JP2011182622A - Magnetic flux volume variable rotary electric machine system - Google Patents

Magnetic flux volume variable rotary electric machine system Download PDF

Info

Publication number
JP2011182622A
JP2011182622A JP2010063460A JP2010063460A JP2011182622A JP 2011182622 A JP2011182622 A JP 2011182622A JP 2010063460 A JP2010063460 A JP 2010063460A JP 2010063460 A JP2010063460 A JP 2010063460A JP 2011182622 A JP2011182622 A JP 2011182622A
Authority
JP
Japan
Prior art keywords
magnetic
salient pole
magnet
excitation
extension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010063460A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ichiyama
義和 市山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURA GIJUTSU KENKYUSHO KK
Kura Gijutsu Kenkyusho KK
Original Assignee
KURA GIJUTSU KENKYUSHO KK
Kura Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURA GIJUTSU KENKYUSHO KK, Kura Gijutsu Kenkyusho KK filed Critical KURA GIJUTSU KENKYUSHO KK
Priority to JP2010063460A priority Critical patent/JP2011182622A/en
Publication of JP2011182622A publication Critical patent/JP2011182622A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic flux volume variable rotary electric machine system which achieves strong field and weak field by changing magnetization of field magnets. <P>SOLUTION: A rotary electric machine system includes the rotary electric machine in which an armature and a rotor face each other radially. A first magnetic salient pole and a second magnetic salient pole adjacent to each other in the rotor, are extended in mutually different directions, and the extended portions are regarded as a first extension portion 18 and a second extension portion 19, respectively. A field magnet 1b and a field magnet 1e are arranged between the first extension portion and the second extension portion, and a magnetic yoke of the armature, respectively, in order to magnetize the first magnetic salient pole and the second magnetic salient pole to have mutually different polarities. A low coercive-force magnet material can be employed for the field magnets, thereby enabling a reduced cost. Furthermore, magnetizing coils for changing the magnetization of the field magnets, respectively, are prepared. The magnetizing coils irreversibly change the magnetization of the field magnets to control magnetic flux volume crossing the armature coils. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は,永久磁石界磁を持つ発電機,電動機を含む回転電機システムに関する。   The present invention relates to a rotating electrical machine system including a generator and a motor having a permanent magnet field.

永久磁石界磁と電機子との相対的回転によって電磁的に生ずる電力を取り出す発電機,或いは電機子に供給する電流によって生ずる磁界と永久磁石界磁との相互作用により永久磁石界磁と電機子との相対的回転を生ずる電動機等の回転電機装置はエネルギー効率に優れ,永久磁石の技術的進歩に伴い日常的に広く使われている。しかし強力な永久磁石はレアアース素材を必須とするが,資源が限られ,レアアース素材を使わない,或いはレアアースの使用量を少に出来る回転電機が望まれている。また,磁石励磁の回転電機は、界磁磁石からの磁束が一定であるので電動機として或いは発電機として用いられるにしても広い回転速度範囲で常に最適の出力が得られる訳ではなく,界磁制御もまた大きな課題である。   A generator for extracting electric power generated electromagnetically by the relative rotation of the permanent magnet field and the armature, or the permanent magnet field and the armature by the interaction between the magnetic field generated by the current supplied to the armature and the permanent magnet field Rotating electrical machines such as motors that produce relative rotation with the motor are energy efficient and are widely used on a daily basis with the technological advance of permanent magnets. However, although a strong permanent magnet requires a rare earth material, resources are limited, and a rotating electrical machine that does not use a rare earth material or can reduce the amount of rare earth used is desired. In addition, a magnet-excited rotating electrical machine has a constant magnetic flux from a field magnet, so even if it is used as an electric motor or a generator, an optimum output is not always obtained in a wide rotational speed range. It is a big issue.

すなわち,電動機の場合は高速回転域では逆起電力(発電電圧)が高すぎる結果となって制御が困難となり,弱め界磁制御として界磁強度を弱める種々の手段が提案されている。また発電機の場合,広い回転速度範囲に於いて発電電圧を所定のレベルとする為に専ら界磁電流制御による定電圧発電機或いは半導体による発電電圧の定電圧化回路が用いられている。   In other words, in the case of an electric motor, the back electromotive force (generated voltage) is too high in the high-speed rotation range, making control difficult, and various means for weakening field strength have been proposed as field weakening control. Further, in the case of a generator, a constant voltage generator based on field current control or a constant voltage generation circuit using a semiconductor is used exclusively to bring the generated voltage to a predetermined level in a wide rotational speed range.

電動機では進み位相電流による弱め界磁制御が広く採用されているが,エネルギー効率,制御範囲には限界がある。磁石励磁回転電機に於けるエネルギー効率の高さを犠牲にすることなく,回転電機の界磁制御を機械的な偏倚により行う試みがある(例えば特許第4243651号)。これは界磁条件を機械的な偏倚として保持できるので界磁制御に伴うエネルギー損失を最小限に留めて高エネルギー効率の回転電機を実現出来る。   Although electric field weakening control by lead phase current is widely used in electric motors, there are limits to energy efficiency and control range. There is an attempt to perform field control of a rotating electrical machine by mechanical bias without sacrificing high energy efficiency in a magnet-excited rotating electrical machine (for example, Japanese Patent No. 4243651). Since the field condition can be maintained as a mechanical bias, a high energy efficient rotating electric machine can be realized while minimizing the energy loss associated with field control.

エネルギー損失を最小限に留める他の界磁制御方法は,回転電機の運転中に界磁磁石の磁化状態を不可逆的に変更することであり,特開2006−280195,特開2008−048514,特開2008−125201等の技術提案がある。これらは電機子と対向する回転子磁極を高低の抗磁力を持つ永久磁石で構成し,電機子コイルの作る磁界により低抗磁力の永久磁石の磁化を変更しようとしている。しかしながら,電機子コイルの作る駆動磁界に常に曝される位置への低抗磁力磁石の存在,また電機子コイルのみの作る磁界によって磁化変更可能な低抗磁力磁石の存在は予見し難い事故により前記永久磁石の磁化が不安定になる可能性が常にあり,システムの安定性には重大な懸念が残る。   Another field control method for minimizing energy loss is to irreversibly change the magnetization state of the field magnet during the operation of the rotating electrical machine, which is disclosed in JP-A-2006-280195, JP-A-2008-048514, and JP-A-2008. There are technical proposals such as -125201. In these, the rotor magnetic poles facing the armature are composed of permanent magnets with high and low coercive force, and the magnetization of the low coercive force permanent magnet is to be changed by the magnetic field created by the armature coil. However, the presence of a low coercive force magnet at a position that is constantly exposed to the driving magnetic field produced by the armature coil, and the presence of a low coercive force magnet that can be changed in magnetization by the magnetic field produced only by the armature coil are due to unforeseeable accidents. There is always a possibility that the magnetization of a permanent magnet will become unstable, and there remains a serious concern about the stability of the system.

ラジアルギャップ構造の回転電機装置に於ける界磁制御の提案としては,特開2008−306908に電流励磁の提案例がある。しかし,界磁制御に際して励磁コイルに常時電流を供給しなければならず,エネルギー効率面に課題が残る。   Japanese Unexamined Patent Application Publication No. 2008-306908 has a proposal for current excitation as a proposal for field control in a rotating electrical machine apparatus having a radial gap structure. However, current must be constantly supplied to the exciting coil during field control, and there remains a problem in terms of energy efficiency.

したがって,本発明が解決しようとする課題は,レアアース素材を用いる磁石の使用量を小に出来る回転電機,界磁磁石の磁化を変えて強め,弱め界磁を実現する回転電機システム及び磁束量制御方法を提供する事である。   Therefore, the problems to be solved by the present invention are a rotating electric machine that can reduce the amount of magnets using rare earth materials, a rotating electric machine system that realizes a field weakening by changing the magnetization of the field magnet, and a magnetic flux amount control. Is to provide a method.

請求項1の発明による回転電機システムは,電機子との対向面に於いて磁気的な離隔部分を介して互いに離隔された第一磁性体突極及び第二磁性体突極を周方向に交互に有する回転子と,円筒状磁気ヨーク及び円筒状磁気ヨークから径方向に延びる磁性体歯及び磁性体歯に巻回された電機子コイルを有する電機子とが径方向に対向して相対的に回転可能に構成された回転電機装置であって,第一磁性体突極及び第二磁性体突極は半径方向或いは軸方向の互いに異なる方向に延伸されてそれぞれ第一延長部,第二延長部とされ,さらに第一磁性体突極及び第二磁性体突極を互いに異極に励磁する励磁部を有し,励磁部は第一延長部及び第二延長部を磁気的に結合する磁路の一部である励磁磁路部材と,励磁磁路部材を含む第一延長部及び第二延長部間の磁路を二分するよう配置された界磁磁石とを有して構成される事を特徴とする。   In the rotating electrical machine system according to the first aspect of the present invention, the first magnetic salient pole and the second magnetic salient pole which are separated from each other via a magnetic separation portion on the surface facing the armature are alternately arranged in the circumferential direction. And the armature having a magnetic tooth extending in the radial direction from the cylindrical magnetic yoke and the armature coil wound around the magnetic tooth are relatively opposed to each other in the radial direction. A rotating electrical machine apparatus configured to be rotatable, wherein a first magnetic salient pole and a second magnetic salient pole are extended in different directions in a radial direction or an axial direction, respectively, and a first extension part and a second extension part, respectively. And an excitation portion for exciting the first magnetic salient pole and the second magnetic salient pole different from each other, and the excitation portion is a magnetic path that magnetically couples the first extension portion and the second extension portion. And a first extension and a second extension including the excitation magnetic path member. And a field magnet arranged to bisect the path between parts, characterized in that it is configured.

回転子,電機子が径方向に対向する回転電機装置である。電機子は径方向に延びる磁性体歯と,磁性体歯に巻回された電機子コイルとが互いに磁気的に離隔されるよう周方向に配置されて回転子と対向する。回転子は電機子との対向面に於いて磁気的な離隔部分を介して互いに離隔された第一磁性体突極及び第二磁性体突極を周方向に交互に有するよう構成される。磁気的な離隔部分は磁気的な空隙及び或いは永久磁石で構成される。第一磁性体突極及び第二磁性体突極は互いに異なる方向に延伸されて第一延長部,第二延長部が形成され,第一延長部,第二延長部間を磁気的に結ぶ磁路の一部である励磁磁路部材を有し,励磁磁路部材を含む第一延長部,第二延長部間の磁路を分けるように界磁磁石が配置される。励磁磁路部材及び界磁磁石の組合せは一組或いは二組が回転子内或いは静止側に配置され,第一磁性体突極及び第二磁性体突極を互いに異極に磁化するよう構成される。   This is a rotating electrical machine device in which a rotor and an armature face each other in the radial direction. The armature is disposed in the circumferential direction so that the magnetic teeth extending in the radial direction and the armature coil wound around the magnetic teeth are magnetically separated from each other, and faces the rotor. The rotor is configured to alternately have first magnetic salient poles and second magnetic salient poles spaced apart from each other via a magnetic separation portion on a surface facing the armature. The magnetic separation portion is composed of a magnetic air gap and / or a permanent magnet. The first magnetic salient pole and the second magnetic salient pole are extended in different directions to form a first extension portion and a second extension portion, and a magnetically connecting between the first extension portion and the second extension portion. A field magnet is disposed so as to have an excitation magnetic path member that is a part of the path, and to divide the magnetic path between the first extension and the second extension including the excitation magnetic path member. One or two combinations of exciting magnetic path members and field magnets are arranged in the rotor or on the stationary side, and are configured to magnetize the first magnetic salient pole and the second magnetic salient pole to different polarities. The

界磁磁石は回転子の磁極外に配置されるのでスペース的に余裕があり,十分な長さを持つアルニコ磁石或いはフェライト磁石等の低抗磁力磁石を採用する事が出来る。   Since the field magnet is disposed outside the magnetic pole of the rotor, there is room in space, and a low coercive force magnet such as an alnico magnet or a ferrite magnet having a sufficient length can be employed.

回転電機は電機子コイルへの電流を入力として回転力を出力とすれば電動機であり,回転力を入力として電機子コイルから電流を出力すれば発電機である。電動機或いは発電機に於いて最適の磁極構成は存在するが,可逆的であり,上記の回転電機システムは電動機,発電機の何れにも適用される。   A rotating electric machine is an electric motor if a current to the armature coil is input and a rotational force is output, and a rotating electric machine is a generator if a current is output from the armature coil using the rotational force as an input. There is an optimum magnetic pole configuration in the electric motor or the generator, but it is reversible, and the rotating electrical machine system described above is applied to both the electric motor and the generator.

請求項2の発明は,請求項1記載の回転電機システムに於いて,第一延長部,第二延長部はそれぞれ第一磁性体突極及び第二磁性体突極が互いに軸方向の異なる方向に延伸されて構成され,さらに励磁部は回転子両端の静止側に配置された第一励磁部及び第二励磁部とより構成され,第一励磁部は両端が第一延長部及び円筒状磁気ヨークにそれぞれ磁気的に結合された第一励磁磁路部材と,第一励磁磁路部材を含む第一延長部及び円筒状磁気ヨーク間の磁路を二分するよう配置された第一界磁磁石とを有して構成され,第二励磁部は両端が第二延長部及び円筒状磁気ヨークにそれぞれ磁気的に結合された第二励磁磁路部材と,第二励磁磁路部材を含む第二延長部及び円筒状磁気ヨーク間の磁路を二分するよう配置された第二界磁磁石とを有して構成される事を特徴とする。   According to a second aspect of the present invention, in the rotating electrical machine system according to the first aspect, the first extension portion and the second extension portion have directions in which the first magnetic salient pole and the second magnetic salient pole are different from each other in the axial direction. Furthermore, the excitation part is composed of a first excitation part and a second excitation part arranged on the stationary side of both ends of the rotor, and the first excitation part has both ends of the first extension part and the cylindrical magnetic part. A first excitation magnetic path member magnetically coupled to each yoke, and a first field magnet arranged to bisect the magnetic path between the first extension including the first excitation magnetic path member and the cylindrical magnetic yoke The second excitation part includes a second excitation magnetic path member whose both ends are magnetically coupled to the second extension part and the cylindrical magnetic yoke, respectively, and a second excitation magnetic path member. A second field magnet arranged to bisect the magnetic path between the extension and the cylindrical magnetic yoke Characterized in that it is configured.

励磁部は同じ構成の第一励磁部,第二励磁部とより構成され,回転子両端の静止側に配置される。界磁磁石も第一界磁磁石及び第二界磁磁石で構成され,励磁磁路部材も第一励磁磁路部材,第二励磁磁路部材で構成される。第一延長部,第二延長部を磁気的に結合する磁路は第一励磁磁路部材,円筒状磁気ヨーク,第二励磁磁路部材で主要部が構成される。   The excitation unit is composed of a first excitation unit and a second excitation unit having the same configuration, and is arranged on the stationary side of both ends of the rotor. The field magnet is also composed of a first field magnet and a second field magnet, and the exciting magnetic path member is also composed of a first exciting magnetic path member and a second exciting magnetic path member. A magnetic path that magnetically couples the first extension part and the second extension part includes a first excitation magnetic path member, a cylindrical magnetic yoke, and a second excitation magnetic path member.

請求項3の発明は,請求項1記載の回転電機システムに於いて,第一延長部,第二延長部はそれぞれ第一磁性体突極及び第二磁性体突極が互いに軸方向の異なる方向に延伸されて構成され,さらに励磁部は第一励磁部及び第二励磁部より構成されて第一励磁部の一部及び第二励磁部の一部はそれぞれ回転子両端の静止側に配置され,第一励磁部は両端が第一延長部及び円筒状磁気ヨークにそれぞれ磁気的に結合された第一励磁磁路部材を有し,円筒状磁気ヨークと第一励磁磁路部材の一部とが第一界磁磁石を挟んで径方向に対向するよう構成され,第二励磁部は両端が第二延長部及び円筒状磁気ヨークにそれぞれ磁気的に結合された第二励磁磁路部材を有し,円筒状磁気ヨークと第二励磁磁路部材の一部とが第二界磁磁石を挟んで径方向に対向するよう構成される事を特徴とする。   According to a third aspect of the present invention, in the rotating electrical machine system according to the first aspect, the first extension portion and the second extension portion have directions in which the first magnetic salient pole and the second magnetic salient pole are different from each other in the axial direction. Furthermore, the excitation part is composed of a first excitation part and a second excitation part, and a part of the first excitation part and a part of the second excitation part are respectively arranged on the stationary side of both ends of the rotor. The first excitation part has a first excitation magnetic path member magnetically coupled at both ends to the first extension part and the cylindrical magnetic yoke, respectively, and the cylindrical magnetic yoke and a part of the first excitation magnetic path member Are configured to face each other in the radial direction with the first field magnet interposed therebetween, and the second excitation part has a second excitation magnetic path member whose both ends are magnetically coupled to the second extension part and the cylindrical magnetic yoke, respectively. The cylindrical magnetic yoke and a part of the second exciting magnetic path member are opposed to each other in the radial direction with the second field magnet interposed therebetween. Characterized in that is configured to.

第一及び第二界磁磁石を円筒状磁気ヨークに隣接して回転子とは逆側に配置する構成であり,第一及び第二界磁磁石の磁極面積を大として電機子を流れる磁束量大に出来る。第一及び第二界磁磁石は電機子と回転子で作る空間の外側に配置されるので回転子を回転駆動する為に電機子が発生する強い駆動磁界は第一及び第二界磁磁石に影響し難い。   The first and second field magnets are arranged adjacent to the cylindrical magnetic yoke on the opposite side of the rotor, and the amount of magnetic flux flowing through the armature with the magnetic pole area of the first and second field magnets being large. I can make it big. Since the first and second field magnets are arranged outside the space formed by the armature and the rotor, the strong drive magnetic field generated by the armature to drive the rotor to rotate is applied to the first and second field magnets. It is hard to influence.

請求項4の発明は,請求項1記載の回転電機システムに於いて,第一延長部,第二延長部はそれぞれ第一磁性体突極及び第二磁性体突極が互いに軸方向の異なる方向に延伸されて構成され,さらに励磁部は第一磁性体突極及び第二磁性体突極をそれぞれ異極に励磁する第一励磁部及び第二励磁部とより構成され,さらに第一励磁部は両端が第一延長部及び円筒状磁気ヨークにそれぞれ磁気的に結合された第一励磁磁路部材と,第一励磁磁路部材を含む第一延長部及び円筒状磁気ヨーク間の磁路を二分するよう配置された第一界磁磁石と,第一磁性体突極及び第一延長部及び第一励磁磁路部材及び第一界磁磁石及び円筒状磁気ヨークを含む磁路に磁束を発生するよう配置された第一励磁コイルとを有して構成され,第二励磁部は両端が第二延長部及び円筒状磁気ヨークにそれぞれ磁気的に結合された第二励磁磁路部材と,第二励磁磁路部材を含む第二延長部及び円筒状磁気ヨーク間の磁路を二分するよう配置された第二界磁磁石と,第二磁性体突極及び第二延長部及び第二励磁磁路部材及び第一界磁磁石及び円筒状磁気ヨークを含む磁路に磁束を発生するよう配置された第二励磁コイルとを有して構成され,第一励磁コイル,第二励磁コイルに供給する電流によって第一界磁磁石,第二界磁磁石の磁化状態を変更及び或いは第一励磁コイル,第二励磁コイルの生成する磁束量を変えて電機子を流れる磁束量を変える事を特徴とする。   According to a fourth aspect of the present invention, in the rotating electrical machine system according to the first aspect, the first extension portion and the second extension portion are formed in directions in which the first magnetic salient pole and the second magnetic salient pole are different from each other in the axial direction. Furthermore, the excitation part is composed of a first excitation part and a second excitation part for exciting the first magnetic salient pole and the second magnetic salient pole to different polarities, respectively. Includes a first excitation magnetic path member magnetically coupled to the first extension and the cylindrical magnetic yoke at both ends, and a magnetic path between the first extension including the first excitation magnetic path member and the cylindrical magnetic yoke. Magnetic flux is generated in a magnetic field including a first field magnet arranged in half, a first magnetic salient pole, a first extension, a first excitation magnetic path member, a first field magnet, and a cylindrical magnetic yoke. The first excitation coil is arranged so that the second excitation part has a second extension at both ends. And a second exciting magnetic path member magnetically coupled to the cylindrical magnetic yoke, and a second magnetic path member between the second extension including the second exciting magnetic path member and the cylindrical magnetic yoke. A second field magnet, a second magnetic salient pole, a second extension, a second excitation magnetic path member, a second field magnet arranged to generate a magnetic flux in a magnetic path including the first field magnet and the cylindrical magnetic yoke; The exciting state of the first field magnet and the second field magnet is changed by the current supplied to the first exciting coil and the second exciting coil and / or the first exciting coil and the second exciting coil are configured. It is characterized in that the amount of magnetic flux flowing through the armature is changed by changing the amount of magnetic flux generated by the coil.

第一励磁部及び第二励磁部は更にそれぞれ第一,第二励磁コイルを有し,第一,第二励磁コイルに供給される電流により第一,第二界磁磁石の磁化状態を不可逆的に変え,或いは第一,第二励磁コイルに供給される電流により生成される磁束により電機子を流れる磁束量を制御する。また,第一,第二励磁コイルに供給される電流により,第一,第二界磁磁石の磁化状態を不可逆的に変え,第一,第二界磁磁石の各磁化状態に於いて磁化状態を変えない程度の磁束調整電流を第一,第二励磁コイルに供給して電機子を流れる磁束量を調整する。   The first excitation unit and the second excitation unit further have first and second excitation coils, respectively, and the magnetization state of the first and second field magnets is irreversible by the current supplied to the first and second excitation coils. Alternatively, the amount of magnetic flux flowing through the armature is controlled by the magnetic flux generated by the current supplied to the first and second exciting coils. Also, the current supplied to the first and second exciting coils irreversibly changes the magnetization state of the first and second field magnets, and the magnetization state in each magnetization state of the first and second field magnets. A magnetic flux adjustment current that does not change the current is supplied to the first and second exciting coils to adjust the amount of magnetic flux flowing through the armature.

請求項5の発明は,請求項1記載の回転電機システムに於いて,第一延長部は第一磁性体突極が軸方向に延伸され,第二延長部は第二磁性体突極が半径方向に延伸されて構成され,更に励磁部の励磁磁路部材は一端が第一延長部と磁気的に結合されると共に励磁磁路部材の一部は界磁磁石を挟んで第二延長部と径方向に対向するよう構成される事を特徴とする。第一延長部と第二延長部間に界磁磁石が配置される構成で,特に界磁磁石の磁極面積を十分に確保されるように径方向に対向する磁性体感に界磁磁石が配置される構成である。   According to a fifth aspect of the present invention, in the rotating electrical machine system according to the first aspect, the first extension has a first magnetic salient pole extending in the axial direction, and the second extension has a second magnetic salient pole having a radius. In addition, one end of the exciting magnetic path member of the exciting portion is magnetically coupled to the first extension portion, and a part of the exciting magnetic path member has a second extension portion sandwiching the field magnet. It is characterized by being configured to face in the radial direction. The field magnet is arranged between the first extension part and the second extension part. In particular, the field magnets are arranged in the radially facing magnetic body so as to secure a sufficient magnetic pole area of the field magnet. This is a configuration.

請求項6の発明は,請求項1記載の回転電機システムに於いて,第一延長部は第一磁性体突極が軸方向に延伸され,第二延長部は第二磁性体突極が半径方向に延伸されて構成され,更に励磁部の励磁磁路部材は一端が第一延長部と磁気的に結合されると共に励磁磁路部材の一部は界磁磁石を挟んで第二延長部と径方向に対向するよう構成され,励磁磁路部材の一部は回転子と軸方向に対向する静止側に配置されると共に第一延長部,励磁磁路部材,界磁磁石,第二延長部を含む磁路に磁束を発生するよう励磁コイルが静止側に配置され,励磁コイルに供給する電流によって界磁磁石の磁化状態を変更及び或いは励磁コイルの生成する磁束量を変えて電機子を流れる磁束量を変える事を特徴とする。   According to a sixth aspect of the present invention, in the rotating electrical machine system according to the first aspect, the first extension has a first magnetic salient pole extending in the axial direction, and the second extension has a second magnetic salient pole having a radius. In addition, one end of the exciting magnetic path member of the exciting portion is magnetically coupled to the first extension portion, and a part of the exciting magnetic path member has a second extension portion sandwiching the field magnet. A part of the exciting magnetic path member is arranged on the stationary side facing the rotor in the axial direction, and the first extension part, the exciting magnetic path member, the field magnet, and the second extension part are configured to face each other in the radial direction. The exciting coil is arranged on the stationary side so as to generate a magnetic flux in the magnetic path including, and the armature flows through the armature by changing the magnetization state of the field magnet or changing the amount of magnetic flux generated by the exciting coil by the current supplied to the exciting coil. It is characterized by changing the amount of magnetic flux.

第一延長部と第二延長部間に界磁磁石が配置される構成で,特に界磁磁石の磁極面積を十分に確保されるように径方向に対向する磁性体感に界磁磁石が配置される構成であり,更に励磁磁路部材の一部は静止側に配置され,励磁コイルが第一延長部及び界磁磁石及び第二延長部を含む磁路に磁束を発生するよう静止側に配置される。   The field magnet is arranged between the first extension part and the second extension part. In particular, the field magnets are arranged in the radially facing magnetic body so as to secure a sufficient magnetic pole area of the field magnet. Furthermore, a part of the exciting magnetic path member is arranged on the stationary side, and the exciting coil is arranged on the stationary side so as to generate a magnetic flux in the magnetic path including the first extension part, the field magnet, and the second extension part. Is done.

請求項7の発明は,請求項1記載の回転電機システムに於いて,第一磁性体突極と第二磁性体突極間に配置される離隔部分の磁気抵抗は磁性体歯と第一磁性体突極との微小間隙に於ける磁気抵抗及び磁性体歯と第二磁性体突極との微小間隙に於ける磁気抵抗の和より大となるよう前記離隔部分の対向面積と厚みとが設定されている事を特徴とする。界磁磁石からの磁束は電機子を介する磁路と,第一磁性体突極と第二磁性体突極間を介する磁路とを介して環流する。第一磁性体突極及び第二磁性体突極間の離隔部分の磁気抵抗を磁性体歯と第一磁性体突極との微小間隙に於ける磁気抵抗及び磁性体歯と第二磁性体突極との微小間隙に於ける磁気抵抗の和より大に設定して界磁磁石からの磁束の大部分が電機子を介して流れるよう設定する。磁気的な間隙に於ける磁気抵抗は対向面積に逆比例し,間隙長に比例する。第一磁性体突極及び第二磁性体突極間の離隔部分が永久磁石を含む場合は永久磁石を非磁性体と見なして磁気抵抗を計算する。   According to a seventh aspect of the present invention, in the rotating electrical machine system according to the first aspect, the magnetoresistance of the separation portion disposed between the first magnetic salient pole and the second magnetic salient pole is the magnetic tooth and the first magnetic The facing area and thickness of the separation portion are set to be larger than the sum of the magnetic resistance in the minute gap with the body salient pole and the magnetic resistance in the minute gap between the magnetic tooth and the second magnetic salient pole. It is characterized by being. Magnetic flux from the field magnet circulates through a magnetic path via the armature and a magnetic path between the first magnetic salient pole and the second magnetic salient pole. The magnetic resistance of the separation part between the first magnetic salient pole and the second magnetic salient pole is the magnetic resistance in the minute gap between the magnetic tooth and the first magnetic salient pole, and the magnetic tooth and the second magnetic salient It is set so that most of the magnetic flux from the field magnet flows through the armature by setting it to be larger than the sum of the magnetic resistances in the minute gap with the pole. The magnetic resistance in the magnetic gap is inversely proportional to the facing area and proportional to the gap length. When the separation part between the first magnetic salient pole and the second magnetic salient pole includes a permanent magnet, the permanent magnet is regarded as a non-magnetic substance and the magnetic resistance is calculated.

