JP4243216B2 - Wafer support member - Google Patents

Wafer support member Download PDF

Info

Publication number
JP4243216B2
JP4243216B2 JP2004130399A JP2004130399A JP4243216B2 JP 4243216 B2 JP4243216 B2 JP 4243216B2 JP 2004130399 A JP2004130399 A JP 2004130399A JP 2004130399 A JP2004130399 A JP 2004130399A JP 4243216 B2 JP4243216 B2 JP 4243216B2
Authority
JP
Japan
Prior art keywords
plate
temperature
temperature measuring
measuring element
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004130399A
Other languages
Japanese (ja)
Other versions
JP2004312026A (en
Inventor
恒彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004130399A priority Critical patent/JP4243216B2/en
Publication of JP2004312026A publication Critical patent/JP2004312026A/en
Application granted granted Critical
Publication of JP4243216B2 publication Critical patent/JP4243216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Surface Heating Bodies (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)

Description

本発明は、主にウハを加熱するのに用いるウハ支持部材に関するものであり、例えば、半導体ウハや液晶基板あるいは回路基板等のウハ上に導体膜や絶縁膜を生成したり、前記ウハ上に塗布されたレジスト液を乾燥焼き付けしてレジスト膜を形成するのに好適なウハ支持部材に関する。 The present invention relates to U E c support member used to heat primarily c E c, for example, a conductive film or an insulating film on a semiconductor U E C and a liquid crystal substrate or circuit board etc. c on E c product or, concerning the resist solution applied on the U E c with a preferred c E c support member to form a dry baked resist film.

例えば、半導体製造装置の製造工程における、導体膜や絶縁膜の成膜処理、エッチング処理、レジスト膜の焼き付け処理等の半導体ウェハ(以下ウェハと略す)への加工において、ウハを加熱するためにウハ支持部材が用いられている。 For example, in a manufacturing process of a semiconductor manufacturing apparatus, a film forming process of the conductive film or an insulating film, an etching process, in the processing of the semiconductor wafer baking processing of the resist film (hereinafter abbreviated as a wafer), for heating the c E c c E c support member is used for.

従来の半導体製造装置は、まとめて複数のウハを成膜処理するバッチ式のものが使用されていたが、ウハの大きさが8インチから12インチと大型化するにつれ、処理精度を高めるために、一枚づつ処理する枚葉式と呼ばれる装置が近年使われている。しかしながら、枚葉式にすると1回当たりの処理数が減少するため、ウハの加工時間の短縮が必要とされている。このため、ウハ支持部材に対して、ウハの加熱時間の短縮、ウハの吸着・脱着の迅速化と同時に加熱温度の精度の向上が要求されていた。 As a conventional semiconductor manufacturing apparatus, collectively Although a batch type of forming process multiple c E c have been used, the size of the window E Ha of 12 inches and large 8 inches, processing accuracy In recent years, a device called a single-wafer type for processing one sheet at a time has been used. However, single order when the wafer processing per one is reduced, the time required for machining of c E c are needed. Therefore, with respect to U E c support member, shorten the heating time of the c E c, accuracy of the simultaneous heating temperature and faster adsorption and desorption of c E c has been required.

上記のようなウハ支持部材の例として、例えば特許文献1に示してあるようなウハ支持部材21がある。このウハ支持部材21は、図8に示すように、ケーシング31、板状セラミック体22および板状反射体としてのステンレス板33を主要な構成要素としている。ケーシング31は有底状の金属製部材(ここでは、アルミニウム製部材)であって、断面円形状の開口部34をその上部側に備えている。このケーシング31の中心部には、図示しないウハ支持ピンを挿通するためのピン挿通孔35が3つ形成されている。ピン挿通孔35に挿通されたウハ支持ピンを上下させれば、ウハWを搬送機に受け渡したり、ウハWを搬送機から受け取ったりすることができる。また、図9に示す抵抗発熱体25の導通端子部には、導通端子27がロウ付けされており、該導通端子27がステンレス板33に形成された穴57を挿通する構造となっている。また、底部31aの外周部にはリード線引出用の孔36がいくつか形成されている。この孔36には、抵抗発熱体に電流を供給するための不図示のリード線が挿通され、該リード線は前記導通端子27に接続されている。 Examples of c E c support member as described above, there is a c E c support member 21, such as for example is shown in US Pat. The U E c support member 21, as shown in FIG. 8, a casing 31, the ceramic plate 22 and the stainless steel plate 33 as a plate-shaped reflector is a main component. The casing 31 is a bottomed metal member (here, an aluminum member), and includes an opening 34 having a circular cross section on the upper side thereof. The in the center of the casing 31, the pin insertion hole 35 for inserting the c E c support pins (not shown) are three forms. If brought into vertically pin insertion hole 35 is inserted through the U E c support pin, or passing the window E wafer W to the transport machine, or can receive the U E wafer W from the transfer machine. Further, a conduction terminal 27 is brazed to the conduction terminal portion of the resistance heating element 25 shown in FIG. 9, and the conduction terminal 27 is inserted through a hole 57 formed in the stainless steel plate 33. Also, several lead wire drawing holes 36 are formed in the outer peripheral portion of the bottom 31a. A lead wire (not shown) for supplying a current to the resistance heating element is inserted into the hole 36, and the lead wire is connected to the conduction terminal 27.

また、板状セラミック体22を構成するセラミック材料としては、窒化物セラミックスまたは炭化物セラミックスが用いられ、抵抗発熱体25は、図9に示すように、同心円状に形成した複数のパターンに通電することにより、板状セラミック体22を加熱するウハ支持部材21が提案されている。 Further, as the ceramic material constituting the plate-like ceramic body 22, nitride ceramics or carbide ceramics are used, and the resistance heating element 25 energizes a plurality of patterns formed concentrically as shown in FIG. Accordingly, c E c support member 21 for heating the ceramic plate 22 is proposed.

このようなウハ支持部材21において、ウハWの表面全体に均質な膜を形成したり、レジスト膜の加熱反応状態を均質に加工処理したりするためには、ウハWの温度を正確に測定するとともにウェハWの温度を一定に温度制御することが重要である。そこで、ウェハWの温度を測定する測温素子が使われ、上記ウハ支持部材の凹部23に測温素子が取り付けられている。 In such a U E c support member 21, c whole or to form a uniform film surface E wafer W, to or homogeneously processed heating reaction conditions of the resist film, the c E wafer W It is important to accurately measure the temperature and to control the temperature of the wafer W at a constant temperature. Therefore, temperature measurement element is used to measure the temperature of the wafer W, the temperature sensing element is mounted in the recess 23 of the U E c support member.

特許文献2には、図10に示すように、ウハ支持部材に載せたウェハWの温度を測定し、金属製の板状体40の上面40aの温度を制御する測温抵抗体素子150の配置方法が示されている。前記板状体40の温度の精度やレスポンス等が優れ、温度調節の精度を高める方法として、凹部41に挿入された測温素子150の長手方向の温度差を小さくし、前記測温抵抗体素子150を板状体40の上面に平行に配置する方法が示されている。この測温素子はPtからなる測温素子150が保護管151に挿入され、板状体40の上面40aに対し平行となるように配置されている。 Patent Document 2, as shown in FIG. 10, RTD element measures the temperature of the wafer W placed on U E c support member, controls the temperature of the upper surface 40a of the metal plate body 40 150 The arrangement method is shown. As a method of improving the temperature accuracy and response of the plate-like body 40 and improving the accuracy of temperature adjustment, the temperature difference element in the longitudinal direction of the temperature measuring element 150 inserted in the concave portion 41 is reduced, and the resistance thermometer element A method of arranging 150 in parallel with the upper surface of the plate-like body 40 is shown. This temperature measuring element is arranged such that a temperature measuring element 150 made of Pt is inserted into the protective tube 151 and is parallel to the upper surface 40 a of the plate-like body 40.

さらに保護管151内の隙間には伝熱セメント52が充填されている。特に、抵抗発熱体を分割制御する場合は、測定の正確さと同時に測定バラツキを管理しないと上記板状体40の正確な温度制御ができなくなるので、このような取付構造とすることが好ましいとされていた。   Further, the gap in the protective tube 151 is filled with heat transfer cement 52. In particular, when the resistance heating element is divided and controlled, the temperature of the plate-like body 40 cannot be accurately controlled unless the measurement variation is managed at the same time as the measurement accuracy. Therefore, such a mounting structure is preferable. It was.

また、特許文献3には、単一の抵抗発熱体を板状セラミック体に埋設したウェハ加熱装置において、ウェハ加熱面の温度が最適値から外れることを防止するために、測温点をウェハ加熱領域の中心からウェハ加熱領域の半径のほぼ1/√2の位置とすることが示されている。   Further, in Patent Document 3, in a wafer heating apparatus in which a single resistance heating element is embedded in a plate-like ceramic body, the temperature measuring point is heated by a wafer in order to prevent the temperature of the wafer heating surface from deviating from the optimum value. It is shown that the position is approximately 1 / √2 of the radius of the wafer heating area from the center of the area.

また、特許文献4には、図9に記載の厚み3mmの板状セラミック体22に深さ2mm、直径1.2mmの凹部23に測温素子として線径0.5mm以下の熱電対を挿入し耐熱性樹脂で封止したウハ支持部材21が開示されている。
特開平11−283729号公報 特開平9−45752号公報 特開平4−98784号公報 特開2001−85144号公報
Further, in Patent Document 4, a thermocouple having a wire diameter of 0.5 mm or less is inserted as a temperature measuring element into the recess 23 having a depth of 2 mm and a diameter of 1.2 mm in the plate-like ceramic body 22 having a thickness of 3 mm shown in FIG. c E c support member 21 sealed with a heat-resistant resin is disclosed.
JP-A-11-283729 JP-A-9-45752 Japanese Patent Laid-Open No. 4-98784 JP 2001-85144 A

しかしながら、近年注目されている枚葉式のウハ支持部材に使用される板状セラミック体は、ウハ1枚あたりの加工処理時間を短縮するために、厚みを2〜5mmと薄くし、加熱および冷却のサイクルタイムが短くなるように調整する必要がある。しかしながら、ウハの表面全体を±0.5℃というレベルに均一に加熱するには、板状セラミック体に測温素子を従来の方法で配設するだけではウェハを均一に加熱するとの目標を達成できないとの課題があった。 However, the ceramic plate used in c E c support single-wafer which has attracted considerable attention in recent years, in order to shorten the processing time per c E c, the thickness as thin as 2~5mm It is necessary to adjust the heating and cooling cycle time to be short. However, the goal of the to uniformly heat the entire surface of the window E c level of ± 0.5 ° C. is only to dispose in a conventional manner to the temperature sensing element to the ceramic plate to uniformly heat the wafer There was a problem that could not be achieved.

