rotating electrical machine system 請求項1記載の回転電機システムに於いて,バイパス磁路の磁気抵抗及び主磁路の磁気抵抗が互いにほぼ等しいとする最小磁気力条件に設定される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein a minimum magnetic force condition is set such that the magnetic resistance of the bypass magnetic path and the magnetic resistance of the main magnetic path are substantially equal to each other. 請求項1記載の回転電機システムに於いて,さらに主磁路或いはバイパス磁路の磁気抵抗を調整する磁気抵抗調整手段を有し,主磁路とバイパス磁路間の磁気抵抗が主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差より大になるよう主磁路或いはバイパス磁路の磁気抵抗が調整される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, further comprising a magnetic resistance adjusting means for adjusting a magnetic resistance of the main magnetic path or the bypass magnetic path, wherein the magnetic resistance between the main magnetic path and the bypass magnetic path is equal to that of the main magnetic path. Rotating electrical machine system characterized in that the magnetic resistance of the main magnetic path or the bypass magnetic path is adjusted to be larger than the difference between the magnetic resistance and the magnetic resistance of the bypass magnetic path 請求項3記載の回転電機システムに於いて,磁気抵抗調整手段としてバイパス磁路内の空隙に於ける空隙長調整手段を有する事を特徴とする回転電機システム 4. The rotating electrical machine system according to claim 3, further comprising a gap length adjusting means in a gap in the bypass magnetic path as a magnetic resistance adjusting means. 請求項3記載の回転電機システムに於いて,磁気抵抗調整手段としてバイパス磁路に巻回した磁気抵抗調整コイルを有する事を特徴とする回転電機システム 4. The rotating electrical machine system according to claim 3, further comprising a magnetic resistance adjusting coil wound around a bypass magnetic path as a magnetic resistance adjusting means. 請求項3記載の回転電機システムに於いて,さらに主磁路及びバイパス磁路の磁気抵抗が最小磁気力条件から外れる事により可動磁極部に加わる磁気力の検知手段を有し,前記磁気力が予め定められた範囲内になるよう磁気抵抗調整手段により主磁路或いはバイパス磁路の磁気抵抗を調整して主磁路とバイパス磁路間の磁気抵抗が主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差より大とされる事を特徴とする回転電機システム 4. The rotating electrical machine system according to claim 3, further comprising means for detecting a magnetic force applied to the movable magnetic pole when the magnetic resistance of the main magnetic path and the bypass magnetic path deviates from the minimum magnetic force condition. The magnetic resistance of the main magnetic path or the bypass magnetic path is adjusted by the magnetic resistance adjusting means so as to be within a predetermined range so that the magnetic resistance between the main magnetic path and the bypass magnetic path is the magnetic resistance of the main magnetic path and the bypass magnetic path. The rotating electrical machine system characterized by being larger than the difference between the magnetic resistance 請求項1記載の回転電機システムに於いて,界磁磁石から磁性体突極に至る磁路の一部が磁性体突極の平均的な導電率より大きい磁性体で構成される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein a part of the magnetic path from the field magnet to the magnetic salient pole is made of a magnetic material having an average conductivity higher than that of the magnetic salient pole. Rotating electrical machine system 請求項1記載の回転電機システムに於いて,さらに可動磁極部の偏倚規制手段を有し,界磁磁石の第一界磁磁極が主磁極と対向する面積及びバイパス磁極と対向する面積の和が一定に保たれながら前記それぞれの面積が変わる範囲内に可動磁極部の相対偏倚量が規制される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, further comprising a displacement restricting means for the movable magnetic pole portion, wherein a sum of an area of the field magnet facing the main magnetic pole and an area facing the bypass magnetic pole is A rotating electrical machine system characterized in that the relative deviation amount of the movable magnetic pole portion is regulated within a range in which the respective areas change while being kept constant. 請求項1から請求項8記載の何れかの回転電機システムに於いて,さらに制御装置を有し,回転力を入力とし,発電電力を出力とする回転電機システムであって,制御装置により電機子コイルに誘起される発電電圧が所定の値より大の時は可動磁極部が偏倚されて第一界磁磁極と主磁極とが対向する面積を小とされ,発電電圧が所定の値より小の時は可動磁極部が偏倚されて第一界磁磁極と主磁極とが対向する面積を大とされ,発電電圧が所定の値に制御される事を特徴とする回転電機システム 9. The rotating electrical machine system according to claim 1, further comprising a control device, wherein the rotational power is input and the generated power is output. When the generated voltage induced in the coil is larger than a predetermined value, the movable magnetic pole portion is biased to reduce the area where the first field magnetic pole and the main magnetic pole face each other, and the generated voltage is smaller than the predetermined value. When the movable magnetic pole part is biased, the area where the first field magnetic pole and the main magnetic pole face each other is increased, and the generated voltage is controlled to a predetermined value. 請求項1から請求項8記載の何れかの回転電機システムに於いて,さらに制御装置を有し,電機子コイルへの供給電流を入力とし,回転力を出力とする回転電機システムであって,制御装置により回転速度が所定の値より大で電機子を流れる磁束量を減少させる時には可動磁極部が偏倚されて第一界磁磁極と主磁極とが対向する面積を小とされ,回転速度が所定の値より小で電機子を流れる磁束量を増大させる時には可動磁極部が偏倚されて第一界磁磁極と主磁極とが対向する面積を大として回転力が最適に制御される事を特徴とする回転電機システム The rotating electrical machine system according to any one of claims 1 to 8, further comprising a control device, wherein the current supplied to the armature coil is input and the rotational force is output. When the control device reduces the amount of magnetic flux flowing through the armature when the rotational speed is greater than a predetermined value, the movable magnetic pole portion is biased to reduce the area where the first field magnetic pole and the main magnetic pole face each other, and the rotational speed is reduced. When the amount of magnetic flux flowing through the armature is increased below a predetermined value, the movable magnetic pole portion is biased and the rotational force is optimally controlled by increasing the area where the first field magnetic pole and the main magnetic pole face each other. Rotating electrical machine system 請求項1から請求項8記載の何れかの回転電機システムに於いて,さらに制御装置を有し,電機子コイルへの供給電流を入力とし,回転力を出力とする回転電機システムであって,回転速度を減少させる場合には制御装置により電機子を流れる磁束量を大とされるよう可動磁極部が偏倚されて第一界磁磁極と主磁極とが対向する面積が大とされて回転エネルギーが発電電力として取り出される事を特徴とする回転電機システム