請求項8の発明は,請求項1記載の回転電機システムに於いて,第一磁性体突極及び第二磁性体突極間の離隔部分は永久磁石を含んで第一磁性体突極及び第二磁性体突極は互いに異なる極性に磁化されるよう構成される事を特徴とする。第一磁性体突極及び第二磁性体突極間の離隔部材に永久磁石を配置して第一磁性体突極及び第二磁性体突極を介して磁性体歯に流れる磁束量を増す構成である。   According to an eighth aspect of the present invention, in the rotating electrical machine system according to the first aspect, the separation portion between the first magnetic salient pole and the second magnetic salient pole includes a permanent magnet and the first magnetic salient pole and the second magnetic salient pole. The two magnetic salient poles are configured to be magnetized to have different polarities. A configuration in which a permanent magnet is arranged on a separation member between the first magnetic salient pole and the second magnetic salient pole to increase the amount of magnetic flux flowing to the magnetic teeth via the first magnetic salient pole and the second magnetic salient pole. It is.

請求項9の発明は,請求項8記載の回転電機システムに於いて,第一磁性体突極及び第二磁性体突極間に配置された永久磁石は,磁性体と磁性体の二つの側面に配置された略同方向の磁化を有する永久磁石とで構成された集合磁石であって,集合磁石を構成する前記磁性体の電機子と対向する側に非磁性体が配置されて構成される事を特徴とする。両側に略同じ方向の磁化を持つ永久磁石が配置された磁性体は磁気的に永久磁石と等価な集合磁石である。集合磁石の磁性体部分の電機子と対向する側には非磁性体を配置して電機子から磁束が直接に流入し難いよう構成する。   A ninth aspect of the present invention is the rotating electrical machine system according to the eighth aspect, wherein the permanent magnet disposed between the first magnetic salient pole and the second magnetic salient pole has two sides of the magnetic substance and the magnetic substance. And a permanent magnet having substantially the same direction of magnetization, and a non-magnetic material is arranged on the side of the magnetic material constituting the collective magnet that faces the armature. It is characterized by things. A magnetic body in which permanent magnets having magnetization in substantially the same direction on both sides is an aggregate magnet that is magnetically equivalent to a permanent magnet. A non-magnetic material is arranged on the side of the magnetic body portion of the collective magnet that faces the armature so that the magnetic flux does not flow directly from the armature.

請求項10の発明は,請求項8記載の回転電機システムに於いて,第一磁性体突極及び第二磁性体突極間の離隔部分が含む永久磁石の抗磁力は界磁磁石の抗磁力より大である事を特徴とする。励磁部の励磁コイルが発生させる磁束の一部は界磁磁石と,第一磁性体突極及び第二磁性体突極間に配置されている永久磁石とを直列に接続する磁路に流れ,界磁磁石及び永久磁石内に磁界が印可される。第一磁性体突極及び第二磁性体突極間の永久磁石の磁化状態は安定に維持しなければならないので永久磁石の抗磁力は界磁磁石の抗磁力より大の磁石素材で構成する。   According to a tenth aspect of the present invention, in the rotating electrical machine system according to the eighth aspect, the coercive force of the permanent magnet included in the separated portion between the first magnetic salient pole and the second magnetic salient pole is the coercive force of the field magnet. It is characterized by being larger. A part of the magnetic flux generated by the exciting coil of the exciting part flows in a magnetic path connecting the field magnet and the permanent magnet arranged between the first magnetic salient pole and the second magnetic salient pole in series, A magnetic field is applied in the field magnet and the permanent magnet. Since the magnetized state of the permanent magnet between the first magnetic salient pole and the second magnetic salient pole must be kept stable, the permanent magnet has a coercive force that is larger than the coercive force of the field magnet.

請求項11の発明は,請求項1記載の回転電機システムに於いて,界磁磁石は磁化方向長さと抗磁力の積が異なる磁石要素の並列接続として構成され,界磁磁石は互いに逆方向である第一磁化,第二磁化の何れかの磁化を有する磁石要素を少なくとも有し,第一磁化を有する磁石要素は第一磁性体突極及び第二磁性体突極間に配置された永久磁石が第一磁性体突極及び第二磁性体突極を磁化する極性と同じ極性に第一磁性体突極及び第二磁性体突極を磁化する事を特徴とする。   According to an eleventh aspect of the present invention, in the rotating electrical machine system according to the first aspect, the field magnet is configured as a parallel connection of magnetic elements having different products of the magnetization direction length and the coercive force, and the field magnets are arranged in opposite directions. A permanent magnet having at least a magnet element having any one of the first magnetization and the second magnetization, the magnet element having the first magnetization being disposed between the first magnetic salient pole and the second magnetic salient pole. Is characterized in that the first magnetic salient pole and the second magnetic salient pole are magnetized to the same polarity as the polarity of magnetizing the first magnetic salient pole and the second magnetic salient pole.

界磁磁石は磁化容易さ(すなわち,磁化方向長さと抗磁力の積)の異なる一以上の磁石要素が並列に接続される構成,或いは断面内で磁化容易さが連続的に変わる磁石で構成される。励磁コイルによる起磁力(磁気ポテンシャル差)はほぼ均等に界磁磁石を構成する磁石要素に加えられ,起磁力を磁化方向長さで除した値が各磁石要素に加わる磁界強度となるので磁化方向長さと抗磁力の積の小さな磁石要素が磁化されやすく,励磁コイルに加えられる電流により並列接続された磁石要素の磁化状態は選択的に制御される。第一磁性体突極及び第二磁性体突極間に配置された永久磁石が第一磁性体突極及び第二磁性体突極を磁化する極性と同じ極性に第一磁性体突極及び第二磁性体突極を磁化する磁石要素は電機子コイルと鎖交する磁束量が増すので第一磁化である。   A field magnet is composed of one or more magnet elements having different easiness of magnetization (ie, product of magnetization direction length and coercive force) connected in parallel, or a magnet whose easiness of magnetization changes continuously in the cross section. The The magnetomotive force (magnetic potential difference) generated by the exciting coil is almost evenly applied to the magnet elements constituting the field magnet, and the value obtained by dividing the magnetomotive force by the magnetization direction length is the magnetic field strength applied to each magnet element, so that the magnetization direction Magnet elements having a small product of length and coercive force are easily magnetized, and the magnetization state of the magnet elements connected in parallel is selectively controlled by a current applied to the exciting coil. The permanent magnet disposed between the first magnetic salient pole and the second magnetic salient pole has the same polarity as the polarity that magnetizes the first magnetic salient pole and the second magnetic salient pole. The magnet element that magnetizes the two magnetic salient poles is the first magnetization because the amount of magnetic flux interlinking with the armature coil increases.

請求項12の発明による回転電機システムは,電機子との対向面に於いて少なくとも永久磁石を介して互いに離隔され且つ互いに異なる極性に磁化された第一磁性体突極及び第二磁性体突極を周方向に交互に有する回転子と,円筒状磁気ヨーク及び円筒状磁気ヨークから径方向に延びる磁性体歯及び磁性体歯に巻回された電機子コイルを有する電機子とが径方向に対向して相対的に回転可能に構成された回転電機装置であって,第一磁性体突極及び第二磁性体突極は半径方向或いは軸方向の互いに異なる方向に延伸されてそれぞれ第一延長部,第二延長部とされ,さらに第一磁性体突極及び第二磁性体突極を互いに異極に励磁する励磁部を有し,励磁部は両端が第一延長部及び第二延長部を磁気的に結合する磁路の一部である励磁磁路部材と,励磁磁路部材を含む第一延長部及び第二延長部間の磁路を二分するよう配置された界磁磁石と,第一延長部及び励磁磁路部材及び界磁磁石及び第二延長部を含む磁路に磁束を発生するよう配置された励磁コイルを有して構成され,回転電機装置の出力を最適化するよう前記出力に応じて励磁コイルに供給される電流により界磁磁石の磁化状態を変え,電機子に流れる磁束量が制御される事を特徴とする。   A rotating electrical machine system according to a twelfth aspect of the present invention is the first magnetic salient pole and the second magnetic salient pole, which are separated from each other through at least permanent magnets and are magnetized in different polarities on the surface facing the armature. Are opposed to each other in the radial direction, with a rotor having alternating magnetic poles in the circumferential direction and a magnetic tooth extending in a radial direction from the cylindrical magnetic yoke and an armature coil wound around the magnetic tooth. The first magnetic salient pole and the second magnetic salient pole are extended in different directions in the radial direction or the axial direction, respectively, and are respectively configured to be relatively rotatable. , And a second extension portion, and further, an excitation portion for exciting the first magnetic salient pole and the second magnetic salient pole different from each other. The excitation portion has the first extension portion and the second extension portion at both ends. An exciting magnetic path member that is part of a magnetically coupled magnetic path; A field magnet disposed so as to bisect the magnetic path between the first extension and the second extension including the exciting magnetic path member; and the first extension, the excitation magnetic path member, the field magnet, and the second extension. A magnetized state of a field magnet by a current supplied to the exciting coil in accordance with the output so as to optimize the output of the rotating electrical machine device. And the amount of magnetic flux flowing through the armature is controlled.

回転子,電機子が径方向に対向する回転電機装置である。電機子は径方向に延びる磁性体歯と,磁性体歯に巻回された電機子コイルとが互いに磁気的に離隔されるよう周方向に配置されて回転子と対向する。回転子は電機子との対向面に於いて少なくとも永久磁石を介して互いに離隔され且つ互いに異なる極性に磁化された第一磁性体突極及び第二磁性体突極を周方向に交互に有するよう構成される。   This is a rotating electrical machine device in which a rotor and an armature face each other in the radial direction. The armature is disposed in the circumferential direction so that the magnetic teeth extending in the radial direction and the armature coil wound around the magnetic teeth are magnetically separated from each other, and faces the rotor. The rotor has first and second magnetic salient poles that are spaced apart from each other through at least permanent magnets and magnetized in different polarities on the surface facing the armature alternately in the circumferential direction. Composed.

第一磁性体突極及び第二磁性体突極を含む磁路に磁束を供給するよう第一延長部及び第二延長部及び励磁磁路部材及び励磁コイル及び界磁磁石が配置され,回転電機装置の出力を最適化するよう前記出力に応じて界磁磁石の磁化状態を励磁コイルにより変え,電機子に流れる磁束量を制御する。   A first extension portion, a second extension portion, an excitation magnetic path member, an excitation coil, and a field magnet are arranged to supply a magnetic flux to a magnetic path including the first magnetic salient pole and the second magnetic salient pole. The magnetizing state of the field magnet is changed by the exciting coil in accordance with the output so as to optimize the output of the apparatus, and the amount of magnetic flux flowing through the armature is controlled.

第一磁性体突極及び第二磁性体突極間に配置された永久磁石は電機子コイルによって磁化変更され難い永久磁石で構成されるとして,界磁磁石は電機子コイルの作る駆動磁界の影響を受け難く,励磁コイルによって磁化変更可能に磁化容易さである磁化方向長さと抗磁力の積が設定される。   The permanent magnets arranged between the first magnetic salient pole and the second magnetic salient pole are composed of permanent magnets that are difficult to change in magnetization by the armature coil, and the field magnet is influenced by the drive magnetic field created by the armature coil. The product of the magnetization direction length and the coercive force is set so that the magnetization can be changed by the exciting coil.

請求項13の発明は,請求項12記載の回転電機システムに於いて,さらに制御装置を有し,回転力を入力とし,発電電力を出力とする回転電機システムであって,第一磁性体突極及び第二磁性体突極間に配置された永久磁石が第一磁性体突極及び第二磁性体突極を磁化する極性と同じ極性に第一磁性体突極及び第二磁性体突極を磁化する界磁磁石内の磁石要素を第一磁化とし,電機子コイルに誘起される発電電圧が所定の値より大の時は制御装置により第一磁化の磁極面積を減じるよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて電機子を流れる磁束量が小とされ,電機子コイルに誘起される発電電圧が所定の値より小の時は制御装置により界磁磁石内の第一磁化の磁極面積を増すよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて電機子を流れる磁束量が大とされ,発電電圧が所定の値に制御される事を特徴とする。   A thirteenth aspect of the present invention is the rotating electric machine system according to the twelfth aspect of the present invention, further comprising a control device, wherein the rotating electric power system receives the rotational force and outputs the generated electric power. The first magnetic salient pole and the second magnetic salient pole have the same polarity as the permanent magnet disposed between the pole and the second magnetic salient pole to magnetize the first magnetic salient pole and the second magnetic salient pole. When the generated voltage induced in the armature coil is larger than a predetermined value, the field magnet is set so that the control device reduces the magnetic pole area of the first magnetization. A magnetizing current having a magnetizing polarity is supplied to the exciting coil to reduce the amount of magnetic flux flowing through the armature, and when the generated voltage induced in the armature coil is smaller than a predetermined value, the controller Magnetization current of polarity that magnetizes the field magnet to increase the pole area of the first magnetization Magnetic flux amount flowing in is supplied to the excitation coil armature is large, the power generation voltage is being controlled to a predetermined value.

請求項14の発明は,請求項12記載の回転電機システムに於いて,さらに制御装置を有し,電機子コイルへの供給電流を入力とし,回転力を出力とする回転電機システムであって,第一磁性体突極及び第二磁性体突極間に配置された永久磁石が第一磁性体突極及び第二磁性体突極を磁化する極性と同じ極性に第一磁性体突極及び第二磁性体突極を磁化する界磁磁石内の磁石要素を第一磁化とし,回転速度が所定の値より大で電機子を流れる磁束量を減少させる時には制御装置により第一磁化の磁極面積を減じるよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて電機子を流れる磁束量が小とされ,回転速度が所定の値より小で電機子を流れる磁束量を増大させる時には制御装置により界磁磁石内の第一磁化の磁極面積を増すよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて電機子を流れる磁束量が大とされ,回転力が最適に制御される事を特徴とする。   The invention of claim 14 is the rotating electrical machine system according to claim 12, further comprising a control device, wherein the current supplied to the armature coil is input and the rotational force is output. The permanent magnet disposed between the first magnetic salient pole and the second magnetic salient pole has the same polarity as the polarity that magnetizes the first magnetic salient pole and the second magnetic salient pole. The magnet element in the field magnet that magnetizes the two magnetic salient poles is the first magnetization, and when the rotational speed is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the control unit reduces the magnetic pole area of the first magnetization. Control is performed when the magnetizing current of the polarity magnetizing the field magnet is supplied to the exciting coil so that the amount of magnetic flux flowing through the armature is reduced and the amount of magnetic flux flowing through the armature is increased when the rotational speed is lower than a predetermined value. Increase the magnetic pole area of the first magnetization in the field magnet by the device The amount of magnetic flux magnetizing current flows through the armature is supplied to the exciting coil of the polarity for magnetizing the Cormorant field magnet is large, the rotational force is characterized in that is optimally controlled.

請求項15の発明は,請求項12記載の回転電機システムに於いて,さらに制御装置を有し,電機子コイルへの供給電流を入力とし,回転力を出力とする回転電機システムであって,第一磁性体突極及び第二磁性体突極間に配置された永久磁石が第一磁性体突極及び第二磁性体突極を磁化する極性と同じ極性に第一磁性体突極及び第二磁性体突極を磁化する界磁磁石内の磁石要素を第一磁化とし,回転速度を減少させる場合には制御装置により電機子コイルにバッテリーを接続すると共に界磁磁石内の第一磁化の磁極面積を変えるよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて電機子を流れる磁束量を変え,回転エネルギーが発電電力として取り出されると共に制動力が制御される事を特徴とする。   The invention of claim 15 is the rotating electrical machine system according to claim 12, further comprising a control device, wherein the current supplied to the armature coil is input and the rotational force is output. The permanent magnet disposed between the first magnetic salient pole and the second magnetic salient pole has the same polarity as the polarity that magnetizes the first magnetic salient pole and the second magnetic salient pole. When the magnet element in the field magnet that magnetizes the two magnetic salient poles is set as the first magnetization and the rotational speed is reduced, the battery is connected to the armature coil by the controller and the first magnetization in the field magnet is changed. The magnetizing current that polarizes the field magnet to change the magnetic pole area is supplied to the exciting coil to change the amount of magnetic flux that flows through the armature, and the rotational energy is taken out as generated power and the braking force is controlled. To do.

請求項16の発明は,電機子との対向面に於いて磁気的な空隙及び或いは永久磁石を含む離隔部分を介して互いに離隔された第一磁性体突極及び第二磁性体突極を周方向に交互に有する回転子と,円筒状磁気ヨーク及び円筒状磁気ヨークから径方向に延びる磁性体歯及び磁性体歯に巻回された電機子コイルを有する電機子とが径方向に対向して相対的に回転可能に構成された回転電機装置の磁束量制御方法であって,第一磁性体突極及び第二磁性体突極をそれぞれ互いに異なる方向に延伸した第一延長部,第二延長部を有し,さらに第一磁性体突極及び第二磁性体突極をそれぞれ異極に励磁する第一励磁部及び第二励磁部とを有し,励磁部を両端が第一延長部及び第二延長部を磁気的に結合する磁路の一部である励磁磁路部材と,励磁磁路部材を含む第一延長部及び第二延長部間の磁路を二分するよう配置された界磁磁石と,第一延長部及び励磁磁路部材及び界磁磁石及び第二延長部を含む磁路に磁束を発生するよう配置された励磁コイルを有して構成し,界磁磁石の磁化状態を励磁コイルに供給する電流によって不可逆的に変更するよう構成し,界磁磁石の磁化状態を変え,或いは及び励磁コイルに供給する電流を変えて電機子に流れる磁束量を制御する磁束量制御方法である。   According to the sixteenth aspect of the present invention, the first magnetic salient pole and the second magnetic salient pole which are separated from each other via a separation portion including a magnetic gap and / or a permanent magnet on a surface facing the armature are provided. Rotors alternately arranged in the direction, and a magnetic armature having a cylindrical magnetic yoke and a magnetic tooth extending in the radial direction from the cylindrical magnetic yoke and an armature coil wound around the magnetic tooth are opposed to each other in the radial direction. A method for controlling the amount of magnetic flux of a rotating electrical machine apparatus configured to be relatively rotatable, wherein a first extension and a second extension are formed by extending a first magnetic salient pole and a second magnetic salient pole in different directions, respectively. And a first excitation part and a second excitation part for exciting the first magnetic salient pole and the second magnetic salient pole to different polarities, respectively, and the excitation part is connected to the first extension part and both ends. An exciting magnetic path member that is part of a magnetic path that magnetically couples the second extension, and an exciting magnetic path section; A field magnet arranged to bisect the magnetic path between the first extension and the second extension including the first extension, the exciting magnetic path member, the field magnet and the magnetic path including the second extension It has an excitation coil arranged to generate magnetic flux, and is configured to irreversibly change the magnetization state of the field magnet by the current supplied to the excitation coil, or to change the magnetization state of the field magnet, or And a magnetic flux amount control method for controlling the amount of magnetic flux flowing through the armature by changing the current supplied to the exciting coil.

本発明によれば,ラジアルギャップ構造の回転電機に於いて,互いに隣接する第一磁性体突極及び第二磁性体突極をそれぞれ一括して励磁する励磁部を有し,励磁部は界磁磁石を有して第一磁性体突極及び第二磁性体突極を互いに異極に磁化する。界磁磁石はスペースに余裕があるので低抗磁力に磁石を用いる事が出来る。さらにそれぞれの励磁部は界磁磁石及び励磁コイルとを有して界磁磁石の磁化状態を励磁コイルにより不可逆的に変えて電機子と鎖交する磁束量を変える。界磁磁石の磁化状態を間歇的に変え,回転電機の出力最適化を図る事が出来るのでエネルギー効率の良い回転電機を実現できる。   According to the present invention, in a rotating electrical machine having a radial gap structure, the first magnetic salient pole and the second magnetic salient pole that are adjacent to each other have an excitation part that is energized in a lump. A magnet is provided to magnetize the first magnetic salient pole and the second magnetic salient pole to different polarities. Since the field magnet has room, it can be used for low coercive force. Further, each excitation unit has a field magnet and an excitation coil, and changes the amount of magnetic flux interlinked with the armature by irreversibly changing the magnetization state of the field magnet with the excitation coil. Since the magnetization state of the field magnet can be changed intermittently and the output of the rotating electrical machine can be optimized, an energy efficient rotating electrical machine can be realized.

第一の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 1st Example. 図1に示された回転電機の電機子及び回転子の断面図である。It is sectional drawing of the armature and rotor of a rotary electric machine shown by FIG. 回転子の構成を示す斜視図及び強め界磁に於ける磁束の流れる方向を示す。The perspective view which shows the structure of a rotor, and the direction through which the magnetic flux flows in a strong field are shown. 回転子の構成を示す斜視図及び弱め界磁に於ける磁束の流れる方向を示す。The perspective view which shows the structure of a rotor, and the direction through which the magnetic flux flows in a field weakening are shown. 磁束量制御を行う回転電機システムのブロック図を示す。The block diagram of the rotary electric machine system which performs magnetic flux amount control is shown. 第二の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 2nd Example. 図6に示された回転電機の電機子及び回転子の断面図である。It is sectional drawing of the armature and rotor of a rotary electric machine shown by FIG. 励磁部及び回転子の構成を示す斜視図である。It is a perspective view which shows the structure of an excitation part and a rotor. 電機子及び回転子の断面図の一部及び磁束の流れを示す。A part of sectional drawing of an armature and a rotor, and the flow of magnetic flux are shown. 励磁部の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of an excitation part. 第三の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 3rd Example. 図11に示された回転電機の電機子及び回転子の断面図である。It is sectional drawing of the armature and rotor of a rotary electric machine shown by FIG. 第四の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 4th Example. 図13に示された回転電機の電機子及び回転子の断面図である。It is sectional drawing of the armature and rotor of a rotary electric machine shown by FIG. 励磁部及び回転子の構成を示す斜視図である。It is a perspective view which shows the structure of an excitation part and a rotor. 電機子及び回転子の断面図の一部及び磁束の流れを示す。A part of sectional drawing of an armature and a rotor, and the flow of magnetic flux are shown. 第五の実施例による回転電機システムのブロック図である。It is a block diagram of the rotary electric machine system by a 5th Example.

以下に本発明による回転電機システムについて,その実施例及び原理作用等を図面を参照しながら説明する。   In the following, a rotating electrical machine system according to the present invention will be described with reference to the drawings, with regard to embodiments, principles and actions.

本発明による回転電機システムの第一実施例を図1から図5を用いて説明する。第一実施例は,アウターローター構造の回転電機であり,界磁磁石を含む励磁部及び電機子が回転子の内側に配置されている。   A first embodiment of a rotating electrical machine system according to the present invention will be described with reference to FIGS. The first embodiment is a rotating electrical machine having an outer rotor structure, and an exciting part including a field magnet and an armature are arranged inside the rotor.

図1はアウターローター構造の回転電機に本発明を適用した実施例を示し,相互の関係を説明する為に構成部分の一部に番号を付して示している。ローターハウジング12がベアリング13を介して固定軸11に回動可能に支持されている。固定軸11には回転子支持体1hが固定され,界磁極1c,1f,第一界磁磁石1b,第二界磁磁石1e,第一励磁コイル1d,第二励磁コイル1g,円筒状磁気コア1aが配置され,さらに円筒状磁気ヨーク15,磁性体歯14,電機子コイル16が配置されている。ローターハウジング12の内周面には表面磁極部17,第一延長部18,第二延長部19が配置されている。   FIG. 1 shows an embodiment in which the present invention is applied to a rotating electrical machine having an outer rotor structure, and in order to explain the mutual relationship, some of the components are shown with numbers. A rotor housing 12 is rotatably supported on the fixed shaft 11 via a bearing 13. A rotor support 1h is fixed to the fixed shaft 11, and field poles 1c and 1f, a first field magnet 1b, a second field magnet 1e, a first excitation coil 1d, a second excitation coil 1g, and a cylindrical magnetic core. 1a is disposed, and further, a cylindrical magnetic yoke 15, a magnetic tooth 14, and an armature coil 16 are disposed. A surface magnetic pole portion 17, a first extension portion 18, and a second extension portion 19 are disposed on the inner peripheral surface of the rotor housing 12.

表面磁極部17には第一磁性体突極及び第二磁性体突極が周方向に交互に配置され,第一延長部は第一磁性体突極を図1に於いて軸と平行に右方向への延長部を,第二延長部は第二磁性体突極を軸と平行に左方向への延長部をそれぞれ示している。ローターハウジング12及び回転子支持体1hは非磁性体で構成されている。   The first magnetic salient poles and the second magnetic salient poles are alternately arranged in the circumferential direction on the surface magnetic pole portion 17, and the first extension portion has the first magnetic salient pole right in parallel with the axis in FIG. The second extension indicates the extension in the left direction parallel to the axis of the second magnetic salient pole. The rotor housing 12 and the rotor support 1h are made of a nonmagnetic material.

図2は図1のA−A’に沿う電機子及び回転子の断面図を示し,相互の関係を説明する為に構成部分の一部に番号を付している。固定軸11に回転子支持体1h,その外周に界磁極1f,第二界磁磁石1e,円筒状磁気コア1aが配置され,さらにそれらの外周に円筒状磁気ヨーク15,磁性体歯14,磁性体歯14に巻回された電機子コイル16からなる電機子が配置されている。本実施例では18個の電機子コイル16が配置され,それらは3相に結線されている。   FIG. 2 is a cross-sectional view of the armature and the rotor along A-A ′ in FIG. 1, and some components are numbered to explain the mutual relationship. A rotor support 1h is disposed on the fixed shaft 11, a field magnetic pole 1f, a second field magnet 1e, and a cylindrical magnetic core 1a are disposed on the outer periphery thereof. Further, on the outer periphery thereof, a cylindrical magnetic yoke 15, magnetic body teeth 14, and magnetic An armature composed of an armature coil 16 wound around the body tooth 14 is disposed. In this embodiment, 18 armature coils 16 are arranged and connected in three phases.