上記のようなウハ支持部材において、特許文献2のように測温素子150を板状体40のウェハWを載せる載置面40aに平行に配置しても、金属からなる板状体40は厚みが30mm以上と厚く板状体40を急速に昇温したり降温したりすることが出来なかった。更に、測温素子150本体や測温素子150への接続部材から熱が板状体40の外に流れ、測温部の温度が低下したり、測温素子150が板状体40の凹部41の底面に熱的に確実に接続できないことから板状体40や前記ウェハWの温度を正確に測定できない虞があるとの課題があった。 In c E c support member as described above, be arranged parallel to the mounting surface 40a put wafer W of the plate-like body 40 the temperature sensing element 150 as in Patent Document 2, the plate-like member made of metal 40 The thickness of the plate-like body 40 was so thick as to be 30 mm or more, and the temperature could not be rapidly raised or lowered. Further, heat flows from the temperature measuring element 150 main body and the connecting member to the temperature measuring element 150 to the outside of the plate-like body 40, the temperature of the temperature measuring section is lowered, or the temperature measuring element 150 is recessed in the plate-like body 40. There is a problem that the temperature of the plate-like body 40 and the wafer W may not be accurately measured because it cannot be thermally reliably connected to the bottom surface of the substrate.

また、前記板状体40に備えた抵抗発熱体や前記載置面40aから測温素子150までの距離により設定温度に対しウェハWの温度の追従性が悪く温度が変動し一定の温度に制御するまでの時間が掛かりウェハWの加工処理時間が長くなるとの問題があった。   Also, the resistance heating element provided in the plate-like body 40 and the distance from the mounting surface 40a to the temperature measuring element 150 have poor followability of the temperature of the wafer W with respect to the set temperature, and the temperature fluctuates and is controlled to a constant temperature. There is a problem that it takes a long time to complete the processing and the processing time of the wafer W becomes long.

そこで、上記課題に鑑み、本発明のウハ支持部材は、板状セラミック体の一方の主面側を、ウェハを載せる載置面とし、上記板状セラミック体の他方の主面又は内部に抵抗発熱体を備えるとともに、上記板状セラミック体の他方の主面に凹部を有し、該凹部内に、測温素子とリード線とからなる測温体を挿入し、固定部材にて保持させ、上記測温体の測温素子からリード線が固定部材より露出するまでのリード線の長さを、上記リード線の線径の2倍より大きく30倍以下とし、上記測温体のリード線の線径をA、測温素子から抵抗発熱体までの最短距離をL1、測温素子から板状セラミック体の一方の主面へ鉛直に延ばした垂線と、板状セラミック体の一方の主面との交点から抵抗発熱体までの最短距離をL2とした時、(L2−7×A)<L1<(L2−A)を満足するし、上記固定部材が、熱伝導率が上記板状セラミック体の熱伝導率の60%以上、300%以下、かつビッカース硬度が50以下の金属であることを特徴とする。 In view of the above problems, c E c support member of the present invention, the one main surface side of the ceramic plate, the mounting surface mounting the wafer, within the other main surface or the plate-shaped ceramic body A resistance heating element is provided, and a concave portion is formed on the other main surface of the plate-shaped ceramic body. A temperature measuring element including a temperature measuring element and a lead wire is inserted into the concave portion and held by a fixing member. The length of the lead wire from the temperature measuring element of the temperature measuring element until the lead wire is exposed from the fixing member is greater than twice the wire diameter of the lead wire and not more than 30 times, and the lead wire of the temperature measuring element The wire diameter is A, the shortest distance from the temperature measuring element to the resistance heating element is L1, the perpendicular extending vertically from the temperature measuring element to one main surface of the plate-shaped ceramic body, and one main surface of the plate-shaped ceramic body When the shortest distance from the intersection with the resistance heating element is L2, (L2-7 × A <It satisfies L1 <(L2-A), the fixing member, the thermal conductivity of not less than 60% of the thermal conductivity of the plate-shaped ceramic body, 300% or less, and the Vickers hardness is 50 or less of the metal It is characterized by that.

また、上記測温体の測温素子は、凹部底面に対して平行に配接することが好ましい。   Moreover, it is preferable that the temperature measuring element of the said temperature measuring body is arranged in parallel with respect to a recessed part bottom face.

以上のように、本発明のウハ支持部材によれば、板状セラミック体の一方の主面側を、ウェハを載せる載置面とし、上記板状セラミック体の他方の主面又は内部に抵抗発熱体を備えるとともに、上記板状セラミック体の他方の主面に凹部を有し、該凹部内に、測温素子とリード線とからなる測温体を挿入し、固定部材にて保持させ、上記測温体の測温素子からリード線が固定部材より露出するまでのリード線の長さを、上記リード線の線径の2倍より大きく30倍以下としたことによって、ウェハの表面温度を正確にかつ追従性良く測定することができるため、ウェハを35℃/分以上の速度で急速昇温することができる。 As described above, according to U E c support member of the present invention, the one main surface side of the ceramic plate, the mounting surface mounting the wafer, within the other main surface or the plate-shaped ceramic body A resistance heating element is provided, and a concave portion is formed on the other main surface of the plate-shaped ceramic body. A temperature measuring element including a temperature measuring element and a lead wire is inserted into the concave portion and held by a fixing member. The length of the lead wire from the temperature measuring element of the temperature measuring element until the lead wire is exposed from the fixing member is set to be larger than twice the wire diameter of the lead wire and not more than 30 times, thereby obtaining the surface temperature of the wafer. Can be measured accurately and with good followability, the temperature of the wafer can be rapidly raised at a rate of 35 ° C./min or more.

また、上記測温体のリード線の線径をA、測温素子から抵抗発熱体までの最短距離をL1、測温素子から板状セラミック体の一方の主面へ鉛直に延ばした垂線と、板状セラミック体の一方の主面との交点から抵抗発熱体までの最短距離をL2とした時、(L2−7×A)<L1<(L2−A)の関係を満足するようにすることで、ウェハ温度の応答時間が短く優れ、しかもウェハの面内温度差を0.7℃以下とすることができる。 Further, the wire diameter of the lead wire of the temperature measuring element is A, the shortest distance from the temperature measuring element to the resistance heating element is L1, and a perpendicular extending vertically from the temperature measuring element to one main surface of the plate-like ceramic body, When the shortest distance from the intersection with one main surface of the plate-like ceramic body to the resistance heating element is L2, the relationship of (L2-7 × A) <L1 <(L2-A) should be satisfied. Thus, the wafer temperature response time is short and excellent, and the in-plane temperature difference of the wafer can be reduced to 0.7 ° C. or less.

らに、上記固定部材の熱伝導率は、板状セラミック体の熱伝導率の60%以上、300%以下とし、さらにはビッカース硬度が50以下の金属により形成することで、ウェハ温度の応答時間は30秒以下と短く優れ、しかもウェハの面内温度差を0.4〜0.7℃以下と小さくすることができる。 Et al is the thermal conductivity of the fixing member is more than 60% of the thermal conductivity of the ceramic plate, and 300% or less, still more by Vickers hardness is formed by 50 or less of the metal, the response of the wafer temperature The time is as short as 30 seconds or less, and the in-plane temperature difference of the wafer can be reduced to 0.4 to 0.7 ° C. or less.

また、上記測温体の測温素子は、凹部底面に対して平行に配接することで、ウェハの表面温度をさらに正確にかつ追従性良く測定することができる。   In addition, the temperature measuring element of the temperature measuring element can be measured in parallel with the bottom surface of the recess to measure the surface temperature of the wafer more accurately and with good followability.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1は本発明に係るウハ支持部材1の一例を示す断面図であり、炭化珪素、アルミナまたは窒化アルミニウムを主成分とするセラミックスの板状体からなる板状セラミック体2の一方の主面3をウハWを載せる載置面とするとともに、他方の主面に抵抗発熱体5を形成し、該抵抗発熱体5に電気的に接続する給電部6を具備し、前記抵抗発熱体5による加熱温度を板状セラミック体2の凹部9に固定した測温素子8aで測定してウハ支持部材1を構成したものである。支持ピン12は板状セラミック体2を貫通する孔を通してウェハWを上下に移動させウェハWを主面3に載せたり降ろしたりすることができる。そして、給電部6に給電端子11が接続し外部から電力が供給され、測温素子8aとリード線8からなる測温体で温度を測定しながらウェハWを加熱することができる。 Figure 1 is a sectional view showing an example of a c E c support 1 according to the present invention, silicon carbide, alumina or one of the main ceramic plate 2 made of aluminum nitride plate-like body of ceramics mainly a surface 3 with a mounting surface mounting the U E wafer W, to form a resistance heating element 5 on the other main surface, comprising a feeding unit 6 electrically connected to the resistance heating element 5, the resistive heating it is obtained by constituting the c E c support member 1 by measuring the heating temperature by the body 5 with temperature measuring element 8a fixed to the recess 9 of the ceramic plate 2. The support pins 12 can move the wafer W up and down through a hole penetrating the plate-like ceramic body 2 to place or drop the wafer W on the main surface 3. The power supply terminal 11 is connected to the power supply unit 6 and electric power is supplied from the outside, and the wafer W can be heated while measuring the temperature with a temperature measuring element including the temperature measuring element 8 a and the lead wire 8.

抵抗発熱体5のパターン形状としては、図2に示したような渦巻き状のパターン、もしくは図3、4に示したように複数のブロックに分割され、個々のブロックが円弧状のパターンと直線状のパターンとからなる渦巻き状やジグザクな折り返し形状をしたものとすることができる。そして、抵抗発熱体5を複数のブロックに分割する場合、それぞれのブロックの温度を独立に測定し制御することにより、主面3上のウェハWを均一に加熱できるように構成している。   As a pattern shape of the resistance heating element 5, a spiral pattern as shown in FIG. 2 or a plurality of blocks as shown in FIGS. A spiral shape or a zigzag folded shape consisting of the above pattern can be used. When the resistance heating element 5 is divided into a plurality of blocks, the wafer W on the main surface 3 can be uniformly heated by independently measuring and controlling the temperature of each block.