The rotating electrical machine system according to any one of claims 1 to 8, further comprising a control device, wherein the current supplied to the armature coil is input and the rotational force is output. When the rotational speed is reduced, the movable magnetic pole portion is biased so that the amount of magnetic flux flowing through the armature is increased by the control device, and the area where the first field magnetic pole and the main magnetic pole face each other is increased, and the rotational energy is increased. Rotating electrical machine system characterized in that is taken out as generated power 電機子コイルを有する電機子と,電機子と対向して周方向に配置された複数の磁性体突極を有する表面磁極部と,同種の極性に磁化する磁性体突極グループ毎に一括して磁化する励磁部とからなり,表面磁極部と電機子とは軸を中心に相対的に回転可能である回転電機装置の界磁制御方法であって,界磁磁石の一方の磁極から主磁極に流入する磁束が磁性体突極及び電機子を介して界磁磁石の他方の磁極に環流する主磁路及び界磁磁石の一方の磁極からバイパス磁極に流入する磁束が主として励磁部内で界磁磁石の他方の磁極に環流するバイパス磁路を界磁磁石に並列に接続し,主磁路とバイパス磁路間の磁気抵抗を主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差より大にし,主磁極及びバイパス磁極のユニット或いは界磁磁石の何れかを可動磁極部として界磁磁石が主磁極と対向する面積及びバイパス磁極と対向する面積の和を一定に保ちながら前記それぞれの面積を変えるよう可動磁極部を偏倚させて電機子を流れる磁束量を制御する。 An armature having an armature coil, a surface magnetic pole portion having a plurality of magnetic salient poles arranged in the circumferential direction facing the armature, and a magnetic salient pole group magnetized to the same polarity This is a field control method for a rotating electrical machine apparatus that consists of a magnetizing excitation part, and the surface magnetic pole part and the armature can rotate relative to each other about the axis, and flows from one magnetic pole of the field magnet into the main magnetic pole. The main magnetic path in which the magnetic flux circulates to the other magnetic pole of the field magnet through the magnetic salient pole and the armature, and the magnetic flux flowing from one magnetic pole of the field magnet to the bypass magnetic pole mainly in the excitation section A bypass magnetic path that circulates to the magnetic pole of the magnetic field is connected in parallel to the field magnet, and the magnetic resistance between the main magnetic path and the bypass magnetic path is larger than the difference between the magnetic resistance of the main magnetic path and the magnetic resistance of the bypass magnetic path. What are the main pole and bypass pole units or field magnets? The amount of magnetic flux that flows through the armature by displacing the movable magnetic pole portion so that the respective areas are changed while keeping the sum of the area where the field magnet faces the main magnetic pole and the area opposed to the bypass magnetic pole constant with the movable magnetic pole portion as the movable magnetic pole portion To control. 請求項12記載の界磁制御方法に於いて以下のステップを含んで,バイパス磁路及び主磁路の磁気抵抗をほぼ等しいとする最小磁気力条件に設定する。 In the field control method according to claim 12, including the following steps, the minimum magnetic force condition is set so that the magnetic resistances of the bypass magnetic path and the main magnetic path are substantially equal. 請求項12記載の磁束量制御方法に於いて以下のステップを含んで,さらに主磁路或いはバイパス磁路の磁気抵抗を調整する磁気抵抗調整手段を有し,主磁路とバイパス磁路間の磁気抵抗が主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差より大になるよう主磁路或いはバイパス磁路の磁気抵抗を調整する。 The magnetic flux amount control method according to claim 12, further comprising magnetic resistance adjusting means for adjusting the magnetic resistance of the main magnetic path or the bypass magnetic path, including the following steps, between the main magnetic path and the bypass magnetic path: The magnetic resistance of the main magnetic path or the bypass magnetic path is adjusted so that the magnetic resistance is larger than the difference between the magnetic resistance of the main magnetic path and the magnetic resistance of the bypass magnetic path. 請求項14記載の磁束量制御方法に於いて以下のステップを含んで,さらに主磁路及びバイパス磁路の磁気抵抗が最小磁気力条件から外れる事により可動磁極部に加わる磁気力の検知手段を有し,前記磁気力が予め定められた範囲内になるよう磁気抵抗調整手段により主磁路或いはバイパス磁路の磁気抵抗を調整して主磁路とバイパス磁路間の磁気抵抗を主磁路の磁気抵抗とバイパス磁路の磁気抵抗との間の差より大とする。 15. The magnetic flux amount control method according to claim 14, further comprising the following steps, further comprising means for detecting a magnetic force applied to the movable magnetic pole portion when the magnetic resistances of the main magnetic path and the bypass magnetic path deviate from the minimum magnetic force condition. The magnetic resistance between the main magnetic path and the bypass magnetic path is adjusted by adjusting the magnetic resistance of the main magnetic path or the bypass magnetic path by the magnetic resistance adjusting means so that the magnetic force falls within a predetermined range. And the difference between the magnetic resistance of the bypass magnetic path and the magnetic resistance of the bypass magnetic path.
JP2008116918A 2007-08-17 2008-04-28 Flux shunt control rotary electric machine system Pending JP2009268298A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008116918A JP2009268298A (en) 2008-04-28 2008-04-28 Flux shunt control rotary electric machine system
PCT/JP2008/059455 WO2009025110A1 (en) 2007-08-17 2008-05-22 Magnetic flux distribution control type rotary electrical machine system
CN2008801020965A CN101772880B (en) 2007-08-17 2008-05-22 Magnetic flux shunt controlling dynamo-electric machine system
KR1020107003310A KR101118337B1 (en) 2007-08-17 2008-05-22 Magnetic flux distribution control type rotary electrical machine system
EP08753086A EP2187508A4 (en) 2007-08-17 2008-05-22 Magnetic flux distribution control type rotary electrical machine system
US12/136,975 US7999432B2 (en) 2007-08-17 2008-06-11 Field controllable rotating electric machine system with magnetic excitation part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116918A JP2009268298A (en) 2008-04-28 2008-04-28 Flux shunt control rotary electric machine system