ローターハウジング12の内周側に配置された表面磁極部17は一様な円筒状磁性体基板を周方向に等間隔に配置された永久磁石23によって区分された第一磁性体突極21,第二磁性体突極22から構成されている。さらに隣接する突極である第一磁性体突極21,第二磁性体突極22は互いに異なる方向に磁化されるよう隣接する永久磁石23の磁化方向は互いに反転して構成されている。番号24は軸方向に延びる磁束チャネル部である。第一磁性体突極21,第二磁性体突極22は幅の狭い可飽和磁性体部で連結された構成として所定の型でケイ素鋼板を打ち抜き,積層して構成され,永久磁石23と断面積を同じくするスロットに永久磁石のブロックが挿入され,磁束チャネル部24には断面積を同じくするスロットに軟鉄のブロックを挿入している。   The surface magnetic pole portion 17 disposed on the inner peripheral side of the rotor housing 12 is a first magnetic salient pole 21 divided by a permanent magnet 23 disposed on a uniform cylindrical magnetic substrate at equal intervals in the circumferential direction. It is composed of two magnetic salient poles 22. Furthermore, the magnetization directions of the adjacent permanent magnets 23 are reversed so that the first magnetic salient pole 21 and the second magnetic salient pole 22, which are adjacent salient poles, are magnetized in different directions. Reference numeral 24 denotes a magnetic flux channel portion extending in the axial direction. The first magnetic salient pole 21 and the second magnetic salient pole 22 are formed by punching and laminating silicon steel plates with a predetermined type as a configuration connected by a narrow saturable magnetic portion, and disconnecting from the permanent magnet 23. A permanent magnet block is inserted into a slot having the same area, and a soft iron block is inserted into the magnetic flux channel portion 24 in a slot having the same cross-sectional area.

本実施例に於いては,飽和磁束密度の大きな軟鉄で構成した磁束チャネル部24を第一磁性体突極21,第二磁性体突極22内の電機子より遠い側に配置している。第一磁性体突極21,第二磁性体突極22はケイ素鋼板の積層で構成され,積層されたケイ素鋼板の積層方向の磁気抵抗は大きいが,磁束チャネル部24は励磁部からの磁束を軸方向に流れやすくする為に配置されている。   In this embodiment, the magnetic flux channel portion 24 made of soft iron having a large saturation magnetic flux density is disposed on the far side from the armatures in the first magnetic salient pole 21 and the second magnetic salient pole 22. The first magnetic salient pole 21 and the second magnetic salient pole 22 are composed of laminated silicon steel plates, and the laminated silicon steel plates have a large magnetic resistance in the laminating direction, but the magnetic flux channel portion 24 receives the magnetic flux from the exciting portion. Arranged to facilitate flow in the axial direction.

図3,図4は回転子の構成を示す分解斜視図である。理解を容易にする為にローターハウジング12を除き,第一磁性体突極21,第二磁性体突極22等を有する中心部と第一延長部18,第二延長部19とを離して示してある。第一延長部18は軟鉄をプレス成形して第一磁性体突極21の延長部分となる磁性体突部34を有して構成され,非磁性体部36は磁性を持たないステンレススチールで形成されている。界磁極1cと対向する部分は番号35で示されるように円板状として界磁極1cと第一延長部18間の磁気抵抗が小になるよう構成されている。第二延長部19は軟鉄をプレス成形して第二磁性体突極22の延長部分となる磁性体突部31を有して構成され,非磁性体部33は磁性を持たないステンレススチールで形成されている。界磁極1fと対向する部分は番号32で示されるように円板状として界磁極1fと第二延長部19間の磁気抵抗が小になるよう構成されている。   3 and 4 are exploded perspective views showing the configuration of the rotor. For easy understanding, the central portion having the first magnetic salient pole 21, the second magnetic salient pole 22, etc. is separated from the first extension portion 18 and the second extension portion 19 except for the rotor housing 12. It is. The first extension 18 includes a magnetic protrusion 34 that is formed by press-molding soft iron and serves as an extension of the first magnetic salient pole 21, and the non-magnetic part 36 is formed of stainless steel having no magnetism. Has been. The portion facing the field magnetic pole 1c is shaped like a disk as indicated by numeral 35, and is configured so that the magnetic resistance between the field magnetic pole 1c and the first extension 18 is small. The second extension portion 19 is configured by pressing a soft iron and having a magnetic projection 31 that is an extension of the second magnetic salient pole 22, and the non-magnetic portion 33 is formed of stainless steel having no magnetism. Has been. A portion facing the field pole 1f is formed in a disk shape as indicated by numeral 32 so that the magnetic resistance between the field pole 1f and the second extension portion 19 becomes small.

図1に示されるように第一磁性体突極21の延長部分である第一延長部18は微小間隙を介して界磁極1cと対向し,界磁極1cと円筒状磁気コア1aとの間に第一界磁磁石1bが配置されている。第一励磁コイル1dは界磁極1c及び固定軸11を周回するよう巻回され,第一磁性体突極21,第一延長部18,界磁極1c,第一界磁磁石1b,円筒状磁気コア1a,円筒状磁気ヨーク15,磁性体歯14を含む磁路に磁束を発生するよう配置されている。界磁極1cは第一励磁磁路部材に相当し,界磁極1c,第一界磁磁石1b,第一励磁コイル1dが第一励磁部の主要部分を構成している。   As shown in FIG. 1, the first extension 18 which is an extension of the first magnetic salient pole 21 is opposed to the field pole 1c through a minute gap, and between the field pole 1c and the cylindrical magnetic core 1a. A first field magnet 1b is arranged. The first exciting coil 1d is wound around the field pole 1c and the fixed shaft 11, and the first magnetic salient pole 21, the first extension 18, the field pole 1c, the first field magnet 1b, and the cylindrical magnetic core. 1a, the cylindrical magnetic yoke 15, and the magnetic teeth 14 are arranged to generate a magnetic flux. The field pole 1c corresponds to a first excitation magnetic path member, and the field pole 1c, the first field magnet 1b, and the first excitation coil 1d constitute the main part of the first excitation part.

第二磁性体突極22の延長部分である第二延長部19は微小間隙を介して界磁極1fと対向し,界磁極1fと円筒状磁気コア1aとの間には第二界磁磁石1eが配置されている。第二励磁コイル1gは界磁極1f及び固定軸11を周回するよう巻回され,第二磁性体突極22,第二延長部19,界磁極1f,第二界磁磁石1e,円筒状磁気コア1a,円筒状磁気ヨーク15,磁性体歯14を含む磁路に磁束を発生するよう配置されている。界磁極1fは第二励磁磁路部材に相当し,界磁極1f,第二界磁磁石1e,第二励磁コイル1gが第二励磁部の主要部分を構成している。   The second extension 19 that is an extension of the second magnetic salient pole 22 is opposed to the field pole 1f through a minute gap, and the second field magnet 1e is interposed between the field pole 1f and the cylindrical magnetic core 1a. Is arranged. The second exciting coil 1g is wound around the field pole 1f and the fixed shaft 11, and the second magnetic salient pole 22, the second extension portion 19, the field pole 1f, the second field magnet 1e, and the cylindrical magnetic core. 1a, the cylindrical magnetic yoke 15, and the magnetic teeth 14 are arranged to generate a magnetic flux. The field pole 1f corresponds to a second excitation magnetic path member, and the field pole 1f, the second field magnet 1e, and the second excitation coil 1g constitute the main part of the second excitation part.

軸方向及び径方向に磁束が流れやすいよう界磁極1c,1f,円筒状磁気コア1aは軟鉄で構成されている。他に圧粉鉄心等の等方性磁性体を使用する事が出来る。円筒状磁気コア1aは磁性体歯14及び円筒状磁気ヨーク15がケイ素鋼板を積層して形成された場合に軸方向に磁束が流れやすくする為に配置され,円筒状磁気ヨーク15を圧粉鉄心で構成する場合には円筒状磁気コア1aを不要に出来る。   The field poles 1c and 1f and the cylindrical magnetic core 1a are made of soft iron so that the magnetic flux easily flows in the axial direction and the radial direction. In addition, an isotropic magnetic material such as a dust core can be used. The cylindrical magnetic core 1a is arranged to facilitate the flow of magnetic flux in the axial direction when the magnetic teeth 14 and the cylindrical magnetic yoke 15 are formed by laminating silicon steel plates, and the cylindrical magnetic yoke 15 is arranged as a dust core. The cylindrical magnetic core 1a can be dispensed with.

図2に示されるように永久磁石23により第一磁性体突極21はN極に,第二磁性体突極22はS極に磁化されている。また,図1に於いて,第一界磁磁石1bの磁化方向が内径方向であり,第二界磁磁石1eの磁化方向が外径方向である。第一界磁磁石1bにより第一延長部18及び第一磁性体突極21がN極に,第二界磁磁石1eにより第二延長部19及び第二磁性体突極22がS極に励磁されている。第一磁性体突極21と磁性体歯14間,第二磁性体突極22と磁性体歯14間を流れる磁束量が第一界磁磁石1b,第二界磁磁石1eにより増大される場合であり,強め界磁となる。したがって,第一界磁磁石1bでは内径方向の磁化が第一磁化に,第二界磁磁石1eでは外径方向の磁化が第一磁化にそれぞれ相当している。   As shown in FIG. 2, the permanent magnet 23 magnetizes the first magnetic salient pole 21 to the N pole and the second magnetic salient pole 22 to the S pole. In FIG. 1, the magnetization direction of the first field magnet 1b is the inner diameter direction, and the magnetization direction of the second field magnet 1e is the outer diameter direction. The first extension 18 and the first magnetic salient pole 21 are excited to the N pole by the first field magnet 1b, and the second extension 19 and the second magnetic salient pole 22 are excited to the S pole by the second field magnet 1e. Has been. When the amount of magnetic flux flowing between the first magnetic salient pole 21 and the magnetic teeth 14 and between the second magnetic salient pole 22 and the magnetic teeth 14 is increased by the first field magnet 1b and the second field magnet 1e. It becomes a strong field. Accordingly, in the first field magnet 1b, the magnetization in the inner diameter direction corresponds to the first magnetization, and in the second field magnet 1e, the magnetization in the outer diameter direction corresponds to the first magnetization.

永久磁石23の一方の磁極から流れ出た磁束は第一磁性体突極21,磁性体歯14,円筒状磁気ヨーク15,隣接する磁性体歯14,第二磁性体突極22を介して永久磁石23の他方の磁極に環流する。第一界磁磁石1bからの磁束は界磁極1c,第一延長部18,第一磁性体突極21,磁性体歯14,円筒状磁気ヨーク15,円筒状磁気コア1aを介して第一界磁磁石1bに環流する。図3に示す番号37は第一延長部18から第一磁性体突極21に流れる磁束を示している。同様に第二界磁磁石1eからの磁束は円筒状磁気コア1a,円筒状磁気ヨーク15,磁性体歯14,第二磁性体突極22,第二延長部19,界磁極1fを介して第二界磁磁石1eに環流する。図3に示す番号38は第二磁性体突極22から第二延長部19に流れる磁束を示している。   The magnetic flux flowing out from one magnetic pole of the permanent magnet 23 passes through the first magnetic salient pole 21, the magnetic substance teeth 14, the cylindrical magnetic yoke 15, the adjacent magnetic substance teeth 14, and the second magnetic salient pole 22. It circulates to the other magnetic pole of 23. Magnetic flux from the first field magnet 1b passes through the field pole 1c, the first extension 18, the first magnetic salient pole 21, the magnetic teeth 14, the cylindrical magnetic yoke 15, and the cylindrical magnetic core 1a. It circulates in the magnet 1b. The number 37 shown in FIG. 3 indicates the magnetic flux flowing from the first extension 18 to the first magnetic salient pole 21. Similarly, the magnetic flux from the second field magnet 1e passes through the cylindrical magnetic core 1a, the cylindrical magnetic yoke 15, the magnetic teeth 14, the second magnetic salient pole 22, the second extension 19, and the field pole 1f. It circulates in the two-field magnet 1e. The number 38 shown in FIG. 3 indicates the magnetic flux flowing from the second magnetic salient pole 22 to the second extension 19.

永久磁石23には複数の磁路が並列に接続されている。第一の磁路は第一磁性体突極21,磁性体歯14,円筒状磁気ヨーク15,第二磁性体突極22を介して環流する磁路である。第二の磁路は第一磁性体突極21,第一延長部18,第一界磁磁石1b,円筒状磁気コア1a,磁性体歯14,第二磁性体突極22を介する磁路であり,第三の磁路は第二磁性体突極22,第二延長部19,第二界磁磁石1e円筒状磁気コア1a,磁性体歯14,第一磁性体突極21を介する磁路である。本実施例では第一の磁路の磁気抵抗を第二,第三の磁路の磁気抵抗より小に設定して永久磁石23からの磁束の大部分が第一の磁路を流れるよう設定されている。すなわち,電機子及び回転子間の間隙長を約0.5ミリメートルとし,第一界磁磁石1b及び第二界磁磁石1eの径方向厚みを数ミリメートルと十分に大と設定しているので永久磁石23からの磁束が第二,第三の磁路を介して流れる量は少ない。   A plurality of magnetic paths are connected to the permanent magnet 23 in parallel. The first magnetic path is a magnetic path that circulates through the first magnetic salient pole 21, the magnetic teeth 14, the cylindrical magnetic yoke 15, and the second magnetic salient pole 22. The second magnetic path is a magnetic path through the first magnetic salient pole 21, the first extension 18, the first field magnet 1 b, the cylindrical magnetic core 1 a, the magnetic teeth 14, and the second magnetic salient pole 22. Yes, the third magnetic path is a magnetic path through the second magnetic salient pole 22, the second extension 19, the second field magnet 1e cylindrical magnetic core 1a, the magnetic teeth 14 and the first magnetic salient pole 21. It is. In this embodiment, the magnetic resistance of the first magnetic path is set to be smaller than the magnetic resistances of the second and third magnetic paths so that most of the magnetic flux from the permanent magnet 23 flows through the first magnetic path. ing. That is, the gap length between the armature and the rotor is set to about 0.5 mm, and the radial thicknesses of the first field magnet 1b and the second field magnet 1e are set to a sufficiently large value of several millimeters. The amount of magnetic flux from the magnet 23 flows through the second and third magnetic paths is small.

さらに磁束37及び磁束38の流れる方向と永久磁石23の磁化方向は逆であるので磁束37及び磁束38が永久磁石23を介して短絡され難いが,漏洩的に流れる可能性はある。この場合に磁束は第一界磁磁石1bから界磁極1c,第一延長部18,第一磁性体突極21,永久磁石23,第二磁性体突極22,第二延長部19,界磁極1f,第二界磁磁石1e,円筒状磁気コア1aを介して流れる。界磁極1c,第一延長部18間,第二延長部19,界磁極1f間は対向面積が十分に大と出来るのでこれらの部分の磁気抵抗を無視すると,磁気抵抗が大となるのは永久磁石23であり,永久磁石23の両端には第一界磁磁石1bと第二界磁磁石1eが直列に接続した磁気ポテンシャルが現れる。   Further, since the direction in which the magnetic flux 37 and the magnetic flux 38 flow is opposite to the magnetization direction of the permanent magnet 23, the magnetic flux 37 and the magnetic flux 38 are difficult to be short-circuited through the permanent magnet 23, but may leak. In this case, the magnetic flux is from the first field magnet 1b to the field pole 1c, the first extension 18, the first magnetic salient pole 21, the permanent magnet 23, the second magnetic salient pole 22, the second extension 19, and the field pole. 1f, the second field magnet 1e, and the cylindrical magnetic core 1a. The facing area between the field pole 1c and the first extension 18, the second extension 19, and the field pole 1f can be made sufficiently large. Therefore, if the magnetoresistance of these parts is ignored, the magnetoresistance becomes permanent. The magnetic potential of the first field magnet 1b and the second field magnet 1e connected in series appears at both ends of the permanent magnet 23.

一方,第一界磁磁石1b,界磁極1c,第一延長部18,第一磁性体突極21,磁性体歯14,円筒状磁気ヨーク15,円筒状磁気コア1aを含む磁路で磁気抵抗が大となる部分は第一磁性体突極21,磁性体歯14間の間隙であり,間隙両端には第一界磁磁石1bによる磁気ポテンシャルが現れる。同様に第二界磁磁石1e,界磁極1f,第二延長部19,第二磁性体突極22,磁性体歯14,円筒状磁気ヨーク15,円筒状磁気コア1aを含む磁路で磁気抵抗が大となる部分は第二磁性体突極22,磁性体歯14間の間隙であり,間隙両端には第二界磁磁石1eによる磁気ポテンシャルが現れる。本実施例に於いて,永久磁石23を空隙と見なして算出された磁気抵抗は磁性体歯14と第一磁性体突極22との微小間隙に於ける磁気抵抗及び磁性体歯14と第二磁性体突極22との微小間隙に於ける磁気抵抗の和より大となるよう永久磁石23の磁極面積と磁化方向長さとが設定されているので第一界磁磁石1b及び第二界磁磁石1eからの磁束の大部分は磁性体歯14を介して流れる。   On the other hand, a magnetic resistance is generated in a magnetic path including the first field magnet 1b, the field magnetic pole 1c, the first extension 18, the first magnetic salient pole 21, the magnetic tooth 14, the cylindrical magnetic yoke 15, and the cylindrical magnetic core 1a. Is the gap between the first magnetic salient pole 21 and the magnetic teeth 14, and a magnetic potential by the first field magnet 1b appears at both ends of the gap. Similarly, a magnetic resistance is generated in a magnetic path including the second field magnet 1e, the field magnetic pole 1f, the second extension 19, the second magnetic salient pole 22, the magnetic teeth 14, the cylindrical magnetic yoke 15, and the cylindrical magnetic core 1a. Is the gap between the second magnetic salient pole 22 and the magnetic teeth 14, and a magnetic potential by the second field magnet 1e appears at both ends of the gap. In this embodiment, the magnetic resistance calculated by regarding the permanent magnet 23 as a gap is the magnetic resistance in the minute gap between the magnetic material teeth 14 and the first magnetic salient poles 22 and the magnetic teeth 14 and the second magnetic resistance. Since the magnetic pole area and the magnetization direction length of the permanent magnet 23 are set to be larger than the sum of the magnetic resistances in the minute gap with the magnetic salient pole 22, the first field magnet 1b and the second field magnet are set. Most of the magnetic flux from 1 e flows through the magnetic teeth 14.

弱め界磁は図1に示した状態とは逆に第一界磁磁石1cの磁化方向が外径方向に,第二界磁磁石1eの磁化方向が内径方向に設定された場合であって,更に図2及び図4を用いて説明される。第一界磁磁石1cの磁化方向が外径方向,第二界磁磁石1eの磁化方向が内径方向である場合,第二界磁磁石1eからの磁束は界磁極1f,第二延長部19,第二磁性体突極22,永久磁石23,第一磁性体突極21,第一延長部18,界磁極1c,第一界磁磁石1b,円筒状磁気コア1aを介して流れる。図4に於ける番号41,42は磁束の流れを示し,永久磁石23は番号41,42で示される磁束の磁路の一部となる。   In contrast to the state shown in FIG. 1, the field weakening is a case where the magnetization direction of the first field magnet 1c is set to the outer diameter direction and the magnetization direction of the second field magnet 1e is set to the inner diameter direction. Further description will be made with reference to FIGS. When the magnetization direction of the first field magnet 1c is the outer diameter direction and the magnetization direction of the second field magnet 1e is the inner diameter direction, the magnetic flux from the second field magnet 1e is the field pole 1f, the second extension portion 19, It flows through the second magnetic salient pole 22, the permanent magnet 23, the first magnetic salient pole 21, the first extension 18, the field pole 1c, the first field magnet 1b, and the cylindrical magnetic core 1a. In FIG. 4, numbers 41 and 42 indicate the flow of magnetic flux, and the permanent magnet 23 becomes a part of the magnetic path of the magnetic flux indicated by numbers 41 and 42.

この場合に永久磁石23からの磁束が第一磁性体突極21から磁性体歯14へ流れる方向と,第一界磁磁石1bからの磁束が第一磁性体突極21から磁性体歯14へ流れる方向とが互いに逆方向であって互いに相殺される場合と考える事も出来る。第一磁性体突極21から磁性体歯14へ流れる磁束量,磁性体歯14から第二磁性体突極22へ流れる磁束量は減少し,電機子コイル16と鎖交する磁束量は減少する事になる。   In this case, the magnetic flux from the permanent magnet 23 flows from the first magnetic salient pole 21 to the magnetic tooth 14, and the magnetic flux from the first field magnet 1 b to the magnetic tooth 14 from the first magnetic salient pole 21. It can be considered that the flowing directions are opposite to each other and cancel each other. The amount of magnetic flux flowing from the first magnetic salient pole 21 to the magnetic teeth 14 and the amount of magnetic flux flowing from the magnetic teeth 14 to the second magnetic salient pole 22 are reduced, and the amount of magnetic flux linked to the armature coil 16 is reduced. It will be a thing.

第一界磁磁石1b,第二界磁磁石1eそれぞれの磁化方向を第一励磁コイル1d,第二励磁コイル1gに供給される磁化電流により変える事で電機子コイル16と鎖交する磁束量が制御される事を説明した。以下に第一界磁磁石1b,第二界磁磁石1eそれぞれの磁化方向を変えるステップを説明する。   By changing the magnetization directions of the first field magnet 1b and the second field magnet 1e according to the magnetization current supplied to the first excitation coil 1d and the second excitation coil 1g, the amount of magnetic flux interlinked with the armature coil 16 is changed. Explained that it is controlled. The step of changing the magnetization directions of the first field magnet 1b and the second field magnet 1e will be described below.

第一界磁磁石1bの磁化を第一磁化に変える場合,磁束が第一界磁磁石1b,界磁極1c,第一延長部18,第一磁性体突極21,磁性体歯14,円筒状磁気ヨーク15,円筒状磁気コア1aに沿って流れるよう第一励磁コイル1dに磁化電流を供給し,第一界磁磁石1bを内径方向に磁化する。第二界磁磁石1eの磁化を第一磁化に変える場合,磁束が第二界磁磁石1e,円筒状磁気コア1a,円筒状磁気ヨーク15,磁性体歯14,第二磁性体突極22,第二延長部19,界磁極1fに沿って流れるよう第二励磁コイル1gに磁化電流を供給し,第二界磁磁石1eを外径方向に磁化する。   When changing the magnetization of the first field magnet 1b to the first magnetization, the magnetic flux is the first field magnet 1b, the field pole 1c, the first extension 18, the first magnetic salient pole 21, the magnetic teeth 14, the cylindrical shape. A magnetizing current is supplied to the first exciting coil 1d so as to flow along the magnetic yoke 15 and the cylindrical magnetic core 1a, and the first field magnet 1b is magnetized in the inner diameter direction. When changing the magnetization of the second field magnet 1e to the first magnetization, the magnetic flux is the second field magnet 1e, the cylindrical magnetic core 1a, the cylindrical magnetic yoke 15, the magnetic teeth 14, the second magnetic salient pole 22, A magnetizing current is supplied to the second exciting coil 1g so as to flow along the second extension 19 and the field pole 1f, and the second field magnet 1e is magnetized in the outer diameter direction.

第一励磁コイル1d,第二励磁コイル1gが発生する磁束は図3に番号37,38として示すように永久磁石23を逆方向に磁化するよう流れるが,永久磁石23にはネオジウム磁石が配置されて抗磁力は十分に大であるのでその磁化は影響を受けず,さらに永久磁石23の磁化方向長さは電機子と回転子間の空隙長より十分に大に設定されているので第一励磁コイル1d,第二励磁コイル1gが発生する磁束は磁気抵抗が小さい回転子,電機子間の空隙を介して流れて第一界磁磁石1b,第二界磁磁石1eを磁化する。   The magnetic flux generated by the first exciting coil 1d and the second exciting coil 1g flows so as to magnetize the permanent magnet 23 in the reverse direction as indicated by numerals 37 and 38 in FIG. 3, but a neodymium magnet is disposed on the permanent magnet 23. Since the coercive force is sufficiently large, the magnetization thereof is not affected, and the length of the permanent magnet 23 is set to be sufficiently larger than the gap length between the armature and the rotor. The magnetic flux generated by the coil 1d and the second exciting coil 1g flows through the gap between the rotor and armature having a small magnetic resistance to magnetize the first field magnet 1b and the second field magnet 1e.

第一界磁磁石1bの磁化を第二磁化に変える場合,磁束が第一界磁磁石1b,円筒状磁気コア1a,円筒状磁気ヨーク15,磁性体歯14,第一磁性体突極21,第一延長部18,界磁極1cに沿って流れるよう第一励磁コイル1dに磁化電流を供給し,第一界磁磁石1bを外径方向に磁化する。第二界磁磁石1eの磁化を第二磁化に変える場合,磁束が第二界磁磁石1e,界磁極1f,第二延長部19,第二磁性体突極22,磁性体歯14,円筒状磁気ヨーク15,円筒状磁気コア1aに沿って流れるよう第二励磁コイル1gに磁化電流を供給し,第二界磁磁石1eを内径方向に磁化する。   When the magnetization of the first field magnet 1b is changed to the second magnetization, the magnetic flux is the first field magnet 1b, the cylindrical magnetic core 1a, the cylindrical magnetic yoke 15, the magnetic teeth 14, the first magnetic salient pole 21, A magnetizing current is supplied to the first exciting coil 1d so as to flow along the first extension 18 and the field pole 1c, and the first field magnet 1b is magnetized in the outer diameter direction. When changing the magnetization of the second field magnet 1e to the second magnetization, the magnetic flux is the second field magnet 1e, the field pole 1f, the second extension 19, the second magnetic salient pole 22, the magnetic teeth 14, the cylindrical shape. A magnetizing current is supplied to the second exciting coil 1g so as to flow along the magnetic yoke 15 and the cylindrical magnetic core 1a, and the second field magnet 1e is magnetized in the inner diameter direction.

第一励磁コイル1d,第二励磁コイル1gが発生する磁束は図4に番号41,42として示すように永久磁石23の磁化方向に沿って流れるので上記の経路に加えて第一界磁磁石1b,円筒状磁気コア1a,第二界磁磁石1e,界磁極1f,第二延長部19,第二磁性体突極22,永久磁石23,第一磁性体突極21,第一延長部18,界磁極1cに沿っても流れ,第一界磁磁石1bを外径方向に磁化し,第二界磁磁石1eを内径方向に磁化する。   Since the magnetic fluxes generated by the first excitation coil 1d and the second excitation coil 1g flow along the magnetization direction of the permanent magnet 23 as shown by numerals 41 and 42 in FIG. 4, the first field magnet 1b is added to the above path. , Cylindrical magnetic core 1a, second field magnet 1e, field magnetic pole 1f, second extension 19, second magnetic salient pole 22, permanent magnet 23, first magnetic salient pole 21, first extension 18, It also flows along the field pole 1c, magnetizing the first field magnet 1b in the outer diameter direction and magnetizing the second field magnet 1e in the inner diameter direction.