また、抵抗発熱体5は、導電性の金属粒子にガラスフリットや金属酸化物を含むペーストを印刷法で板状セラミック体2に印刷したもので、前記金属粒子としてはAu、Ag、Cu、Pd、Pt、Rhの少なくとも一種を含む成分からなる。ガラスフリットはB、Si、Znを含む酸化物からなるものが好ましい。この様なガラスや金属酸化物と金属粒子を混合した抵抗発熱体5とすることで、抵抗発熱体5の熱膨張係数を板状セラミック体2の熱膨張係数に近いものとすることができる。   Further, the resistance heating element 5 is obtained by printing a paste containing glass frit or metal oxide on conductive metal particles on the plate-like ceramic body 2 by a printing method. As the metal particles, Au, Ag, Cu, Pd , Pt, and Rh. The glass frit is preferably made of an oxide containing B, Si, and Zn. By using the resistance heating element 5 in which such glass or metal oxide and metal particles are mixed, the thermal expansion coefficient of the resistance heating element 5 can be made close to the thermal expansion coefficient of the plate-like ceramic body 2.

また、主面3には図5に示すように、板状セラミック体2の一方の主面3から一定の距離にウェハWを保持する様に、前記主面3に複数の支持ピン4から構成されていても良い。   Further, as shown in FIG. 5, the main surface 3 includes a plurality of support pins 4 on the main surface 3 so as to hold the wafer W at a certain distance from one main surface 3 of the plate-like ceramic body 2. May be.

本発明のウハ支持部材1は、板状セラミック体2の一方の一主面3を、ウェハWを載せる載置面とするか、あるいは、前記主面3から一定の距離にウェハWを保持し、前記主面の反対側から加熱面に向けて凹部9を設けると共に、前記凹部9に測温素子8aを挿入したウハ支持部材1において、前記凹部9に測温素子8aを固定する固定部材17を備え、前記板状セラミック体2に前記固定部材17に覆われるか或いは挟まれた部分の前記測温素子8aの長さが前記測温素子8aの線径Aの2倍より大きく30倍以下であることを特徴とする。 C E c support 1 of the present invention, one of the main surface 3 of the ceramic plate 2, or the mounting surface mounting the wafer W, or the wafer W at a certain distance from the main surface 3 fixed holding, provided with a recess 9 toward the heating surface from the opposite side of the main surface, the U E c support member 1 by inserting the temperature sensing element 8a in the recess 9, a temperature sensing element 8a in the recess 9 And the length of the temperature measuring element 8a in the portion covered or sandwiched by the plate-like ceramic body 2 is more than twice the wire diameter A of the temperature measuring element 8a. It is characterized by being 30 times or less.

ウェハWを載せるか或いは一定の距離にウェハWを支持する板状セラミック体2の一方の主面と異なる他方の主面に凹部9を形成し、凹部9に測温素子8aを挿入し、板状セラミック体2の温度を測定する。前記凹部9の大きさは直径2〜5mmで、板状セラミック体2の好ましい厚み2〜5mmの3分の2程の深さに穿孔され、板状セラミック体2の一方の主面3の温度が正確に反映され、測温素子8aと、凹部9の底面9aとの接触界面との熱的抵抗が小さくなるように、凹部9の底面9aに測温素子8aを直接接触させるか、或いは熱的抵抗を小さくするよう凹部9の底面9aに熱伝導率が100W/(m・K)以上と大きく、変形し易い金属箔やペーストからなる熱的接続部材15を介して測温素子8aを接続することが好ましい。   A recess 9 is formed on the other main surface different from one main surface of the plate-like ceramic body 2 on which the wafer W is placed or which supports the wafer W at a certain distance, and a temperature measuring element 8a is inserted into the recess 9, and the plate The temperature of the ceramic body 2 is measured. The size of the recess 9 is 2 to 5 mm in diameter, and is drilled to a depth of about two-thirds of the preferred thickness 2 to 5 mm of the plate-like ceramic body 2, and the temperature of one main surface 3 of the plate-like ceramic body 2. Is accurately reflected, and the temperature measuring element 8a is brought into direct contact with the bottom surface 9a of the recess 9 or the heat is applied so that the thermal resistance between the temperature measuring element 8a and the contact interface between the bottom surface 9a of the recess 9 is reduced. The temperature measuring element 8a is connected to the bottom surface 9a of the recess 9 through a thermal connecting member 15 made of a metal foil or paste that is easily deformed and has a large thermal conductivity of 100 W / (m · K) or more so as to reduce the resistance. It is preferable to do.

更に、厚みが2〜5mmの板状セラミック体2の主面3の温度を正確に測温するために、板状セラミック体2の主面3の温度を測温素子8aに伝えることが必要であり、測温素子8aとして例えば熱電対であれば、測温点から熱電対の線径の2倍より大きい長さに渡り凹部9と熱的接続部分があると主面3の温度を感度良く正確に測定できる。例えば熱電対からなる、測温素子8aのリード線8の線径の2倍以下であると、測温点の熱が測温素子8aから延びるリード線8自身を介して板状セラミック体2の外部へ流れ、測温点の温度が低下する虞があるからである。好ましくは2倍より大きく、より好ましくは5倍以上で、更に好ましくはリード線8の7倍以上であり、特に測温点からの測温素子8aからリード線8の直線部がリード線8の線径の4倍以上あると好ましく、更にこの直線部は凹部底面9aに平行とすることで主面3の温度を感度良く測温できることから好ましい。そして、前記直線部が板状セラミック体2の一方の主面に平行であるとより好ましい。   Furthermore, in order to accurately measure the temperature of the main surface 3 of the plate-like ceramic body 2 having a thickness of 2 to 5 mm, it is necessary to transmit the temperature of the main surface 3 of the plate-like ceramic body 2 to the temperature measuring element 8a. If, for example, a thermocouple is used as the temperature measuring element 8a, the temperature of the main surface 3 can be improved with high sensitivity if there is a recess 9 and a thermal connection portion extending from the temperature measuring point to a length larger than twice the wire diameter of the thermocouple. It can be measured accurately. For example, if it is less than twice the diameter of the lead wire 8 of the temperature measuring element 8a made of a thermocouple, the heat of the temperature measuring point of the plate-like ceramic body 2 via the lead wire 8 itself extending from the temperature measuring element 8a. This is because the temperature at the temperature measuring point may decrease due to flowing to the outside. Preferably, it is larger than 2 times, more preferably 5 times or more, and further preferably 7 times or more of the lead wire 8, and in particular, the linear portion of the lead wire 8 from the temperature measuring element 8 a from the temperature measuring point is It is preferable that the diameter is 4 times or more of the wire diameter, and further, this linear portion is preferable because the temperature of the main surface 3 can be measured with high sensitivity by being parallel to the concave bottom surface 9a. And it is more preferable that the straight part is parallel to one main surface of the plate-like ceramic body 2.

尚、前記の凹部9との熱的接続部分とは、凹部9の底面9aに固定部材17としてロウ材や熱導伝性ペーストで測温素子8aを固定する場合には、測温素子8aから延びるリード線8及び又は測温素子8aが凹部9内の前記ロウ材や熱導伝性ペーストで覆われた部分を示す。前記固定部材17として固形物を使用した場合、前記熱的接続部分は凹部9の固定部材17と測温素子8aや測温素子8aから延びるリード線8が接触している部分を指す。また、固形の固定部材17を使用した場合には固定部材17で測温素子8aが埋設されてないことから雰囲気ガスの影響を受けるが、大気中で使われるコータデベロッパ用のウハ支持部材1では雰囲気ガスの影響はなく、取り扱い上からも好適である。 In addition, when the temperature measuring element 8a is fixed to the bottom surface 9a of the recessed part 9 with the brazing material or the heat conductive paste as the fixing member 17, the thermally connected part with the recessed part 9 is from the temperature measuring element 8a. The extending lead wire 8 and / or the temperature measuring element 8a are shown in the concave portion 9 covered with the brazing material or the heat conductive paste. When a solid material is used as the fixing member 17, the thermal connection portion refers to a portion where the fixing member 17 of the recess 9 is in contact with the temperature measuring element 8 a or the lead wire 8 extending from the temperature measuring element 8 a. Also, when using a fixed member 17 of the solid is affected by the atmosphere gas from the temperature sensor 8a measured by the fixed member 17 is not embedded, but U E c support for coater developer used in the air No. 1 is not affected by the atmospheric gas, and is preferable from the viewpoint of handling.

特に、図5に示す固定部材17が固形の場合、測温素子8aがセラミック製の凹部9と熱的接続が確実になされるように、凹部9の底面9aに熱的接続部材15として軟質の金属箔からなるアルミニウム箔等を置き、このアルミニウム箔等からなる熱的接続部材15を介して、測温素子8aを固定部材17で押し付け、測温素子8aが凹部9と面で接触するように配接することが好ましい。   In particular, when the fixing member 17 shown in FIG. 5 is solid, a soft connecting member 15 is provided on the bottom surface 9a of the concave portion 9 so that the temperature measuring element 8a can be surely thermally connected to the concave portion 9 made of ceramic. An aluminum foil or the like made of a metal foil is placed, and the temperature measuring element 8a is pressed by the fixing member 17 through the thermal connecting member 15 made of the aluminum foil or the like so that the temperature measuring element 8a comes into contact with the recess 9 on the surface. It is preferable to arrange.