Publications (1)

Publication Number Publication Date
JP2009268298A true JP2009268298A (en) 2009-11-12

Family

ID=41393417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116918A Pending JP2009268298A (en) 2007-08-17 2008-04-28 Flux shunt control rotary electric machine system

Country Status (1)

Country Link
JP (1) JP2009268298A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296691A (en) * 2008-06-02 2009-12-17 Denso Corp Hybrid exciting synchronous machine
CN106655680A (en) * 2017-02-25 2017-05-10 兰州交通大学 Adjustable-magnetic rotation motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296691A (en) * 2008-06-02 2009-12-17 Denso Corp Hybrid exciting synchronous machine
JP4519928B2 (en) * 2008-06-02 2010-08-04 株式会社日本自動車部品総合研究所 Hybrid excitation type synchronous machine
CN106655680A (en) * 2017-02-25 2017-05-10 兰州交通大学 Adjustable-magnetic rotation motor
CN106655680B (en) * 2017-02-25 2023-09-05 兰州交通大学 Adjustable magnetic rotating motor

Similar Documents

Publication Publication Date Title
US7999432B2 (en) Field controllable rotating electric machine system with magnetic excitation part
US8242653B2 (en) Magnetic flux controllable rotating electric machine system
US8207645B2 (en) Magnetic flux controllable rotating electric machine system
EP2582016B1 (en) Motor and rotor of a motor
US20090045691A1 (en) Field controllable rotating electric machine system with magnetic excitation part
US20090295249A1 (en) Hybrid-type synchronous machine
WO2012042844A1 (en) Dynamo-electric machine
US20090026864A1 (en) Field controllable rotating electric machine system with flux shunt control
KR101091444B1 (en) Flux shunt control rotary electric machine system
KR101118337B1 (en) Magnetic flux distribution control type rotary electrical machine system
JP6539004B1 (en) Rotor and rotating electric machine
KR20020052172A (en) Brushless motor
JP2010172046A (en) Magnetic flux amount variable rotating electric machine system excited by magnet
JP4150765B1 (en) Magnetic flux shunt control rotating electrical machine system
JP4732930B2 (en) Synchronous machine
JP2011050186A (en) Variable magnetic flux rotating electric machine system
JP2011182622A (en) Magnetic flux volume variable rotary electric machine system
JP5750987B2 (en) Permanent magnet rotating electric machine
JP2009005445A (en) Field control electromagnetic rotation system
JP2009268298A (en) Flux shunt control rotary electric machine system
JP4238298B1 (en) Magnetic flux shunt control rotating electrical machine system
JP4243651B1 (en) Magnetic flux shunt control rotating electrical machine system
JP2008312307A (en) Field-control electromagnetic rotation system
JP2009303361A (en) Magnetic flux shunt control rotary electric machine system
JP4599523B2 (en) Field-controlled electromagnetic rotation system