第一界磁磁石1b,第二界磁磁石1eの磁化状態は離散的に変えられるが,本実施例ではさらに第一界磁磁石1b,第二界磁磁石1eの磁化状態を変更させない程度の磁束調整電流を第一励磁コイル1d,第二励磁コイル1gに供給して磁束を発生させ,第一界磁磁石1b,第二界磁磁石1e及び永久磁石23による磁束に重畳させて電機子を流れる磁束量を制御する。   Although the magnetization states of the first field magnet 1b and the second field magnet 1e can be changed discretely, in this embodiment, the magnetization states of the first field magnet 1b and the second field magnet 1e are not changed. A magnetic flux adjustment current is supplied to the first exciting coil 1d and the second exciting coil 1g to generate a magnetic flux, which is superimposed on the magnetic flux generated by the first field magnet 1b, the second field magnet 1e, and the permanent magnet 23 to Controls the amount of magnetic flux that flows.

図5は磁束量制御を行う回転電機システムのブロック図を示している。図5に於いて,回転電機51は入力52,出力53を有するとし,制御装置55は回転電機51の出力53及び回転子の位置,温度等を含む状態信号54を入力として制御信号56を介して磁束量を制御する。番号57は電機子コイル16に駆動電流を供給する駆動回路を示す。回転電機51が発電機として用いられるのであれば,入力52は回転力であり,出力53は発電電力となる。回転電機51が電動機として用いられるのであれば,入力52は駆動回路57から電機子コイル16に供給される駆動電流であり,出力53は回転トルク,回転速度となる。制御信号56は切換スイッチ58,磁化制御回路5a,磁束調整回路59を制御し,界磁磁石の磁化状態を変更させる場合には切換スイッチ58により磁化制御回路5aを接続して第一励磁コイル1d,第二励磁コイル1gに磁化状態変更の為の磁化電流を供給し,磁束量の微調整を行う場合には切換スイッチ58により磁束調整回路59を接続して磁束調整電流を第一励磁コイル1d,第二励磁コイル1gに供給する。   FIG. 5 shows a block diagram of a rotating electrical machine system that performs magnetic flux amount control. In FIG. 5, the rotating electrical machine 51 has an input 52 and an output 53, and the control device 55 receives the output signal 53 of the rotating electrical machine 51 and the status signal 54 including the rotor position, temperature, etc. as an input and outputs a control signal 56. The amount of magnetic flux is controlled via Reference numeral 57 denotes a drive circuit for supplying a drive current to the armature coil 16. If the rotating electrical machine 51 is used as a generator, the input 52 is a rotational force and the output 53 is generated power. If the rotating electric machine 51 is used as an electric motor, the input 52 is a driving current supplied from the driving circuit 57 to the armature coil 16, and the output 53 is a rotating torque and a rotating speed. The control signal 56 controls the changeover switch 58, the magnetization control circuit 5a, and the magnetic flux adjustment circuit 59. When changing the magnetization state of the field magnet, the magnetization control circuit 5a is connected by the changeover switch 58 to connect the first excitation coil 1d. When the magnetizing current for changing the magnetization state is supplied to the second exciting coil 1g and the amount of magnetic flux is finely adjusted, the magnetic flux adjusting circuit 59 is connected by the changeover switch 58 and the magnetic flux adjusting current is supplied to the first exciting coil 1d. , Supplied to the second exciting coil 1g.

本発明では同種の極性に励磁される磁性体突極グループ毎に一括して励磁する励磁部を有して励磁部内に界磁磁石及び励磁コイルを含む構成である。励磁部を電機子と回転子で構成する空間から離れた位置に配置できる特徴があり,電機子コイルの発生する磁界の影響を直接には受けない事,スペースに余裕がある事から界磁磁石の素材及び形状寸法には選択の自由度がある。   In the present invention, the magnetic salient pole group excited to the same kind of polarity has an exciting part that excites all at once, and the exciting part includes a field magnet and an exciting coil. The field magnet is characterized by the fact that the exciter can be placed at a position away from the space formed by the armature and rotor, and is not directly affected by the magnetic field generated by the armature coil, and there is room in the space. There is a degree of freedom in selecting the material and shape dimensions.

電機子に対向する回転子表面或いは磁極内には電機子コイルの作る磁界によって容易に非可逆減磁を生じないネオジウム磁石(NdFeB)が望ましいが,上記説明のように励磁部には電機子コイル16が誘起する駆動磁束は到達し難いので界磁磁石として低抗磁力の磁石,例えば十分な磁化方向長さを有するアルニコ磁石(AlNiCo),フェライト磁石を使用する事が出来る。ネオジウム磁石(NdFeB)では着磁に必要な磁界強度が2400kA/m(キロアンペア/メートル)程度であり,アルニコ磁石(AlNiCo)の着磁に必要な磁界強度は240kA/m程度である。他に低抗磁力永久磁石としてFeCrCo磁石も利用できる。   A neodymium magnet (NdFeB) that does not easily cause irreversible demagnetization due to the magnetic field generated by the armature coil is desirable on the rotor surface or magnetic pole facing the armature. Since the driving magnetic flux induced by 16 is difficult to reach, a low coercive force magnet such as an Alnico magnet having a sufficient magnetization direction length (AlNiCo) or a ferrite magnet can be used as the field magnet. In the neodymium magnet (NdFeB), the magnetic field strength necessary for magnetization is about 2400 kA / m (kiloampere / meter), and the magnetic field strength necessary for magnetization of the alnico magnet (AlNiCo) is about 240 kA / m. In addition, an FeCrCo magnet can be used as a low coercive force permanent magnet.

電機子を流れる磁束量はこのように第一励磁コイル1d,第二励磁コイル1gに供給する磁化電流の振幅及び極性を変えて界磁磁石の磁化状態を変える事で制御される。電機子を流れる磁束量と第一励磁コイル1d,第二励磁コイル1gに供給する磁化電流との関係は設計段階でマップデータとして設定する。しかし,回転電機の量産段階では部材の寸法が公差範囲内でバラツキ,磁性体の磁気特性のバラツキも存在して電機子を流れる磁束量の精密な制御が困難になる場合がある。そのような場合には回転電機を組み立て後に回転電機個々に電機子を流れる磁束量と第一励磁コイル1d,第二励磁コイル1gに供給する磁化電流との関係を検査し,前記マップデータを修正する。   Thus, the amount of magnetic flux flowing through the armature is controlled by changing the magnetization state of the field magnet by changing the amplitude and polarity of the magnetization current supplied to the first excitation coil 1d and the second excitation coil 1g. The relationship between the amount of magnetic flux flowing through the armature and the magnetization current supplied to the first excitation coil 1d and the second excitation coil 1g is set as map data at the design stage. However, at the stage of mass production of rotating electrical machines, there are cases where the dimensions of the members vary within the tolerance range, and there are also variations in the magnetic characteristics of the magnetic material, making it difficult to precisely control the amount of magnetic flux flowing through the armature. In such a case, after assembling the rotating electrical machine, the relationship between the amount of magnetic flux flowing through the armature of each rotating electrical machine and the magnetizing current supplied to the first exciting coil 1d and the second exciting coil 1g is inspected, and the map data is corrected. To do.

さらに磁性体の特性は温度による影響を受けやすく,経時変化による影響も懸念される場合には運転中に加えられる磁化電流とその結果としての界磁磁石の磁化状態を監視し,回転電機の運転中に前記マップデータを修正する情報を学習的に取得する事も出来る。電機子を流れる磁束量を直接に把握する事は難しいが,電機子コイル16に現れる誘起電圧を参照して電機子を流れる磁束量を推定できる。   In addition, the characteristics of magnetic materials are easily affected by temperature, and if there are concerns about the effects of changes over time, the magnetizing current applied during operation and the resulting magnetization state of the field magnet are monitored, and the operation of the rotating electrical machine is monitored. Information for correcting the map data can be acquired in a learning manner. Although it is difficult to directly grasp the amount of magnetic flux flowing through the armature, the amount of magnetic flux flowing through the armature can be estimated with reference to the induced voltage appearing in the armature coil 16.

例えば,電機子コイル16に現れる誘起電圧の振幅は電機子コイル16と鎖交する磁束量及び回転速度にほぼ比例する。界磁磁石を第一磁化或いは第二磁化とするよう第一励磁コイル1d,第二励磁コイル1gに磁化電流を加えた結果として誘起電圧の振幅の変化量が目標値より小の場合は同一条件に於ける磁化電流の振幅を大にするよう磁化電流に係わるパラメータを修正する。   For example, the amplitude of the induced voltage appearing in the armature coil 16 is substantially proportional to the amount of magnetic flux interlinked with the armature coil 16 and the rotation speed. Same condition when the amount of change in the amplitude of the induced voltage is smaller than the target value as a result of applying the magnetizing current to the first exciting coil 1d and the second exciting coil 1g so that the field magnet is set to the first magnetization or the second magnetization. The parameter related to the magnetizing current is corrected so as to increase the amplitude of the magnetizing current in the.

以上,図1から図5に示した回転電機に於いて,第一界磁磁石1b,第二界磁磁石1eの磁化状態を変える事で電機子に流れる磁束量を制御できることを説明した。本実施例は電機子を流れる磁束量を制御して出力を最適化するシステムであり,図5を用いて回転電機システムとしての制御を説明する。   As described above, in the rotating electrical machine shown in FIGS. 1 to 5, it has been described that the amount of magnetic flux flowing through the armature can be controlled by changing the magnetization state of the first field magnet 1b and the second field magnet 1e. The present embodiment is a system for optimizing the output by controlling the amount of magnetic flux flowing through the armature, and the control as a rotating electrical machine system will be described with reference to FIG.

回転電機が電動機として用いられる場合に於いて,磁束量制御を行って回転力を最適に制御する。但し,電機子を流れる磁束量を増やす極性の磁束調整電流を正としている。制御装置55は出力53である回転速度が所定の値より大となり電機子に流れる磁束量を小とする時には磁束調整回路59により第一励磁コイル1d,第二励磁コイル1gに供給する磁束調整電流を減じて電機子に流れる磁束量を小とし,磁束調整電流が予め定めた値より小である場合には第一界磁磁石1b及び第二界磁磁石1eを第二磁化に磁化変更する方向の磁化電流が磁化制御回路5aから第一励磁コイル1d,第二励磁コイル1gに供給されて電機子を流れる磁束量を小とする。   When the rotating electrical machine is used as an electric motor, the amount of magnetic flux is controlled to optimally control the rotational force. However, a magnetic flux adjustment current having a polarity that increases the amount of magnetic flux flowing through the armature is positive. The controller 55 adjusts the magnetic flux adjustment current supplied to the first excitation coil 1d and the second excitation coil 1g by the magnetic flux adjustment circuit 59 when the rotational speed of the output 53 is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced. The direction of changing the magnetization of the first field magnet 1b and the second field magnet 1e to the second magnetization when the amount of magnetic flux flowing through the armature is reduced and the magnetic flux adjustment current is smaller than a predetermined value. Is supplied from the magnetization control circuit 5a to the first excitation coil 1d and the second excitation coil 1g to reduce the amount of magnetic flux flowing through the armature.

出力53である回転速度が所定の値より小となり電機子に流れる磁束量を大とする時には磁束調整回路59により第一励磁コイル1d,第二励磁コイル1gに供給する磁束調整電流を増して電機子に流れる磁束量を大とし,磁束調整電流が予め定めた値より大である場合には第一界磁磁石1b及び第二界磁磁石1eを第一磁化に磁化変更する方向の磁化電流を磁化制御回路5aから第一励磁コイル1d,第二励磁コイル1gに供給して電機子を流れる磁束量を大とする。   When the rotational speed as the output 53 is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the magnetic flux adjustment circuit 59 increases the magnetic flux adjustment current supplied to the first excitation coil 1d and the second excitation coil 1g to When the amount of magnetic flux flowing through the child is large and the magnetic flux adjustment current is larger than a predetermined value, the magnetization current in the direction to change the magnetization of the first field magnet 1b and the second field magnet 1e to the first magnetization is set. The amount of magnetic flux supplied from the magnetization control circuit 5a to the first excitation coil 1d and the second excitation coil 1g and flowing through the armature is increased.

上記説明に於いて,界磁制御の為に磁束調整電流を流したが,磁束調整電流は第一界磁磁石1b,第二界磁磁石1eの各磁化状態に於ける微調整用であって大きな電流ではないのでエネルギー効率を大きく損なう事はない。また,磁束調整電流による界磁の微調整をする事無く,第一界磁磁石1b,第二界磁磁石1eの各磁化状態に於いて駆動電流の位相制御により弱め界磁を付加する事も可能である。その場合でも界磁の微調整であるのでエネルギー効率を大きく損なう事はない。   In the above description, the magnetic flux adjustment current is supplied for the field control. However, the magnetic flux adjustment current is used for fine adjustment in each magnetization state of the first field magnet 1b and the second field magnet 1e. Because it is not, energy efficiency is not greatly impaired. In addition, a field weakening may be added by phase control of the drive current in each magnetization state of the first field magnet 1b and the second field magnet 1e without finely adjusting the field by the magnetic flux adjustment current. Is possible. Even in such a case, the field efficiency is finely adjusted, so that energy efficiency is not greatly impaired.

回転電機が発電機として用いられる場合において,磁束量制御を行って発電電圧を所定の電圧となるよう制御する定電圧発電システムを説明する。但し,電機子を流れる磁束量を増やす極性の磁束調整電流を正としている。   A constant voltage power generation system that controls the amount of magnetic flux to be a predetermined voltage by controlling the amount of magnetic flux when a rotating electrical machine is used as a generator will be described. However, a magnetic flux adjustment current having a polarity that increases the amount of magnetic flux flowing through the armature is positive.

制御装置55は出力53である発電電圧が所定の値より大となり電機子に流れる磁束量を小とする時には磁束調整回路59により第一励磁コイル1d,第二励磁コイル1gに供給する磁束調整電流を減じて電機子に流れる磁束量を小とし,磁束調整電流が予め定めた値より小である場合には第一界磁磁石1b及び第二界磁磁石1eを第二磁化に磁化変更する方向の磁化電流が磁化制御回路5aから第一励磁コイル1d,第二励磁コイル1gに供給されて電機子を流れる磁束量を小とする。   The control device 55 controls the magnetic flux adjustment current supplied to the first excitation coil 1d and the second excitation coil 1g by the magnetic flux adjustment circuit 59 when the generated voltage as the output 53 is larger than a predetermined value and the amount of magnetic flux flowing through the armature is reduced. The direction of changing the magnetization of the first field magnet 1b and the second field magnet 1e to the second magnetization when the amount of magnetic flux flowing through the armature is reduced and the magnetic flux adjustment current is smaller than a predetermined value. Is supplied from the magnetization control circuit 5a to the first excitation coil 1d and the second excitation coil 1g to reduce the amount of magnetic flux flowing through the armature.

制御装置55は出力53である発電電圧が所定の値より小となり電機子に流れる磁束量を大とする時には磁束調整回路59により第一励磁コイル1d,第二励磁コイル1gに供給する磁束調整電流を増して電機子に流れる磁束量を大とし,磁束調整電流が予め定めた値より大である場合には第一界磁磁石1b及び第二界磁磁石1eを第一磁化に磁化変更する方向の磁化電流を磁化制御回路5aから第一励磁コイル1d,第二励磁コイル1gに供給して電機子を流れる磁束量を大とする。   The control device 55 controls the magnetic flux adjustment current supplied to the first excitation coil 1d and the second excitation coil 1g by the magnetic flux adjustment circuit 59 when the generated voltage as the output 53 is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased. To increase the amount of magnetic flux flowing through the armature, and when the magnetic flux adjustment current is larger than a predetermined value, the magnetization direction of the first field magnet 1b and the second field magnet 1e is changed to the first magnetization. Is supplied from the magnetization control circuit 5a to the first excitation coil 1d and the second excitation coil 1g to increase the amount of magnetic flux flowing through the armature.

本実施例では界磁磁石の磁化変更をする為の磁束は電機子コイルと鎖交し,電機子コイルに電圧を誘起させる。可能な限り時間変化の緩やかな波形を持つ磁化電流により電機子コイルに現れる電圧振幅は小さく抑える事が出来る。そのような電流波形は低周波数側に周波数スペクトラムが集中する波形と同義であり,例えば,励磁コイルに供給する電流波形としてレイズドコサインパルス,ガウシアンパルス等は電機子コイルに現れる電圧振幅を抑える為に有効である。   In this embodiment, the magnetic flux for changing the magnetization of the field magnet is linked to the armature coil, and a voltage is induced in the armature coil. The voltage amplitude appearing in the armature coil can be suppressed as small as possible by the magnetizing current having a waveform with a gradual change with time. Such a current waveform is synonymous with a waveform in which the frequency spectrum is concentrated on the low frequency side. For example, a raised cosine pulse, a Gaussian pulse, etc. as a current waveform supplied to the exciting coil is used to suppress the voltage amplitude appearing in the armature coil. It is valid.

本発明による回転電機システムの第二実施例を図6から図10を用いて説明する。第二実施例は,インナーローター構造の回転電機であり,界磁磁石を含む励磁部が回転子両端のハウジング側に配置されている。   A second embodiment of the rotating electrical machine system according to the present invention will be described with reference to FIGS. The second embodiment is a rotating electrical machine having an inner rotor structure, and excitation portions including field magnets are arranged on the housing side at both ends of the rotor.

図6はラジアルギャップ構造の回転電機に本発明を適用した実施例を示し,相互の関係を説明する為に構成部分の一部に番号を付して示している。回転軸61がベアリング63を介してハウジング62に回動可能に支持されている。磁性体で構成されたハウジング62には円筒状磁気ヨーク65が固定され,円筒状磁気ヨーク65から径方向に延びる磁性体歯64及び電機子コイル66が配置されている。   FIG. 6 shows an embodiment in which the present invention is applied to a rotary electric machine having a radial gap structure, and in order to explain the mutual relationship, some of the components are shown with numbers. A rotating shaft 61 is rotatably supported on the housing 62 via a bearing 63. A cylindrical magnetic yoke 65 is fixed to a housing 62 made of a magnetic material, and magnetic material teeth 64 and an armature coil 66 extending from the cylindrical magnetic yoke 65 in the radial direction are arranged.

磁性体歯64と径方向に対向する回転子は,回転軸61に固定された回転子支持体6aの外周に表面磁極部67を有し,表面磁極部67を構成する第一磁性体突極及び第二磁性体突極が周方向に交互に配置され,更に第一磁性体突極が軸と平行の右方向に延伸された第一延長部68,第二磁性体突極が軸と平行の左方向に延伸された第二延長部69を有する。   The rotor facing the magnetic teeth 64 in the radial direction has a surface magnetic pole portion 67 on the outer periphery of the rotor support 6 a fixed to the rotating shaft 61, and the first magnetic salient pole constituting the surface magnetic pole portion 67. And the second magnetic salient pole are alternately arranged in the circumferential direction, and the first magnetic salient pole is extended in the right direction parallel to the axis, and the second magnetic salient pole is parallel to the axis. The second extension 69 extends in the left direction.

第一延長部68と微小間隙を介して界磁極6dがハウジング62内側に配置され,界磁極6dとハウジング62間に第一界磁磁石6bが配置され,更に第一励磁コイル6cが円筒状磁気ヨーク65,磁性体歯64,第一磁性体突極,第一延長部68,界磁極6d,第一界磁磁石6b,ハウジング62を含む磁路に磁束を発生するよう配置されて第一励磁部が構成されている。第二延長部69と微小間隙を介して界磁極6gがハウジング62内側に配置され,界磁極6gとハウジング62間に第二界磁磁石6eが配置され,第二励磁コイル6fが円筒状磁気ヨーク65,磁性体歯64,第二磁性体突極,第二延長部69,界磁極6g,第二界磁磁石6e,ハウジング62を含む磁路に磁束を発生するよう配置されて第二励磁部が構成されている。第一励磁部及び第二励磁部は同じ構成であり,第一磁性体突極及び第二磁性体突極を互いに異なる極性に磁化するよう第一励磁コイル6c,第二励磁コイル6fが結線されている。本実施例に於いて,ハウジング62,界磁極6dが第一励磁磁路部材に相当し,ハウジング62,界磁極6gが第二励磁磁路部材に相当している。   The field pole 6d is disposed inside the housing 62 through a first gap 68 and a minute gap, the first field magnet 6b is disposed between the field pole 6d and the housing 62, and the first exciting coil 6c is cylindrically magnetized. The first excitation is performed by generating a magnetic flux in a magnetic path including the yoke 65, the magnetic teeth 64, the first magnetic salient pole, the first extension 68, the field magnetic pole 6d, the first field magnet 6b, and the housing 62. The part is composed. The field pole 6g is disposed inside the housing 62 via the second extension 69 and a minute gap, the second field magnet 6e is disposed between the field pole 6g and the housing 62, and the second exciting coil 6f is a cylindrical magnetic yoke. 65, a magnetic material tooth 64, a second magnetic material salient pole, a second extension 69, a field magnetic pole 6g, a second field magnet 6e, and a second excitation unit arranged to generate a magnetic flux in a magnetic path including the housing 62. Is configured. The first excitation unit and the second excitation unit have the same configuration, and the first excitation coil 6c and the second excitation coil 6f are connected so as to magnetize the first magnetic salient pole and the second magnetic salient pole to different polarities. ing. In this embodiment, the housing 62 and the field magnetic pole 6d correspond to a first excitation magnetic path member, and the housing 62 and the field magnetic pole 6g correspond to a second excitation magnetic path member.

図7は図6のB−B’に沿う電機子及び回転子の断面図を示し,相互の関係を説明する為に構成部分の一部に番号を付している。電機子はハウジング62に固定された円筒状磁気ヨーク65と,円筒状磁気ヨーク65から径方向に延びる複数の磁性体歯64と,磁性体歯64に巻回された電機子コイル66とから構成されている。径方向に短い可飽和磁性体結合部78が隣接する磁性体歯64先端部間に配置されている。磁性体歯64及び可飽和磁性体結合部78はケイ素鋼板を型で打ち抜いて積層され,電機子コイル66を巻回された後,圧粉鉄心で構成された円筒状磁気ヨーク65と組み合わせて電機子が構成されている。   FIG. 7 shows a cross-sectional view of the armature and the rotor along B-B ′ in FIG. 6, and some of the components are numbered to explain the mutual relationship. The armature includes a cylindrical magnetic yoke 65 fixed to the housing 62, a plurality of magnetic teeth 64 extending radially from the cylindrical magnetic yoke 65, and an armature coil 66 wound around the magnetic teeth 64. Has been. A saturable magnetic material coupling portion 78 that is short in the radial direction is disposed between the tips of adjacent magnetic material teeth 64. The magnetic teeth 64 and the saturable magnetic material coupling portion 78 are laminated by punching a silicon steel plate with a mold, wound with an armature coil 66, and then combined with a cylindrical magnetic yoke 65 composed of a dust core. A child is configured.

可飽和磁性体結合部78は隣接する磁性体歯64同士を機械的に連結させて磁性体歯64の支持強度を向上させ,磁性体歯64の不要な振動を抑制させる。可飽和磁性体結合部78の径方向の長さは短く設定して容易に磁気的に飽和する形状としたので電機子コイル66が発生させる磁束或いは永久磁石からの磁束によって容易に飽和し,その場合に電機子コイル66が発生させる磁束及び磁束の短絡を僅かな量とする。電機子コイル66に電流が供給されると,時間と共に可飽和磁性体結合部78は磁気的に飽和させられて周辺に磁束を漏洩させるが,磁気飽和した可飽和磁性体結合部78に現れる実効的な磁気空隙の境界はクリアではないので漏洩する磁束の分布は緩やかとなり,可飽和磁性体結合部78はこの点でも磁性体歯64に加わる力の時間変化を緩やかにして振動抑制に寄与する。   The saturable magnetic material coupling portion 78 mechanically connects adjacent magnetic material teeth 64 to improve the support strength of the magnetic material teeth 64 and suppress unnecessary vibration of the magnetic material teeth 64. The length of the saturable magnetic material coupling portion 78 in the radial direction is set to be short and easily magnetically saturated, so that it is easily saturated by the magnetic flux generated by the armature coil 66 or the magnetic flux from the permanent magnet. In this case, the magnetic flux generated by the armature coil 66 and the short circuit of the magnetic flux are set to a small amount. When a current is supplied to the armature coil 66, the saturable magnetic body coupling portion 78 is magnetically saturated with time, and magnetic flux leaks to the periphery, but the effective magnetic field appears in the magnetically saturated saturable magnetic body coupling portion 78. Since the boundary of the magnetic gap is not clear, the distribution of the magnetic flux that leaks becomes gentle, and the saturable magnetic material coupling portion 78 also contributes to vibration suppression by slowing the time change of the force applied to the magnetic material teeth 64 in this respect. .

表面磁極部67は円筒状磁性体基板が集合磁石により周方向に区分された構成である。中間磁性体突極73の両側面にほぼ同じ磁化方向の磁石板75,76が配置された組み合わせは磁気的には磁石と等価な集合磁石であり,回転子の表面磁極部67は一様な円筒状磁性体基板を周方向に等間隔に配置された集合磁石によって区分された第一磁性体突極71,第二磁性体突極72及び集合磁石とから構成されている。さらに隣接する突極である第一磁性体突極71,第二磁性体突極72は互いに異なる方向に磁化されるよう隣接する集合磁石の磁化方向は互いに反転して構成されている。   The surface magnetic pole portion 67 has a configuration in which a cylindrical magnetic substrate is sectioned in the circumferential direction by a collecting magnet. The combination in which the magnet plates 75 and 76 having substantially the same magnetization direction are arranged on both side surfaces of the intermediate magnetic body salient pole 73 is a collective magnet that is magnetically equivalent to the magnet, and the surface magnetic pole portion 67 of the rotor is uniform. A cylindrical magnetic substrate is composed of a first magnetic salient pole 71, a second magnetic salient pole 72, and an aggregate magnet that are divided by aggregate magnets arranged at equal intervals in the circumferential direction. Further, the first magnet salient pole 71 and the second magnet salient pole 72, which are adjacent salient poles, are configured such that the magnetization directions of the adjacent collective magnets are reversed so that they are magnetized in different directions.

第一磁性体突極71,第二磁性体突極72それぞれの周方向両側面に配置された磁石板はV字状の配置であり,磁石板の交差角度は磁束バリアに好適な角度に設定する。磁石板74,75,76,77に付された矢印は磁石板74,75,76,77の板面にほぼ直交する磁化方向を示す。中間磁性体突極73の電機子と対向する側には非磁性体が配置されて磁性体歯64と中間磁性体突極73との間で磁束が流れ難いよう構成されている。   The magnet plates disposed on both sides in the circumferential direction of the first magnetic salient pole 71 and the second magnetic salient pole 72 are V-shaped, and the crossing angle of the magnet plates is set to an angle suitable for the magnetic flux barrier. To do. Arrows attached to the magnet plates 74, 75, 76, 77 indicate the magnetization directions substantially orthogonal to the plate surfaces of the magnet plates 74, 75, 76, 77. A non-magnetic material is disposed on the side of the intermediate magnetic salient pole 73 facing the armature so that the magnetic flux does not easily flow between the magnetic teeth 64 and the intermediate magnetic salient pole 73.