凹部9がヤング率200GPa以上の剛性の大きな板状セラミック体2からなり、凹部底面9aは加圧による変形が小さいことから、測温素子8aを凹部9と面接触させるには、凹部9の底面9aに熱的接続部材15を介し底面9aと熱的接続部材15を面接触させ、熱的接続部材15と測温素子8aや測温素子8aから延びるリード線8を面で接触させることが好ましい。通常、セラミック製の凹部底面9aの変形が小さいことから直接測温素子と凹部底面9aが面接触し難いので、測温素子8aを加圧することにより、熱的接触部材15として変形が大きく面接触し易いアルミニウム、銀等の金属箔を介して測温素子8aを取り付けることは、凹部9と測温素子8aの界面の熱的な抵抗を小さくする上で効果的であり、主面3の正確な温度を測定する上で有効である。   The concave portion 9 is made of a plate-like ceramic body 2 having a high Young's modulus of 200 GPa or more, and the bottom surface 9a of the concave portion is less deformed by pressurization. Therefore, in order to bring the temperature measuring element 8a into surface contact with the concave portion 9, It is preferable that the bottom surface 9a and the thermal connection member 15 are brought into surface contact with 9a via the thermal connection member 15, and the thermal connection member 15 and the lead wire 8 extending from the temperature measurement element 8a are brought into contact with each other on the surface. . Usually, since the deformation of the ceramic concave bottom surface 9a is small, it is difficult for the temperature measuring element and the concave bottom surface 9a to directly come into surface contact with each other. It is effective to reduce the thermal resistance at the interface between the concave portion 9 and the temperature measuring element 8a by attaching the temperature measuring element 8a through a metal foil such as aluminum or silver which is easy to perform. It is effective in measuring a certain temperature.

前記凹部9に前記測温素子8aや測温素子8aから延びるリード線8を固定する固定部材17を備え、前記板状セラミック体2に前記固定部材17に覆われるか或いは挟まれた前記測温素子8aからリード線8の長さが、前記リード線8の線径Aの30倍以下であることが重要である。前記測温素子8aを固定する凹部9を大きくしたり、前記リード線8を渦巻き状に旋回したりして線径Aの30倍を越えると、凹部9内のリード線8の長さが大きくなることから、2〜5mmと薄い板状セラミック体2とリード線8の熱伝導率や熱容量の違いにより板状セラミック体2の主面3の温度分布が変化する虞があるためである。好ましくは、前記固定部材17に覆われるか或いは挟まれた前記測温素子8aからリード線8の長さが前記リード線8の線径Aの20倍以下である。この様に設定することにより測温素子8aの温度は板状セラミック体2の主面の温度と0.3℃以内に抑えることが可能であり、しかも主面3の温度変化に対して追従性を高めることが可能である。   The temperature measuring element 8a and the fixing member 17 for fixing the lead wire 8 extending from the temperature measuring element 8a are provided in the concave portion 9, and the temperature measuring element is covered or sandwiched by the plate-like ceramic body 2 with the fixing member 17. It is important that the length of the lead wire 8 from the element 8a is not more than 30 times the wire diameter A of the lead wire 8. If the concave portion 9 for fixing the temperature measuring element 8a is enlarged or the lead wire 8 is swirled in a spiral shape to exceed 30 times the wire diameter A, the length of the lead wire 8 in the concave portion 9 becomes large. Therefore, the temperature distribution of the main surface 3 of the plate-like ceramic body 2 may change due to the difference in thermal conductivity and heat capacity between the thin plate-like ceramic body 2 and the lead wire 8 of 2 to 5 mm. Preferably, the length of the lead wire 8 from the temperature measuring element 8 a covered or sandwiched by the fixing member 17 is 20 times or less of the wire diameter A of the lead wire 8. By setting in this way, the temperature of the temperature measuring element 8a can be suppressed to within 0.3 ° C. with respect to the temperature of the main surface of the plate-like ceramic body 2, and the follow-up property to the temperature change of the main surface 3 It is possible to increase.

次に、上記ウハ支持部材1の主面3の温度は上述の様に測温素子8aやリード線8を配設することで正確に測定できるのであるが、ウェハWの温度を一定に制御するには、上述の測温素子8aで板状セラミック体2の主面の温度を測定しながら板状セラミック体2に備えた抵抗発熱体5に電力を供給し発熱させ、前記主面の温度を均一になるよう制御している。そのためには、抵抗発熱体5から板状セラミック体2までの熱の伝導性及び板状セラミック体2の主面から測温素子8aへの熱の伝わり、抵抗発熱体5から測温素子8aへの熱の伝わり方が特に重要である。抵抗発熱体5の熱は前記主面3に伝わり、しかもウェハWの温度分布が均一であることが要求される。 Next, the U although the temperature of the E c support 1 of the main surface 3 than can be accurately measured by disposing a temperature measuring element 8a and the leads 8 as described above, the constant temperature of the wafer W In order to control, while the temperature of the main surface of the plate-like ceramic body 2 is measured by the temperature measuring element 8a, power is supplied to the resistance heating element 5 provided in the plate-like ceramic body 2 to generate heat, and the main surface of the plate-like ceramic body 2 is heated. The temperature is controlled to be uniform. For this purpose, heat conductivity from the resistance heating element 5 to the plate-like ceramic body 2 and heat transfer from the main surface of the plate-like ceramic body 2 to the temperature measuring element 8a, and from the resistance heating element 5 to the temperature measuring element 8a. The heat transmission is especially important. The heat of the resistance heating element 5 is transmitted to the main surface 3, and the temperature distribution of the wafer W is required to be uniform.

しかし、抵抗発熱体5の熱が前記主面3より遅く測温素子8aを加熱すると前記主面3の温度を測温素子8aで追従性良く正確に測定することが困難となる。この点から、前記測温素子8aから前記抵抗発熱体5までの最短距離L1と、測温素子8aから板状セラミック体2の一方の主面3へ鉛直に延ばした垂線と、板状セラミック体2の一方の主面3との交点Pから前記抵抗発熱体5までの最短距離L2とが同等で、しかも各最短距離の間隔における熱抵抗ができる限り小さいことが好ましい。そこで、本願発明者は、この間隔L1、L2は測温素子の線径と関連し、間隔L1、L2と適切な関係を満足させることが重要であり、適切な関係を満足させることでウェハWの温度分布が均一で、しかも温度変更が迅速・容易なウハ支持部材1を提供できることを究明した。 However, if the resistance heating element 5 heats the temperature measuring element 8a later than the main surface 3, it becomes difficult to accurately measure the temperature of the main surface 3 with the temperature measuring element 8a. From this point, the shortest distance L1 from the temperature measuring element 8a to the resistance heating element 5, the perpendicular extending from the temperature measuring element 8a to one main surface 3 of the plate-like ceramic body 2, and the plate-like ceramic body 2 is preferably equal to the shortest distance L2 from the intersection P with the one main surface 3 to the resistance heating element 5, and the thermal resistance at the shortest distance is as small as possible. Therefore, the inventor of the present application relates to the distances L1 and L2 with the wire diameter of the temperature measuring element, and it is important to satisfy an appropriate relationship with the distances L1 and L2, and by satisfying the appropriate relationship, the wafer W temperature distribution is uniform, moreover the temperature change has been investigated to be able to provide a quick and easy c E c support 1.

前記の適切な関係とは、L1は間隔(L2−7×A)より大きく、(L2−A)より小さいことが好ましい。   With respect to the appropriate relationship, L1 is preferably larger than the interval (L2-7 × A) and smaller than (L2-A).

(式1)
(L2−7×A)<L1<(L2−A)
L1が(L2−A)より大きいと測温素子8aが主面3に接近し過ぎることから主面3の測温素子に近い部分の温度が低下しウェハWの温度分布が悪くなると共に主面3を代表する温度を測定できなく虞があるからである。また、L1が(L2−7×A)より小さいと主面3の温度より抵抗発熱体5の温度の影響が大きく、主面3の温度を正確且つ迅速に測温素子8aで測定することが困難となり、ウェハWの温度を一定に制御したりウェハを急速に昇温すると、ウェハWの温度を設定温度に制御できないばかりか、ウェハWの温度がオバーシュートしたりする可能性が大きくなるからである。
(Formula 1)
(L2-7 × A) <L1 <(L2-A)
If L1 is larger than (L2-A), the temperature measuring element 8a is too close to the main surface 3, so that the temperature of the portion of the main surface 3 close to the temperature measuring element decreases, the temperature distribution of the wafer W deteriorates and the main surface This is because the temperature representative of 3 cannot be measured. Further, if L1 is smaller than (L2-7 × A), the temperature of the resistance heating element 5 is greater than the temperature of the main surface 3, and the temperature of the main surface 3 can be measured accurately and quickly by the temperature measuring element 8a. If the temperature of the wafer W is controlled to be constant or the temperature of the wafer is rapidly raised, the temperature of the wafer W cannot be controlled to the set temperature, and the possibility that the temperature of the wafer W will overshoot increases. It is.

また、凹部9に測温素子8aやリード線8を固定する熱的接続部材15や固定部材17の熱伝導率は100W/(m・K)以上が好ましく、更に板状セラミック体2の熱伝導率の60%より大きく、板状セラミック体2の熱伝導率の300%以下であることが好ましい。熱的接続部材15や固定部材17の熱伝導率が100W/(m・K)未満であったり、板状セラミック体2の熱伝導率の60%より小さいと、板状セラミック体2の主面3の温度が速やかに測温素子8aに伝わらないことから、ウェハWの温度を精度良くしかも迅速に制御し難くなる虞があり、熱的接続部材15や前記固定部材17の熱伝導率が板状セラミック体2の熱伝導率の300%以上では、板状セラミック体2との熱伝導率の差が大きすぎることから前記凹部9に測温素子8aと熱的接続部材15や固定部材17を装填すると、凹部9直上の主面3にホットスポットやクールスポットが発生しウェハWの温度分布が悪くなる虞があり好ましくない。   Further, the thermal conductivity of the thermal connection member 15 and the fixing member 17 for fixing the temperature measuring element 8a and the lead wire 8 to the recess 9 is preferably 100 W / (m · K) or more, and further the thermal conductivity of the plate-like ceramic body 2. It is preferably greater than 60% of the rate and 300% or less of the thermal conductivity of the plate-like ceramic body 2. If the thermal conductivity of the thermal connection member 15 or the fixing member 17 is less than 100 W / (m · K) or less than 60% of the thermal conductivity of the plate-like ceramic body 2, the main surface of the plate-like ceramic body 2 3 is not quickly transmitted to the temperature measuring element 8a, it may be difficult to control the temperature of the wafer W accurately and quickly, and the thermal conductivity of the thermal connection member 15 and the fixing member 17 may be reduced. When the thermal conductivity of the ceramic body 2 is 300% or more, the difference in thermal conductivity with the plate-like ceramic body 2 is too large, so that the temperature measuring element 8a, the thermal connecting member 15 and the fixing member 17 are provided in the concave portion 9. If it is loaded, a hot spot or a cool spot is generated on the main surface 3 immediately above the recess 9 and the temperature distribution of the wafer W may be deteriorated.