図8は回転子の構成及び励磁部の配置を示す分解斜視図である。理解を容易にする為に第一磁性体突極71,第二磁性体突極72等を有する中心部と第一延長部68,第二延長部69とを離し,電機子及びハウジング62を除いて示されている。第一延長部68は軟鉄をプレス成形して第一磁性体突極71の延長部分となる磁性体突部83を有して構成され,非磁性体部84は磁性を持たないステンレススチールで形成されている。第二延長部69は軟鉄をプレス成形して第二磁性体突極72の延長部分となる磁性体突部81を有して構成され,非磁性体部82は磁性を持たないステンレススチールで形成されている。第一延長部68,第二延長部69にはそれぞれ界磁極6d,6gと微小間隙を介して対向するが,図8では界磁極6dは示されていない。更に第一励磁コイル6c,第二励磁コイル6f及び第一界磁磁石6bが示されている。番号85は第一延長部68の円板状部分を示し,界磁極6dと対向している。   FIG. 8 is an exploded perspective view showing the configuration of the rotor and the arrangement of the excitation parts. For ease of understanding, the central portion having the first magnetic salient pole 71, the second magnetic salient pole 72, etc. is separated from the first extension portion 68 and the second extension portion 69, and the armature and the housing 62 are excluded. Is shown. The first extension portion 68 is formed by press forming soft iron to have a magnetic projection 83 that is an extension of the first magnetic salient pole 71, and the nonmagnetic portion 84 is made of stainless steel without magnetism. Has been. The second extension 69 is formed by pressing a soft iron and having a magnetic projection 81 that is an extension of the second magnetic salient pole 72, and the non-magnetic portion 82 is made of stainless steel without magnetism. Has been. The first extension portion 68 and the second extension portion 69 are opposed to the field poles 6d and 6g through a minute gap, respectively, but the field pole 6d is not shown in FIG. Further, a first excitation coil 6c, a second excitation coil 6f, and a first field magnet 6b are shown. Reference numeral 85 denotes a disk-like portion of the first extension portion 68, which faces the field pole 6d.

図9は電機子及び回転子の拡大された断面の一部を示す図である。図9(a)により強め界磁に於ける磁束の流れ,図9(b)により弱め界磁に於ける磁束の流れを説明する。図6に示した構成により第一励磁コイル6c,第一界磁磁石6bが発生させる磁束は円筒状磁気ヨーク65,磁性体歯64,第一磁性体突極71,第一延長部68,界磁極6d,ハウジング62を含む磁路を流れるよう構成され,第二励磁コイル6f,第二界磁磁石6eが発生させる磁束は円筒状磁気ヨーク65,磁性体歯64,第二磁性体突極72,第二延長部69,界磁極6g,ハウジング62を含む磁路を流れるよう構成されている。   FIG. 9 is a view showing a part of an enlarged cross section of the armature and the rotor. FIG. 9A explains the flow of magnetic flux in the strong field, and FIG. 9B explains the flow of magnetic flux in the weak field. With the configuration shown in FIG. 6, the magnetic flux generated by the first exciting coil 6c and the first field magnet 6b is a cylindrical magnetic yoke 65, magnetic teeth 64, first magnetic salient pole 71, first extension 68, field. The magnetic flux generated by the second exciting coil 6f and the second field magnet 6e is configured to flow through a magnetic path including the magnetic pole 6d and the housing 62. The magnetic flux generated by the second exciting coil 6f and the second field magnet 6e is a cylindrical magnetic yoke 65, magnetic teeth 64, and second magnetic salient poles 72. , The second extension 69, the field pole 6 g, and the magnetic path including the housing 62.

図9(a)に於いて,番号92は磁石板74,75,76,77からの磁束を代表して示し,主として回転子の表面磁極部77及び電機子内を流れる。例えば,磁石板75からの磁束は中間磁性体突極73,磁石板76,第二磁性体突極72,磁性体歯64,円筒状磁気ヨーク75,隣接する磁性体歯74,第一磁性体突極71を介して磁石板75に環流する。磁石板74,75,76,77によって第一磁性体突極71はS極に,第二磁性体突極72はN極にそれぞれ磁化されている。   In FIG. 9A, numeral 92 represents the magnetic flux from the magnet plates 74, 75, 76, 77 as a representative, and mainly flows in the surface magnetic pole portion 77 of the rotor and the armature. For example, the magnetic flux from the magnet plate 75 is the intermediate magnetic material salient pole 73, the magnet plate 76, the second magnetic material salient pole 72, the magnetic material teeth 64, the cylindrical magnetic yoke 75, the adjacent magnetic material teeth 74, the first magnetic material. It returns to the magnet plate 75 via the salient pole 71. The magnet plates 74, 75, 76, 77 magnetize the first magnetic salient pole 71 to the S pole and the second magnetic salient pole 72 to the N pole.

図6に示す第一界磁磁石6b,第二界磁磁石6eはそれぞれの逆方向の磁化を持つ磁石要素の並列接続であるので界磁磁石内で閉磁路が構成されて外部に磁束を供給していない。しかし,第一界磁磁石6b,第二界磁磁石6eの磁石要素が全て軸と平行に右方向の磁化を有する場合は,第一界磁磁石6bが第一延長部68及び第一磁性体突極71をS極に磁化し,第二界磁磁石6eが第二延長部69及び第二磁性体突極72をN極に磁化して強め界磁に相当する。その場合,第一界磁磁石6bからの磁束はハウジング62,円筒状磁気ヨーク65,磁性体歯64,第一磁性体突極71,第一延長部68,界磁極6dを介して第一界磁磁石6bに環流する。第二界磁磁石6eからの磁束は界磁極6g,第二延長部69,第二磁性体突極72,磁性体歯64,円筒状磁気ヨーク65,ハウジング62を介して第二界磁磁石6eに環流する。   Since the first field magnet 6b and the second field magnet 6e shown in FIG. 6 are connected in parallel with magnet elements having magnetizations in opposite directions, a closed magnetic path is formed in the field magnet to supply magnetic flux to the outside. Not done. However, when all the magnet elements of the first field magnet 6b and the second field magnet 6e have the magnetization in the right direction parallel to the axis, the first field magnet 6b becomes the first extension portion 68 and the first magnetic body. The salient pole 71 is magnetized to the S pole, and the second field magnet 6e magnetizes the second extension 69 and the second magnetic salient pole 72 to the N pole, which corresponds to a strong field. In this case, the magnetic flux from the first field magnet 6b passes through the housing 62, the cylindrical magnetic yoke 65, the magnetic teeth 64, the first magnetic salient pole 71, the first extension 68, and the field pole 6d. It circulates in the magnet 6b. The magnetic flux from the second field magnet 6e passes through the field magnetic pole 6g, the second extension 69, the second magnetic salient pole 72, the magnetic teeth 64, the cylindrical magnetic yoke 65, and the housing 62, and the second field magnet 6e. To recirculate.

図9(a)に於いて,番号95は円筒状磁気ヨーク65から磁性体歯64を介して第一磁性体突極71に流れる磁束を示し,番号93は第一磁性体突極71から第一延長部68方向に流れる磁束を示している。番号94は第二延長部69から第二磁性体突極72に流れる磁束を示し,番号96は第二磁性体突極72から磁性体歯64を介して円筒状磁気ヨーク65に流れる磁束を示している。磁束95,96は磁性体歯64内で磁束92と同じ方向に流れ,電機子コイル66と鎖交する磁束量を磁束92単独の場合に比して大となる。番号91は磁性体歯64と中間磁性体突極73間を磁束が流れないように配置された非磁性体を示す。   In FIG. 9A, reference numeral 95 denotes a magnetic flux flowing from the cylindrical magnetic yoke 65 to the first magnetic salient pole 71 via the magnetic teeth 64, and reference numeral 93 denotes the first magnetic salient pole 71 to the first magnetic pole. The magnetic flux which flows in the direction of one extension part 68 is shown. Reference numeral 94 indicates a magnetic flux flowing from the second extension 69 to the second magnetic salient pole 72, and reference numeral 96 indicates a magnetic flux flowing from the second magnetic salient pole 72 to the cylindrical magnetic yoke 65 via the magnetic teeth 64. ing. The magnetic fluxes 95 and 96 flow in the same direction as the magnetic flux 92 in the magnetic teeth 64, and the amount of magnetic flux interlinking with the armature coil 66 is larger than that of the magnetic flux 92 alone. Reference numeral 91 denotes a non-magnetic material arranged so that no magnetic flux flows between the magnetic material teeth 64 and the intermediate magnetic material salient pole 73.

さらに第一界磁磁石6b,第二界磁磁石6eの磁石要素が全て軸と平行に左方向の磁化を有する場合は,第一界磁磁石6bが第一延長部68及び第一磁性体突極71をN極に磁化し,第二界磁磁石6eが第二延長部69及び第二磁性体突極72をS極に磁化して弱め界磁に相当する。その場合,第一界磁磁石6b及び第二界磁磁石6eからの磁束は図9(a)に示した磁束95,96と逆方向に磁性体歯64中を流れて電機子コイル66と鎖交する磁束量を減少させる。また,第一磁性体突極71はN極に磁化され,第二磁性体突極72はS極に磁化されるので第一界磁磁石6b及び第二界磁磁石6eからの磁束の一部は磁石板75,中間磁性体突極73,磁石板76を介して第二磁性体突極72に流れる。   Further, when all the magnetic elements of the first field magnet 6b and the second field magnet 6e have the magnetization in the left direction parallel to the axis, the first field magnet 6b has the first extension portion 68 and the first magnetic body projection. The pole 71 is magnetized to the N pole, and the second field magnet 6e magnetizes the second extension 69 and the second magnetic salient pole 72 to the S pole, which corresponds to a field weakening. In that case, the magnetic flux from the first field magnet 6b and the second field magnet 6e flows in the magnetic teeth 64 in the opposite direction to the magnetic fluxes 95 and 96 shown in FIG. Reduce the amount of magnetic flux to intersect. Further, since the first magnetic salient pole 71 is magnetized to the N pole and the second magnetic salient pole 72 is magnetized to the S pole, part of the magnetic flux from the first field magnet 6b and the second field magnet 6e. Flows to the second magnetic salient pole 72 via the magnet plate 75, the intermediate magnetic salient pole 73 and the magnet plate 76.

すなわち,図9(b)に示すように第一界磁磁石6bからの磁束の一部は界磁極6d,第一延長部68,第一磁性体突極71,磁石板75,中間磁性体突極73,磁石板76,第二磁性体突極72,第二延長部69,界磁極6g,第二界磁磁石6e,ハウジング62を介して第一界磁磁石6bに環流する。番号99,9aは上記経路に沿って流れる磁束を示し,番号97は第一延長部68から第一磁性体突極71方向に流れる磁束を示し,番号98は第二磁性体突極72から第二延長部69方向に流れる磁束を示し,番号9bはハウジング62内を軸と平行に右方向に流れる磁束を示している。   That is, as shown in FIG. 9B, a part of the magnetic flux from the first field magnet 6b is made up of the field pole 6d, the first extension 68, the first magnetic salient pole 71, the magnet plate 75, the intermediate magnetic substance bump. It circulates to the first field magnet 6b through the pole 73, the magnet plate 76, the second magnetic salient pole 72, the second extension 69, the field magnetic pole 6g, the second field magnet 6e, and the housing 62. Reference numerals 99 and 9a indicate magnetic fluxes flowing along the path, reference numeral 97 indicates magnetic flux flowing from the first extension 68 toward the first magnetic salient pole 71, and reference numeral 98 indicates the second magnetic salient pole 72 from The magnetic flux flowing in the direction of the two extension portions 69 is shown, and numeral 9b shows the magnetic flux flowing in the right direction in the housing 62 parallel to the axis.

図9(b)は第一界磁磁石6b,第二界磁磁石6e,磁石板75,76が完全な閉磁路を構成して磁性体歯64内に流れる磁束が存在しない極端な場合を示しているが,磁性体歯64内を流れる磁束の量は第一界磁磁石6b及び第二界磁磁石6eからそれぞれ第一磁性体突極71,第二磁性体突極72に供給される磁束の量によって変化する。上記説明のように第一界磁磁石6bが第一磁性体突極71をS極に磁化し,第二界磁磁石6eが第二磁性体突極72をN極に磁化する場合が強め界磁となる。したがって,第一界磁磁石6b,第二界磁磁石6eでは軸と平行に右方向の磁化が第一磁化に相当し,軸と平行に左方向の磁化が第二磁化に相当する。   FIG. 9B shows an extreme case where the first field magnet 6b, the second field magnet 6e, and the magnet plates 75 and 76 constitute a complete closed magnetic path and there is no magnetic flux flowing in the magnetic teeth 64. However, the amount of magnetic flux flowing in the magnetic teeth 64 is the magnetic flux supplied from the first field magnet 6b and the second field magnet 6e to the first magnetic salient pole 71 and the second magnetic salient pole 72, respectively. Varies depending on the amount. As described above, the first field magnet 6b magnetizes the first magnetic salient pole 71 to the S pole, and the second field magnet 6e magnetizes the second magnetic salient pole 72 to the N pole. It becomes magnetic. Therefore, in the first field magnet 6b and the second field magnet 6e, the magnetization in the right direction parallel to the axis corresponds to the first magnetization, and the magnetization in the left direction parallel to the axis corresponds to the second magnetization.

図6及び図10を用いて第一及び第二励磁部の構成及び動作原理を説明する。図10は図6に示した第一励磁部の縦断面の上半分を拡大して示している。第一界磁磁石6bは抗磁力の異なる2種の磁石要素101,102により構成され,図10では抗磁力が大の磁石要素101,抗磁力が小の磁石要素102が界磁極6dとハウジング62間に配置されている。磁石要素101,102はそれぞれの残留磁束密度と磁極面積の積が互いに等しくなるよう設定されている。第二励磁部の構成は第一励磁部と同じである。   The configuration and operation principle of the first and second excitation units will be described with reference to FIGS. FIG. 10 is an enlarged view of the upper half of the longitudinal section of the first excitation portion shown in FIG. The first field magnet 6b is composed of two types of magnet elements 101 and 102 having different coercive forces. In FIG. Arranged between. The magnet elements 101 and 102 are set so that the products of the residual magnetic flux density and the magnetic pole area are equal to each other. The configuration of the second excitation unit is the same as that of the first excitation unit.

第一界磁磁石6b,第二界磁磁石6eそれぞれの磁化方向を変えて電機子コイル66と鎖交する磁束量が制御される事を説明した。以下に第一界磁磁石6b,第二界磁磁石6eそれぞれに於いて第一磁化或いは第二磁化に属する磁石要素数を第一励磁コイル6c,第二励磁コイル6fにより変えるステップを説明する。第一界磁磁石6b,第二界磁磁石6eは同一の構成であるので第一界磁磁石6bを構成する磁石要素101,102の磁化を変更するステップを説明する。   It has been described that the amount of magnetic flux linked to the armature coil 66 is controlled by changing the magnetization directions of the first field magnet 6b and the second field magnet 6e. The steps of changing the number of magnet elements belonging to the first magnetization or the second magnetization in the first field magnet 6b and the second field magnet 6e by the first excitation coil 6c and the second excitation coil 6f will be described below. Since the first field magnet 6b and the second field magnet 6e have the same configuration, the step of changing the magnetization of the magnet elements 101 and 102 constituting the first field magnet 6b will be described.

第一界磁磁石6bを構成する磁石要素101,102は界磁極6d,ハウジング62間に配置されて互いに並列接続された状態であり,第一励磁コイル6cに磁化電流が供給されると,界磁極6d,ハウジング62間の磁気ポテンシャル差(起磁力)は周方向にほぼ同じであり,各磁石要素内では磁気ポテンシャル差を厚みで除した値に相当する磁界強度の磁界が加えられる。したがって,抗磁力が小の磁石要素102が磁化されやすく,抗磁力が大の磁石要素101は磁化され難い。磁化電流の振幅により磁石要素102のみ,或いは磁石要素101,102の磁化状態を共に変更できる。   The magnet elements 101 and 102 constituting the first field magnet 6b are disposed between the field magnetic pole 6d and the housing 62 and connected in parallel to each other. When a magnetizing current is supplied to the first exciting coil 6c, The magnetic potential difference (magnetomotive force) between the magnetic pole 6d and the housing 62 is substantially the same in the circumferential direction, and a magnetic field having a magnetic field intensity corresponding to a value obtained by dividing the magnetic potential difference by the thickness is applied in each magnet element. Therefore, the magnet element 102 having a small coercive force is easily magnetized, and the magnet element 101 having a large coercive force is not easily magnetized. Only the magnet element 102 or the magnetization states of the magnet elements 101 and 102 can be changed by the amplitude of the magnetizing current.

図10に示す状態では磁石要素101が第一磁化,磁石要素102が第二磁化に相当している。互いに逆方向の磁化を持つ磁石要素101と磁石要素102が閉磁路を形成して外部には磁束が流れていない状態である。同図に於いて,磁石要素102の磁化を第一磁化に変更する場合,ハウジング62,円筒状磁気ヨーク65,磁性体歯64,第一磁性体突極71,第一延長部68,界磁極6d,第一界磁磁石6b(磁石要素101,102)に沿って磁束が流れる方向の磁化電流を第一励磁コイル6cに供給し,磁石要素102を第一磁化に変更する。磁化電流の振幅は磁石要素102の磁化方向を反転させるに十分な大きさに設定する。   In the state shown in FIG. 10, the magnet element 101 corresponds to the first magnetization and the magnet element 102 corresponds to the second magnetization. The magnet element 101 and the magnet element 102 having magnetizations in opposite directions form a closed magnetic path, and no magnetic flux flows outside. In the figure, when the magnetization of the magnet element 102 is changed to the first magnetization, the housing 62, the cylindrical magnetic yoke 65, the magnetic teeth 64, the first magnetic salient pole 71, the first extension 68, the field pole. 6d, a magnetizing current in a direction in which the magnetic flux flows along the first field magnet 6b (magnet elements 101, 102) is supplied to the first exciting coil 6c, and the magnet element 102 is changed to the first magnetization. The amplitude of the magnetizing current is set to a magnitude sufficient to reverse the magnetization direction of the magnet element 102.

更に磁石要素101,磁石要素102が第一磁化に相当している状態から図10に示す状態に変更する場合は,第一界磁磁石6b(磁石要素101,102),界磁極6d,第一延長部68,第一磁性体突極71,磁性体歯64,円筒状磁気ヨーク65,ハウジング62に沿って磁束が流れる方向の磁化電流を第一励磁コイル6cに供給し,磁石要素102を第二磁化に変更する。その際の磁化電流の振幅は磁石要素102のみの磁化方向を反転させ,磁石要素101の磁化に影響を与えない大きさとする。   Further, when the magnet element 101 and the magnet element 102 are changed from the state corresponding to the first magnetization to the state shown in FIG. 10, the first field magnet 6b (magnet elements 101 and 102), the field pole 6d, and the first A magnetizing current in a direction in which the magnetic flux flows along the extension 68, the first magnetic salient pole 71, the magnetic tooth 64, the cylindrical magnetic yoke 65, and the housing 62 is supplied to the first exciting coil 6c, and the magnet element 102 is Change to dual magnetization. The amplitude of the magnetization current at that time is set to a magnitude that does not affect the magnetization of the magnet element 101 by reversing the magnetization direction of only the magnet element 102.

図10に示す状態から磁石要素101の磁化を第二磁化に変更する場合,第一界磁磁石6b,界磁極6d,第一延長部68,第一磁性体突極71,磁性体歯64,円筒状磁気ヨーク65,ハウジング62に沿って磁束が流れるよう第一励磁コイル6cに磁化電流を供給し,磁石要素101を第二磁化に変更する。磁化電流の振幅は磁石要素101の磁化方向を反転させるに十分な大きさに設定する。この場合,第一励磁コイル6cにより誘起される磁束は第一界磁磁石6b,界磁極6d,第一延長部68,第一磁性体突極71,磁石板75,中間磁性体突極73,磁石板76,第二磁性体突極72,第二延長部69,界磁極6g,第二界磁磁石6e,ハウジング62に沿っても流れるが,磁石要素101の磁化を第二磁化に変更するのに支障はない。   When the magnetization of the magnet element 101 is changed from the state shown in FIG. 10 to the second magnetization, the first field magnet 6b, the field pole 6d, the first extension 68, the first magnetic salient pole 71, the magnetic teeth 64, A magnetizing current is supplied to the first exciting coil 6c so that the magnetic flux flows along the cylindrical magnetic yoke 65 and the housing 62, and the magnet element 101 is changed to the second magnetization. The amplitude of the magnetizing current is set to a magnitude sufficient to reverse the magnetization direction of the magnet element 101. In this case, the magnetic flux induced by the first exciting coil 6c is the first field magnet 6b, the field pole 6d, the first extension 68, the first magnetic salient pole 71, the magnet plate 75, the intermediate magnetic salient pole 73, Although it flows along the magnet plate 76, the second magnetic salient pole 72, the second extension 69, the field magnetic pole 6g, the second field magnet 6e, and the housing 62, the magnetization of the magnet element 101 is changed to the second magnetization. There is no hindrance.

上記のように磁石要素101,102を第二磁化に磁化変更する場合,磁石板75,76,第一界磁磁石6b,第二界磁磁石6eを直列に含む磁路に磁束が流れる可能性がある。その場合に上記磁石板及び界磁磁石にはそれぞれ等しい磁界強度が印可される。したがって,磁石要素101,102の抗磁力を磁石板75,76の抗磁力より小に設定して第一励磁コイル6c,第二励磁コイル6fによって磁石要素101,102の磁化が変更されるよう設定する必要がある。本実施例では磁石要素101,102の抗磁力を磁石板75,76の抗磁力の2分の1以下に設定し,その範囲内で磁石要素は互いに異なる抗磁力となるよう設定されている。   When the magnetization of the magnet elements 101 and 102 is changed to the second magnetization as described above, the magnetic flux may flow in a magnetic path including the magnet plates 75 and 76, the first field magnet 6b, and the second field magnet 6e in series. There is. In this case, equal magnetic field strength is applied to the magnet plate and the field magnet. Accordingly, the coercive force of the magnet elements 101 and 102 is set to be smaller than the coercive force of the magnet plates 75 and 76 so that the magnetization of the magnet elements 101 and 102 is changed by the first exciting coil 6c and the second exciting coil 6f. There is a need to. In this embodiment, the coercive force of the magnet elements 101 and 102 is set to one half or less of the coercive force of the magnet plates 75 and 76, and the magnet elements are set to have different coercive forces within the range.

本実施例に於いて,界磁磁石の磁化状態は離散的に変えられるが,本実施例ではさらに界磁磁石の磁化状態を変更させない程度の磁束調整電流を第一励磁コイル6c,第二励磁コイル6fに供給して磁束を発生させ,第一界磁磁石6b,第二界磁磁石6e及び磁石板74,75,76,77による磁束に重畳させて電機子を流れる磁束量を制御する。   In this embodiment, the magnetization state of the field magnet can be discretely changed. However, in this embodiment, a magnetic flux adjustment current that does not change the magnetization state of the field magnet is supplied to the first excitation coil 6c and the second excitation coil. A magnetic flux is generated by being supplied to the coil 6f, and the amount of magnetic flux flowing through the armature is controlled by being superimposed on the magnetic flux generated by the first field magnet 6b, the second field magnet 6e, and the magnet plates 74, 75, 76, 77.

図5は磁束量制御を行う回転電機システムのブロック図を示している。図5に於いて,回転電機51は入力52,出力53を有するとし,制御装置55は回転電機51の出力53及び回転子の位置,温度等を含む状態信号54を入力として制御信号56を介して磁束量を制御する。番号57は電機子コイル66に駆動電流を供給する駆動回路を示す。回転電機51が発電機として用いられるのであれば,入力52は回転力であり,出力53は発電電力となる。回転電機51が電動機として用いられるのであれば,入力52は駆動回路57から電機子コイル66に供給される駆動電流であり,出力53は回転トルク,回転速度となる。制御信号56は切換スイッチ58,磁化制御回路5a,磁束調整回路59を制御し,界磁磁石の磁化状態を変更させる場合には切換スイッチ58により磁化制御回路5aを接続して第一励磁コイル6c,第二励磁コイル6fに磁化状態変更の為の磁化電流を供給し,磁束量の微調整を行う場合には切換スイッチ58により磁束調整回路59を接続して磁束調整電流を第一励磁コイル6c,第二励磁コイル6fに供給する。   FIG. 5 shows a block diagram of a rotating electrical machine system that performs magnetic flux amount control. In FIG. 5, the rotating electrical machine 51 has an input 52 and an output 53, and the control device 55 receives the output signal 53 of the rotating electrical machine 51 and the status signal 54 including the rotor position, temperature, etc. as an input and outputs a control signal 56. The amount of magnetic flux is controlled via Reference numeral 57 denotes a drive circuit for supplying a drive current to the armature coil 66. If the rotating electrical machine 51 is used as a generator, the input 52 is a rotational force and the output 53 is generated power. If the rotating electric machine 51 is used as an electric motor, the input 52 is a driving current supplied from the driving circuit 57 to the armature coil 66, and the output 53 is a rotating torque and a rotating speed. The control signal 56 controls the changeover switch 58, the magnetization control circuit 5a, and the magnetic flux adjustment circuit 59. When changing the magnetization state of the field magnet, the magnetization control circuit 5a is connected by the changeover switch 58 to connect the first excitation coil 6c. When the magnetizing current for changing the magnetization state is supplied to the second exciting coil 6f and the amount of magnetic flux is finely adjusted, the magnetic flux adjusting circuit 59 is connected by the changeover switch 58 so that the magnetic flux adjusting current is supplied to the first exciting coil 6c. , Supplied to the second exciting coil 6f.

電機子を流れる磁束量はこのように第一励磁コイル6c,第二励磁コイル6fに供給する磁化電流の振幅及び極性を変えて界磁磁石の磁化状態を変える事で制御される。電機子を流れる磁束量と第一励磁コイル6c,第二励磁コイル6fに供給する磁化電流との関係は設計段階でマップデータとして設定する。しかし,回転電機の量産段階では部材の寸法が公差範囲内でバラツキ,磁性体の磁気特性のバラツキも存在して電機子を流れる磁束量の精密な制御が困難になる場合がある。そのような場合には回転電機を組み立て後に回転電機個々に電機子を流れる磁束量と第一励磁コイル6c,第二励磁コイル6fに供給する磁化電流との関係を検査し,前記マップデータを修正する。   The amount of magnetic flux flowing through the armature is thus controlled by changing the magnetization state of the field magnet by changing the amplitude and polarity of the magnetization current supplied to the first excitation coil 6c and the second excitation coil 6f. The relationship between the amount of magnetic flux flowing through the armature and the magnetization current supplied to the first excitation coil 6c and the second excitation coil 6f is set as map data at the design stage. However, at the stage of mass production of rotating electrical machines, there are cases where the dimensions of the members vary within the tolerance range, and there are also variations in the magnetic characteristics of the magnetic material, making it difficult to precisely control the amount of magnetic flux flowing through the armature. In such a case, after assembling the rotating electrical machine, the relationship between the amount of magnetic flux flowing through the armature of each rotating electrical machine and the magnetizing current supplied to the first exciting coil 6c and the second exciting coil 6f is inspected, and the map data is corrected. To do.

さらに磁性体の特性は温度による影響を受けやすく,経時変化による影響も懸念される場合には運転中に加えられる磁化電流とその結果としての界磁磁石の磁化状態を監視し,回転電機の運転中に前記マップデータを修正する情報を学習的に取得する事も出来る。電機子を流れる磁束量を直接に把握する事は難しいが,電機子コイル66に現れる誘起電圧を参照して電機子を流れる磁束量を推定できる。   In addition, the characteristics of magnetic materials are easily affected by temperature, and if there are concerns about the effects of changes over time, the magnetizing current applied during operation and the resulting magnetization state of the field magnet are monitored, and the operation of the rotating electrical machine is monitored. Information for correcting the map data can be acquired in a learning manner. Although it is difficult to directly grasp the amount of magnetic flux flowing through the armature, the amount of magnetic flux flowing through the armature can be estimated with reference to the induced voltage appearing in the armature coil 66.

例えば,電機子コイル66に現れる誘起電圧の振幅は電機子コイル66と鎖交する磁束量及び回転速度にほぼ比例する。界磁磁石内の第一磁化である磁石要素の数を増やすよう第一励磁コイル6c,第二励磁コイル6fに磁化電流を加えた結果として誘起電圧の振幅の変化量が目標値より小の場合は同一条件に於ける磁化電流の振幅を大に,誘起電圧の振幅の変化量が目標値より大の場合は同一条件に於ける磁化電流の振幅を小にするよう磁化電流に係わるパラメータを修正する。   For example, the amplitude of the induced voltage appearing in the armature coil 66 is substantially proportional to the amount of magnetic flux interlinked with the armature coil 66 and the rotational speed. When the amount of change in the amplitude of the induced voltage is smaller than the target value as a result of adding a magnetizing current to the first exciting coil 6c and the second exciting coil 6f so as to increase the number of magnet elements that are the first magnetization in the field magnet The parameter related to the magnetizing current is corrected so that the amplitude of the magnetizing current under the same condition is increased, and when the amount of change in the amplitude of the induced voltage is larger than the target value, the amplitude of the magnetizing current under the same condition is decreased. To do.

以上,図6から図10に示した回転電機に於いて,界磁磁石の磁化状態を変える事で電機子に流れる磁束量を制御できることを説明した。本実施例は電機子を流れる磁束量を制御して出力を最適化するシステムであり,図5を用いて回転電機システムとしての制御を説明する。   As described above, in the rotating electric machine shown in FIGS. 6 to 10, it has been explained that the amount of magnetic flux flowing through the armature can be controlled by changing the magnetization state of the field magnet. The present embodiment is a system for optimizing the output by controlling the amount of magnetic flux flowing through the armature, and the control as a rotating electrical machine system will be described with reference to FIG.

回転電機が電動機として用いられる場合に於いて,磁束量制御を行って回転力を最適に制御する。但し,電機子を流れる磁束量を増やす極性の磁束調整電流を正としている。制御装置55は出力53である回転速度が所定の値より大となり電機子に流れる磁束量を小とする時には磁束調整回路59により第一励磁コイル6c,第二励磁コイル6fに供給する磁束調整電流を減じて電機子に流れる磁束量を小とし,磁束調整電流が予め定めた値より小である場合には第二磁化の磁石要素数を増す方向の磁化電流が磁化制御回路5aから第一励磁コイル6c,第二励磁コイル6fに供給されて第一磁化の磁石要素数を減じると共に第二磁化の磁石要素数を増して電機子を流れる磁束量を小とする。   When the rotating electrical machine is used as an electric motor, the amount of magnetic flux is controlled to optimally control the rotational force. However, a magnetic flux adjustment current having a polarity that increases the amount of magnetic flux flowing through the armature is positive. The controller 55 controls the magnetic flux adjustment current supplied to the first excitation coil 6c and the second excitation coil 6f by the magnetic flux adjustment circuit 59 when the rotational speed of the output 53 is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced. When the amount of magnetic flux flowing through the armature is reduced and the magnetic flux adjustment current is smaller than a predetermined value, the magnetization current in the direction of increasing the number of magnet elements of the second magnetization is generated from the magnetization control circuit 5a by the first excitation. The number of magnetic elements supplied to the coil 6c and the second exciting coil 6f is reduced, and the number of magnet elements of the second magnetization is increased and the amount of magnetic flux flowing through the armature is reduced.

出力53である回転速度が所定の値より小となり電機子に流れる磁束量を大とする時には磁束調整回路59により第一励磁コイル6c,第二励磁コイル6fに供給する磁束調整電流を増して電機子に流れる磁束量を大とし,磁束調整電流が予め定めた値より大である場合には第一磁化の磁石要素数を増す方向の磁化電流を磁化制御回路5aから第一励磁コイル6c,第二励磁コイル6fに供給して第一磁化の磁石要素数を増すと共に第二磁化の磁石要素数を減じて電機子を流れる磁束量を大とする。   When the rotational speed of the output 53 is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the magnetic flux adjustment circuit 59 increases the magnetic flux adjustment current supplied to the first excitation coil 6c and the second excitation coil 6f to When the amount of magnetic flux flowing through the child is large and the magnetic flux adjustment current is larger than a predetermined value, the magnetization current in the direction of increasing the number of magnet elements of the first magnetization is supplied from the magnetization control circuit 5a to the first exciting coil 6c, The number of magnet elements for the first magnetization is increased by supplying to the two excitation coils 6f and the number of magnet elements for the second magnetization is decreased to increase the amount of magnetic flux flowing through the armature.

上記説明に於いて,界磁制御に磁束調整電流を流して電流励磁を併用したが,磁束調整電流は界磁磁石の各磁化状態に於ける微調整用であって大きな電流ではないのでエネルギー効率を大きく損なう事はない。また,磁束調整電流による界磁の微調整をする事無く,界磁磁石の各磁化状態に於いて駆動電流の位相制御により弱め界磁を付加する事も可能である。その場合でも界磁の微調整であるのでエネルギー効率を大きく損なう事はない。   In the above explanation, the magnetic flux adjustment current is supplied to the field control and the current excitation is used together. However, the magnetic flux adjustment current is for fine adjustment in each magnetization state of the field magnet and is not a large current, so that the energy efficiency is increased. There is no loss. Further, it is possible to add a field weakening by phase control of the driving current in each magnetization state of the field magnet without finely adjusting the field by the magnetic flux adjusting current. Even in such a case, the field efficiency is finely adjusted, so that energy efficiency is not greatly impaired.

回転電機が発電機として用いられる場合において,磁束量制御を行って発電電圧を所定の電圧となるよう制御する定電圧発電システムを説明する。但し,電機子を流れる磁束量を増やす極性の磁束調整電流を正としている。   A constant voltage power generation system that controls the amount of magnetic flux to be a predetermined voltage by controlling the amount of magnetic flux when a rotating electrical machine is used as a generator will be described. However, a magnetic flux adjustment current having a polarity that increases the amount of magnetic flux flowing through the armature is positive.

制御装置55は出力53である発電電圧が所定の値より大となり電機子に流れる磁束量を小とする時には磁束調整回路59により第一励磁コイル6c,第二励磁コイル6fに供給する磁束調整電流を減じて電機子に流れる磁束量を小とし,磁束調整電流が予め定めた値より小である場合には第二磁化の磁石要素数を増す方向の磁化電流が磁化制御回路5aから第一励磁コイル6c,第二励磁コイル6fに供給されて第一磁化の磁石要素数を減じると共に第二磁化の磁石要素数を増して電機子を流れる磁束量を小とする。   The control device 55 controls the magnetic flux adjustment current supplied to the first excitation coil 6c and the second excitation coil 6f by the magnetic flux adjustment circuit 59 when the generated voltage as the output 53 is larger than a predetermined value and the amount of magnetic flux flowing through the armature is reduced. When the amount of magnetic flux flowing through the armature is reduced and the magnetic flux adjustment current is smaller than a predetermined value, the magnetization current in the direction of increasing the number of magnet elements of the second magnetization is generated from the magnetization control circuit 5a by the first excitation. The number of magnetic elements supplied to the coil 6c and the second exciting coil 6f is reduced, and the number of magnet elements of the second magnetization is increased and the amount of magnetic flux flowing through the armature is reduced.

制御装置55は出力53である発電電圧が所定の値より小となり電機子に流れる磁束量を大とする時には磁束調整回路59により第一励磁コイル6c,第二励磁コイル6fに供給する磁束調整電流を増して電機子に流れる磁束量を大とし,磁束調整電流が予め定めた値より大である場合には第一磁化の磁石要素数を増す方向の磁化電流を磁化制御回路5aから第一励磁コイル6c,第二励磁コイル6fに供給して第一磁化の磁石要素数を増すと共に第二磁化の磁石要素数を減じて電機子を流れる磁束量を大とする。   The control device 55 controls the magnetic flux adjustment current supplied to the first excitation coil 6c and the second excitation coil 6f by the magnetic flux adjustment circuit 59 when the generated voltage as the output 53 is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased. To increase the amount of magnetic flux flowing through the armature, and when the magnetic flux adjustment current is larger than a predetermined value, a magnetization current in a direction to increase the number of magnet elements of the first magnetization is supplied from the magnetization control circuit 5a to the first excitation. The number of magnet elements for the first magnetization is increased by supplying to the coil 6c and the second excitation coil 6f, and the number of the second magnetization magnet elements is decreased to increase the amount of magnetic flux flowing through the armature.

本実施例の界磁磁石は抗磁力の異なる磁石要素の並列接続で構成したが,同様機能の界磁磁石は素材を同一として磁化方向長さの異なる磁石要素の並列接続で構成出来る。後者の場合は磁化方向長さにより磁化容易さを変える事が出来るので磁石素材の選定が容易となる。   Although the field magnet of this embodiment is configured by parallel connection of magnet elements having different coercive forces, a field magnet having the same function can be configured by parallel connection of magnet elements having the same material and different magnetization direction lengths. In the latter case, the ease of magnetization can be changed depending on the length of the magnetization direction, so the selection of the magnet material becomes easy.

本発明による回転電機システムの第三実施例を図11,12を用いて説明する。第三実施例は,アウターローター構造の回転電機であり,回転子の表面磁極部に永久磁石を持たない回転電機システムである。   A third embodiment of the rotating electrical machine system according to the present invention will be described with reference to FIGS. The third embodiment is a rotating electrical machine system having an outer rotor structure and does not have a permanent magnet at the surface magnetic pole portion of the rotor.

図11は第三実施例の縦断面図を示し,図12は図11のC−C’に沿う電機子及び回転子の断面図を示している。第三実施例は第一実施例に於いて,第一励磁コイル1d,第二励磁コイル1gを除去し,回転子内に於いて永久磁石13に替えて非磁性体121を配置した構成である。   FIG. 11 shows a longitudinal sectional view of the third embodiment, and FIG. 12 shows a sectional view of the armature and the rotor along C-C ′ of FIG. 11. The third embodiment is the same as the first embodiment except that the first exciting coil 1d and the second exciting coil 1g are removed and a non-magnetic material 121 is arranged in the rotor instead of the permanent magnet 13. .

第一実施例に於いて説明したように第一界磁磁石1bは第一磁性体突極21をN極に,第二界磁磁石1eは第二磁性体突極22をS極にそれぞれ磁化する。第一界磁磁石1b,第二界磁磁石1eは径方向に十分な長さを有するので第一界磁磁石1b,第二界磁磁石1eには抗磁力の小さな磁石素材を磁化方向長さを大として採用する事が出来る。すなわち,アルニコ磁石或いはフェライト磁石等を採用して高価なネオジウム磁石を使用せず,低コストの回転電機を構成する事が出来る。   As described in the first embodiment, the first field magnet 1b is magnetized with the first magnetic salient pole 21 as the N pole and the second field magnet 1e with the second magnetic salient pole 22 as the S pole. To do. Since the first field magnet 1b and the second field magnet 1e have a sufficient length in the radial direction, a magnet material having a small coercive force is used for the first field magnet 1b and the second field magnet 1e. Can be adopted as large. That is, it is possible to construct a low-cost rotating electrical machine by using an alnico magnet or a ferrite magnet without using an expensive neodymium magnet.

図11,図12に示す第三実施例は第一実施例に於いて,回転子側の表面磁極部構成を変え,励磁コイルを除去した構造である。界磁磁石の磁化状態を変更しないが,回転電機を回転駆動する動作原理は同じである。したがって,さらなる説明は省略する。   The third embodiment shown in FIGS. 11 and 12 is the same as the first embodiment except that the surface magnetic pole portion configuration on the rotor side is changed and the exciting coil is removed. Although the magnetization state of the field magnet is not changed, the operating principle for rotating the rotating electrical machine is the same. Therefore, further explanation is omitted.

本発明による回転電機システムの第四実施例を図13から図16を用いて説明する。第四実施例は,インナーローター構造の回転電機であり,界磁磁石は回転子内に,励磁コイルが回転子右端のハウジング側に配置されている。   A fourth embodiment of the rotating electrical machine system according to the present invention will be described with reference to FIGS. The fourth embodiment is a rotating electrical machine having an inner rotor structure, in which a field magnet is disposed in the rotor and an exciting coil is disposed on the housing side at the right end of the rotor.

図13はラジアルギャップ構造の回転電機に本発明を適用した実施例を示し,相互の関係を説明する為に構成部分の一部に番号を付して示している。回転軸131がベアリング133を介してハウジング132に回動可能に支持されている。ハウジング132には円筒状磁気ヨーク65が固定され,円筒状磁気ヨーク65から径方向に延びる磁性体歯64及び電機子コイル66が配置されている。   FIG. 13 shows an embodiment in which the present invention is applied to a rotary electric machine having a radial gap structure, and in order to explain the mutual relationship, some of the components are shown with numbers. A rotating shaft 131 is rotatably supported on the housing 132 via a bearing 133. A cylindrical magnetic yoke 65 is fixed to the housing 132, and magnetic teeth 64 and an armature coil 66 extending in the radial direction from the cylindrical magnetic yoke 65 are disposed.

磁性体歯64と径方向に対向する回転子は,回転軸131に固定された円筒状磁気コア139,界磁磁石137,138,第二延長部136,表面磁極部134,第一延長部135等から構成されている。番号13cは非磁性体を示している。表面磁極部134を構成する第一磁性体突極及び第二磁性体突極が周方向に交互に配置され,第一延長部135は第一磁性体突極が軸と平行の右方向に延伸され,第二延長部136は第二磁性体突極が内径側に延伸されて構成されている。   The rotor facing the magnetic teeth 64 in the radial direction includes a cylindrical magnetic core 139 fixed to the rotation shaft 131, field magnets 137 and 138, a second extension 136, a surface magnetic pole part 134, and a first extension 135. Etc. Reference numeral 13c represents a non-magnetic material. The first magnetic salient poles and the second magnetic salient poles constituting the surface magnetic pole part 134 are alternately arranged in the circumferential direction, and the first extension 135 extends in the right direction in which the first magnetic salient pole is parallel to the axis. The second extension 136 is formed by extending the second magnetic salient pole toward the inner diameter side.

第一延長部135,円筒状磁気コア139と微小間隙を介して円環状磁気コア13aが対向して配置されている。円環状磁気コア13aは断面がC字状のコアが回転軸131を周回する形状であり,円環状磁気コア13aの外周側端面で第一延長部135と対向し,内周側端面で円筒状磁気コア139と対向し,凹部に励磁コイル13bが配置されている。本実施例に於いて,円筒状磁気コア139,円環状磁気コア13aが励磁磁路部材に相当している。   An annular magnetic core 13a is disposed to face the first extension 135, the cylindrical magnetic core 139, and a minute gap. The annular magnetic core 13a has a shape in which a C-shaped cross section circulates around the rotation shaft 131. The annular magnetic core 13a faces the first extension 135 at the outer peripheral side end surface of the annular magnetic core 13a and is cylindrical at the inner peripheral side end surface. Opposing to the magnetic core 139, the exciting coil 13b is disposed in the recess. In this embodiment, the cylindrical magnetic core 139 and the annular magnetic core 13a correspond to exciting magnetic path members.

図14は図13のD−D’に沿う電機子及び回転子の断面図を示し,相互の関係を説明する為に構成部分の一部に番号を付している。電機子及び回転子の磁極構造は第二実施例とほぼ同じ構成であり,同一の部材には同じ番号が付されている。電機子はハウジング132に固定された円筒状磁気ヨーク65と,円筒状磁気ヨーク65から径方向に延びる複数の磁性体歯64と,磁性体歯64に巻回された電機子コイル66とから構成されている。径方向に短い可飽和磁性体結合部78が隣接する磁性体歯64先端部間に配置されている。磁性体歯64及び可飽和磁性体結合部78はケイ素鋼板を型で打ち抜いて積層され,電機子コイル66を巻回された後,圧粉鉄心で構成された円筒状磁気ヨーク65と組み合わせて電機子が構成されている。   FIG. 14 is a cross-sectional view of the armature and the rotor along the line D-D ′ in FIG. 13, and some of the components are numbered for explaining the mutual relationship. The magnetic pole structures of the armature and the rotor are substantially the same as those in the second embodiment, and the same members are assigned the same numbers. The armature includes a cylindrical magnetic yoke 65 fixed to the housing 132, a plurality of magnetic teeth 64 extending in the radial direction from the cylindrical magnetic yoke 65, and an armature coil 66 wound around the magnetic teeth 64. Has been. A saturable magnetic material coupling portion 78 that is short in the radial direction is disposed between the tips of adjacent magnetic material teeth 64. The magnetic teeth 64 and the saturable magnetic material coupling portion 78 are laminated by punching a silicon steel plate with a mold, wound with an armature coil 66, and then combined with a cylindrical magnetic yoke 65 composed of a dust core. A child is configured.

表面磁極部134は円筒状磁性体基板が集合磁石により周方向に区分された構成である。中間磁性体突極73の両側面にほぼ同じ磁化方向の磁石板75,76が配置された組み合わせは磁気的には磁石と等価な集合磁石であり,回転子の表面磁極部134は一様な円筒状磁性体基板を周方向に等間隔に配置された集合磁石によって区分された第一磁性体突極71,第二磁性体突極72及び集合磁石とから構成されている。さらに隣接する突極である第一磁性体突極71,第二磁性体突極72は互いに異なる方向に磁化されるよう隣接する集合磁石の磁化方向は互いに反転して構成されている。   The surface magnetic pole part 134 has a configuration in which a cylindrical magnetic substrate is divided in the circumferential direction by a collecting magnet. The combination in which the magnet plates 75 and 76 having substantially the same magnetization direction are arranged on both side surfaces of the intermediate magnetic salient pole 73 is a collective magnet that is magnetically equivalent to the magnet, and the surface magnetic pole portion 134 of the rotor is uniform. A cylindrical magnetic substrate is composed of a first magnetic salient pole 71, a second magnetic salient pole 72, and an aggregate magnet that are divided by aggregate magnets arranged at equal intervals in the circumferential direction. Further, the first magnet salient pole 71 and the second magnet salient pole 72, which are adjacent salient poles, are configured such that the magnetization directions of the adjacent collective magnets are reversed so that they are magnetized in different directions.

第一磁性体突極71,第二磁性体突極72それぞれの周方向両側面に配置された磁石板はV字状の配置であり,磁石板の交差角度は磁束バリアに好適な角度に設定する。磁石板74,75,76,77に付された矢印は磁石板74,75,76,77の板面にほぼ直交する磁化方向を示す。中間磁性体突極73の電機子と対向する側には非磁性体が配置されて磁性体歯64と中間磁性体突極73との間で磁束が流れ難いよう構成されている。   The magnet plates disposed on both sides in the circumferential direction of the first magnetic salient pole 71 and the second magnetic salient pole 72 are V-shaped, and the crossing angle of the magnet plates is set to an angle suitable for the magnetic flux barrier. To do. Arrows attached to the magnet plates 74, 75, 76, 77 indicate the magnetization directions substantially orthogonal to the plate surfaces of the magnet plates 74, 75, 76, 77. A non-magnetic material is disposed on the side of the intermediate magnetic salient pole 73 facing the armature so that the magnetic flux does not easily flow between the magnetic teeth 64 and the intermediate magnetic salient pole 73.

図15は回転子の構成及び励磁部の配置を示す分解斜視図である。理解を容易にする為に第一磁性体突極71,第二磁性体突極72等を有する中心部と第一延長部135を離し,電機子及びハウジング132を除いて示されている。第一延長部135は軟鉄をプレス成形して第一磁性体突極71の延長部分となる磁性体突部151を有して構成され,非磁性体部153は磁性を持たないステンレススチールで形成されている。番号152は磁性体突部151と一体の円板状部分を示し,円環状磁気コア13aの外周側端面と対向している。番号155は円環状磁気コア13a及び励磁コイル13bを示し,円筒状磁気コア139は同図に於いて番号154で示されている。   FIG. 15 is an exploded perspective view showing the configuration of the rotor and the arrangement of the excitation parts. For ease of understanding, the central portion having the first magnetic salient pole 71, the second magnetic salient pole 72, etc. is separated from the first extension 135, and the armature and the housing 132 are not shown. The first extension 135 includes a magnetic protrusion 151 that is an extension of the first magnetic salient pole 71 by press-molding soft iron, and the non-magnetic part 153 is formed of stainless steel having no magnetism. Has been. Reference numeral 152 denotes a disk-shaped portion that is integral with the magnetic projection 151 and is opposed to the outer peripheral end surface of the annular magnetic core 13a. Reference numeral 155 indicates an annular magnetic core 13a and an exciting coil 13b, and a cylindrical magnetic core 139 is indicated by reference numeral 154 in the figure.

図16は電機子及び回転子の拡大された断面の一部を示す図である。図16(a)により強め界磁に於ける磁束の流れ,図16(b)により弱め界磁に於ける磁束の流れを説明する。図16に示した構成により励磁コイル13b,界磁磁石137,138が発生させる磁束は円環状磁気コア13a,第一延長部135,第一磁性体突極71,磁性体歯64,円筒状磁気ヨーク65,隣接する磁性体歯64,第二磁性体突極72,第二延長部136,界磁磁石137,138,円筒状磁気コア139を含む磁路を流れるよう構成されている。   FIG. 16 is a view showing a part of an enlarged cross section of the armature and the rotor. FIG. 16A explains the flow of magnetic flux in the strong field, and FIG. 16B explains the flow of magnetic flux in the weak field. With the configuration shown in FIG. 16, the magnetic flux generated by the exciting coil 13b and the field magnets 137 and 138 is the annular magnetic core 13a, the first extension 135, the first magnetic salient pole 71, the magnetic teeth 64, and the cylindrical magnetic. It is configured to flow through a magnetic path including the yoke 65, the adjacent magnetic material teeth 64, the second magnetic material salient pole 72, the second extension 136, the field magnets 137 and 138, and the cylindrical magnetic core 139.

図16(a)に於いて,番号161は磁石板74,75,76,77からの磁束を代表して示し,主として回転子の表面磁極部134及び電機子内を流れる。例えば,磁石板75からの磁束は中間磁性体突極73,磁石板76,第二磁性体突極72,磁性体歯64,円筒状磁気ヨーク75,隣接する磁性体歯74,第一磁性体突極71を介して磁石板75に環流する。磁石板74,75,76,77によって第一磁性体突極71はS極に,第二磁性体突極72はN極にそれぞれ磁化されている。   In FIG. 16A, reference numeral 161 represents the magnetic flux from the magnet plates 74, 75, 76, 77 as a representative, and mainly flows in the surface magnetic pole portion 134 of the rotor and the armature. For example, the magnetic flux from the magnet plate 75 is the intermediate magnetic material salient pole 73, the magnet plate 76, the second magnetic material salient pole 72, the magnetic material teeth 64, the cylindrical magnetic yoke 75, the adjacent magnetic material teeth 74, the first magnetic material. It returns to the magnet plate 75 via the salient pole 71. The magnet plates 74, 75, 76, 77 magnetize the first magnetic salient pole 71 to the S pole and the second magnetic salient pole 72 to the N pole.

図13に示す界磁磁石はそれぞれの逆方向の磁化を持つ磁石要素の並列接続であるので界磁磁石内で閉磁路が構成されて外部に磁束を供給していない。しかし,界磁磁石137,138の磁化方向が全て外径方向の磁化を有する場合は,第一延長部135及び第一磁性体突極71をS極に磁化し,第二延長部136及び第二磁性体突極72をN極に磁化して強め界磁に相当する。その場合,界磁磁石の一方の磁極からの磁束は第二延長部136,第二磁性体突極72,磁性体歯64,円筒状磁気ヨーク65,隣接する磁性体歯64,第一磁性体突極71,第一延長部135,円環状磁気コア13a,円筒状磁気コア139を介して界磁磁石の他方の磁極に環流する。   Since the field magnet shown in FIG. 13 is a parallel connection of magnet elements having magnetizations in opposite directions, a closed magnetic path is formed in the field magnet and no magnetic flux is supplied to the outside. However, when the magnetization directions of the field magnets 137 and 138 are all in the outer diameter direction, the first extension 135 and the first magnetic salient pole 71 are magnetized to the S pole, and the second extension 136 and the first The dimagnet salient pole 72 is magnetized to the N pole and corresponds to a strong field. In this case, the magnetic flux from one magnetic pole of the field magnet is the second extension 136, the second magnetic salient pole 72, the magnetic teeth 64, the cylindrical magnetic yoke 65, the adjacent magnetic teeth 64, the first magnetic body. The salient pole 71, the first extension 135, the annular magnetic core 13 a, and the cylindrical magnetic core 139 circulate to the other magnetic pole of the field magnet.

図16(a)に於いて,番号162,164は上記経路に沿って流れる磁束を示し,番号163は第一磁性体突極71内を第一延長部135方向に流れる磁束を示している。磁束162,164は磁束161と同じ方向に電機子コイルと鎖交するので電機子コイル66と鎖交する磁束量を磁束161単独の場合に比して大となる。番号91は非磁性体を示す。   In FIG. 16A, reference numerals 162 and 164 indicate magnetic fluxes flowing along the path, and reference numeral 163 indicates a magnetic flux flowing through the first magnetic salient pole 71 toward the first extension 135. Since the magnetic fluxes 162 and 164 are linked to the armature coil in the same direction as the magnetic flux 161, the amount of magnetic flux linked to the armature coil 66 is larger than that of the magnetic flux 161 alone. Reference numeral 91 denotes a nonmagnetic material.