更に、前記熱的接続部材15は、1Nの荷重を30秒間加え測定したビッカース硬度Hvが50以下であることが好ましい。ビッカース硬度が50以上では測温素子8aと熱的接触部材51や熱的接触部材51と凹部底面8aとの接触面積が小さく板状セラミック体2の主面3の温度を迅速に測定することが難しく、ウェハWの温度を一定に制御したり、急速にウェハW温度を昇温すると温度がオーバシュートすることがあった。従って熱的接続部材15の硬度Hvは50以下が好ましく、更に好ましくは30以下である。   Further, the thermal connection member 15 preferably has a Vickers hardness Hv of 50 or less measured by applying a 1 N load for 30 seconds. When the Vickers hardness is 50 or more, the contact area between the temperature measuring element 8a and the thermal contact member 51 or between the thermal contact member 51 and the recess bottom surface 8a is small, and the temperature of the main surface 3 of the plate-like ceramic body 2 can be measured quickly. It is difficult to control the temperature of the wafer W at a constant value, or when the temperature of the wafer W is rapidly increased, the temperature may overshoot. Accordingly, the hardness Hv of the thermal connection member 15 is preferably 50 or less, and more preferably 30 or less.

この様な熱的接続部材15としては銀、アルミニウム、白金や金が好ましく、熱的接続部材15の厚みは10μmから300μmが好ましい。熱的接続部材15の厚みが10μm以下では測温素子8aやリード線8を押し付けても面接触する範囲が小さく厚みが300μm以上では熱の伝達が遅くなり迅速な測温が難しくなる。好ましくは、熱的接続部材15の厚みは50〜200μmである。   Such a thermal connection member 15 is preferably silver, aluminum, platinum or gold, and the thickness of the thermal connection member 15 is preferably 10 μm to 300 μm. If the thickness of the thermal connection member 15 is 10 μm or less, the surface contact range is small even if the temperature measuring element 8a or the lead wire 8 is pressed, and if the thickness is 300 μm or more, the heat transfer is slow and rapid temperature measurement becomes difficult. Preferably, the thickness of the thermal connection member 15 is 50 to 200 μm.

また、前記凹部9の底面9aに前記測温素子8aやリード線8の先端部が主面3に平行に配設することが好ましい。測温素子8aやリード線8の先端部が主面3に平行に配設されていないと、測温素子8aの熱がリード線8を伝わり逃げることから測温した温度が低下し、正確なウェハWの温度を測定できないからである。測温素子8aの先端部が主面3と平行な長さは2〜3mmが好ましい。2mm以下では測温部の検知部が短いことから熱の逃げが大きく正確な測温をすることが難しい。また、3mm以上では凹部の内径が大きくなり過ぎて凹部上面にクールスポットを生じる危険性があるからである。   In addition, it is preferable that tip portions of the temperature measuring element 8 a and the lead wire 8 are arranged in parallel to the main surface 3 on the bottom surface 9 a of the recess 9. If the tip of the temperature measuring element 8a or the lead wire 8 is not arranged parallel to the main surface 3, the temperature of the temperature measuring element 8a is transmitted through the lead wire 8 and escapes. This is because the temperature of the wafer W cannot be measured. The length of the tip of the temperature measuring element 8a parallel to the main surface 3 is preferably 2 to 3 mm. If it is 2 mm or less, since the detection part of the temperature measuring part is short, heat escape is large and it is difficult to perform accurate temperature measurement. Further, if it is 3 mm or more, the inner diameter of the recess becomes too large, and there is a risk of causing a cool spot on the upper surface of the recess.

次に、本発明の他の実施形態を示す。   Next, another embodiment of the present invention will be described.

図6は、抵抗発熱体5により加熱が容易で加熱による変形が小さな2から5mmの板厚の板状セラミック体2に測温素子8aを取り付けた本発明の他の実施形態を示す図である。凹部の深さは板厚の2/3程で、凹部の直径は3mmであり、測温素子8aやリード線8として0.3から0.8mmで表面を絶縁処理した熱電対を使い、熱電対の先端2〜3mmを折り曲げ凹部9にロウ付けしたもので、例えば金錫ロウや銀銅ロウが使用できる。ロウ付けの他、硬化収縮の非常に小さな例えば銀・エポキシ樹脂を混合した熱伝導性ペーストで接着しても良い。そして、これらのロウ材や熱伝導性ペーストは測温素子8aや測温素子8aに近いリード線8を固定する前記固定部材17の熱的特性や機械的特性を有していると、ウェハWの温度を正確に精度良くしかも感度良く測定することができることを究明できた。   FIG. 6 is a view showing another embodiment of the present invention in which a temperature measuring element 8a is attached to a plate-like ceramic body 2 having a thickness of 2 to 5 mm which is easily heated by the resistance heating element 5 and is small in deformation due to heating. . The depth of the concave portion is about 2/3 of the plate thickness, the diameter of the concave portion is 3 mm, and a thermocouple whose surface is insulated with 0.3 to 0.8 mm as the temperature measuring element 8a or the lead wire 8 is used. A pair of tip ends of 2 to 3 mm are bent and brazed to the recess 9, and for example, a gold tin solder or a silver copper solder can be used. In addition to brazing, it may be bonded with a heat conductive paste mixed with, for example, silver / epoxy resin having a very small curing shrinkage. When these brazing materials and thermal conductive paste have the thermal characteristics and mechanical characteristics of the fixing member 17 for fixing the temperature measuring element 8a and the lead wire 8 close to the temperature measuring element 8a, the wafer W It was found that it was possible to measure the temperature accurately and with high sensitivity.

図7は、図6と同様の板状セラミック体2に同様の凹部9を形成し、熱的接続部材15を凹部底面9aに備え、測温素子8aとリード線8を固定部材17で押圧したもので、固定部材17を押圧する加圧ピン16を有しており、加圧ピン16と固定部材17の間には断熱層として熱伝導率が5W/(m・K)以下のアルミナ・ジルコニア複合セラミックやテフロン(登録商標)等の耐熱樹脂からなる断熱部材20が用いられる。そして加圧ピン16は外部に備えたスプリングバネ18で断熱部材20を押圧する構造としている。   7, the same concave portion 9 is formed in the same plate-like ceramic body 2 as in FIG. 6, the thermal connection member 15 is provided on the concave bottom surface 9 a, and the temperature measuring element 8 a and the lead wire 8 are pressed by the fixing member 17. It has a pressure pin 16 that presses the fixing member 17, and an alumina zirconia having a thermal conductivity of 5 W / (m · K) or less as a heat insulating layer between the pressure pin 16 and the fixing member 17. A heat insulating member 20 made of a heat resistant resin such as composite ceramic or Teflon (registered trademark) is used. The pressure pin 16 has a structure in which the heat insulating member 20 is pressed by a spring spring 18 provided outside.

一方、ウハ支持部材1を構成する板状セラミック体2の材質としては、耐摩耗性、耐熱性に優れるアルミナ、窒化珪素、サイアロン、窒化アルミニウム、炭化珪素を用いることができ、この中でも特に窒化アルミニウムや炭化珪素は熱伝導率が50W/(m・K)以上、さらには100W/(m・K)以上の高い熱伝導率を有するとともに、ヤング率が300GPa、400GPaと大きく、加熱による板状セラミック体2の変形が小さく好ましい。更に、フッ素系や塩素系等の腐食性ガスに対する耐蝕性や耐プレズマ性にも優れることから、板状セラミック体2の材質として好適である。 On the other hand, c as the material of E c support 1 constituting the ceramic plate 2, abrasion resistance, alumina having excellent heat resistance, silicon nitride, sialon, can be used aluminum nitride, silicon carbide, among this Aluminum nitride and silicon carbide have a high thermal conductivity of 50 W / (m · K) or more, more preferably 100 W / (m · K) or more, and a large Young's modulus of 300 GPa or 400 GPa. The deformation of the ceramic body 2 is small and preferable. Further, since it is excellent in corrosion resistance and plasma resistance against corrosive gases such as fluorine and chlorine, it is suitable as a material for the plate-like ceramic body 2.

このようなウハ支持部材1を製造する方法として、まず、板状セラミック体2をなすAlN粉末に炭酸カルシウム等の焼結助剤を加え、アクリル系のバインダを添加し板状に成形し、カーボン残さを残した成形体を2000℃程で加圧焼結させる。または、窒化アルミニウム粉末に0.1質量%のカルシアを添加しバインダを添加し造粒した粉末を板状に成形し窒素雰囲気中で2000℃以上で焼成する。焼結した板状セラミック体2の表裏面を研削加工し、円板状に加工する。そして他方の主面に前記抵抗発熱体5を印刷し抵抗発熱体5を設ける。抵抗発熱体5の存在領域が略円形をした図2に示す中央から外周へ向かう渦巻き状の抵抗発熱体5や図3、4に示す抵抗発熱体5を配設した板状セラミック体2を形成する。 As a method of manufacturing such a window E wafer support 1, first, a sintering aid such as calcium carbonate addition to AlN powder constituting the ceramic plate 2, was added binder acrylic molded into a plate The compact with the carbon residue left is sintered under pressure at about 2000 ° C. Alternatively, 0.1 mass% calcia is added to the aluminum nitride powder, and a binder is added to granulate the powder to form a plate and fired at 2000 ° C. or higher in a nitrogen atmosphere. The front and back surfaces of the sintered plate-shaped ceramic body 2 are ground and processed into a disk shape. The resistance heating element 5 is printed on the other main surface to provide the resistance heating element 5. The plate-like ceramic body 2 in which the resistance heating element 5 is formed in a spiral shape from the center to the outer periphery shown in FIG. 2 and the resistance heating element 5 shown in FIGS. To do.

しかるのち、板状セラミック体2の上面に研摩加工を施してウェハWを載置するかあるいは主面3から一定の距離にウェハWを支持する主面3を形成するとともに、下面に給電端子11と板状セラミック体2を固定する有底筒状体19に取り付け固定している。   After that, the upper surface of the plate-like ceramic body 2 is polished to place the wafer W, or the main surface 3 that supports the wafer W at a certain distance from the main surface 3 is formed, and the power supply terminal 11 is formed on the lower surface. Are attached and fixed to a bottomed cylindrical body 19 for fixing the plate-like ceramic body 2.