さらに界磁磁石137,138の磁化方向が全て内径方向の磁化を有する場合は,第一延長部135及び第一磁性体突極71をN極に磁化し,第二延長部136及び第二磁性体突極72をS極に磁化して弱め界磁に相当する。その場合,界磁磁石137,138からの磁束は図16(a)に示した磁束162,164と逆方向に磁性体歯64中を流れて電機子コイル66と鎖交する磁束量を減少させる。また,第一磁性体突極71はN極に磁化され,第二磁性体突極72はS極に磁化されるので界磁磁石137,138からの磁束の一部は磁石板75,中間磁性体突極73,磁石板76を介して第二磁性体突極72に流れる。   Further, when the magnetization directions of the field magnets 137 and 138 are all in the inner diameter direction, the first extension 135 and the first magnetic salient pole 71 are magnetized to the N pole, and the second extension 136 and the second magnetic The body salient pole 72 is magnetized to the S pole and corresponds to a field weakening. In that case, the magnetic flux from the field magnets 137 and 138 flows in the magnetic teeth 64 in the opposite direction to the magnetic fluxes 162 and 164 shown in FIG. . In addition, since the first magnetic salient pole 71 is magnetized to the N pole and the second magnetic salient pole 72 is magnetized to the S pole, a part of the magnetic flux from the field magnets 137 and 138 is part of the magnet plate 75 and the intermediate magnetism. It flows to the second magnetic salient pole 72 via the body salient pole 73 and the magnet plate 76.

すなわち,図16(b)に示すように界磁磁石137,138からの磁束は円筒状磁気コア139,円環状磁気コア13a,第一延長部135,第一磁性体突極71,磁性体歯64,円筒状磁気ヨーク65,隣接する磁性体歯64,第二磁性体突極72,第二延長部136を介して界磁磁石137,138に環流する。また上記磁束の一部は第一磁性体突極71から磁石板75,中間磁性体突極73,磁石板76,第二磁性体突極72へ流れる。番号165,166は磁石板75,中間磁性体突極73,磁石板76を介して短絡的に流れる磁束を示している。番号167は第一磁性体突極71中を第一延長部から流れる磁束を示している。   That is, as shown in FIG. 16 (b), the magnetic flux from the field magnets 137, 138 is cylindrical magnetic core 139, annular magnetic core 13a, first extension 135, first magnetic salient pole 71, magnetic teeth. 64, the cylindrical magnetic yoke 65, the adjacent magnetic material teeth 64, the second magnetic material salient pole 72, and the second extension 136 circulate to the field magnets 137 and 138. A part of the magnetic flux flows from the first magnetic salient pole 71 to the magnet plate 75, the intermediate magnetic salient pole 73, the magnet plate 76, and the second magnetic salient pole 72. Reference numerals 165 and 166 denote magnetic fluxes that flow in a short-circuit manner through the magnet plate 75, the intermediate magnetic salient pole 73, and the magnet plate 76. Reference numeral 167 indicates a magnetic flux flowing from the first extension in the first magnetic salient pole 71.

図16(b)は界磁磁石137,138,磁石板75,76が完全な閉磁路を構成して磁性体歯64内に流れる磁束が存在しない極端な場合を示しているが,磁性体歯64内を流れる磁束の量は界磁磁石137,138から第一磁性体突極71,第二磁性体突極72に供給される磁束の量によって変化する。上記説明のように界磁磁石137,138が第一磁性体突極71をS極に磁化し,第二磁性体突極72をN極に磁化する場合が強め界磁となる。したがって,界磁磁石137,138では外径方向の磁化が第一磁化に相当し,内径方向の磁化が第二磁化に相当する。   FIG. 16B shows an extreme case where the field magnets 137 and 138 and the magnet plates 75 and 76 constitute a complete closed magnetic path and no magnetic flux flowing in the magnetic teeth 64 exists. The amount of magnetic flux flowing through the magnetic field 64 varies depending on the amount of magnetic flux supplied from the field magnets 137 and 138 to the first magnetic salient pole 71 and the second magnetic salient pole 72. As described above, when the field magnets 137 and 138 magnetize the first magnetic salient pole 71 to the S pole and the second magnetic salient pole 72 to the N pole, a strong field is obtained. Therefore, in the field magnets 137 and 138, the magnetization in the outer diameter direction corresponds to the first magnetization, and the magnetization in the inner diameter direction corresponds to the second magnetization.

図13を用いて励磁部の構成及び動作原理を説明する。界磁磁石は抗磁力の異なる2種の界磁磁石137,138により構成され,図13では抗磁力が大の磁磁石137,抗磁力が小の界磁磁石138が第二延長部136と円筒状磁気コア139間に配置されている。界磁磁石137,138はそれぞれの残留磁束密度と磁極面積の積が互いに等しくなるよう設定されている。   The configuration and operation principle of the excitation unit will be described with reference to FIG. The field magnet is composed of two types of field magnets 137 and 138 having different coercive forces. In FIG. 13, the field magnet 137 having a large coercive force and the field magnet 138 having a small coercive force are a second extension 136 and a cylinder. Between the magnetic cores 139. The field magnets 137 and 138 are set so that the products of the residual magnetic flux density and the magnetic pole area are equal to each other.

界磁磁石137,138それぞれの磁化方向を変えて電機子コイル66と鎖交する磁束量が制御される事を説明した。以下に界磁磁石137,138に於いて第一磁化或いは第二磁化の磁極面積を励磁コイル13bにより変えるステップを説明する。   It has been described that the amount of magnetic flux interlinked with the armature coil 66 is controlled by changing the magnetization directions of the field magnets 137 and 138. The step of changing the magnetic field area of the first magnetization or the second magnetization by the exciting coil 13b in the field magnets 137 and 138 will be described below.

界磁磁石137,138は第二延長部136,円筒状磁気コア139間に配置されて互いに並列接続された状態であり,励磁コイル13bに磁化電流が供給されると,第二延長部136,円筒状磁気コア139間の磁気ポテンシャル差(起磁力)は周方向にほぼ同じであり,界磁磁石内では磁気ポテンシャル差を厚みで除した値に相当する磁界強度の磁界が加えられる。したがって,抗磁力が小の界磁磁石138が磁化されやすく,抗磁力が大の界磁磁石137は磁化され難い。磁化電流の振幅により界磁磁石138のみ,或いは界磁磁石137,138の磁化状態を共に変更できる。   The field magnets 137 and 138 are arranged between the second extension 136 and the cylindrical magnetic core 139 and are connected in parallel to each other. When the magnetizing current is supplied to the exciting coil 13b, the second extension 136, The magnetic potential difference (magnetomotive force) between the cylindrical magnetic cores 139 is substantially the same in the circumferential direction, and a magnetic field having a magnetic field intensity corresponding to a value obtained by dividing the magnetic potential difference by the thickness is applied in the field magnet. Therefore, the field magnet 138 having a small coercive force is easily magnetized, and the field magnet 137 having a large coercive force is not easily magnetized. The magnetization state of only the field magnet 138 or the field magnets 137 and 138 can be changed by the amplitude of the magnetizing current.

図13に示す状態では界磁磁石138が第一磁化,界磁磁石137が第二磁化に相当している。互いに逆方向の磁化を持つ界磁磁石137,138が閉磁路を形成して外部には磁束が流れていない状態である。同図に於いて,界磁磁石138の磁化を第二磁化に変更する場合,円環状磁気コア13a,第一延長部135,第一磁性体突極71,磁性体歯64,円筒状磁気ヨーク65,隣接する磁性体歯64,第二磁性体突極72,第二延長部136,界磁磁石137,138,円筒状磁気コア139に沿って磁束が流れる方向の磁化電流を励磁コイル13bに供給し,界磁磁石138を第二磁化に変更する。磁化電流の振幅は界磁磁石138の磁化方向を反転させ,界磁磁石137の磁化に影響を与えない大きさに設定する。この場合,励磁コイル13bからの磁束は図16(b)に於いて,磁束の一部は番号165,166で示されるように磁石板75,中間磁性体突極73,磁石板76に沿っても流れるが,界磁磁石138の磁化を第二磁化に変更するのに支障はない。   In the state shown in FIG. 13, the field magnet 138 corresponds to the first magnetization, and the field magnet 137 corresponds to the second magnetization. The field magnets 137 and 138 having magnetizations in opposite directions form a closed magnetic path, and no magnetic flux flows outside. In the figure, when the magnetization of the field magnet 138 is changed to the second magnetization, the annular magnetic core 13a, the first extension 135, the first magnetic salient pole 71, the magnetic teeth 64, the cylindrical magnetic yoke. 65, the magnetizing current in the direction in which the magnetic flux flows along the adjacent magnetic body teeth 64, the second magnetic salient pole 72, the second extension 136, the field magnets 137 and 138, and the cylindrical magnetic core 139 is applied to the exciting coil 13b. The field magnet 138 is changed to the second magnetization. The amplitude of the magnetization current is set to a magnitude that does not affect the magnetization of the field magnet 137 by reversing the magnetization direction of the field magnet 138. In this case, the magnetic flux from the exciting coil 13b is part of the magnetic plate 75, the intermediate magnetic salient pole 73, and the magnetic plate 76 as shown by numerals 165 and 166 in FIG. However, there is no problem in changing the magnetization of the field magnet 138 to the second magnetization.

図13に示す状態から界磁磁石137の磁化を第一磁化に変更する場合,円環状磁気コア13a,界磁磁石137,138,第二延長部136,第二磁性体突極72,磁性体歯64,円筒状磁気ヨーク65,隣接する磁性体歯64,第一磁性体突極71,第一延長部135に沿って磁束が流れるよう励磁コイル13bに磁化電流を供給し,磁磁石137の磁化を第一磁化に変更する。磁化電流の振幅は界磁磁石137の磁化方向を反転させるに十分な大きさに設定する。   When the magnetization of the field magnet 137 is changed from the state shown in FIG. 13 to the first magnetization, the annular magnetic core 13a, the field magnets 137, 138, the second extension 136, the second magnetic salient pole 72, the magnetic body Magnetizing current is supplied to the exciting coil 13b so that the magnetic flux flows along the teeth 64, the cylindrical magnetic yoke 65, the adjacent magnetic material teeth 64, the first magnetic material salient pole 71, and the first extension 135, and Change the magnetization to the first magnetization. The amplitude of the magnetizing current is set to a magnitude sufficient to reverse the magnetization direction of the field magnet 137.

以上,図13から図16までを用いて第四実施例の構成及び電機子コイルと鎖交する磁束量制御の動作原理を説明した。本実施例は界磁磁石及び励磁コイルを含む励磁部の具体的構成が第二実施例と異なるが,類似する内容であり,更なる詳しい説明は省略する。   The operation principle of the magnetic flux amount control interlinking with the configuration of the fourth embodiment and the armature coil has been described above with reference to FIGS. The present embodiment is different from the second embodiment in the specific configuration of the excitation unit including the field magnet and the excitation coil, but has similar contents, and further detailed description is omitted.

本実施例は界磁磁石を回転子内に配置して第二実施例より界磁磁石の磁極面積を大に出来る特徴がある。回転子と円環状磁気コア13aとの間に磁気的吸引力が働き,ベアリング133に軸方向の負荷が掛かるが,第一磁性体突極を軸と平行に左方向にも延伸して回転子の両端に円環状磁気コア13a,励磁コイル13bを配置する構成としてベアリング負荷を軽減できる。   This embodiment is characterized in that a field magnet can be arranged in the rotor so that the magnetic pole area of the field magnet can be made larger than that in the second embodiment. A magnetic attractive force acts between the rotor and the annular magnetic core 13a, and an axial load is applied to the bearing 133. However, the first magnetic salient pole extends in the left direction parallel to the axis, and the rotor The bearing load can be reduced by arranging the annular magnetic core 13a and the exciting coil 13b at both ends of the magnet.

本発明の第五実施例による回転電機システムを図17及び図5を用いて説明する。第五実施例は第二実施例の回転電機システムを前輪のインホイールモータとし,前輪駆動のエンジンと組み合わせたハイブリッドカーのシステムである。   A rotating electrical machine system according to a fifth embodiment of the present invention will be described with reference to FIGS. The fifth embodiment is a hybrid car system in which the rotating electrical machine system of the second embodiment is used as an in-wheel motor for front wheels and is combined with a front-wheel drive engine.

同図に於いて,番号172は前輪駆動のエンジンを示し,トランスミッション173,駆動軸179を介して前輪に組み込まれた回転電機171に結合され,エンジン172と回転電機171によりハイブリッドカーを駆動する。制御装置174は上位制御装置からの指令17bを受け,駆動回路175を介して回転電機171を電動機として駆動し,磁束量制御回路176を介して電機子に流入する磁束量を制御する。すなわち,磁束量制御回路176は図5に於ける切換スイッチ58,磁化制御回路5a,磁束調整回路59を含んで構成されている。更に制御装置174は上位制御装置からの指令17bを受け,電機子コイル66の引き出し線17cに現れる発電電力を整流回路177を介して整流し,バッテリー178を充電する構成としている。   In the figure, reference numeral 172 denotes a front-wheel drive engine, which is coupled to a rotary electric machine 171 incorporated in the front wheel via a transmission 173 and a drive shaft 179, and a hybrid car is driven by the engine 172 and the rotary electric machine 171. The control device 174 receives the command 17 b from the host control device, drives the rotating electric machine 171 as an electric motor via the drive circuit 175, and controls the amount of magnetic flux flowing into the armature via the magnetic flux amount control circuit 176. That is, the magnetic flux amount control circuit 176 includes the changeover switch 58, the magnetization control circuit 5a, and the magnetic flux adjustment circuit 59 in FIG. Further, the control device 174 is configured to receive the command 17b from the host control device, rectify the generated power appearing on the lead wire 17c of the armature coil 66 through the rectifier circuit 177, and charge the battery 178.

回転電機171のみでハイブリッドカーを駆動する時はトランスミッション173に於いてエンジン172を切り離し,回転電機171の負荷を軽減する。低回転速度域で回転電機171の磁石トルクを強化する必要がある場合は第一界磁磁石6b,第二界磁磁石6e内の第一磁化の磁石要素数を増す方向の電流を第一励磁コイル6c,第二励磁コイル6fに磁化制御回路5aにより供給して第一磁化の磁石要素数を増すと共に第二磁化の磁石要素数を減じて電機子を流れる磁束量を大とする。高回転速度域で弱め界磁とする場合には第二磁化の磁石要素数を増す方向の電流を第一励磁コイル6c,第二励磁コイル6fに磁化制御回路5aにより供給して第一磁化の磁石要素数を減じると共に第二磁化の磁石要素数を増して電機子を流れる磁束量を小とする。   When the hybrid car is driven only by the rotating electrical machine 171, the engine 172 is disconnected at the transmission 173 to reduce the load on the rotating electrical machine 171. When it is necessary to reinforce the magnet torque of the rotating electrical machine 171 in the low rotational speed region, the first excitation is performed with a current in a direction that increases the number of magnet elements of the first magnetization in the first field magnet 6b and the second field magnet 6e. The magnetization control circuit 5a supplies the coil 6c and the second exciting coil 6f with the number of magnet elements for the first magnetization and decreases the number of magnet elements for the second magnetization to increase the amount of magnetic flux flowing through the armature. In the case of a field weakening at a high rotation speed region, a current in a direction to increase the number of magnet elements of the second magnetization is supplied to the first excitation coil 6c and the second excitation coil 6f by the magnetization control circuit 5a to The number of magnet elements is decreased and the number of magnet elements for the second magnetization is increased to reduce the amount of magnetic flux flowing through the armature.

エンジン172の回転力のみでハイブリッドカーを駆動する時は,指令17bを受け,磁化制御回路5aを介して第二磁化の磁石要素数を最大にするよう第一励磁コイル6c,第二励磁コイル6fに電流を供給し,回転子から電機子側に流れる磁束量を最小のほぼゼロに設定する。この状態で回転子から漏れる磁束量はほぼゼロとなるのでエンジン172により回転子は回転されても渦電流損は発生しない。   When the hybrid car is driven only by the rotational force of the engine 172, the first excitation coil 6c and the second excitation coil 6f receive the command 17b and maximize the number of magnet elements of the second magnetization via the magnetization control circuit 5a. Current is supplied, and the amount of magnetic flux flowing from the rotor to the armature is set to the minimum value of almost zero. In this state, the amount of magnetic flux leaking from the rotor is almost zero, so no eddy current loss occurs even when the rotor is rotated by the engine 172.

回転電機171及びエンジン172でハイブリッドカーを駆動する時はトランスミッション173に於いてエンジン172を駆動軸179に結合する。さらにエンジン172の駆動力に余力があり,回転電機171を発電機としてバッテリー178を充電させる場合には,電機子コイル66の引き出し線17cに現れる発電電力を整流回路177を介して直流に変え,バッテリー178を充電させる。   When the hybrid car is driven by the rotating electrical machine 171 and the engine 172, the engine 172 is coupled to the drive shaft 179 in the transmission 173. Further, when the driving power of the engine 172 has a surplus power and the battery 178 is charged using the rotating electrical machine 171 as a generator, the generated power appearing in the lead wire 17c of the armature coil 66 is changed to direct current via the rectifier circuit 177, The battery 178 is charged.

その場合に制御装置174は発電電圧がバッテリー178を充電する最適な電圧より大である場合は磁束量制御回路176を介して磁束調整回路59により第一励磁コイル6c,第二励磁コイル6fに供給する磁束調整電流を減じて電機子に流れる磁束量を小とし,磁束調整電流が予め定めた値より小となる場合には第二磁化の磁石要素数を増す方向の磁化電流を磁化制御回路5aにより第一励磁コイル6c,第二励磁コイル6fに供給して第一磁化の磁石要素数を減じると共に第二磁化の磁石要素数を増して電機子を流れる磁束量を小とする。   In that case, the control device 174 supplies the first excitation coil 6c and the second excitation coil 6f by the magnetic flux adjustment circuit 59 via the magnetic flux amount control circuit 176 when the generated voltage is larger than the optimum voltage for charging the battery 178. When the amount of magnetic flux flowing through the armature is reduced by reducing the magnetic flux adjustment current to be reduced, and the magnetic flux adjustment current is smaller than a predetermined value, the magnetization control circuit 5a To the first exciting coil 6c and the second exciting coil 6f to reduce the number of first magnetized magnet elements and increase the number of second magnetized magnet elements to reduce the amount of magnetic flux flowing through the armature.

発電電圧がバッテリー178を充電する最適な電圧より小である場合は磁束量制御回路176を介して磁束調整回路59により第一励磁コイル6c,第二励磁コイル6fに供給する磁束調整電流を増して電機子に流れる磁束量を大とし,磁束調整電流が予め定めた値より大となる場合には第一磁化の磁石要素数を増す方向の磁化電流を磁化制御回路5aにより第一励磁コイル6c,第二励磁コイル6fに供給して第一磁化の磁石要素数を増すと共に第二磁化の磁石要素数を減じて電機子を流れる磁束量を大とする。   When the generated voltage is smaller than the optimum voltage for charging the battery 178, the magnetic flux adjustment current supplied to the first excitation coil 6c and the second excitation coil 6f is increased by the magnetic flux adjustment circuit 59 via the magnetic flux amount control circuit 176. When the amount of magnetic flux flowing through the armature is large and the magnetic flux adjustment current is larger than a predetermined value, the magnetization control circuit 5a applies a magnetization current in a direction to increase the number of magnet elements of the first magnetization to the first excitation coil 6c, The amount of magnetic flux flowing through the armature is increased by supplying the second exciting coil 6f to increase the number of first magnetized magnet elements and decreasing the number of second magnetized magnet elements.

バッテリー178に充電する場合に回転電機システムを定電圧発電機とする事で発電電圧を変換するコンバータは不要である。また,更にバッテリー178が電圧の種類の異なる複数種のバッテリーで構成される場合でも切り替え回路を付け加えてそれぞれのバッテリーに最適の発電電圧に制御する事で高価なコンバータを不要に出来る。また,バッテリー178に充電する際に磁束量制御と共に充電電流を制御して駆動負荷と発電負荷の配分制御も可能である。   When the battery 178 is charged, a converter that converts the generated voltage by using the rotating electrical machine system as a constant voltage generator is unnecessary. Further, even when the battery 178 is composed of a plurality of types of batteries having different voltage types, an expensive converter can be eliminated by adding a switching circuit to control the generated power voltage to be optimal for each battery. Further, when charging the battery 178, it is possible to control the distribution of the driving load and the power generation load by controlling the charging current together with the magnetic flux amount control.

本実施例はまたハイブリッドカーの制動時に於けるエネルギー回収システムとしても有効に機能する。ブレーキペダルの動きに応じ,指令17bを通じて回生制動の指示を受けると,制御装置174は磁束量制御回路176を介して第一磁化の磁石要素数を増す方向の電流を第一励磁コイル6c,第二励磁コイル6fに供給して第一磁化の磁石要素数を増して電機子を流れる磁束量を大とし,発電電力でバッテリー178に充電させる。さらにブレーキペダルの踏み圧に応じて第一励磁コイル6c,第二励磁コイル6fに供給する磁束調整電流を増減させ,制動力を制御する。   This embodiment also functions effectively as an energy recovery system when braking a hybrid car. When the regenerative braking instruction is received through the command 17b according to the movement of the brake pedal, the control device 174 sends a current in the direction of increasing the number of magnet elements of the first magnetization via the magnetic flux amount control circuit 176 to the first exciting coil 6c, The two excitation coils 6f are supplied to increase the number of magnet elements of the first magnetization to increase the amount of magnetic flux flowing through the armature, and the battery 178 is charged with generated power. Further, the magnetic flux adjustment current supplied to the first excitation coil 6c and the second excitation coil 6f is increased or decreased according to the depression pressure of the brake pedal, thereby controlling the braking force.

電機子コイル66と鎖交する磁束量は増えるので取り出せる電力は大きく,電気二重層コンデンサ他の蓄電システムに一時的に蓄えて制動力の確保とエネルギー回収を大にする。電機子コイル66と鎖交する磁束量を自在に制御できるので従来は低速で十分なエネルギーを回収できなかったが,本実施例では低速に於いてもエネルギー回生を可能とし,さらに第一励磁コイル6c,第二励磁コイル6fに供給する磁束調整電流を増して低速でも制動力を確保できる。回転電機171は駆動用電動機として用いられる体格であるので回生制動用の発電機として十分な制動力を発生できる。   Since the amount of magnetic flux interlinked with the armature coil 66 increases, the electric power that can be taken out is large, and it is temporarily stored in an electric storage system such as an electric double layer capacitor to ensure the braking force and increase the energy recovery. Since the amount of magnetic flux interlinking with the armature coil 66 can be freely controlled, sufficient energy could not be recovered at a low speed in the past. However, in this embodiment, energy regeneration is possible even at a low speed. 6c, the magnetic flux adjusting current supplied to the second exciting coil 6f can be increased to ensure the braking force even at a low speed. Since the rotating electrical machine 171 is a physique used as a drive motor, it can generate a sufficient braking force as a generator for regenerative braking.

本実施例は前輪にインホイールモータとして回転電機システムを組み込み,前輪駆動エンジンシステムと組み合わせてハイブリッドモータカーとした例である。インホイールモータは前輪の他に駆動軸179を回転させるので若干負荷が増えるが,前輪駆動エンジンの駆動軸は短いので大きな負担には成らず,簡素な構成のハイブリッドカーシステムを実現できる特徴がある。また,インホイールモータとして組み込まれた回転電機はエンジン駆動で走行する場合でも常に回転する事になるが,回転子から電機子側に漏れる磁束量を最小のゼロ近傍に設定する事により渦電流損を最小にしてエネルギー効率を損なわない。   The present embodiment is an example in which a rotating electric machine system is incorporated as an in-wheel motor in front wheels and combined with a front wheel drive engine system to form a hybrid motor car. Since the in-wheel motor rotates the drive shaft 179 in addition to the front wheels, the load increases slightly, but the drive shaft of the front-wheel drive engine is short, so there is no significant burden, and a hybrid car system with a simple configuration can be realized. . In addition, a rotating electrical machine incorporated as an in-wheel motor always rotates even when the engine is driven. However, by setting the amount of magnetic flux leaking from the rotor to the armature side to the minimum zero, eddy current loss To minimize energy efficiency.

本実施例はハイブリッドカーの発電機兼電動機として用いた回転電機システムであるが,電気自動車に於ける回転電機システムとする事も当然に可能である。その場合には上記実施例に於いてハイブリッドカーのエンジン172,トランスミッション173,駆動軸179を取り除き,本発明による回転電機システムのみで電気自動車を駆動し,制動時に於けるエネルギー回収システムを構成する。   The present embodiment is a rotating electrical machine system used as a generator / motor of a hybrid car, but it is naturally possible to use a rotating electrical machine system in an electric vehicle. In that case, the engine 172, transmission 173, and drive shaft 179 of the hybrid car are removed in the above embodiment, and the electric vehicle is driven only by the rotating electrical machine system according to the present invention to constitute an energy recovery system during braking.

以上,本発明の回転電機システムについて,実施例を挙げて説明した。これらの実施例は本発明の趣旨,目的を実現する例を示したのであって本発明の範囲を限定するわけでは無い。例えば上記実施例に於ける回転子の磁極構成,電機子の構成,励磁部の構成等はそれぞれ組み合わせを変えて本発明の趣旨を実現する回転電機装置を構成できる事は勿論である。   The rotating electrical machine system of the present invention has been described with reference to the embodiments. These examples show examples of realizing the gist and purpose of the present invention, and do not limit the scope of the present invention. For example, the magnetic pole configuration of the rotor, the configuration of the armature, the configuration of the excitation unit, and the like in the above-described embodiment can be changed in combination to form a rotating electrical machine apparatus that realizes the gist of the present invention.

本発明を適用した回転電機システムは従来の回転電機と同様に磁石トルク及びリラクタンストルクを利用出来,更に発電機能を改善し,またその発電機能を制御できる。移動体の発電機兼電動機システムに用いて,駆動用電動機としては従来以上の回転速度範囲での使用と低電流・大トルク出力が期待できる他に制動時のエネルギー回収を可能として総合的なエネルギー消費量を改善できる。   The rotating electrical machine system to which the present invention is applied can use the magnet torque and the reluctance torque as in the conventional rotating electrical machine, further improve the power generation function, and control the power generation function. Used as a generator / motor system for moving bodies, the drive motor can be used in a range of rotational speeds higher than conventional, and low current and large torque output can be expected. Consumption can be improved.