なお、図1では板状セラミック体2の他方の主面3に抵抗発熱体5のみを備えたウハ支持部材1について示したが、本発明は、主面3と抵抗発熱体5との間に静電吸着用やプラズマ発生用としての電極を埋設したものであっても良いことは言うまでもない。更に抵抗発熱体5を板状セラミック体2の他方の主面に設けたヒータについて述べたが、抵抗発熱体5を板状セラミック体2の載置面3と異なる主面に形成しガラス等で埋設しても同様の効果が得られる。 Although shown for U E c support member 1 having only the resistance heating element 5 on the other main surface 3 of Figure 1, the ceramic plate 2, the present invention is the main surface 3 and the resistance heating element 5 Needless to say, an electrode for electrostatic adsorption or plasma generation may be embedded in between. Further, the heater having the resistance heating element 5 provided on the other main surface of the plate-like ceramic body 2 has been described. However, the resistance heating element 5 is formed on a main surface different from the mounting surface 3 of the plate-like ceramic body 2 and is made of glass or the like. The same effect can be obtained even if buried.

また、抵抗発熱体5が板状セラミクス体2の主面3に設けられた例を示したが、板状セラミックス体2の載置面と異なる主面側に抵抗発熱体5を埋設したウハ支持部材でも同様の効果が得られる。 Further, c E is the resistance heating element 5 shows an example provided in the main surface 3 of the plate-shaped ceramic body 2, which is embedded resistance heating element 5 on the main surface different from the mounting surface plate-shaped ceramic body 2 The same effect can be obtained with the support member.

(実施例1)
ここで、板状セラミック体2として平均粒径1.2μmの窒化アルミニウム粉末に平均粒径1μmのカルシアを0.1質量%添加し混合粉砕しアクリルバインダを添加しφ400mmの板状に成形し、空気中と窒素雰囲気中の400℃で1時間脱バインダ処理した後、2000℃の窒素雰囲気中で焼結した。焼結体の表裏面を研削加工しφ320mmで厚み3mmの円板状の板状セラミック体2を得た。そして、この板状セラミック体2の他方の主面3に金属銀50質量%含み、B・SiO・ZnOガラス(熱膨張係数4.4×10−6/℃)を50質量%含む粉体に溶剤を添加しペーストを作製した。
(Example 1)
Here, 0.1% by mass of calcia with an average particle diameter of 1 μm was added to the aluminum nitride powder having an average particle diameter of 1.2 μm as the plate-like ceramic body 2, mixed and pulverized, and an acrylic binder was added to form a plate having a diameter of 400 mm, After binder removal treatment at 400 ° C. for 1 hour in air and nitrogen atmosphere, sintering was performed in a nitrogen atmosphere at 2000 ° C. The front and back surfaces of the sintered body were ground to obtain a disk-shaped plate-shaped ceramic body 2 having a diameter of 320 mm and a thickness of 3 mm. The other main surface 3 of the plate-like ceramic body 2 contains 50% by mass of metallic silver and 50% by mass of B 2 O 3 .SiO 2 .ZnO glass (thermal expansion coefficient 4.4 × 10 −6 / ° C.). A solvent was added to the contained powder to prepare a paste.

そして、板状セラミック体2の他方の主面に抵抗発熱体5として上記ペーストを20μmの厚みにスクリーン印刷法で印刷した。そして、個々の各抵抗発熱体5に対応して直径3mmで深さ2mmの凹部9を作製した。そして、凹部9の底面9aに熱的接続部材15として100μmの厚みのアルミニウム箔を置き、測温素子8aやリード線8として線径0.5mmと0.3mmの熱電対を先端から数ミリの位置で渦巻き状に巻き先端部をアルミ箔の上に置き、アルミニウム製のφ2.9mm、厚み2mmで測温素子が通過する溝を取り付けた固定部材17で測温素子を押さえた。固定部材17は外径2.5mmで厚み500μmのジルコニアセラミックからなる断熱部材20を介して加圧ピン16で測温素子8aやリード線8を加圧し凹部9の底面9aと熱的に接続させた。尚、熱的接続をする上で、固定部材17に覆われるか或いは挟まれた測温素子8aからリード線8の長さはリード線8を渦巻き状に巻いた長さで調整した。   The paste was printed as a resistance heating element 5 on the other main surface of the plate-like ceramic body 2 to a thickness of 20 μm by a screen printing method. Then, a recess 9 having a diameter of 3 mm and a depth of 2 mm was prepared corresponding to each resistance heating element 5. Then, an aluminum foil having a thickness of 100 μm is placed as the thermal connection member 15 on the bottom surface 9 a of the recess 9, and a thermocouple having a wire diameter of 0.5 mm and 0.3 mm as a temperature measuring element 8 a and a lead wire 8 is several millimeters from the tip. The winding tip was placed on an aluminum foil in a spiral shape at the position, and the temperature measuring element was pressed by a fixing member 17 having an aluminum φ2.9 mm, thickness of 2 mm and a groove through which the temperature measuring element passed. The fixing member 17 presses the temperature measuring element 8a and the lead wire 8 with the pressure pin 16 through the heat insulating member 20 made of zirconia ceramic having an outer diameter of 2.5 mm and a thickness of 500 μm, and is thermally connected to the bottom surface 9 a of the recess 9. It was. In the thermal connection, the length of the lead wire 8 from the temperature measuring element 8a covered or sandwiched by the fixing member 17 was adjusted by the length of the lead wire 8 wound spirally.

また、試料No.7は、銀―銅ロウからなる固定部材を350℃に加熱後圧入して作製した。   Sample No. 7 was prepared by heating and fixing a fixing member made of silver-copper solder at 350 ° C.

そして、固定部材に覆われるか或いは挟まれた測温素子8aからリード線8の長さを変えたウハ支持部材を作製し、夫々のウハ支持部材に電源を取り付け25℃から200℃まで5分間でウェハWを昇温し、ウェハWの温度を200℃に設定してからウェハWの平均温度が200℃±0.5℃の範囲で一定となるまでの時間を応答時間として測定した。また200℃に設定し30分後のウェハ温度の最大値と最小値の差をウェハWの温度差として測定した。そして、表1の結果を得た。 Then, to prepare a U E c support member having different length of the lead wire 8 from or sandwiched temperature measuring element 8a is covered with the fixing member, the power window E Ha supporting member each from the mounting 25 ° C. 200 The response time is the time from when the temperature of the wafer W is raised to 200 ° C. in 5 minutes and the temperature of the wafer W is set to 200 ° C. until the average temperature of the wafer W becomes constant within a range of 200 ° C. ± 0.5 ° C. It was measured. Further, the difference between the maximum value and the minimum value of the wafer temperature after 30 minutes was set at 200 ° C., and the temperature difference of the wafer W was measured. And the result of Table 1 was obtained.

試料No.1は固定部材に挟まれた測温素子8aからリード線8の長さがリード線8の外形の2倍と小さ過ぎることから応答時間が64秒と大きく、しかもウェハの温度差も1.5℃と大きく本願発明の範囲外であることが分る。また、試料No.10は逆に固定部材に挟まれた測温素子8aからリード線8の長さが測温素子の外形の33倍と大き過ぎることから応答時間が65秒と大きく、しかもウェハの温度差1.2℃と大きく好ましくないことが判明した。   Sample No. 1 is that the length of the lead wire 8 from the temperature measuring element 8a sandwiched between the fixing members is too small to be twice as long as the outer shape of the lead wire 8, so that the response time is as large as 64 seconds and the temperature difference of the wafer is 1.5. It can be seen that it is outside the scope of the present invention, as greatly as ° C. Sample No. On the contrary, since the length of the lead wire 8 from the temperature measuring element 8a sandwiched between the fixing members is too large 33 times the outer shape of the temperature measuring element, the response time is as large as 65 seconds, and the temperature difference of the wafer 1. It was found that the temperature was not so large as 2 ° C.

一方、試料No.2〜9は固定部材に挟まれた測温素子8aからリード線8の長さが測温素子の外形の2倍より大きく30倍以下で、何れも応答時間が60秒以下と小さくしかもウェハの温度差は1℃以下と小さくウハ支持部材として優れた特性を示すことが分る。試料No.3は応答時間が50秒以下で且つウェハの温度差は0.9℃以下と小さく、更に試料No.4〜6、8は応答時間が40秒以下で且つウェハの温度差は0.8℃以下と小さく更に好ましい事が判明した。 On the other hand, sample No. Reference numerals 2 to 9 indicate that the length of the lead wire 8 from the temperature measuring element 8a sandwiched between the fixing members is more than twice the outer shape of the temperature measuring element and not more than 30 times. temperature difference is seen to exhibit excellent properties as a small U E c support the 1 ℃ or less. Sample No. No. 3 has a response time of 50 seconds or less and a wafer temperature difference of 0.9 ° C. or less. 4 to 6 and 8 were found to be more preferable because the response time was 40 seconds or less and the temperature difference of the wafer was as small as 0.8 ° C. or less.

従って、板状セラミック体の凹部に備えた固定部材に覆われるか或いは挟まれた測温素子8aからリード線8の長さが測温素子の線径Aの2倍より大きく30倍以下であると優れた特性を示すことが分った。   Accordingly, the length of the lead wire 8 from the temperature measuring element 8a covered or sandwiched by the fixing member provided in the concave portion of the plate-shaped ceramic body is greater than twice the wire diameter A of the temperature measuring element and not more than 30 times. It was found that it showed excellent characteristics.

(実施例2)
実施例1と同様の工程でウハ支持部材を作製し凹部の位置と深さを変えて凹部に測温素子8aやリード線8として直径(A)0.5mmの熱電対を挿入し、図7の構造となるように測温素子8aやリード線8を固定した。そして、凹部の測温素子8から抵抗発熱体5までの距離L1と、測温素子8aと主面上の点の距離が最低距離となる点Pから抵抗発熱体までの距離L2を変えたウハ支持部材を作製し、実施例1と同様にウハ支持部材の特性を評価した。
(Example 2)
Insert the Example 1 and the same process in c E c support member diameter as temperature measurement element 8a and the leads 8 to the concave portion by changing the position and depth of the recess to prepare (A) 0.5 mm thermocouple, The temperature measuring element 8a and the lead wire 8 were fixed so as to have the structure of FIG. Then, the distance L1 from the temperature measuring element 8 to the resistance heating element 5 in the concave portion and the distance L2 from the point P where the distance between the temperature measuring element 8a and the point on the main surface is the minimum distance to the resistance heating element are changed. to prepare E Ha supporting member, the characteristics were evaluated similarly U E Ha supporting member as in example 1.

また、試料No.25は抵抗発熱体を印刷した後、更に同種のANシートを印刷面に重ね抵抗発熱体をANで埋設したウハ支持部材を作製した。 Sample No. 25 after printing the resistance heating element to produce a c E c support the resistance heating element is embedded in the A l N further overlaid on the printing surface of the A l N sheets of the same kind.

そしてこれらウハ支持部材の特性を表2に示す。 And shows the characteristics of these U E c support member in Table 2.

(L2−7×A)<L1<(L2−A)が成立している試料No.22から24は応答時間が35秒以下と小さく、ウェハの温度差も0.7℃以下と小さく好ましい事が分った。   Sample No. where (L2-7 × A) <L1 <(L2-A) is satisfied. It was found that 22 to 24 were preferable because the response time was as small as 35 seconds or less and the temperature difference of the wafer was as small as 0.7 ° C.

一方、試料No.21はL1<(L2−A)が成立せず、応答時間は59秒と大きく、ウェハの温度差も0.9℃と大きかった。   On the other hand, sample No. No. 21 did not hold L1 <(L2-A), the response time was as large as 59 seconds, and the wafer temperature difference was as large as 0.9 ° C.

また、試料No.25はL1>(L2−7×A)が成立せず、応答時間も58秒と大きく、ウェハの温度差も0.9℃と大きかった。   Sample No. 25, L1> (L2-7 × A) was not satisfied, the response time was as long as 58 seconds, and the wafer temperature difference was as large as 0.9 ° C.

(実施例3)
ここで、板状セラミック体2として平均粒径1.2μmの窒化アルミニウム粉末に平均粒径1μmのカルシアを0.1質量%と平均粒径1.1μmのイットリヤを所定の量添加して混合粉砕しアクリルバインダを添加し直径400mmの板状に成形し、空気中と窒素雰囲気中の400℃で1時間脱バインダ処理した後、2000℃の窒素雰囲気中で焼結した。同時に直径10mm厚み3mmの熱伝導率測定用のテストピースを切り出すと共に、焼結体の表裏面を研削加工し直径320mmで厚み3mmの円板状の板状セラミック体2を得た。そして、この板状セラミック体2の他方の主面3に金属銀50質量%含み、B・SiO・ZnOガラス(熱膨張係数4.4×10−6/℃)を40質量%含む粉体に溶剤を添加しペーストを作製した。
(Example 3)
Here, as the plate-like ceramic body 2, 0.1% by mass of calcia with an average particle size of 1 μm and yttria with an average particle size of 1.1 μm are added to aluminum nitride powder having an average particle size of 1.2 μm and mixed and pulverized. Then, an acrylic binder was added to form a plate having a diameter of 400 mm, and after a binder removal treatment at 400 ° C. for 1 hour in air and a nitrogen atmosphere, sintering was performed in a nitrogen atmosphere at 2000 ° C. Simultaneously, a test piece for measuring thermal conductivity having a diameter of 10 mm and a thickness of 3 mm was cut out, and the front and back surfaces of the sintered body were ground to obtain a disk-shaped plate-like ceramic body 2 having a diameter of 320 mm and a thickness of 3 mm. The other main surface 3 of the plate-like ceramic body 2 contains 50% by mass of metallic silver and 40% by mass of B 2 O 3 .SiO 2 .ZnO glass (thermal expansion coefficient 4.4 × 10 −6 / ° C.). A solvent was added to the contained powder to prepare a paste.

そして、板状セラミック体2の他方の主面に抵抗発熱体5の形状で上記ペーストを20μmの厚みにスクリーン印刷法で印刷した。そして、個々の各抵抗発熱体5に対応して直径3mmで深さを変えて凹部9を作製した。そして、凹部9の底面9aに熱的接続部材15として100μmの厚みのアルミニウム箔を置き、測温素子8aやリード線8として線径0.5mmと0.3mmの熱電対を先端から3ミリの位置で直角に折り曲げ、その先端部をアルミ箔の上に置き、金属製のφ2.9mm、厚み2mmで測温素子が通過する溝を取り付けた固定部材17で測温素子を押さえた。固定部材17は外径2.5mmで厚み500μmのジルコニアセラミックからなる断熱部材20を介して、加圧ピン16で測温素子8aやリード線8を加圧し凹部9の底面9aと熱的に接続させた。そして、夫々のウハ支持部材に電源を取り付け25℃から200℃まで5分間でウェハWを昇温し、ウェハWの温度を200℃に設定してからウェハWの平均温度が200℃±0.5℃の範囲で一定となるまでの時間を応答時間として測定した。また200℃に設定し30分後のウェハ温度の最大値と最小値の差をウェハWの温度差として測定した。そして、表3の結果を得た。 Then, the paste was printed on the other main surface of the plate-like ceramic body 2 in the shape of the resistance heating element 5 to a thickness of 20 μm by screen printing. And the recessed part 9 was produced by changing the depth by diameter 3mm corresponding to each resistance heating element 5. FIG. Then, an aluminum foil having a thickness of 100 μm is placed as the thermal connection member 15 on the bottom surface 9 a of the recess 9, and thermocouples with wire diameters of 0.5 mm and 0.3 mm are placed 3 mm from the tip as the temperature measuring element 8 a and the lead wire 8. The temperature measuring element was bent at a right angle and placed on an aluminum foil, and the temperature measuring element was pressed by a fixing member 17 having a metal φ2.9 mm, a thickness of 2 mm and a groove through which the temperature measuring element passed. The fixing member 17 is thermally connected to the bottom surface 9a of the recess 9 by pressing the temperature measuring element 8a and the lead wire 8 with the pressure pin 16 through the heat insulating member 20 made of zirconia ceramic having an outer diameter of 2.5 mm and a thickness of 500 μm. I let you. Then, the temperature was raised to the wafer W for 5 minutes the power c E c support member each to 200 ° C. from the attachment 25 ° C., the average temperature of the wafer W after setting the temperature of the wafer W to 200 ° C. is 200 ° C. ± The time until it became constant in the range of 0.5 ° C. was measured as the response time. Further, the difference between the maximum value and the minimum value of the wafer temperature after 30 minutes was set at 200 ° C., and the temperature difference of the wafer W was measured. And the result of Table 3 was obtained.

固定部材の熱伝導率が100W/(m・K)以上で板状セラミック体の熱伝導率の60%以上、300%以下の熱伝導率を有する試料No.33、34、36、37は応答時間が28秒以下と優れていた。また、ウェハの温度差も0.7℃以下と好ましいものであった。   Sample No. having a thermal conductivity of not less than 100 W / (m · K) and a thermal conductivity of not less than 60% and not more than 300% of the thermal conductivity of the plate-like ceramic body. 33, 34, 36, and 37 were excellent in response time of 28 seconds or less. Also, the temperature difference of the wafer was preferable at 0.7 ° C. or less.

それに対し、固定部材の熱伝導率が板状セラミックの熱伝導率の341%や502%の試料No.31、32はウェハの温度差が夫々0.9℃と大きかった。   On the other hand, sample Nos. With the heat conductivity of the fixing member being 341% or 502% of the heat conductivity of the plate-like ceramic. 31 and 32 had a large temperature difference of 0.9 ° C. between the wafers.

また、試料No.35のように固定部材の熱伝導率が板状セラミック体の熱伝導率の57%と60%以上でないものは応答時間が35秒とやや大きかった。   Sample No. When the thermal conductivity of the fixing member was not 57% or 60% or more of the thermal conductivity of the plate-like ceramic body as in 35, the response time was slightly large at 35 seconds.

従って、上記結果より凹部に測温素子を備え、板状セラミック体の熱伝導率に対して60%以上、300%以下である熱伝導率を有する固定部材で測温素子8aからリード線8を固定することで更に応答時間が小さく、ウェハの温度差の小さなウハ支持部材を得る事ができる。 Therefore, based on the above results, a temperature measuring element is provided in the recess, and the lead wire 8 is connected from the temperature measuring element 8a with a fixing member having a thermal conductivity of 60% or more and 300% or less with respect to the thermal conductivity of the plate-like ceramic body. further reduced response time by fixing, it can be obtained a small U E c support member of the temperature difference of the wafer.

(実施例4)
実施例1と同様に板状セラミック体2を作製し、抵抗発熱体5となるペーストとして種種の金属とガラス成分や金属酸化物を混合しペースト状に作製したのちスクリーン印刷しウハ支持部材を作製した。
(Example 4)
Were produced in the same manner as in the ceramic plate 2 and Example 1, were mixed resistive heating element 5 to become various metal and a glass component and a metal oxide as a paste is screen printed then prepared into a paste c E c support member Was made.

そして、ウハ支持部材の板状セラミック体の凹部に測温素子を固定する固定部材を硬度の異なる金属やAg−Ni系合金で作製し、夫々同じ形状の板状セラミック体に取り付けた。 Then, prepared in c E c support ceramic plate fixing member different metals hardness and Ag-Ni alloy for fixing the temperature measuring element into the recess of the, attached to the ceramic plate of the respective same shape.

作製した夫々のウハ支持部材に電源を取り付け25℃から200℃まで5分間でウェハWを昇温し、ウェハWの温度を200℃に設定してからウェハWの平均温度が200℃±0.5℃の範囲で一定となるまでの時間を応答時間として測定した。また200℃に設定し30分後のウェハ温度の最大値と最小値の差をウェハWの温度差として測定した。 Fabricated heated wafer W at 5 minutes the power c E c support member each to 200 ° C. from the attachment 25 ° C., the average temperature of the wafer W after setting the temperature of the wafer W to 200 ° C. is 200 ° C. ± The time until it became constant in the range of 0.5 ° C. was measured as the response time. Further, the difference between the maximum value and the minimum value of the wafer temperature after 30 minutes was set at 200 ° C., and the temperature difference of the wafer W was measured.