Claims (16)

電機子との対向面に於いて磁気的な離隔部分を介して互いに離隔された第一磁性体突極及び第二磁性体突極を周方向に交互に有する回転子と,円筒状磁気ヨーク及び円筒状磁気ヨークから径方向に延びる磁性体歯及び磁性体歯に巻回された電機子コイルを有する電機子とが径方向に対向して相対的に回転可能に構成された回転電機装置であって,第一磁性体突極及び第二磁性体突極は半径方向或いは軸方向の互いに異なる方向に延伸されてそれぞれ第一延長部,第二延長部とされ,さらに第一磁性体突極及び第二磁性体突極を互いに異極に励磁する励磁部を有し,励磁部は第一延長部及び第二延長部を磁気的に結合する磁路の一部である励磁磁路部材と,励磁磁路部材を含む第一延長部及び第二延長部間の磁路を二分するよう配置された界磁磁石とを有して構成される事を特徴とする回転電機システム A rotor having first magnetic salient poles and second magnetic salient poles spaced apart from each other via a magnetic separation portion on a surface facing the armature, and a cylindrical magnetic yoke; A rotating electrical machine apparatus configured such that a magnetic tooth extending in a radial direction from a cylindrical magnetic yoke and an armature having an armature coil wound around the magnetic body tooth are opposed to each other in the radial direction and are relatively rotatable. Thus, the first magnetic salient pole and the second magnetic salient pole are extended in different directions in the radial direction or the axial direction to form a first extension part and a second extension part, respectively. An excitation part that excites the second magnetic salient poles to different polarities, the excitation part being an excitation magnetic path member that is a part of a magnetic path that magnetically couples the first extension part and the second extension part; Fields arranged to bisect the magnetic path between the first extension and the second extension including the excitation magnetic path member Rotating electric machine system, characterized in that is configured and a stone 請求項1記載の回転電機システムに於いて,第一延長部,第二延長部はそれぞれ第一磁性体突極及び第二磁性体突極が互いに軸方向の異なる方向に延伸されて構成され,さらに励磁部は回転子両端の静止側に配置された第一励磁部及び第二励磁部とより構成され,第一励磁部は両端が第一延長部及び円筒状磁気ヨークにそれぞれ磁気的に結合された第一励磁磁路部材と,第一励磁磁路部材を含む第一延長部及び円筒状磁気ヨーク間の磁路を二分するよう配置された第一界磁磁石とを有して構成され,第二励磁部は両端が第二延長部及び円筒状磁気ヨークにそれぞれ磁気的に結合された第二励磁磁路部材と,第二励磁磁路部材を含む第二延長部及び円筒状磁気ヨーク間の磁路を二分するよう配置された第二界磁磁石とを有して構成される事を特徴とする回転電機システム In the rotating electrical machine system according to claim 1, each of the first extension portion and the second extension portion is configured by extending the first magnetic salient pole and the second magnetic salient pole in directions different from each other in the axial direction. Furthermore, the excitation unit is composed of a first excitation unit and a second excitation unit arranged on the stationary side of both ends of the rotor, and the first excitation unit is magnetically coupled to the first extension unit and the cylindrical magnetic yoke at both ends, respectively. And a first field magnet arranged to bisect the magnetic path between the first extension including the first excitation magnetic path member and the cylindrical magnetic yoke. The second excitation part includes a second excitation magnetic path member magnetically coupled to the second extension part and the cylindrical magnetic yoke at both ends, and a second extension part and a cylindrical magnetic yoke including the second excitation magnetic path member. And a second field magnet arranged to bisect the magnetic path between them. Rotating electric machine system that 請求項1記載の回転電機システムに於いて,第一延長部,第二延長部はそれぞれ第一磁性体突極及び第二磁性体突極が互いに軸方向の異なる方向に延伸されて構成され,さらに励磁部は第一励磁部及び第二励磁部より構成されて第一励磁部の一部及び第二励磁部の一部はそれぞれ回転子両端の静止側に配置され,第一励磁部は両端が第一延長部及び円筒状磁気ヨークにそれぞれ磁気的に結合された第一励磁磁路部材を有し,円筒状磁気ヨークと第一励磁磁路部材の一部とが第一界磁磁石を挟んで径方向に対向するよう構成され,第二励磁部は両端が第二延長部及び円筒状磁気ヨークにそれぞれ磁気的に結合された第二励磁磁路部材を有し,円筒状磁気ヨークと第二励磁磁路部材の一部とが第二界磁磁石を挟んで径方向に対向するよう構成される事を特徴とする回転電機システム In the rotating electrical machine system according to claim 1, each of the first extension portion and the second extension portion is configured by extending the first magnetic salient pole and the second magnetic salient pole in directions different from each other in the axial direction. Further, the excitation unit is composed of a first excitation unit and a second excitation unit, and a part of the first excitation unit and a part of the second excitation unit are arranged on the stationary side of both ends of the rotor, respectively. Has a first excitation magnetic path member magnetically coupled to the first extension and the cylindrical magnetic yoke, respectively, and the cylindrical magnetic yoke and a part of the first excitation magnetic path member have the first field magnet. The second excitation part has a second excitation magnetic path member magnetically coupled to the second extension part and the cylindrical magnetic yoke at both ends, respectively. A part of the second excitation magnetic path member is configured to face the radial direction across the second field magnet. The rotary electric machine system comprising a thing 請求項1記載の回転電機システムに於いて,第一延長部,第二延長部はそれぞれ第一磁性体突極及び第二磁性体突極が互いに軸方向の異なる方向に延伸されて構成され,さらに励磁部は第一磁性体突極及び第二磁性体突極をそれぞれ異極に励磁する第一励磁部及び第二励磁部とより構成され,さらに第一励磁部は両端が第一延長部及び円筒状磁気ヨークにそれぞれ磁気的に結合された第一励磁磁路部材と,第一励磁磁路部材を含む第一延長部及び円筒状磁気ヨーク間の磁路を二分するよう配置された第一界磁磁石と,第一磁性体突極及び第一延長部及び第一励磁磁路部材及び第一界磁磁石及び円筒状磁気ヨークを含む磁路に磁束を発生するよう配置された第一励磁コイルとを有して構成され,第二励磁部は両端が第二延長部及び円筒状磁気ヨークにそれぞれ磁気的に結合された第二励磁磁路部材と,第二励磁磁路部材を含む第二延長部及び円筒状磁気ヨーク間の磁路を二分するよう配置された第二界磁磁石と,第二磁性体突極及び第二延長部及び第二励磁磁路部材及び第一界磁磁石及び円筒状磁気ヨークを含む磁路に磁束を発生するよう配置された第二励磁コイルとを有して構成され,第一励磁コイル,第二励磁コイルに供給する電流によって第一界磁磁石,第二界磁磁石の磁化状態を変更及び或いは第一励磁コイル,第二励磁コイルの生成する磁束量を変えて電機子を流れる磁束量を変える事を特徴とする回転電機システム In the rotating electrical machine system according to claim 1, each of the first extension portion and the second extension portion is configured by extending the first magnetic salient pole and the second magnetic salient pole in directions different from each other in the axial direction. Further, the exciting part is composed of a first exciting part and a second exciting part for exciting the first magnetic salient pole and the second magnetic salient pole to different polarities, respectively. Further, both ends of the first exciting part are first extension parts. And a first excitation magnetic path member magnetically coupled to each of the cylindrical magnetic yoke, and a first excitation magnetic path member arranged in one half to bisect the magnetic path between the first extension including the first excitation magnetic path member and the cylindrical magnetic yoke. A first field magnet, a first magnetic body salient pole, a first extension, a first excitation magnetic path member, a first field magnet, and a first magnetic field arranged to generate magnetic flux in a magnetic path including a first field magnet and a cylindrical magnetic yoke An excitation coil, and the second excitation part has a second extension part and a cylindrical magnetic arm at both ends. And a second field magnet disposed so as to bisect the magnetic path between the second excitation magnetic path member magnetically coupled to each of the first magnetic field member and the second extension including the second excitation magnetic path member and the cylindrical magnetic yoke. A second exciting coil arranged to generate a magnetic flux in a magnetic path including a second magnetic salient pole, a second extension, a second exciting magnetic path member, a first field magnet, and a cylindrical magnetic yoke. The magnetization state of the first field magnet and the second field magnet is changed by the current supplied to the first excitation coil and the second excitation coil, or the first excitation coil and the second excitation coil are generated. A rotating electrical machine system characterized by changing the amount of magnetic flux to change the amount of magnetic flux flowing through the armature 請求項1記載の回転電機システムに於いて,第一延長部は第一磁性体突極が軸方向に延伸され,第二延長部は第二磁性体突極が半径方向に延伸されて構成され,更に励磁部の励磁磁路部材は一端が第一延長部と磁気的に結合されると共に励磁磁路部材の一部は界磁磁石を挟んで第二延長部と径方向に対向するよう構成される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the first extension portion is configured by extending a first magnetic salient pole in an axial direction, and the second extension portion is configured by extending a second magnetic salient pole in a radial direction. Further, the exciting magnetic path member of the exciting portion is configured such that one end is magnetically coupled to the first extension portion and a part of the exciting magnetic path member is opposed to the second extension portion in the radial direction with the field magnet interposed therebetween. Rotating electrical machine system characterized by 請求項1記載の回転電機システムに於いて,第一延長部は第一磁性体突極が軸方向に延伸され,第二延長部は第二磁性体突極が半径方向に延伸されて構成され,更に励磁部の励磁磁路部材は一端が第一延長部と磁気的に結合されると共に励磁磁路部材の一部は界磁磁石を挟んで第二延長部と径方向に対向するよう構成され,励磁磁路部材の一部は回転子と軸方向に対向する静止側に配置されると共に第一延長部,励磁磁路部材,界磁磁石,第二延長部を含む磁路に磁束を発生するよう励磁コイルが静止側に配置され,励磁コイルに供給する電流によって界磁磁石の磁化状態を変更及び或いは励磁コイルの生成する磁束量を変えて電機子を流れる磁束量を変える事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the first extension portion is configured by extending a first magnetic salient pole in an axial direction, and the second extension portion is configured by extending a second magnetic salient pole in a radial direction. Further, the exciting magnetic path member of the exciting portion is configured such that one end is magnetically coupled to the first extension portion and a part of the exciting magnetic path member is opposed to the second extension portion in the radial direction with the field magnet interposed therebetween. A portion of the excitation magnetic path member is disposed on the stationary side facing the rotor in the axial direction, and a magnetic flux is applied to the magnetic path including the first extension portion, the excitation magnetic path member, the field magnet, and the second extension portion. The exciting coil is arranged on the stationary side so that it is generated, and the amount of magnetic flux flowing through the armature is changed by changing the magnetization state of the field magnet by the current supplied to the exciting coil and / or changing the amount of magnetic flux generated by the exciting coil. Rotating electrical machine system 請求項1記載の回転電機システムに於いて,第一磁性体突極と第二磁性体突極間に配置される離隔部分の磁気抵抗は磁性体歯と第一磁性体突極との微小間隙に於ける磁気抵抗及び磁性体歯と第二磁性体突極との微小間隙に於ける磁気抵抗の和より大となるよう前記離隔部分の対向面積と厚みとが設定されている事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein a magnetic resistance of a separation portion disposed between the first magnetic salient pole and the second magnetic salient pole is a small gap between the magnetic teeth and the first magnetic salient pole. The opposing area and thickness of the separation portion are set so as to be larger than the sum of the magnetic resistance and the sum of the magnetic resistance in the minute gap between the magnetic teeth and the second magnetic salient pole. Rotating electrical machine system 請求項1記載の回転電機システムに於いて,第一磁性体突極及び第二磁性体突極間の離隔部分は永久磁石を含んで第一磁性体突極及び第二磁性体突極は互いに異なる極性に磁化されるよう構成される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein a separation portion between the first magnetic salient pole and the second magnetic salient pole includes a permanent magnet, and the first magnetic salient pole and the second magnetic salient pole are mutually connected. Rotating electrical machine system characterized by being configured to be magnetized to different polarities 請求項8記載の回転電機システムに於いて,第一磁性体突極及び第二磁性体突極間に配置された永久磁石は,磁性体と磁性体の二つの側面に配置された略同方向の磁化を有する永久磁石とで構成された集合磁石であって,集合磁石を構成する前記磁性体の電機子と対向する側に非磁性体が配置されて構成される事を特徴とする回転電機システム 9. The rotating electrical machine system according to claim 8, wherein the permanent magnet disposed between the first magnetic body salient pole and the second magnetic body salient pole is substantially in the same direction disposed on the two side surfaces of the magnetic body and the magnetic body. A rotating electric machine comprising a non-magnetic material disposed on a side facing the armature of the magnetic material constituting the collective magnet system 請求項8記載の回転電機システムに於いて,第一磁性体突極及び第二磁性体突極間の離隔部分が含む永久磁石の抗磁力は界磁磁石の抗磁力より大である事を特徴とする回転電機システム 9. The rotating electrical machine system according to claim 8, wherein the coercive force of the permanent magnet included in the separation portion between the first magnetic salient pole and the second magnetic salient pole is greater than the coercive force of the field magnet. Rotating electrical machine system 請求項1記載の回転電機システムに於いて,界磁磁石は磁化方向長さと抗磁力の積が異なる磁石要素の並列接続として構成され,界磁磁石は互いに逆方向である第一磁化,第二磁化の何れかの磁化を有する磁石要素を少なくとも有し,第一磁化を有する磁石要素は第一磁性体突極及び第二磁性体突極間に配置された永久磁石が第一磁性体突極及び第二磁性体突極を磁化する極性と同じ極性に第一磁性体突極及び第二磁性体突極を磁化する事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the field magnet is configured as a parallel connection of magnet elements having different products of the magnetization direction length and the coercive force, and the field magnet has a first magnetization and a second magnetization in opposite directions. A magnet element having at least one of the magnetizations, and the permanent magnet disposed between the first magnetic salient pole and the second magnetic salient pole is the first magnetic salient pole. And rotating the first magnetic salient pole and the second magnetic salient pole to the same polarity as the polarity of magnetizing the second magnetic salient pole. 電機子との対向面に於いて少なくとも永久磁石を介して互いに離隔され且つ互いに異なる極性に磁化された第一磁性体突極及び第二磁性体突極を周方向に交互に有する回転子と,円筒状磁気ヨーク及び円筒状磁気ヨークから径方向に延びる磁性体歯及び磁性体歯に巻回された電機子コイルを有する電機子とが径方向に対向して相対的に回転可能に構成された回転電機装置であって,第一磁性体突極及び第二磁性体突極は半径方向或いは軸方向の互いに異なる方向に延伸されてそれぞれ第一延長部,第二延長部とされ,さらに第一磁性体突極及び第二磁性体突極を互いに異極に励磁する励磁部を有し,励磁部は両端が第一延長部及び第二延長部を磁気的に結合する磁路の一部である励磁磁路部材と,励磁磁路部材を含む第一延長部及び第二延長部間の磁路を二分するよう配置された界磁磁石と,第一延長部及び励磁磁路部材及び界磁磁石及び第二延長部を含む磁路に磁束を発生するよう配置された励磁コイルを有して構成され,回転電機装置の出力を最適化するよう前記出力に応じて励磁コイルに供給される電流により界磁磁石の磁化状態を変え,電機子に流れる磁束量が制御される事を特徴とする回転電機システム A rotor having first magnetic salient poles and second magnetic salient poles alternately arranged in the circumferential direction, which are separated from each other via a permanent magnet and magnetized in different polarities on a surface facing the armature; A cylindrical magnetic yoke and a magnetic tooth extending in the radial direction from the cylindrical magnetic yoke, and an armature having an armature coil wound around the magnetic tooth are configured to be relatively rotatable facing each other in the radial direction. In the rotating electrical machine apparatus, the first magnetic salient pole and the second magnetic salient pole are extended in mutually different directions in the radial direction or the axial direction to be a first extension part and a second extension part, respectively. An exciting part that excites the magnetic salient pole and the second magnetic salient pole from each other, and the exciting part is a part of a magnetic path that magnetically couples the first extension part and the second extension part at both ends. An excitation magnetic path member and a first extension and a second extension including the excitation magnetic path member A field magnet disposed so as to bisect the magnetic path therebetween, and an excitation coil disposed so as to generate a magnetic flux in the magnetic path including the first extension portion, the excitation magnetic path member, the field magnet, and the second extension portion. And the amount of magnetic flux flowing through the armature is controlled by changing the magnetization state of the field magnet by the current supplied to the exciting coil in accordance with the output so as to optimize the output of the rotating electrical machine device. Characteristic rotating electrical machine system 請求項12記載の回転電機システムに於いて,さらに制御装置を有し,回転力を入力とし,発電電力を出力とする回転電機システムであって,第一磁性体突極及び第二磁性体突極間に配置された永久磁石が第一磁性体突極及び第二磁性体突極を磁化する極性と同じ極性に第一磁性体突極及び第二磁性体突極を磁化する界磁磁石内の磁石要素を第一磁化とし,電機子コイルに誘起される発電電圧が所定の値より大の時は制御装置により第一磁化の磁極面積を減じるよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて電機子を流れる磁束量が小とされ,電機子コイルに誘起される発電電圧が所定の値より小の時は制御装置により界磁磁石内の第一磁化の磁極面積を増すよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて電機子を流れる磁束量が大とされ,発電電圧が所定の値に制御される事を特徴とする回転電機システム 13. The rotating electrical machine system according to claim 12, further comprising a control device, wherein the rotating electrical machine system receives the rotational force and outputs the generated power, the first magnetic salient pole and the second magnetic salient pole. Inside the field magnet in which the permanent magnet arranged between the poles magnetizes the first magnetic salient pole and the second magnetic salient pole to the same polarity as the polarity that magnetizes the first magnetic salient pole and the second magnetic salient pole. When the generated voltage induced in the armature coil is larger than a predetermined value, a magnetizing current having a polarity for magnetizing the field magnet is reduced by the controller so as to reduce the magnetic pole area of the first magnetization. When the amount of magnetic flux that is supplied to the exciting coil and flows through the armature is small, and the generated voltage induced in the armature coil is smaller than a predetermined value, the control device reduces the magnetic pole area of the first magnetization in the field magnet. A magnetizing current having a polarity for magnetizing the field magnet is supplied to the exciting coil so as to increase. Magnetic flux amount flowing in the armature Te is large, the rotary electric machine system in which the power generation voltage is being controlled to a predetermined value 請求項12記載の回転電機システムに於いて,さらに制御装置を有し,電機子コイルへの供給電流を入力とし,回転力を出力とする回転電機システムであって,第一磁性体突極及び第二磁性体突極間に配置された永久磁石が第一磁性体突極及び第二磁性体突極を磁化する極性と同じ極性に第一磁性体突極及び第二磁性体突極を磁化する界磁磁石内の磁石要素を第一磁化とし,回転速度が所定の値より大で電機子を流れる磁束量を減少させる時には制御装置により第一磁化の磁極面積を減じるよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて電機子を流れる磁束量が小とされ,回転速度が所定の値より小で電機子を流れる磁束量を増大させる時には制御装置により界磁磁石内の第一磁化の磁極面積を増すよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて電機子を流れる磁束量が大とされ,回転力が最適に制御される事を特徴とする回転電機システム 13. The rotating electrical machine system according to claim 12, further comprising a control device, wherein the current supplied to the armature coil is input and the rotational force is output, wherein the first magnetic salient pole and The permanent magnet arranged between the second magnetic salient poles magnetizes the first magnetic salient pole and the second magnetic salient pole to the same polarity as the polarity of magnetizing the first magnetic salient pole and the second magnetic salient pole. When the magnet element in the field magnet is set to the first magnetization, and the rotational speed is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the field magnet is magnetized by the control device so as to reduce the magnetic pole area of the first magnetization. When the magnetizing current having the polarity is supplied to the exciting coil, the amount of magnetic flux flowing through the armature is reduced, and when the rotational speed is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the control device Magnetize the field magnet to increase the magnetic pole area of the first magnetization Rotating electric machine system magnetic flux amount flowing in the armature magnetizing current is supplied to the exciting coil of the polarity is large, characterized in that rotational force is optimally controlled 請求項12記載の回転電機システムに於いて,さらに制御装置を有し,電機子コイルへの供給電流を入力とし,回転力を出力とする回転電機システムであって,第一磁性体突極及び第二磁性体突極間に配置された永久磁石が第一磁性体突極及び第二磁性体突極を磁化する極性と同じ極性に第一磁性体突極及び第二磁性体突極を磁化する界磁磁石内の磁石要素を第一磁化とし,回転速度を減少させる場合には制御装置により電機子コイルにバッテリーを接続すると共に界磁磁石内の第一磁化の磁極面積を変えるよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて電機子を流れる磁束量を変え,回転エネルギーが発電電力として取り出されると共に制動力が制御される事を特徴とする回転電機システム 13. The rotating electrical machine system according to claim 12, further comprising a control device, wherein the current supplied to the armature coil is input and the rotational force is output, wherein the first magnetic salient pole and The permanent magnet arranged between the second magnetic salient poles magnetizes the first magnetic salient pole and the second magnetic salient pole to the same polarity as the polarity of magnetizing the first magnetic salient pole and the second magnetic salient pole. When the magnet element in the field magnet is set to the first magnetization and the rotational speed is reduced, the battery is connected to the armature coil by the control device and the magnetic field area of the first magnetization in the field magnet is changed. A rotating electrical machine system in which a magnetizing current having a polarity for magnetizing a magnet is supplied to an exciting coil to change the amount of magnetic flux flowing through the armature, and rotational energy is extracted as generated power and braking force is controlled. 電機子との対向面に於いて磁気的な空隙及び或いは永久磁石を含む離隔部分を介して互いに離隔された第一磁性体突極及び第二磁性体突極を周方向に交互に有する回転子と,円筒状磁気ヨーク及び円筒状磁気ヨークから径方向に延びる磁性体歯及び磁性体歯に巻回された電機子コイルを有する電機子とが径方向に対向して相対的に回転可能に構成された回転電機装置の磁束量制御方法であって,第一磁性体突極及び第二磁性体突極をそれぞれ半径方向或いは軸方向の互いに異なる方向に延伸した第一延長部,第二延長部を有し,さらに第一磁性体突極及び第二磁性体突極をそれぞれ異極に励磁する第一励磁部及び第二励磁部とを有し,励磁部を両端が第一延長部及び第二延長部を磁気的に結合する磁路の一部である励磁磁路部材と,励磁磁路部材を含む第一延長部及び第二延長部間の磁路を二分するよう配置された界磁磁石と,第一延長部及び励磁磁路部材及び界磁磁石及び第二延長部を含む磁路に磁束を発生するよう配置された励磁コイルを有して構成し,界磁磁石の磁化状態を励磁コイルに供給する電流によって不可逆的に変更するよう構成し,界磁磁石の磁化状態を変え,或いは及び励磁コイルに供給する電流を変えて電機子に流れる磁束量を制御する磁束量制御方法 A rotor having alternating first magnetic salient poles and second magnetic salient poles in the circumferential direction spaced apart from each other via a magnetic gap and / or a separation part including a permanent magnet on a surface facing the armature And an armature having a magnetic tooth extending in a radial direction from the cylindrical magnetic yoke and an armature coil wound around the magnetic tooth, and opposed to each other in the radial direction so as to be relatively rotatable A method of controlling the amount of magnetic flux of a rotating electrical machine apparatus, wherein the first extension and the second extension are obtained by extending the first magnetic salient pole and the second magnetic salient pole in different directions in the radial direction or the axial direction, respectively. And a first excitation part and a second excitation part for exciting the first magnetic salient pole and the second magnetic salient pole to different polarities, respectively. An excitation magnetic path member that is part of a magnetic path that magnetically couples the two extensions, and an excitation magnetic path A field magnet disposed so as to bisect the magnetic path between the first extension and the second extension including the material, and the magnetic path including the first extension, the excitation magnetic path member, the field magnet, and the second extension The magnet is arranged to have an exciting coil arranged to generate a magnetic flux, and the magnetization state of the field magnet is irreversibly changed by the current supplied to the exciting coil, and the magnetization state of the field magnet is changed, Alternatively, a magnetic flux amount control method for controlling the amount of magnetic flux flowing through the armature by changing the current supplied to the exciting coil
JP2010063460A 2010-02-08 2010-03-19 Magnetic flux volume variable rotary electric machine system Pending JP2011182622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063460A JP2011182622A (en) 2010-02-08 2010-03-19 Magnetic flux volume variable rotary electric machine system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010025319 2010-02-08
JP2010025319 2010-02-08
JP2010063460A JP2011182622A (en) 2010-02-08 2010-03-19 Magnetic flux volume variable rotary electric machine system

Publications (1)

Publication Number Publication Date
JP2011182622A true JP2011182622A (en) 2011-09-15

Family

ID=44693533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063460A Pending JP2011182622A (en) 2010-02-08 2010-03-19 Magnetic flux volume variable rotary electric machine system

Country Status (1)

Country Link
JP (1) JP2011182622A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014023393A (en) * 2012-07-23 2014-02-03 Jtekt Corp Rotary electric machine
JP2014110759A (en) * 2012-12-03 2014-06-12 New Motech Co Ltd Variable magnetic flux motor
WO2014188737A1 (en) * 2013-05-22 2014-11-27 Narita Kenji Permanent magnet synchronous motor
JP5851654B1 (en) * 2014-11-27 2016-02-03 成田 憲治 Synchronous motor
US9515524B2 (en) 2012-07-23 2016-12-06 Jtekt Corporation Electric motor
JP7638165B2 (en) 2020-10-15 2025-03-03 三菱電機株式会社 Electrical Machines and Systems

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014023393A (en) * 2012-07-23 2014-02-03 Jtekt Corp Rotary electric machine
CN103580336A (en) * 2012-07-23 2014-02-12 株式会社捷太格特 Electric motor
US9515524B2 (en) 2012-07-23 2016-12-06 Jtekt Corporation Electric motor
US9515525B2 (en) 2012-07-23 2016-12-06 Jtekt Corporation Electric motor
JP2014110759A (en) * 2012-12-03 2014-06-12 New Motech Co Ltd Variable magnetic flux motor
WO2014188737A1 (en) * 2013-05-22 2014-11-27 Narita Kenji Permanent magnet synchronous motor
JP5851654B1 (en) * 2014-11-27 2016-02-03 成田 憲治 Synchronous motor
WO2016084204A1 (en) * 2014-11-27 2016-06-02 成田 憲治 Synchronous motor
JP7638165B2 (en) 2020-10-15 2025-03-03 三菱電機株式会社 Electrical Machines and Systems

Similar Documents

Publication Publication Date Title
JP4649625B1 (en) Magnetic flux variable rotating electrical machine system
JP4403253B1 (en) Magnetic flux amount variable axial gap rotating electrical machine system
KR101254062B1 (en) Variable magnetic flux rotating electric machine system
CN102067412B (en) Permanent magnet type rotating electric machine
WO2012014260A1 (en) Rotating electrical machine, and electric vehicle using same
CN105978268B (en) A kind of Hybrid Vehicle modulation system brush-less permanent magnetic double-rotor machine
JP4337989B1 (en) Magnetic excitation variable magnetic rotating machine system with magnet excitation
JP6539004B1 (en) Rotor and rotating electric machine
JP2011182622A (en) Magnetic flux volume variable rotary electric machine system
JP2015070767A (en) Lateral magnetic flux dynamo-electric machine, and vehicle
JP4735772B1 (en) Magnet excitation rotating electrical machine system
JP2015039251A (en) Magnet excitation rotary electric machine system
JP2011050186A (en) Variable magnetic flux rotating electric machine system
JP2012165540A (en) Rotary electric machine
JP2009005445A (en) Field control electromagnetic rotation system
CN105846621B (en) Rotating electric machine
JP4238298B1 (en) Magnetic flux shunt control rotating electrical machine system
JP4403252B1 (en) Magnetic flux variable rotating electrical machine system
JP3829888B2 (en) Synchronous rotating machine with permanent magnet
JP4599523B2 (en) Field-controlled electromagnetic rotation system
CN105846620A (en) Electric rotating machine
JP2011135678A (en) Variable flux rotary electric machine system
JP2012034483A (en) Axial gap motor
JP2008161038A (en) Axial-gap electric motor
WO2015022733A1 (en) Magnetic excitation rotating electric machine system