また試料No.44は測温素子を凹部に挿入した後、ロウ材を載せ、ロウ材をレーザビームで局部加熱して凹部にロウ材を圧入した。   Sample No. After inserting a temperature measuring element into the recess 44, a brazing material was placed, the brazing material was locally heated with a laser beam, and the brazing material was pressed into the recess.

その結果を表4に示す。

Figure 0004243216
The results are shown in Table 4.
Figure 0004243216

固定部材のビッカース硬度が50以下の試料No.41から44は応答時間が19秒以下でしかもウェハの温度差が0.5℃以下と最も優れた特性を示す事が判明した。   Sample No. whose Vickers hardness of the fixing member is 50 or less. Nos. 41 to 44 were found to exhibit the most excellent characteristics with a response time of 19 seconds or less and a wafer temperature difference of 0.5 ° C. or less.

更に、固定部材のビッカース硬度が30以下の試料No.41から42は応答時間が16秒以下でしかもウェハの温度差が0.4℃以下と更に優れた特性を示す事が判明した。   Furthermore, the sample No. whose Vickers hardness of the fixing member is 30 or less. Nos. 41 to 42 have been found to exhibit further excellent characteristics with a response time of 16 seconds or less and a wafer temperature difference of 0.4 ° C. or less.

従って、測温素子を固定する固定部材はビッカース硬度が50以下の材料で固定することが優れたウハ支持部材を作製する上で重要である事を究明できた。 Accordingly, fixing member for fixing the temperature measuring element could ascertain that it is important in making a c E c support member Vickers hardness and excellent be fixed at 50 following materials.

本発明のウハ支持部材の一例を示す断面図である。It is a cross-sectional view showing an example of a c E c support member of the present invention. 本発明の抵抗発熱体の形状を示す概略図である。It is the schematic which shows the shape of the resistance heating element of this invention. 本発明の他の抵抗発熱体の形状を示す概略図である。It is the schematic which shows the shape of the other resistance heating element of this invention. 本発明のさらに他の抵抗発熱体の形状を示す概略図である。It is the schematic which shows the shape of the further another resistance heating element of this invention. 本発明の測温素子を取り付け部を示す概略図である。It is the schematic which shows an attachment part about the temperature sensing element of this invention. 本発明の他の測温素子を取り付け部を示す概略図である。It is the schematic which shows the attachment part to the other temperature measuring element of this invention. 本発明の他の測温素子を取り付け部を示す概略図である。It is the schematic which shows the attachment part to the other temperature measuring element of this invention. 従来のウハ支持部材を示す、部品展開図である。It shows a conventional U E c support member is a part exploded view. 従来のウハ支持部材の抵抗発熱体の概略図である。It is a schematic diagram of the resistance heating element of conventional U E c support member. (a)(b)従来の測温素子を取り付け部を示す概略図である。(A) (b) It is the schematic which shows the attachment part to the conventional temperature measuring element.

符号の説明Explanation of symbols

1・・・ウハ支持部材
2・・・板状セラミック体
3・・・一方の主面
4・・・支持ピン
5・・・抵抗発熱体
6・・・給電部
8・・・リード線
8a・・・測温素子
9・・・凹部
9a・・・底部
11・・・給電端子
12・・・ウェハ突き上げピン
15・・・熱的接続部材
P・・・測温素子から板状セラミック体の一方の主面へ鉛直に引いた垂線と板状セラミック体の一方の主面との交点
16・・・加圧ピン
17・・・固定部材
18・・・スプリングバネ
19・・・有底筒状体
20・・・断熱部材
22・・・板状セラミック体
23・・・凹部
25・・・抵抗発熱体
27・・・導通端子
31・・・ケーシング
31a・・・ケーシングの底部
33・・・ステンレス板
34・・・開口部
35・・・ピン挿通孔
36・・・リード線取り出し用の孔
40・・・板状体
41・・・凹部
57・・・穴
150・・・測温素子
151・・・保護
W・・・半導体ウェハ
1 ... c E c support member 2 ... plate-shaped ceramic body 3, ... one main face 4 ... support pin 5 ... resistance heating element 6 ... feeding unit 8 ... lead wire 8a ... Temperature measuring element 9 ... Recess 9a ... Bottom 11 ... Feeding terminal 12 ... Wafer push-up pin 15 ... Thermal connection member P ... Plate-like ceramic body from temperature measuring element Intersection 16 of the perpendicular line drawn perpendicularly to one main surface of the plate and one main surface of the plate-like ceramic body 16 pressure pin 17 fixing member 18 spring spring 19 bottomed cylinder State body 20 ... heat insulating member 22 ... plate-like ceramic body 23 ... concave portion 25 ... resistance heating element 27 ... conduction terminal 31 ... casing 31a ... bottom part 33 of casing ... Stainless steel plate 34... Opening 35... Pin insertion hole 36... Plate-like body 41 ... recess 57 ... hole 150 ... temperature measuring element 151 ... protective tube W ... semiconductor wafer

Claims (3)

板状セラミック体の一方の主面側を、ウェハを載せる載置面とし、上記板状セラミック体の他方の主面又は内部に抵抗発熱体を備えるとともに、上記板状セラミック体の他方の主面に凹部を有し、該凹部内に、測温素子とリード線とからなる測温体を挿入し、固定部材にて保持するようにしたウハ支持部材であって、上記測温体の上記測温素子から上記リード線が上記固定部材より露出するまでのリード線の長さを上記リード線の線径の2倍より大きく30倍以下とし、上記測温体の上記リード線の線径をA、上記測温素子から上記抵抗発熱体までの最短距離をL1、上記測温素子から上記板状セラミック体の一方の主面へ鉛直に延ばした垂線と上記板状セラミック体の一方の主面との交点から上記抵抗発熱体までの最短距離をL2とした時、(L2−7×A)<L1<(L2−A)を満足し、上記固定部材が、熱伝導率が上記板状セラミック体の熱伝導率の60%以上、300%以下、かつビッカース硬度が50以下の金属であることを特徴とするウェハ支持部材 One main surface side of the plate-shaped ceramic body is a mounting surface on which the wafer is placed, and the other main surface of the plate-shaped ceramic body is provided with a resistance heating element, and the other main surface of the plate-shaped ceramic body. to have a recess, into the recess, a c E c support member so as to insert the temperature sensing element consists of a temperature measuring element and the lead wire is held by a fixing member, of the temperature sensing element the length of the leads from the temperature measuring element to the lead wires are exposed from the fixing member than 30 times greater than twice the wire diameter of the lead wire, wire diameter of the lead wires of said temperature sensing element the a, the shortest distance from the temperature measuring element to the resistance heating element L1, one of the main of the plate-like perpendicular extended vertically to one main surface of the ceramic body and the plate-shaped ceramic body from the temperature measuring element the shortest distance from the intersection of the surface up to the resistance heating element is L2 , (L2-7 × A) satisfies <L1 <(L2-A) , the fixing member, the thermal conductivity of not less than 60% of the thermal conductivity of the plate-shaped ceramic body, 300% or less, and the Vickers hardness There wafer support members, wherein the metal der Rukoto of 50 or less. 上記測温体の上記測温素子を上記凹部底面に対して平行に配接してあることを特徴とする請求項1に記載のウハ支持部材。 C E c support member according to claim 1, characterized in that said temperature measuring element of the temperature sensing element are parallel to distributing contact with respect to the bottom surface of the recess. 半導体製造工程で用いることを特徴とする請求項1または2に記載のウェハ支持部材。 The wafer support member according to claim 1 or 2, characterized in that used in the semiconductor manufacturing process.
JP2004130399A 2004-04-26 2004-04-26 Wafer support member Expired - Fee Related JP4243216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004130399A JP4243216B2 (en) 2004-04-26 2004-04-26 Wafer support member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004130399A JP4243216B2 (en) 2004-04-26 2004-04-26 Wafer support member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002092548A Division JP3563726B2 (en) 2002-03-28 2002-03-28 Wafer support member

Publications (2)

Publication Number Publication Date
JP2004312026A JP2004312026A (en) 2004-11-04
JP4243216B2 true JP4243216B2 (en) 2009-03-25

Family

ID=33475638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130399A Expired - Fee Related JP4243216B2 (en) 2004-04-26 2004-04-26 Wafer support member

Country Status (1)

Country Link
JP (1) JP4243216B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7885305B2 (en) 2004-08-05 2011-02-08 Hamamatsu Photonics K.K. Semiconductor laser device and semiconductor laser device array

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5009064B2 (en) * 2007-06-27 2012-08-22 太平洋セメント株式会社 Ceramic heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7885305B2 (en) 2004-08-05 2011-02-08 Hamamatsu Photonics K.K. Semiconductor laser device and semiconductor laser device array

Also Published As

Publication number Publication date
JP2004312026A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
KR101246753B1 (en) Wafer support member
JPWO2003015157A1 (en) Ceramic joint
EP1463380A1 (en) Ceramic heater
EP1391919A1 (en) Ceramic heater for semiconductor manufactring/inspecting apparatus
WO2001097264A1 (en) Hot plate
JP2008243990A (en) Substrate heating device
WO2001045160A1 (en) Ceramic heater and support pin
JP4794140B2 (en) Heater, wafer heating apparatus and manufacturing method thereof
JP2002064133A (en) Support container and semiconductor manufacturing- inspection device
JP2005018992A (en) Electrode embedding member for plasma generator
JPH11312570A (en) Ceramic heater
JP2005085657A (en) Ceramic heater
JP4243216B2 (en) Wafer support member
JP2007142441A (en) Wafer supporting member
JP2001135715A (en) Temperature measuring element and ceramic base material for semiconductor manufacturing apparatus
JP2004296532A (en) Hot plate unit
JP4081396B2 (en) Thermocouple mounting structure of ceramic heater
JP2000286331A (en) Wafer support member
JP3563726B2 (en) Wafer support member
JP4009138B2 (en) Wafer support member
JP2001342079A (en) Ceramic junction body
JP2002184557A (en) Heater for semiconductor manufacturing and inspecting device
JP2002246160A (en) Hot plate unit
JP2005026585A (en) Ceramic joined body
JP2004177412A (en) Temperature measurement element and ceramic base for semiconductor production device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4243216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees