JP3563726B2 - Wafer support member - Google Patents

Wafer support member Download PDF

Info

Publication number
JP3563726B2
JP3563726B2 JP2002092548A JP2002092548A JP3563726B2 JP 3563726 B2 JP3563726 B2 JP 3563726B2 JP 2002092548 A JP2002092548 A JP 2002092548A JP 2002092548 A JP2002092548 A JP 2002092548A JP 3563726 B2 JP3563726 B2 JP 3563726B2
Authority
JP
Japan
Prior art keywords
temperature measuring
wafer
temperature
measuring element
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002092548A
Other languages
Japanese (ja)
Other versions
JP2003297714A (en
Inventor
恒彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002092548A priority Critical patent/JP3563726B2/en
Publication of JP2003297714A publication Critical patent/JP2003297714A/en
Application granted granted Critical
Publication of JP3563726B2 publication Critical patent/JP3563726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、主にウエハを加熱するのに用いるウエハ支持部材に関するものであり、例えば、半導体ウエハや液晶基板あるいは回路基板等のウエハ上に導体膜や絶縁膜を生成したり、前記ウエハ上に塗布されたレジスト液を乾燥焼き付けしてレジスト膜を形成するのに好適なウエハ支持部材に関するものである。
【0002】
【従来の技術】
例えば、半導体製造装置の製造工程における、導体膜や絶縁膜の成膜処理、エッチング処理、レジスト膜の焼き付け処理等の半導体ウェハ(以下ウェハと略す)への加工において、ウエハを加熱するためにウエハ支持部材が用いられている。
【0003】
従来の半導体製造装置は、まとめて複数のウエハを成膜処理するバッチ式のものが使用されていたが、ウエハの大きさが8インチから12インチと大型化するにつれ、処理精度を高めるために、一枚づつ処理する枚葉式と呼ばれる装置が近年使われている。しかしながら、枚葉式にすると1回当たりの処理数が減少するため、ウエハの加工時間の短縮が必要とされている。このため、ウエハ支持部材に対して、ウエハの加熱時間の短縮、ウエハの吸着・脱着の迅速化と同時に加熱温度の精度の向上が要求されていた。
【0004】
上記のようなウエハ支持部材の例として、例えば特開平11−283729号公報に示してあるようなウエハ支持部材21がある。このウエハ支持部材21は、図8に示すように、ケーシング31、板状セラミック体22および板状反射体としてのステンレス板33を主要な構成要素としている。ケーシング31は有底状の金属製部材(ここでは、アルミニウム製部材)であって、断面円形状の開口部34をその上部側に備えている。このケーシング31の中心部には、図示しないウエハ支持ピンを挿通するためのピン挿通孔35が3つ形成されている。ピン挿通孔35に挿通されたウエハ支持ピンを上下させれば、ウエハWを搬送機に受け渡したり、ウエハWを搬送機から受け取ったりすることができる。また、図9に示す抵抗発熱体25の導通端子部には、導通端子27がロウ付けされており、該導通端子27がステンレス板33に形成された穴57を挿通する構造となっている。また、底部31aの外周部にはリード線引出用の孔36がいくつか形成されている。この孔36には、抵抗発熱体に電流を供給するための不図示のリード線が挿通され、該リード線は前記導通端子27に接続されている。
【0005】
また、板状セラミック体22を構成するセラミック材料としては、窒化物セラミックスまたは炭化物セラミックスが用いられ、抵抗発熱体25は、図9に示すように、同心円状に形成した複数のパターンに通電することにより、板状セラミック体22を加熱するウエハ支持部材21が提案されている。
【0006】
このようなウエハ支持部材21において、ウエハWの表面全体に均質な膜を形成したり、レジスト膜の加熱反応状態を均質に加工処理するためには、ウエハWの温度を正確に測定するとともにウェハWの温度を一定に温度制御することが重要である。そこで、ウェハWの温度を測定する測温素子が使われ、上記ウエハ支持部材の凹部23に測温素子が取り付けられている。
【0007】
特開平9−45752号公報には、図10に示すように、ウエハ支持部材に載せたウェハWの温度を測定し、金属製の板状体40の上面40aの温度を制御する測温抵抗体素子150の配置方法が示されている。前記板状体40の温度の精度やレスポンス等が優れ、温度調節の精度を高める方法として、凹部41に挿入された測温素子150の長手方向の温度差を小さくし、前記測温抵抗体素子150を板状体40の上面に平行に配置する方法が示されている。この測温素子はPtからなる測温素子150が保護管151に挿入され、板状体40の上面40aに対し平行となるように配置されている。
【0008】
さらに保護管151内の隙間には伝熱セメント52が充填されている。特に、抵抗発熱体を分割制御する場合は、測定の正確さと同時に測定バラツキを管理しないと上記板状体40の正確な温度制御ができなくなるので、このような取付構造とすることが好ましいとされていた。
【0009】
また、特開平4−98784号には、単一の抵抗発熱体を板状セラミック体に埋設したウェハ加熱装置において、ウェハ加熱面の温度が最適値から外れることを防止するために、測温点をウェハ加熱領域の中心からウェハ加熱領域の半径のほぼ1/√2の位置とすることが示されている。
【0010】
また、特開2001−85144号公報には、図9に記載の厚み3mmの板状セラミック体22に深さ2mm、直径1.2mmの凹部23に測温素子として線径0.5mm以下の熱電対を挿入し耐熱性樹脂で封したウエハ支持部材21が開示されている。
【0011】
【発明が解決しようとする課題】
しかしながら、近年注目されている枚葉式のウエハ支持部材に使用される板状セラミック体は、ウエハ1枚あたりの加工処理時間を短縮するために、厚みを2〜5mmと薄くし、加熱および冷却のサイクルタイムが短くなるように調整する必要がある。しかしながら、ウエハの表面全体を±0.5℃というレベルに均一に加熱するには、板状セラミック体に測温素子を従来の方法で配設するだけではウェハを均一に加熱するとの目標を達成できないとの課題があった。
【0012】
上記のようなウエハ支持部材において、特開平9−45752号公報のように測温素子150を板状体40のウェハWを載せる載置面40aに平行に配置しても、金属からなる板状体40は厚みが30mm以上と厚く板状体40を急速に昇温したり降温したりすることが出来なかった。更に、測温素子150本体や測温素子150への接続部材から熱が板状体40の外に流れ、測温部の温度が低下したり、測温素子150が板状体40の凹部41の底面に熱的に確実に接続できないことから板状体40や前記ウェハWの温度を正確に測定できない虞があるとの課題があった。
【0013】
また、前記板状体40に備えた抵抗発熱体や前記載置面40aから測温素子150までの距離により設定温度に対しウェハWの温度の追従性が悪く温度が変動し一定の温度に制御するまでの時間が掛かりウェハWの加工処理時間が長くなるとの問題があった。
【0014】
【課題を解決するための手段】
そこで、上記課題に鑑み、本発明のウエハ支持部材は、板状セラミック体の一方の主面側を、ウェハを載せる載置面とし、上記板状セラミック体の他方の主面又は内部に抵抗発熱体を備えるとともに、上記板状セラミック体の他方の主面に凹部を有し、該凹部内に、測温素子とリード線とからなる測温体を挿入し、固定部材にて保持させ、上記測温体の測温素子からリード線が固定部材より露出するまでのリード線の長さを、上記リード線の線径の2倍より大きく30倍以下としたことを特徴とする。
【0015】
また、上記測温体のリード線の線径をA、測温素子から抵抗発熱体までの最短距離をL1、測温素子から板状セラミック体の一方の主面へ鉛直に延ばした垂線と、板状セラミック体の一方の主面との交点から抵抗発熱体までの最短距離をL2とした時、次の関係を満足するようにすることが好ましい。
【0016】
(L2−7×A)<L1<(L2−A)
さらに、上記固定部材の熱伝導率は、板状セラミック体の熱伝導率の60%以上、300%以下とし、さらにはビッカース硬度が50以下の金属により形成することが好ましい。
【0017】
また、上記測温体の測温素子は、凹部底面に対して平行に配接することが好ましい。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0019】
図1は本発明に係るウエハ支持部材1の一例を示す断面図であり、炭化珪素、アルミナまたは窒化アルミニウムを主成分とするセラミックスの板状体からなる板状セラミック体2の一方の主面3をウエハWを載せる載置面とするとともに、他方の主面に抵抗発熱体5を形成し、該抵抗発熱体5に電気的に接続する給電部6を具備し、前記抵抗発熱体5による加熱温度を板状セラミック体2の凹部9に固定した測温素子8aで測定してウエハ支持部材1を構成したものである。支持ピン12は板状セラミック体2を貫通する孔を通してウェハWを上下に移動させウェハWを主面3に載せたり降ろしたりすることができる。そして、給電部6に給電端子11が接続し外部から電力が供給され、測温素子8aとリード線8からなる測温体で温度を測定しながらウェハWを加熱することができる。
【0020】
抵抗発熱体5のパターン形状としては、図2に示したような渦巻き状のパターン、もしくは図3、4に示したように複数のブロックに分割され、個々のブロックが円弧状のパターンと直線状のパターンとからなる渦巻き状やジグザクな折り返し形状をしたものとすることができる。そして、抵抗発熱体5を複数のブロックに分割する場合、それぞれのブロックの温度を独立に測定し制御することにより、主面3上のウェハWを均一に加熱できるように構成している。
【0021】
また、抵抗発熱体5は、導電性の金属粒子にガラスフリットや金属酸化物を含むペーストを印刷法で板状セラミック体2に印刷したもので、前記金属粒子としてはAu、Ag、Cu、Pd、Pt、Rhの少なくとも一種を含む成分からなる。ガラスフリットはB、Si、Znを含む酸化物からなるものが好ましい。この様なガラスや金属酸化物と金属粒子を混合した抵抗発熱体5とすることで、抵抗発熱体5の熱膨張係数を板状セラミック体2の熱膨張係数に近いものとすることができる。
【0022】
また、主面3には図5に示すように、板状セラミック体2の一方の主面3から一定の距離にウェハWを保持する様に、前記主面3に複数の支持ピン4から構成されていても良い。
【0023】
本発明のウエハ支持部材1は、板状セラミック体2の一方の一主面3を、ウェハWを載せる載置面とするか、あるいは、前記主面3から一定の距離にウェハWを保持し、前記主面の反対側から加熱面に向けて凹部9を設けると共に、前記凹部9に測温素子8aを挿入したウエハ支持部材1において、前記凹部9に測温素子8aを固定する固定部材17を備え、前記板状セラミック体2に前記固定部材17に覆われるか或いは挟まれた部分の前記測温素子8aの長さが前記測温素子8aの線径Aの2倍より大きく30倍以下であることを特徴とする。
【0024】
ウェハWを載せるか或いは一定の距離にウェハWを支持する板状セラミック体2の一方の主面と異なる他方の主面に凹部9を形成し、凹部9に測温素子8aを挿入し、板状セラミック体2の温度を測定する。前記凹部9の大きさは直径2〜5mmで、板状セラミック体2の好ましい厚み2〜5mmの3分の2程の深さに穿孔され、板状セラミック体2の一方の主面3の温度が正確に反映され、測温素子8aと、凹部9の底面9aとの接触界面との熱的抵抗が小さくなるように、凹部9の底面9aに測温素子8aを直接接触させるか、或いは熱的抵抗を小さくするよう凹部9の底面9aに熱伝導率が100W/(m・K)以上と大きく、変形し易い金属箔やペーストからなる熱的接続部材15を介して測温素子8aを接続することが好ましい。
【0025】
更に、厚みが2〜5mmの板状セラミック体2の主面3の温度を正確に測温するために、板状セラミック体2の主面3の温度を測温素子8aに伝えることが必要であり、測温素子8aとして例えば熱電対であれば、測温点から熱電対の線径の2倍より大きい長さに渡り凹部9と熱的接続部分があると主面3の温度を感度良く正確に測定できる。例えば熱電対からなる、測温素子8aのリード線8の線径の2倍以下であると、測温点の熱が測温素子8aから延びるリード線8自身を介して板状セラミック体2の外部へ流れ、測温点の温度が低下する虞があるからである。好ましくは2倍より大きく、より好ましくは5倍以上で、更に好ましくはリード線8の7倍以上であり、特に測温点からの測温素子8aからリード線8の直線部がリード線8の線径の4倍以上あると好ましく、更にこの直線部は凹部底面9aに平行とすることで主面3の温度を感度良く測温できることから好ましい。そして、前記直線部が板状セラミック体2の一方の主面に平行であるとより好ましい。
【0026】
尚、前記の凹部9との熱的接続部分とは、凹部9の底面9aに固定部材17としてロウ材や熱導伝性ペーストで測温素子8aを固定する場合には、測温素子8aから延びるリード線8及び又は測温素子8aが凹部9内の前記ロウ材や熱導伝性ペーストで覆われた部分を示す。前記固定部材17として固形物を使用した場合、前記熱的接続部分は凹部9の固定部材17と測温素子8aや測温素子8aから延びるリード線8が接触している部分を指す。また、固形の固定部材17を使用した場合には固定部材17で測温素子8aが埋設されてないことから雰囲気ガスの影響を受けるが、大気中で使われるコータデベロッパ用のウエハ支持部材1では雰囲気ガスの影響はなく、取り扱い上からも好適である。
【0027】
特に、図5に示す固定部材17が固形の場合、測温素子8aがセラミック製の凹部9と熱的接続が確実になされるように、凹部9の底面9aに熱的接続部材15として軟質の金属箔からなるアルミニウム箔等を置き、このアルミニウム箔等からなる熱的接続部材15を介して、測温素子8aを固定部材17で押し付け、測温素子8aが凹部9と面で接触するように配接することが好ましい。
【0028】
凹部9がヤング率200GPa以上の剛性の大きな板状セラミック体2からなり、凹部底面9aは加圧による変形が小さいことから、測温素子8aを凹部9と面接触させるには、凹部9の底面9aに熱的接続部材15を介し底面9aと熱的接続部材15を面接触させ、熱的接続部材15と測温素子8aや測温素子8aから延びるリード線8を面で接触させることが好ましい。通常、セラミック製の凹部底面9aの変形が小さいことから直接測温素子と凹部底面9aが面接触し難いので、測温素子8aを加圧することにより、熱的接触部材15として変形が大きく面接触し易いアルミニウム、銀等の金属箔を介して測温素子8aを取り付けることは、凹部9と測温素子8aの界面の熱的な抵抗を小さくする上で効果的であり、主面3の正確な温度を測定する上で有効である。
【0029】
前記凹部9に前記測温素子8aや測温素子8aから延びるリード線8を固定する固定部材17を備え、前記板状セラミック体2に前記固定部材17に覆われるか或いは挟まれた前記測温素子8aからリード線8の長さが、前記リード線8の線径Aの30倍以下であることが重要である。前記測温素子8aを固定する凹部9を大きくしたり、前記リード線8を渦巻き状に旋回したりして線径Aの30倍を越えると、凹部9内のリード線8の長さが大きくなることから、2〜5mmと薄い板状セラミック体2とリード線8の熱伝導率や熱容量の違いにより板状セラミック体2の主面3の温度分布が変化する虞があるためである。好ましくは、前記固定部材17に覆われるか或いは挟まれた前記測温素子8aからリード線8の長さが前記リード線8の線径Aの20倍以下である。この様に設定することにより測温素子8aの温度は板状セラミック体2の主面の温度と0.3℃以内に抑えることが可能であり、しかも主面3の温度変化に対して追従性を高めることが可能である。
【0030】
次に、上記ウエハ支持部材1の主面3の温度は上述の様に測温素子8aやリード線8を配設することで正確に測定できるのであるが、ウェハWの温度を一定に制御するには、上述の測温素子8aで板状セラミック体2の主面の温度を測定しながら板状セラミック体2に備えた抵抗発熱体5に電力を供給し発熱させ、前記主面の温度を均一になるよう制御している。そのためには、抵抗発熱体5から板状セラミック体2までの熱の伝導性及び板状セラミック体2の主面から測温素子8aへの熱の伝わり、抵抗発熱体5から測温素子8aへの熱の伝わり方が特に重要である。抵抗発熱体5の熱は前記主面3に伝わり、しかもウェハWの温度分布が均一であることが要求される。
【0031】
しかし、抵抗発熱体5の熱が前記主面3より遅く測温素子8aを加熱すると前記主面3の温度を測温素子8aで追従性良く正確に測定することが困難となる。この点から、前記測温素子8aから前記抵抗発熱体5までの最短距離L1と、測温素子8aから板状セラミック体2の一方の主面3へ鉛直に延ばした垂線と、板状セラミック体2の一方の主面3との交点Pから前記抵抗発熱体5までの最短距離L2とが同等で、しかも各最短距離の間隔における熱抵抗ができる限り小さいことが好ましい。そこで、本願発明者は、この間隔L1、L2は測温素子の線径と関連し、間隔L1、L2と適切な関係を満足させることが重要であり、適切な関係を満足させることでウェハWの温度分布が均一で、しかも温度変更が迅速・容易なウエハ支持部材1を提供できることを究明した。
【0032】
前記の適切な関係とは、L1は間隔(L2−7×A)より大きく、(L2−A)より小さいことが好ましい。
(式1)
(L2−7×A)<L1<(L2−A)
L1が(L2−A)より大きいと測温素子8aが主面3に接近し過ぎることから主面3の測温素子に近い部分の温度が低下しウェハWの温度分布が悪くなると共に主面3を代表する温度を測定できなく虞があるからである。また、L1が(L2−7×A)より小さいと主面3の温度より抵抗発熱体5の温度の影響が大きく、主面3の温度を正確且つ迅速に測温素子8aで測定することが困難となり、ウェハWの温度を一定に制御したり/ウェハを急速に昇温すると、ウェハWの温度を設定温度に制御できないばかりか、ウェハWの温度がオバーシュートしたりする可能性が大きくなるからである。
【0033】
また、凹部9に測温素子8aやリード線8を固定する熱的接続部材15や固定部材17の熱伝導率は100W/(m・K)以上が好ましく、更に板状セラミック体2の熱伝導率の60%より大きく、板状セラミック体2の熱伝導率の300%以下であることが好ましい。熱的接続部材15や固定部材17の熱伝導率が100W/(m・K)未満であったり、板状セラミック体2の熱伝導率の60%より小さいと、板状セラミック体2の主面3の温度が速やかに測温素子8aに伝わらないことから、ウェハWの温度を精度良くしかも迅速に制御し難くなる虞があり、熱的接続部材15や前記固定部材17の熱伝導率が板状セラミック体2の熱伝導率の300%以上では、板状セラミック体2との熱伝導率の差が大きすぎることから前記凹部9に測温素子8aと熱的接続部材15や固定部材17を装填すると、凹部9直上の主面3にホットスポットやクールスポットが発生しウェハWの温度分布が悪くなる虞があり好ましくない。
【0034】
更に、前記熱的接続部材15は、1Nの荷重を30秒間加え測定したビッカース硬度Hvが50以下であることが好ましい。ビッカース硬度が50以上では測温素子8aと熱的接触部材51や熱的接触部材51と凹部底面8aとの接触面積が小さく板状セラミック体2の主面3の温度を迅速に測定することが難しく、ウェハWの温度を一定に制御したり、急速にウェハW温度を昇温すると温度がオーバシュートすることがあった。従って熱的接続部材15の硬度Hvは50以下が好ましく、更に好ましくは30以下である。
【0035】
この様な熱的接続部材15としては銀、アルミニウム、白金や金が好ましく、熱的接続部材15の厚みは10μmから300μmが好ましい。熱的接続部材15の厚みが10μm以下では測温素子8aやリード線8を押し付けても面接触する範囲が小さく厚みが300μm以上では熱の伝達が遅くなり迅速な測温が難しくなる。好ましくは、熱的接続部材15の厚みは50〜200μmである。
【0036】
また、前記凹部9の底面9aに前記測温素子8aやリード線8の先端部が主面3に平行に配設することが好ましい。測温素子8aやリード線8の先端部が主面3に平行に配設されていないと、測温素子8aの熱がリード線8を伝わり逃げることから測温した温度が低下し、正確なウェハWの温度を測定できないからである。測温素子8aの先端部が主面3と平行な長さは2〜3mmが好ましい。2mm以下では測温部の検知部が短いことから熱の逃げが大きく正確な測温をすることが難しい。また、3mm以上では凹部の内径が大きくなり過ぎて凹部上面にクールスポットを生じる危険性があるからである。
【0037】
次に、本発明の他の実施形態を示す。
【0038】
図6は、抵抗発熱体5により加熱が容易で加熱による変形が小さな2から5mmの板厚の板状セラミック体2に測温素子8aを取り付けた本発明の他の実施形態を示す図である。凹部の深さは板厚の2/3程で、凹部の直径は3mmであり、測温素子8aやリード線8として0.3から0.8mmで表面を絶縁処理した熱電対を使い、熱電対の先端2〜3mmを折り曲げ凹部9にロウ付けしたもので、例えば金錫ロウや銀銅ロウが使用できる。ロウ付けの他、硬化収縮の非常に小さな例えば銀・エポキシ樹脂を混合した熱伝導性ペーストで接着しても良い。そして、これらのロウ材や熱伝導性ペーストは測温素子8aや測温素子8aに近いリード線8を固定する前記固定部材17の熱的特性や機械的特性を有していると、ウェハWの温度を正確に精度良くしかも感度良く測定することができることを究明できた。
【0039】
図7は、図6と同様の板状セラミック体2に同様の凹部9を形成し、熱的接続部材15を凹部底面9aに備え、測温素子8aとリード線8を固定部材17で押圧したもので、固定部材17を押圧する加圧ピン16を有しており、加圧ピン16と固定部材17の間には断熱層として熱伝導率が5W/(m・K)以下のアルミナ・ジルコニア複合セラミックやテフロン等の耐熱樹脂からなる断熱部材20が用いられれる。そして加圧ピン16は外部に備えたスプリングバネ18で断熱部材20を押圧する構造としている。
【0040】
一方、ウエハ支持部材1を構成する板状セラミック体2の材質としては、耐摩耗性、耐熱性に優れるアルミナ、窒化珪素、サイアロン、窒化アルミニウム、炭化珪素を用いることができ、この中でも特に窒化アルミニウムや炭化珪素は熱伝導率が50W/(m・K)以上、さらには100W/(m・K)以上の高い熱伝導率を有するとともに、ヤング率が300GPa、400GPaと大きく、加熱による板状セラミック体2の変形が小さく好ましい。更に、フッ素系や塩素系等の腐食性ガスに対する耐蝕性や耐プレズマ性にも優れることから、板状セラミック体2の材質として好適である。
【0041】
このようなウエハ支持部材1を製造する方法として、まず、板状セラミック体2をなすAlN粉末に炭酸カルシウム等の焼結助剤を加え、アクリル系のバインダを添加し板状に成形し、カーボン残さを残した成形体を2000℃程で加圧焼結させる。または、窒化アルミニウム粉末に0.1質量%のカルシアを添加しバインダを添加し造粒した粉末を板状に成形し窒素雰囲気中で2000℃以上で焼成する。焼結した板状セラミック体2の表裏面を研削加工し、円板状に加工する。そして他方の主面に前記抵抗発熱体5を印刷し抵抗発熱体5を設ける。抵抗発熱体5の存在領域が略円形をした図2に示す中央から外周へ向かう渦巻き状の抵抗発熱体5や図3、4に示す抵抗発熱体5を配設した板状セラミック体2を形成する。
【0042】
しかるのち、板状セラミック体2の上面に研摩加工を施してウェハWを載置するかあるいは主面3から一定の距離にウェハWを支持する主面3を形成するとともに、下面に給電端子11と板状セラミック体2を固定する有底筒状体19に取り付け固定している。
【0043】
なお、図1では板状セラミック体2の他方の主面3に抵抗発熱体5のみを備えたウエハ支持部材1について示したが、本発明は、主面3と抵抗発熱体5との間に静電吸着用やプラズマ発生用としての電極を埋設したものであっても良いことは言うまでもない。更に抵抗発熱体5を板状セラミック体2の他方の主面に設けたヒータについて述べたが、抵抗発熱体5を板状セラミック体2の載置面3と異なる主面に形成しガラス等で埋設しても同様の効果が得られる。
【0044】
また、抵抗発熱体5が板状セラミクス体2の主面3に設けられた例を示したが、板状セラミックス体2の載置面と異なる主面側に抵抗発熱体5を埋設したウエハ支持部材でも同様の効果が得られる。
【0045】
【実施例】
(実施例1)
ここで、板状セラミック体2として平均粒径1.2μmの窒化アルミニウム粉末に平均粒径1μmのカルシアを0.1質量%添加し混合粉砕しアクリルバインダを添加しφ400mmの板状に成形し、空気中と窒素雰囲気中の400℃で1時間脱バインダ処理した後、2000℃の窒素雰囲気中で焼結した。焼結体の表裏面を研削加工しφ320mmで厚み3mmの円板状の板状セラミック体2を得た。そして、この板状セラミック体2の他方の主面3に金属銀50質量%含み、B2O3・SiO2・ZnOガラス(熱膨張係数4.4x10−6/℃)を50質量%含む粉体に溶剤を添加しペーストを作製した。
【0046】
そして、板状セラミック体2の他方の主面に抵抗発熱体5として上記ペーストを20μmの厚みにスクリーン印刷法で印刷した。そして、個々の各抵抗発熱体5に対応して直径3mmで深さ2mmの凹部9を作製した。そして、凹部9の底面9aに熱的接続部材15として100μmの厚みのアルミニウム箔を置き、測温素子8aやリード線8として線径0.5mmと0.3mmの熱電対を先端から数ミリの位置で渦巻き状に巻き先端部をアルミ箔の上に置き、アルミニウム製のφ2.9mm、厚み2mmで測温素子が通過する溝を取り付けた固定部材17で測温素子を押さえた。固定部材17は外径2.5mmで厚み500μmのジルコニアセラミックからなる断熱部材20を介して加圧ピン16で測温素子8aやリード線8を加圧し凹部9の底面9aと熱的に接続させた。尚、熱的接続をする上で、固定部材17に覆われるか或いは挟まれた測温素子8aからリード線8の長さはリード線8を渦巻き状に巻いた長さで調整した。
【0047】
また、試料No.7は、銀―銅ロウからなる固定部材を350℃に加熱後圧入して作製した。
【0048】
そして、固定部材に覆われるか或いは挟まれた測温素子8aからリード線8の長さを変えたウエハ支持部材を作製し、夫々のウエハ支持部材に電源を取り付け25℃から200℃まで5分間でウェハWを昇温し、ウェハWの温度を200℃に設定してからウェハWの平均温度が200℃±0.5℃の範囲で一定となるまでの時間を応答時間として測定した。また200℃に設定し30分後のウェハ温度の最大値と最小値の差をウェハWの温度差として測定した。そして、表1の結果を得た。
【0049】
【表1】

Figure 0003563726
【0050】
試料No.1は固定部材に挟まれた測温素子8aからリード線8の長さがリード線8の外形の2倍と小さ過ぎることから応答時間が64秒と大きく、しかもウェハの温度差も1.5℃と大きく本願発明の範囲外であることが分る。また、試料No.10は逆に固定部材に挟まれた測温素子8aからリード線8の長さが測温素子の外形の33倍と大き過ぎることから応答時間が65秒と大きく、しかもウェハの温度差1.2℃と大きく好ましくないことが判明した。
【0051】
一方、試料No.2〜9は固定部材に挟まれた測温素子8aからリード線8の長さが測温素子の外形の2倍より大きく30倍以下で、何れも応答時間が60秒以下と小さくしかもウェハの温度差は1℃以下と小さくウエハ支持部材として優れた特性を示すことが分る。試料No.3は応答時間が50秒以下で且つウェハの温度差は0.9℃以下と小さく、更に試料No.4〜6、8は応答時間が40秒以下で且つウェハの温度差は0.8℃以下と小さく更に好ましい事が判明した。
【0052】
従って、板状セラミック体の凹部に備えた固定部材に覆われるか或いは挟まれた測温素子8aからリード線8の長さが測温素子の線径Aの2倍より大きく30倍以下であると優れた特性を示すことが分った。
(実施例2)
実施例1と同様の工程でウエハ支持部材を作製し凹部の位置と深さを変えて凹部に測温素子8aやリード線8として直径(A)0.5mmの熱電対を挿入し、図7の構造となるように測温素子8aやリード線8を固定した。そして、凹部の測温素子8から抵抗発熱体5までの距離L1と、測温素子8aと主面上の点の距離が最低距離となる点Pから抵抗発熱体までの距離L2を変えたウエハ支持部材を作製し、実施例1と同様にウエハ支持部材の特性を評価した。
【0053】
また、試料No.25は抵抗発熱体を印刷した後、更に同種のALNシートを印刷面に重ね抵抗発熱体をALNで埋設したウエハ支持部材を作製した。
【0054】
そしてこれらウエハ支持部材の特性を表2に示す。
【0055】
【表2】
Figure 0003563726
【0056】
(L2−7×A)<L1<(L2−A)が成立している試料No.22から24は応答時間が35秒以下と小さく、ウェハの温度差も0.7℃以下と小さく好ましい事が分った。
【0057】
一方、試料No.21はL1<(L2−A)が成立せず、応答時間は59秒と大きく、ウェハの温度差も0.9℃と大きかった。
【0058】
また、試料No.25はL1>(L2−7×A)が成立せず、応答時間も58秒と大きく、ウェハの温度差も0.9℃と大きかった。
【0059】
そして、板状セラミック体2の他方の主面に抵抗発熱体5の形状で上記ペーストを20μmの厚みにスクリーン印刷法で印刷した。そして、個々の各抵抗発熱体5に対応して直径3mmで深さを変えて凹部9を作製した。そして、凹部9の底面9aに熱的接続部材15として100μmの厚みのアルミニウム箔を置き、測温素子8aやリード線8として線径0.5mmと0.3mmの熱電対を先端から3ミリの位置で直角に折り曲げ、その先端部をアルミ箔の上に置き、金属製のφ2.9mm、厚み2mmで測温素子が通過する溝を取り付けた固定部材17で測温素子を押さえた。固定部材17は外径2.5mmで厚み500μmのジルコニアセラミックからなる断熱部材20を介して、加圧ピン16で測温素子8aやリード線8を加圧し凹部9の底面9aと熱的に接続させた。そして、夫々のウエハ支持部材に電源を取り付け25℃から200℃まで5分間でウェハWを昇温し、ウェハWの温度を200℃に設定してからウェハWの平均温度が200℃±0.5℃の範囲で一定となるまでの時間を応答時間として測定した。また200℃に設定し30分後のウェハ温度の最大値と最小値の差をウェハWの温度差として測定した。そして、表3の結果を得た。
【0060】
【表3】
Figure 0003563726
【0061】
固定部材の熱伝導率が100W/(m・K)以上で板状セラミック体の熱伝導率の60%以上、300%以下の熱伝導率を有する試料No.33、34、36、37は応答時間が28秒以下と優れていた。また、ウェハの温度差も0.7℃以下と好ましいものであった。
【0062】
それに対し、固定部材の熱伝導率が板状セラミックの熱伝導率の341%や502%の試料No.31、32はウェハの温度差が夫々0.9℃と大きかった。
【0063】
また、試料No.35のように固定部材の熱伝導率が板状セラミック体の熱伝導率の57%と60%以上でないものは応答時間が35秒とやや大きかった。
【0064】
従って、上記結果より凹部に測温素子を備え、板状セラミック体の熱伝導率に対して60%以上、300%以下でである熱伝導率を有する固定部材で測温素子8aからリード線8を固定することで更に応答時間が小さく、ウェハの温度差の小さなウエハ支持部材を得る事ができる。
(実施例4)
実施例1と同様に板状セラミック体2を作製し、抵抗発熱体5となるペーストとして種種の金属とガラス成分や金属酸化物を混合しペースト状に作製したのちスクリーン印刷しウエハ支持部材を作製した。
【0065】
そして、ウエハ支持部材の板状セラミック体の凹部に測温素子を固定する固定部材を硬度の異なる金属やAg−Ni系合金で作製し、夫々同じ形状の板状セラミック体に取り付けた。
【0066】
作製した夫々のウエハ支持部材に電源を取り付け25℃から200℃まで5分間でウェハWを昇温し、ウェハWの温度を200℃に設定してからウェハWの平均温度が200℃±0.5℃の範囲で一定となるまでの時間を応答時間として測定した。また200℃に設定し30分後のウェハ温度の最大値と最小値の差をウェハWの温度差として測定した。
【0067】
また試料No.44は測温素子を凹部に挿入した後、ロウ材を載せ、ロウ材をレーザビームで局部加熱して凹部にロウ材を圧入した。
【0068】
その結果を表4に示す。
【0069】
【表4】
Figure 0003563726
【0070】
固定部材のビッカース硬度が50以下の試料No.41から44は応答時間が19秒以下でしかもウェハの温度差が0.5℃以下と最も優れた特性を示す事が判明した。
【0071】
更に、固定部材のビッカース硬度が30以下の試料No.41から42は応答時間が16秒以下でしかもウェハの温度差が0.4℃以下と更に優れた特性を示す事が判明した。
【0072】
従って、測温素子を固定する固定部材はビッカース硬度が50以下の材料で固定することが優れたウエハ支持部材を作製する上で重要である事を究明できた。
【0073】
【発明の効果】
以上のように、本発明のウエハ支持部材によれば、板状セラミック体の一方の主面側を、ウェハを載せる載置面とし、上記板状セラミック体の他方の主面又は内部に抵抗発熱体を備えるとともに、上記板状セラミック体の他方の主面に凹部を有し、該凹部内に、測温素子とリード線とからなる測温体を挿入し、固定部材にて保持させ、上記測温体の測温素子からリード線が固定部材より露出するまでのリード線の長さを、上記リード線の線径の2倍より大きく30倍以下としたことによって、ウェハの表面温度を正確にかつ追従性良く測定することができるため、ウェハを35℃/分以上の速度で急速昇温することができる。
【0074】
また、上記測温体のリード線の線径をA、測温素子から抵抗発熱体までの最短距離をL1、測温素子から板状セラミック体の一方の主面へ鉛直に延ばした垂線と、板状セラミック体の一方の主面との交点から抵抗発熱体までの最短距離をL2とした時、以下の関係を満足するようにすることで、ウェハ温度の応答時間が短く優れ、しかもウェハの面内温度差を0.7℃以下とすることができる。
【0075】
(L2−7×A)<L1<(L2−A)
さらに、上記固定部材の熱伝導率は、板状セラミック体の熱伝導率の60%以上、300%以下とし、さらにはビッカース硬度が50以下の金属により形成することで、ウェハ温度の応答時間は30秒以下と短く優れ、しかもウェハの面内温度差を0.4〜0.7℃以下と小さくすることができる。
【0076】
また、上記測温体の測温素子は、凹部底面に対して平行に配接することで、ウェハの表面温度をさらに正確にかつ追従性良く測定することができる。
【図面の簡単な説明】
【図1】本発明にウエハ支持部材の一例を示す断面図である。
【図2】本発明の抵抗発熱体の形状を示す概略図である。
【図3】本発明の他の抵抗発熱体の形状を示す概略図である。
【図4】本発明のさらに他の抵抗発熱体の形状を示す概略図である。
【図5】本発明の測温素子を取り付け部を示す概略図である。
【図6】本発明の他の測温素子を取り付け部を示す概略図である。
【図7】本発明の他の測温素子を取り付け部を示す概略図である。
【図8】従来のウエハ支持部材を示す、部品展開図である。
【図9】従来のウエハ支持部材の抵抗発熱体の概略図である。
【図10】(a)(b)従来の測温素子を取り付け部を示す概略図である。
【符号の説明】
1・・・ウエハ支持部材
2・・・板状セラミック体
3・・・一方の主面
4・・・支持ピン
5・・・抵抗発熱体
6・・・給電部
8・・・リード線
8a・・・測温素子
9・・・凹部
9a・・・底部
11・・・給電端子
12・・・ウェハ突き上げピン
15・・・熱的接続部材
P・・・測温素子から板状セラミック体の一方の主面へ鉛直に引いた垂線と板状セラミック体の一方の主面との交点
16・・・加圧ピン
17・・・固定部材
18・・・スプリングバネ
19・・・有底筒状体
20・・・断熱部材
22・・・板状セラミック体
23・・・凹部
25・・・抵抗発熱体
27・・・導通端子
31・・・ケーシング
31a・・・ケーシングの底部
33・・・ステンレス板
34・・・開口部
35・・・ピン挿通孔
36・・・リード線取り出し用の孔
40・・・板状体
41・・・凹部
57・・・穴
150・・・測温素子
151・・・保護菅
W・・・半導体ウェハ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wafer support member mainly used for heating a wafer, for example, a conductor film or an insulating film is formed on a wafer such as a semiconductor wafer, a liquid crystal substrate, or a circuit board, or the wafer is formed on the wafer. The present invention relates to a wafer support member suitable for forming a resist film by drying and baking an applied resist solution.
[0002]
[Prior art]
For example, in the processing of a semiconductor wafer (hereinafter abbreviated as “wafer”) in a manufacturing process of a semiconductor manufacturing apparatus, such as a process of forming a conductive film or an insulating film, an etching process, a baking process of a resist film, and the like, the wafer is heated. A support member is used.
[0003]
A conventional semiconductor manufacturing apparatus uses a batch type in which a plurality of wafers are collectively formed. However, as the size of a wafer increases from 8 inches to 12 inches, it is necessary to improve processing accuracy. In recent years, an apparatus called a single-wafer type for processing one sheet at a time has been used. However, in the case of the single-wafer method, the number of processes per one processing is reduced, so that the processing time of the wafer is required to be shortened. For this reason, it has been required for the wafer support member to shorten the heating time of the wafer, speed up the suction and desorption of the wafer, and improve the accuracy of the heating temperature.
[0004]
As an example of the above-described wafer support member, there is a wafer support member 21 as disclosed in, for example, JP-A-11-283729. As shown in FIG. 8, the wafer support member 21 has a casing 31, a plate-shaped ceramic body 22, and a stainless plate 33 as a plate-shaped reflector as main components. The casing 31 is a bottomed metal member (in this case, an aluminum member), and has an opening 34 having a circular cross section on an upper side thereof. In the center of the casing 31, three pin insertion holes 35 for inserting wafer support pins (not shown) are formed. If the wafer support pins inserted into the pin insertion holes 35 are moved up and down, the wafer W can be transferred to the transfer device or the wafer W can be received from the transfer device. Further, a conduction terminal 27 is brazed to the conduction terminal portion of the resistance heating element 25 shown in FIG. 9, and the conduction terminal 27 is configured to pass through a hole 57 formed in the stainless steel plate 33. Further, several holes 36 for leading out lead wires are formed in the outer peripheral portion of the bottom portion 31a. A lead wire (not shown) for supplying a current to the resistance heating element is inserted through the hole 36, and the lead wire is connected to the conduction terminal 27.
[0005]
Nitride ceramics or carbide ceramics are used as the ceramic material constituting the plate-shaped ceramic body 22, and the resistance heating element 25 is energized in a plurality of concentrically formed patterns as shown in FIG. Accordingly, a wafer support member 21 for heating a plate-like ceramic body 22 has been proposed.
[0006]
In order to form a uniform film on the entire surface of the wafer W or to uniformly process the heating reaction state of the resist film in such a wafer support member 21, the temperature of the wafer W is measured accurately and the wafer is heated. It is important to keep the temperature of W constant. Therefore, a temperature measuring element for measuring the temperature of the wafer W is used, and the temperature measuring element is attached to the concave portion 23 of the wafer support member.
[0007]
Japanese Patent Application Laid-Open No. 9-45752 discloses a temperature measuring resistor for measuring the temperature of a wafer W placed on a wafer support member and controlling the temperature of an upper surface 40a of a metal plate 40 as shown in FIG. An arrangement method of the element 150 is shown. As a method of improving the accuracy and response of the temperature of the plate-like body 40 and improving the accuracy of the temperature control, the temperature difference in the longitudinal direction of the temperature measuring element 150 inserted into the concave portion 41 is reduced, and the temperature measuring resistor element is used. The method of arranging 150 in parallel with the upper surface of the plate-like body 40 is shown. This temperature measuring element is arranged such that a temperature measuring element 150 made of Pt is inserted into the protective tube 151 and is parallel to the upper surface 40 a of the plate-shaped body 40.
[0008]
Further, the gap in the protection tube 151 is filled with the heat transfer cement 52. In particular, when the resistance heating element is divided and controlled, it is preferable to adopt such a mounting structure because accurate temperature control of the plate-shaped body 40 cannot be performed unless the measurement accuracy and the measurement variation are managed at the same time. I was
[0009]
Japanese Patent Application Laid-Open No. 4-98784 discloses a temperature measuring point in a wafer heating apparatus in which a single resistance heating element is embedded in a plate-shaped ceramic body in order to prevent the temperature of the wafer heating surface from deviating from an optimum value. Is set to a position approximately 1 / √2 of the radius of the wafer heating area from the center of the wafer heating area.
[0010]
Japanese Patent Application Laid-Open No. 2001-85144 discloses that a thermoelectric element having a wire diameter of 0.5 mm or less is formed as a temperature measuring element in a recess 2 having a depth of 2 mm and a diameter of 1.2 mm in a plate-shaped ceramic body 22 having a thickness of 3 mm shown in FIG. A wafer support member 21 in which a pair is inserted and sealed with a heat-resistant resin is disclosed.
[0011]
[Problems to be solved by the invention]
However, in order to shorten the processing time per wafer, the thickness of the plate-like ceramic body used for a single wafer type wafer supporting member, which has been attracting attention in recent years, is reduced to 2 to 5 mm, and heating and cooling are performed. It is necessary to make an adjustment so that the cycle time is shorter. However, in order to uniformly heat the entire surface of the wafer to the level of ± 0.5 ° C, the goal of uniformly heating the wafer was achieved by simply arranging a temperature measuring element on the plate-shaped ceramic body using the conventional method. There was a problem that it could not be done.
[0012]
In the wafer support member as described above, even if the temperature measuring element 150 is arranged in parallel with the mounting surface 40a on which the wafer W of the plate-shaped body 40 is mounted as in Japanese Patent Application Laid-Open No. 9-45752, The body 40 was as thick as 30 mm or more, and the temperature of the plate-like body 40 could not be rapidly increased or decreased. Further, heat flows from the main body of the temperature measuring element 150 and a connecting member to the temperature measuring element 150 to the outside of the plate-shaped body 40, and the temperature of the temperature measuring unit decreases, or the temperature measuring element 150 is There is a problem that the temperature of the plate-like body 40 and the temperature of the wafer W may not be accurately measured because the temperature of the plate-like body 40 and the wafer W may not be accurately measured.
[0013]
In addition, the temperature of the wafer W is poorly responsive to the set temperature due to the resistance heating element provided on the plate-shaped body 40 and the distance from the mounting surface 40a to the temperature measuring element 150, and the temperature fluctuates and is controlled to a constant temperature. There is a problem that the processing time of the wafer W becomes longer and the processing time of the wafer W becomes longer.
[0014]
[Means for Solving the Problems]
In view of the above problems, in the wafer support member of the present invention, one of the main surfaces of the plate-shaped ceramic body is used as a mounting surface on which a wafer is mounted, and the other main surface or the inside of the plate-shaped ceramic body has resistance heating. A body having a concave portion on the other main surface of the plate-shaped ceramic body, a temperature measuring element including a temperature measuring element and a lead wire is inserted into the concave portion, and held by a fixing member. The length of the lead wire from the temperature measuring element of the temperature measuring element until the lead wire is exposed from the fixing member is set to be more than twice and 30 times or less the wire diameter of the lead wire.
[0015]
Further, the wire diameter of the lead wire of the temperature measuring element is A, the shortest distance from the temperature measuring element to the resistance heating element is L1, a perpendicular line extending vertically from the temperature measuring element to one main surface of the plate-shaped ceramic body, When the shortest distance from the intersection with one main surface of the plate-shaped ceramic body to the resistance heating element is L2, it is preferable to satisfy the following relationship.
[0016]
(L2-7 × A) <L1 <(L2-A)
Further, it is preferable that the fixing member has a thermal conductivity of not less than 60% and not more than 300% of the thermal conductivity of the plate-shaped ceramic body, and more preferably, is formed of a metal having a Vickers hardness of 50 or less.
[0017]
Further, it is preferable that the temperature measuring element of the temperature measuring body is connected in parallel to the bottom surface of the concave portion.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0019]
FIG. 1 is a cross-sectional view showing an example of a wafer support member 1 according to the present invention. One main surface 3 of a plate-like ceramic body 2 made of a ceramic plate containing silicon carbide, alumina or aluminum nitride as a main component. Is provided as a mounting surface on which the wafer W is mounted, and a resistance heating element 5 is formed on the other main surface, and a power supply section 6 electrically connected to the resistance heating element 5 is provided. The temperature is measured by a temperature measuring element 8a fixed to the concave portion 9 of the plate-shaped ceramic body 2 to constitute the wafer support member 1. The support pins 12 can move the wafer W up and down through a hole penetrating the plate-shaped ceramic body 2 so that the wafer W can be placed on the main surface 3 and lowered. Then, the power supply terminal 11 is connected to the power supply unit 6 and power is supplied from the outside, so that the wafer W can be heated while measuring the temperature with the temperature measuring element including the temperature measuring element 8 a and the lead wire 8.
[0020]
The pattern shape of the resistance heating element 5 may be a spiral pattern as shown in FIG. 2 or divided into a plurality of blocks as shown in FIGS. And a zigzag folded shape composed of the above pattern. When the resistance heating element 5 is divided into a plurality of blocks, the temperature of each block is independently measured and controlled, so that the wafer W on the main surface 3 can be uniformly heated.
[0021]
The resistance heating element 5 is formed by printing a paste containing glass frit or metal oxide on conductive metal particles on the plate-shaped ceramic body 2 by a printing method. The metal particles include Au, Ag, Cu, and Pd. , Pt, and Rh. The glass frit is preferably made of an oxide containing B, Si, and Zn. By using such a resistance heating element 5 in which glass or a metal oxide is mixed with metal particles, the coefficient of thermal expansion of the resistance heating element 5 can be made close to that of the plate-shaped ceramic body 2.
[0022]
As shown in FIG. 5, the main surface 3 includes a plurality of support pins 4 on the main surface 3 so as to hold the wafer W at a fixed distance from one main surface 3 of the plate-shaped ceramic body 2. It may be.
[0023]
In the wafer support member 1 of the present invention, one main surface 3 of the plate-shaped ceramic body 2 is used as a mounting surface on which the wafer W is mounted, or the wafer W is held at a predetermined distance from the main surface 3. A fixing member 17 for fixing the temperature measuring element 8a to the concave portion 9 in the wafer support member 1 in which the concave portion 9 is provided from the side opposite to the main surface toward the heating surface and the temperature measuring element 8a is inserted into the concave portion 9; And the length of the temperature measuring element 8a at a portion covered or sandwiched by the fixing member 17 on the plate-shaped ceramic body 2 is larger than twice the wire diameter A of the temperature measuring element 8a and is 30 times or less. It is characterized by being.
[0024]
A concave portion 9 is formed on the other main surface of the plate-shaped ceramic body 2 that supports the wafer W at a predetermined distance or on which the wafer W is mounted, and a temperature measuring element 8a is inserted into the concave portion 9; The temperature of the ceramic body 2 is measured. The size of the concave portion 9 is 2-5 mm in diameter, and is pierced to a depth of about two-thirds of the preferred thickness of the plate-shaped ceramic body 2, and the temperature of one main surface 3 of the plate-shaped ceramic body 2 is increased. Is directly reflected on the bottom surface 9a of the recess 9 so that the thermal resistance between the temperature measurement element 8a and the contact interface between the bottom surface 9a of the recess 9 and the temperature measurement element 8a is reduced. The temperature measuring element 8a is connected to the bottom surface 9a of the concave portion 9 via a thermal connecting member 15 made of a metal foil or paste that is easily deformable and has a large thermal conductivity of 100 W / (m · K) or more so as to reduce the electrical resistance. Is preferred.
[0025]
Further, in order to accurately measure the temperature of the main surface 3 of the plate-shaped ceramic body 2 having a thickness of 2 to 5 mm, it is necessary to transmit the temperature of the main surface 3 of the plate-shaped ceramic body 2 to the temperature measuring element 8a. For example, if the temperature measuring element 8a is, for example, a thermocouple, if there is a thermally connected portion with the concave portion 9 over a length greater than twice the wire diameter of the thermocouple from the temperature measuring point, the temperature of the main surface 3 can be increased with high sensitivity. Can be measured accurately. For example, if the diameter of the lead wire 8 of the temperature measuring element 8a is not more than twice the diameter of the lead wire 8 made of a thermocouple, the heat at the temperature measuring point is transferred to the plate-like ceramic body 2 via the lead wire 8 extending from the temperature measuring element 8a. This is because there is a possibility that the gas flows to the outside and the temperature at the temperature measuring point decreases. It is preferably larger than 2 times, more preferably 5 times or more, and still more preferably 7 times or more of the lead wire 8. In particular, the linear portion of the lead wire 8 from the temperature measuring element 8 a from the temperature measuring point It is preferable that the diameter is at least four times the wire diameter, and furthermore, it is preferable that this linear portion be parallel to the bottom surface 9a of the concave portion so that the temperature of the main surface 3 can be measured with high sensitivity. And it is more preferable that the linear portion is parallel to one main surface of the plate-shaped ceramic body 2.
[0026]
When the temperature measuring element 8a is fixed to the bottom surface 9a of the concave portion 9 with a brazing material or a heat conductive paste as the fixing member 17, the thermal connection portion with the concave portion 9 is defined as The extended lead wire 8 and / or the temperature measuring element 8a shows a portion in the concave portion 9 covered with the brazing material or the heat conductive paste. When a solid material is used as the fixing member 17, the thermal connection portion indicates a portion where the fixing member 17 of the concave portion 9 is in contact with the temperature measuring element 8a or the lead wire 8 extending from the temperature measuring element 8a. When a solid fixing member 17 is used, the temperature measuring element 8a is not buried in the fixing member 17, so that it is affected by the atmospheric gas. However, the wafer supporting member 1 for a coater developer used in the atmosphere is not used. There is no influence of the atmospheric gas, and it is preferable from the viewpoint of handling.
[0027]
In particular, when the fixing member 17 shown in FIG. 5 is solid, a soft thermal connection member 15 is formed on the bottom surface 9a of the concave portion 9 so that the temperature measuring element 8a is thermally connected to the concave portion 9 made of ceramic. An aluminum foil or the like made of a metal foil is placed, and the temperature measuring element 8a is pressed by the fixing member 17 via the thermal connecting member 15 made of the aluminum foil or the like so that the temperature measuring element 8a comes into contact with the concave portion 9 at the surface. It is preferred to be connected.
[0028]
Since the concave portion 9 is made of the rigid plate-like ceramic body 2 having a Young's modulus of 200 GPa or more and the concave bottom surface 9a is less deformed by pressurization, the bottom surface of the concave portion 9 is required to bring the temperature measuring element 8a into surface contact with the concave portion 9. It is preferable that the bottom surface 9a and the thermal connection member 15 be brought into surface contact with the thermal connection member 9 via the thermal connection member 15, and the thermal connection member 15 be brought into contact with the temperature measuring element 8a or the lead wire 8 extending from the temperature measuring element 8a. . Usually, since the deformation of the bottom surface 9a made of ceramic is small, it is difficult for the temperature measuring element and the bottom surface 9a of the concave portion to directly come into surface contact with each other. Attachment of the temperature measuring element 8a via a metal foil such as aluminum or silver, which is easy to perform, is effective in reducing the thermal resistance at the interface between the recess 9 and the temperature measuring element 8a. It is effective in measuring a proper temperature.
[0029]
A fixing member 17 for fixing the temperature measuring element 8a and the lead wire 8 extending from the temperature measuring element 8a is provided in the concave portion 9, and the temperature measurement covered or sandwiched by the plate-shaped ceramic body 2 with the fixing member 17 is provided. It is important that the length of the lead wire 8 from the element 8a is not more than 30 times the wire diameter A of the lead wire 8. If the concave portion 9 for fixing the temperature measuring element 8a is increased or the lead wire 8 is swirled and swirled to exceed 30 times the wire diameter A, the length of the lead wire 8 in the concave portion 9 increases. Therefore, the temperature distribution of the main surface 3 of the plate-shaped ceramic body 2 may change due to a difference in thermal conductivity or heat capacity between the plate-shaped ceramic body 2 and the lead wire 8 which is as thin as 2 to 5 mm. Preferably, the length of the lead wire 8 from the temperature measuring element 8 a covered or sandwiched by the fixing member 17 is 20 times or less the wire diameter A of the lead wire 8. By setting in this manner, the temperature of the temperature measuring element 8a can be suppressed to within 0.3 ° C. of the temperature of the main surface of the plate-shaped ceramic body 2 and, moreover, the ability to follow the temperature change of the main surface 3 It is possible to increase.
[0030]
Next, the temperature of the main surface 3 of the wafer support member 1 can be accurately measured by arranging the temperature measuring element 8a and the lead wire 8 as described above. However, the temperature of the wafer W is controlled to be constant. In the meantime, while measuring the temperature of the main surface of the plate-shaped ceramic body 2 with the above-mentioned temperature measuring element 8a, power is supplied to the resistance heating element 5 provided in the plate-shaped ceramic body 2 to generate heat, and the temperature of the main surface is reduced. It is controlled to be uniform. For that purpose, heat conductivity from the resistance heating element 5 to the plate-shaped ceramic body 2 and heat transmission from the main surface of the plate-shaped ceramic body 2 to the temperature measuring element 8a, and from the resistance heating element 5 to the temperature measuring element 8a. The way heat is transmitted is especially important. It is required that the heat of the resistance heating element 5 be transmitted to the main surface 3 and that the temperature distribution of the wafer W be uniform.
[0031]
However, if the resistance heating element 5 heats the temperature measuring element 8a later than the main surface 3, it becomes difficult to accurately and accurately measure the temperature of the main surface 3 with the temperature measuring element 8a. From this point, the shortest distance L1 from the temperature measuring element 8a to the resistance heating element 5, the perpendicular extending vertically from the temperature measuring element 8a to one main surface 3 of the plate-shaped ceramic body 2, and the plate-shaped ceramic body It is preferable that the shortest distance L2 from the intersection P with one of the main surfaces 3 to the resistance heating element 5 is equal, and that the thermal resistance at the intervals of the shortest distances is as small as possible. Therefore, the inventor of the present application has found that the distances L1 and L2 are related to the wire diameter of the temperature measuring element, and it is important to satisfy an appropriate relationship with the distances L1 and L2. It has been found that the temperature distribution of the wafer support member 1 can be provided, and the temperature can be changed quickly and easily.
[0032]
The above-mentioned appropriate relationship means that L1 is preferably larger than the interval (L2-7 × A) and smaller than (L2-A).
(Equation 1)
(L2-7 × A) <L1 <(L2-A)
If L1 is larger than (L2-A), the temperature measuring element 8a is too close to the main surface 3, so that the temperature of the portion of the main surface 3 close to the temperature measuring element decreases, the temperature distribution of the wafer W deteriorates, and the main surface is deteriorated. This is because there is a possibility that the temperature representative of No. 3 cannot be measured. Further, when L1 is smaller than (L2-7 × A), the temperature of the resistance heating element 5 has a greater effect than the temperature of the main surface 3, and the temperature of the main surface 3 can be accurately and quickly measured by the temperature measuring element 8a. If the temperature of the wafer W is controlled to be constant or the temperature of the wafer is rapidly increased, not only the temperature of the wafer W cannot be controlled to the set temperature but also the possibility that the temperature of the wafer W may overshoot increases. Because.
[0033]
The thermal conductivity of the thermal connecting member 15 and the fixing member 17 for fixing the temperature measuring element 8a and the lead wire 8 to the recess 9 is preferably 100 W / (m · K) or more. It is preferable that the heat conductivity is greater than 60% and 300% or less of the thermal conductivity of the plate-shaped ceramic body 2. If the thermal conductivity of the thermal connection member 15 or the fixing member 17 is less than 100 W / (m · K) or less than 60% of the thermal conductivity of the plate-shaped ceramic body 2, the main surface of the plate-shaped ceramic body 2 3, the temperature of the wafer W may be difficult to control accurately and promptly because the temperature of the thermal connection 8 is not transmitted to the temperature measuring element 8a quickly. When the thermal conductivity of the ceramic body 2 is 300% or more, the difference in thermal conductivity between the ceramic body 2 and the plate-shaped ceramic body 2 is too large. When the wafer W is loaded, a hot spot or a cool spot may be generated on the main surface 3 immediately above the concave portion 9 and the temperature distribution of the wafer W may be deteriorated, which is not preferable.
[0034]
Further, the thermal connection member 15 preferably has a Vickers hardness Hv of 50 or less measured by applying a load of 1 N for 30 seconds. When the Vickers hardness is 50 or more, the contact area between the temperature measuring element 8a and the thermal contact member 51 or the contact area between the thermal contact member 51 and the concave bottom surface 8a is small and the temperature of the main surface 3 of the plate-shaped ceramic body 2 can be quickly measured. When the temperature of the wafer W is controlled to be constant or when the temperature of the wafer W is rapidly increased, the temperature may overshoot. Therefore, the hardness Hv of the thermal connecting member 15 is preferably 50 or less, more preferably 30 or less.
[0035]
Such a thermal connection member 15 is preferably silver, aluminum, platinum or gold, and the thickness of the thermal connection member 15 is preferably 10 μm to 300 μm. When the thickness of the thermal connection member 15 is 10 μm or less, the area of surface contact even when the temperature measuring element 8 a or the lead wire 8 is pressed is small, and when the thickness is 300 μm or more, heat transfer becomes slow and rapid temperature measurement becomes difficult. Preferably, thermal connecting member 15 has a thickness of 50 to 200 μm.
[0036]
In addition, it is preferable that the temperature measuring element 8 a and the tip of the lead wire 8 are disposed on the bottom surface 9 a of the concave portion 9 in parallel with the main surface 3. If the tip of the temperature measuring element 8a or the lead wire 8 is not arranged in parallel with the main surface 3, the heat of the temperature measuring element 8a is transmitted through the lead wire 8 and escapes, so that the temperature measured decreases and accurate This is because the temperature of the wafer W cannot be measured. The length of the tip of the temperature measuring element 8a parallel to the main surface 3 is preferably 2-3 mm. If it is less than 2 mm, the detection part of the temperature measuring part is short, so that the escape of heat is large and it is difficult to measure the temperature accurately. On the other hand, if it is 3 mm or more, the inner diameter of the concave portion becomes too large, and there is a risk that a cool spot may be formed on the upper surface of the concave portion.
[0037]
Next, another embodiment of the present invention will be described.
[0038]
FIG. 6 is a view showing another embodiment of the present invention in which the temperature measuring element 8a is attached to the plate-like ceramic body 2 having a thickness of 2 to 5 mm, which is easily heated by the resistance heating element 5 and whose deformation due to heating is small. . The depth of the recess is about 2/3 of the plate thickness, the diameter of the recess is 3 mm, and a thermocouple whose surface is insulated by 0.3 to 0.8 mm is used as the temperature measuring element 8a or the lead wire 8. Two to three millimeters of the tip of the pair are bent and brazed to the concave portion 9, and for example, gold tin brazing or silver copper brazing can be used. In addition to brazing, bonding may be performed using a heat conductive paste in which, for example, silver / epoxy resin having a very small curing shrinkage is mixed. If the brazing material or the thermally conductive paste has the thermal or mechanical characteristics of the temperature measuring element 8a or the fixing member 17 for fixing the lead wire 8 close to the temperature measuring element 8a, the wafer W It has been found that the temperature can be measured accurately, precisely and with high sensitivity.
[0039]
FIG. 7 shows a similar recess 9 formed in the same plate-like ceramic body 2 as in FIG. 6, a thermal connection member 15 provided on the bottom surface 9 a of the recess, and a temperature measuring element 8 a and a lead wire 8 pressed by a fixing member 17. A pressurizing pin 16 for pressing the fixing member 17, and an alumina-zirconia having a heat conductivity of 5 W / (m · K) or less as a heat insulating layer between the pressing pin 16 and the fixing member 17. A heat insulating member 20 made of a heat-resistant resin such as a composite ceramic or Teflon is used. The pressure pin 16 has a structure in which a heat insulating member 20 is pressed by a spring 18 provided outside.
[0040]
On the other hand, as a material of the plate-shaped ceramic body 2 constituting the wafer support member 1, alumina, silicon nitride, sialon, aluminum nitride, and silicon carbide which are excellent in wear resistance and heat resistance can be used. And silicon carbide have a high thermal conductivity of 50 W / (m · K) or more, and more than 100 W / (m · K), and have a large Young's modulus of 300 GPa or 400 GPa. The deformation of the body 2 is small and preferable. Furthermore, since it has excellent corrosion resistance and plasma resistance to corrosive gases such as fluorine-based and chlorine-based gases, it is suitable as a material for the plate-shaped ceramic body 2.
[0041]
As a method of manufacturing such a wafer support member 1, first, a sintering aid such as calcium carbonate is added to AlN powder forming the plate-shaped ceramic body 2, an acrylic binder is added, and the plate-shaped is formed. The compact with the residue left is sintered under pressure at about 2000 ° C. Alternatively, 0.1 mass% of calcia is added to the aluminum nitride powder, a binder is added, and the granulated powder is formed into a plate shape and fired at 2000 ° C. or more in a nitrogen atmosphere. The front and back surfaces of the sintered plate-shaped ceramic body 2 are ground and processed into a disk shape. Then, the resistance heating element 5 is printed on the other main surface to provide the resistance heating element 5. The resistance heating element 5 has a substantially circular area where the resistance heating element 5 is formed in a spiral shape from the center to the outer periphery shown in FIG. 2 and the plate-shaped ceramic body 2 provided with the resistance heating element 5 shown in FIGS. I do.
[0042]
Thereafter, the upper surface of the plate-shaped ceramic body 2 is polished to place the wafer W thereon, or the main surface 3 for supporting the wafer W at a predetermined distance from the main surface 3 is formed, and the power supply terminal 11 is formed on the lower surface. And the plate-shaped ceramic body 2 are fixed to a bottomed tubular body 19 for fixing the same.
[0043]
Although FIG. 1 shows the wafer support member 1 having only the resistance heating element 5 on the other main surface 3 of the plate-shaped ceramic body 2, the present invention relates to a configuration in which the main surface 3 and the resistance heating element 5 are provided between the main surface 3 and the resistance heating element 5. It goes without saying that electrodes for electrostatic adsorption or plasma generation may be embedded. Furthermore, although the heater in which the resistance heating element 5 is provided on the other main surface of the plate-shaped ceramic body 2 has been described, the resistance heating element 5 is formed on a main surface different from the mounting surface 3 of the plate-shaped ceramic body 2 and is made of glass or the like. The same effect can be obtained even when buried.
[0044]
Although the example in which the resistance heating element 5 is provided on the main surface 3 of the plate-shaped ceramic body 2 has been described, the wafer support in which the resistance heating element 5 is embedded on the main surface side different from the mounting surface of the plate-shaped ceramic body 2 is shown. Similar effects can be obtained with members.
[0045]
【Example】
(Example 1)
Here, 0.1 mass% of calcia having an average particle diameter of 1 μm was added to aluminum nitride powder having an average particle diameter of 1.2 μm as a plate-shaped ceramic body 2, mixed and pulverized, and an acrylic binder was added to form a plate having a diameter of 400 mm. After performing binder removal treatment at 400 ° C. for 1 hour in air and a nitrogen atmosphere, sintering was performed in a nitrogen atmosphere at 2000 ° C. The front and back surfaces of the sintered body were ground to obtain a disc-shaped plate-shaped ceramic body 2 having a diameter of 320 mm and a thickness of 3 mm. The other main surface 3 of the plate-shaped ceramic body 2 contains 50% by mass of metallic silver and is made of B2O3.SiO2.ZnO glass (having a thermal expansion coefficient of 4.4.times.10.sup.3). -6 / ° C) was added with a solvent to prepare a paste.
[0046]
Then, the paste was printed as a resistance heating element 5 on the other main surface of the plate-shaped ceramic body 2 to a thickness of 20 μm by a screen printing method. Then, a concave portion 9 having a diameter of 3 mm and a depth of 2 mm was produced corresponding to each resistance heating element 5. Then, an aluminum foil having a thickness of 100 μm is placed on the bottom surface 9 a of the concave portion 9 as the thermal connection member 15, and thermocouples having wire diameters of 0.5 mm and 0.3 mm as the temperature measuring element 8 a and the lead wire 8 are arranged several millimeters from the tip. The tip was wound spirally at the position and placed on an aluminum foil, and the temperature measuring element was pressed by a fixing member 17 made of aluminum having a diameter of 2.9 mm and a thickness of 2 mm and having a groove through which the temperature measuring element passed. The fixing member 17 presses the temperature measuring element 8a and the lead wire 8 with the pressing pin 16 via the heat insulating member 20 made of zirconia ceramic having an outer diameter of 2.5 mm and a thickness of 500 μm to be thermally connected to the bottom surface 9a of the recess 9. Was. In making the thermal connection, the length of the lead wire 8 from the temperature measuring element 8a covered or sandwiched by the fixing member 17 was adjusted by the length in which the lead wire 8 was spirally wound.
[0047]
Further, the sample No. No. 7 was prepared by heating and fixing a fixing member made of silver-copper brazing at 350 ° C.
[0048]
Then, a wafer supporting member having a different length of the lead wire 8 is manufactured from the temperature measuring element 8a covered or sandwiched by the fixing member, and a power source is attached to each wafer supporting member to change the temperature from 25 ° C. to 200 ° C. for 5 minutes. Then, the time from when the temperature of the wafer W was set to 200 ° C. until the average temperature of the wafer W became constant within the range of 200 ° C. ± 0.5 ° C. was measured as the response time. The difference between the maximum value and the minimum value of the wafer temperature after 30 minutes at 200 ° C. was measured as the temperature difference of the wafer W. And the result of Table 1 was obtained.
[0049]
[Table 1]
Figure 0003563726
[0050]
Sample No. Reference numeral 1 indicates that the length of the lead wire 8 from the temperature measuring element 8a sandwiched between the fixing members is too small, twice as long as the outer shape of the lead wire 8, so that the response time is as large as 64 seconds and the wafer temperature difference is also 1.5. It is found that the temperature is as high as ° C. and is out of the range of the present invention. Further, the sample No. Conversely, the length of the lead wire 8 from the temperature measuring element 8a sandwiched between the fixing members is too large, 33 times the outer shape of the temperature measuring element, so that the response time is as long as 65 seconds and the wafer temperature difference 1. It turned out to be 2 ° C., which is not preferable.
[0051]
On the other hand, the sample No. In Nos. 2 to 9, the length of the lead wire 8 from the temperature measuring element 8a sandwiched between the fixing members is larger than twice the outer shape of the temperature measuring element and 30 times or less. It can be seen that the temperature difference is as small as 1 ° C. or less and shows excellent characteristics as a wafer support member. Sample No. Sample No. 3 has a response time of 50 seconds or less and a small temperature difference of 0.9 ° C. or less. 4 to 6 and 8, it was found that the response time was 40 seconds or less and the wafer temperature difference was as small as 0.8 ° C. or less, which was more preferable.
[0052]
Therefore, the length of the lead wire 8 from the temperature measuring element 8a covered or sandwiched by the fixing member provided in the concave portion of the plate-shaped ceramic body is larger than twice the wire diameter A of the temperature measuring element and 30 times or less. And excellent characteristics.
(Example 2)
A wafer support member was manufactured in the same process as in Example 1, and the position and depth of the concave portion were changed, and a thermocouple having a diameter (A) of 0.5 mm was inserted into the concave portion as the temperature measuring element 8a or the lead wire 8 as shown in FIG. The temperature measuring element 8a and the lead wire 8 were fixed so as to have the structure shown in FIG. Then, the distance L1 from the temperature measuring element 8 in the concave portion to the resistance heating element 5 and the distance L2 from the point P where the distance between the temperature measurement element 8a and the point on the main surface becomes the minimum distance to the resistance heating element are changed. A support member was manufactured, and the characteristics of the wafer support member were evaluated in the same manner as in Example 1.
[0053]
Further, the sample No. No. 25 produced a wafer supporting member in which the same type of ALN sheet was further laminated on the printing surface after printing the resistance heating element and the resistance heating element was embedded in ALN.
[0054]
Table 2 shows the characteristics of these wafer support members.
[0055]
[Table 2]
Figure 0003563726
[0056]
Sample No. (L2-7 × A) <L1 <(L2-A) is satisfied. It was found that the samples Nos. 22 to 24 had a short response time of 35 seconds or less, and also had a small wafer temperature difference of 0.7 ° C. or less, which was preferable.
[0057]
On the other hand, the sample No. In No. 21, L1 <(L2-A) was not satisfied, the response time was as large as 59 seconds, and the wafer temperature difference was as large as 0.9 ° C.
[0058]
Further, the sample No. In No. 25, L1> (L2-7 × A) was not satisfied, the response time was as large as 58 seconds, and the wafer temperature difference was as large as 0.9 ° C.
[0059]
Then, the paste was printed on the other main surface of the plate-shaped ceramic body 2 in the shape of the resistance heating element 5 to a thickness of 20 μm by a screen printing method. Then, the concave portion 9 was formed with a diameter of 3 mm and a different depth corresponding to each individual resistance heating element 5. Then, an aluminum foil having a thickness of 100 μm is placed on the bottom surface 9a of the concave portion 9 as the thermal connection member 15, and thermocouples having wire diameters of 0.5 mm and 0.3 mm as the temperature measuring element 8a and the lead wire 3 mm from the tip are provided. It was bent at a right angle at the position, its tip was placed on an aluminum foil, and the temperature measuring element was pressed by a metal fixing member 17 having a diameter of 2.9 mm and a thickness of 2 mm and having a groove through which the temperature measuring element passed. The fixing member 17 is thermally connected to the bottom surface 9a of the recess 9 by pressing the temperature measuring element 8a and the lead wire 8 with the pressing pin 16 via the heat insulating member 20 made of zirconia ceramic having an outer diameter of 2.5 mm and a thickness of 500 μm. I let it. Then, a power supply is attached to each wafer supporting member, and the temperature of the wafer W is increased from 25 ° C. to 200 ° C. for 5 minutes, and the temperature of the wafer W is set to 200 ° C., and then the average temperature of the wafer W is set to 200 ° C. ± 0. The time until the temperature became constant in the range of 5 ° C. was measured as the response time. The difference between the maximum value and the minimum value of the wafer temperature after 30 minutes at 200 ° C. was measured as the temperature difference of the wafer W. And the result of Table 3 was obtained.
[0060]
[Table 3]
Figure 0003563726
[0061]
Sample No. having a thermal conductivity of 100 W / (m · K) or more of the fixing member and a thermal conductivity of 60% or more and 300% or less of the thermal conductivity of the plate-shaped ceramic body. 33, 34, 36, and 37 had excellent response times of 28 seconds or less. Further, the temperature difference of the wafer was preferably 0.7 ° C. or less.
[0062]
On the other hand, in the sample Nos. In which the thermal conductivity of the fixing member was 341% or 502% of the thermal conductivity of the plate-shaped ceramic. In Nos. 31 and 32, the temperature difference between the wafers was as large as 0.9 ° C., respectively.
[0063]
Further, the sample No. In the case where the thermal conductivity of the fixing member was not 57% or more than 60% or more of the thermal conductivity of the plate-shaped ceramic body as in 35, the response time was slightly large at 35 seconds.
[0064]
Therefore, based on the above results, a temperature measuring element is provided in the concave portion, and a fixing member having a thermal conductivity of 60% or more and 300% or less with respect to the thermal conductivity of the plate-shaped ceramic body is used. Is fixed, the response time is further reduced, and a wafer supporting member having a small temperature difference of the wafer can be obtained.
(Example 4)
A plate-like ceramic body 2 was prepared in the same manner as in Example 1, and various kinds of metals and glass components or metal oxides were mixed as a paste to be a resistance heating element 5 to form a paste, followed by screen printing to prepare a wafer support member. did.
[0065]
Then, a fixing member for fixing the temperature measuring element to the concave portion of the plate-shaped ceramic body of the wafer support member was made of a metal having a different hardness or an Ag-Ni-based alloy, and was attached to the plate-shaped ceramic body having the same shape.
[0066]
A power supply was attached to each of the manufactured wafer supporting members, and the temperature of the wafer W was raised from 25 ° C. to 200 ° C. for 5 minutes, the temperature of the wafer W was set to 200 ° C., and then the average temperature of the wafer W was 200 ° C. ± 0. The time until the temperature became constant in the range of 5 ° C. was measured as the response time. The difference between the maximum value and the minimum value of the wafer temperature after 30 minutes at 200 ° C. was measured as the temperature difference of the wafer W.
[0067]
Sample No. Reference numeral 44 shows that after inserting the temperature measuring element into the concave portion, the brazing material was placed thereon, and the brazing material was locally heated by a laser beam to press-fit the brazing material into the concave portion.
[0068]
Table 4 shows the results.
[0069]
[Table 4]
Figure 0003563726
[0070]
Sample No. 5 in which the Vickers hardness of the fixing member is 50 or less. It was found that the samples 41 to 44 exhibited the most excellent characteristics with a response time of 19 seconds or less and a wafer temperature difference of 0.5 ° C. or less.
[0071]
Further, the sample No. having a Vickers hardness of 30 or less of the fixing member. From 41 to 42, it was found that the response time was 16 seconds or less and the temperature difference between the wafers was 0.4 ° C. or less, exhibiting further excellent characteristics.
[0072]
Therefore, it was found that it is important to fix the fixing member for fixing the temperature measuring element with a material having a Vickers hardness of 50 or less in producing an excellent wafer supporting member.
[0073]
【The invention's effect】
As described above, according to the wafer support member of the present invention, one of the main surfaces of the plate-shaped ceramic body is used as the mounting surface on which the wafer is placed, and the other main surface or the inside of the plate-shaped ceramic body has resistance heating. A body having a concave portion on the other main surface of the plate-shaped ceramic body, a temperature measuring element including a temperature measuring element and a lead wire is inserted into the concave portion, and held by a fixing member. The length of the lead wire from the temperature measuring element of the temperature measuring element until the lead wire is exposed from the fixing member is set to more than twice and 30 times or less the wire diameter of the above-mentioned lead wire, so that the surface temperature of the wafer can be accurately measured. The temperature of the wafer can be rapidly increased at a rate of 35 ° C./min or more because the measurement can be performed quickly and with good followability.
[0074]
Further, the wire diameter of the lead wire of the temperature measuring element is A, the shortest distance from the temperature measuring element to the resistance heating element is L1, a perpendicular line extending vertically from the temperature measuring element to one main surface of the plate-shaped ceramic body, When the shortest distance from the intersection with one main surface of the plate-shaped ceramic body to the resistance heating element is L2, by satisfying the following relationship, the wafer temperature response time is short and excellent, and the wafer The in-plane temperature difference can be 0.7 ° C. or less.
[0075]
(L2-7 × A) <L1 <(L2-A)
Further, the thermal conductivity of the fixing member is set to be not less than 60% and not more than 300% of the thermal conductivity of the plate-shaped ceramic body. It is as short as 30 seconds or less and excellent, and the in-plane temperature difference of the wafer can be reduced to 0.4 to 0.7 ° C. or less.
[0076]
In addition, the temperature measuring element of the temperature measuring body is arranged in parallel with the bottom surface of the concave portion, so that the surface temperature of the wafer can be measured more accurately and with good followability.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of a wafer support member according to the present invention.
FIG. 2 is a schematic view showing a shape of a resistance heating element of the present invention.
FIG. 3 is a schematic view showing the shape of another resistance heating element of the present invention.
FIG. 4 is a schematic view showing the shape of still another resistance heating element according to the present invention.
FIG. 5 is a schematic view showing a mounting portion to which the temperature measuring element of the present invention is attached.
FIG. 6 is a schematic view showing a mounting portion to which another temperature measuring element of the present invention is attached.
FIG. 7 is a schematic view showing a mounting portion to which another temperature measuring element of the present invention is attached.
FIG. 8 is an exploded view showing a conventional wafer support member.
FIG. 9 is a schematic view of a resistance heating element of a conventional wafer support member.
10 (a) and 10 (b) are schematic diagrams showing a conventional temperature measuring element mounting portion.
[Explanation of symbols]
1 ... Wafer support member
2 ... plate-shaped ceramic body
3. One main surface
4 ... Support pin
5 Resistance heating element
6 ... Power supply unit
8 Lead wire
8a ・ ・ ・ Temperature measuring element
9 ... recess
9a ... bottom
11 ... Power supply terminal
12 ... Wafer push-up pin
15 Thermal connection member
P: intersection of a perpendicular drawn from the temperature measuring element to one main surface of the plate-shaped ceramic body and one main surface of the plate-shaped ceramic body
16 ・ ・ ・ Pressing pin
17 ... fixing member
18 ・ ・ ・ Spring spring
19 ・ ・ ・ Bottomed cylindrical body
20 ... heat insulating member
22 ・ ・ ・ Plate-shaped ceramic body
23 ... recess
25 ... resistance heating element
27 Conductive terminal
31 ・ ・ ・ Casing
31a: bottom of casing
33 ・ ・ ・ Stainless steel plate
34 ・ ・ ・ Opening
35 ・ ・ ・ Pin insertion hole
36 ··· Hole for taking out lead wire
40 ... plate-like body
41 ... recess
57 ... hole
150 ・ ・ ・ Temperature measuring element
151 ... Protection tube
W: semiconductor wafer

Claims (3)

板状セラミック体の一方の主面側を、ウェハを載せる載置面とし、上記板状セラミック体の他方の主面又は内部に抵抗発熱体を備えるとともに、上記板状セラミック体の他方の主面に凹部を有し、該凹部内に、測温素子とリード線とからなる測温体を挿入し、固定部材にて保持するようにしたウエハ支持部材であって、上記測温体の測温素子からリード線が固定部材より露出するまでのリード線の長さを、上記リード線の線径の2倍より大きく30倍以下とし、上記固定部材の熱伝導率が板状セラミック体の熱伝導率の60%以上、300%以下であって、上記固定部材がビッカース硬度50以下の金属からなることを特徴とするウエハ支持部材。One main surface side of the plate-shaped ceramic body is a mounting surface on which a wafer is mounted, and the other main surface of or in the inside of the other main surface of the plate-shaped ceramic body, and the other main surface of the plate-shaped ceramic body is provided. A wafer support member having a concave portion, into which a temperature measuring element composed of a temperature measuring element and a lead wire is inserted and held by a fixing member, wherein the temperature measurement of the temperature measuring element is performed. the length of the lead wire from the device to the lead wire is exposed from the fixing member, not more than 30 times greater than twice the wire diameter of the lead wire, the thermal conductivity of the thermal conductivity of the fixing member is the ceramic plate A wafer supporting member , wherein the fixing member is made of a metal having a Vickers hardness of 50 or less, with the ratio being 60% or more and 300% or less . 上記測温体のリード線の線径をA、測温素子から抵抗発熱体までの最短距離をL1、測温素子から板状セラミック体の一方の主面へ鉛直に延ばした垂線と、板状セラミック体の一方の主面との交点から抵抗発熱体までの最短距離をL2とした時、次の関係を満足することを特徴とする請求項1に記載のウエハ支持部材。
(L2−7×A)<L1<(L2−A)
The wire diameter of the lead wire of the temperature measuring element is A, the shortest distance from the temperature measuring element to the resistance heating element is L1, a perpendicular line extending vertically from the temperature measuring element to one main surface of the plate-like ceramic body, and a plate-like shape. The wafer support member according to claim 1, wherein the following relationship is satisfied when the shortest distance from the intersection with the one main surface of the ceramic body to the resistance heating element is L2.
(L2-7 × A) <L1 <(L2-A)
上記測温体の測温素子を凹部底面に対して平行に配接してあることを特徴とする請求項1または2に記載のウエハ支持部材。 3. The wafer support member according to claim 1, wherein a temperature measuring element of the temperature measuring body is disposed in parallel with a bottom surface of the concave portion.
JP2002092548A 2002-03-28 2002-03-28 Wafer support member Expired - Fee Related JP3563726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002092548A JP3563726B2 (en) 2002-03-28 2002-03-28 Wafer support member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092548A JP3563726B2 (en) 2002-03-28 2002-03-28 Wafer support member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004130399A Division JP4243216B2 (en) 2004-04-26 2004-04-26 Wafer support member

Publications (2)

Publication Number Publication Date
JP2003297714A JP2003297714A (en) 2003-10-17
JP3563726B2 true JP3563726B2 (en) 2004-09-08

Family

ID=29386669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092548A Expired - Fee Related JP3563726B2 (en) 2002-03-28 2002-03-28 Wafer support member

Country Status (1)

Country Link
JP (1) JP3563726B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5947054B2 (en) * 2012-02-21 2016-07-06 株式会社Kelk Heating device
JP6811583B2 (en) * 2016-10-26 2021-01-13 日本特殊陶業株式会社 Holding device and its manufacturing method

Also Published As

Publication number Publication date
JP2003297714A (en) 2003-10-17

Similar Documents

Publication Publication Date Title
KR101246753B1 (en) Wafer support member
WO2001091166A1 (en) Semiconductor manufacturing and inspecting device
JPWO2003015157A1 (en) Ceramic joint
EP1341215A1 (en) Ceramic heater for semiconductor manufacturing and inspecting devices
TW541638B (en) Heater member for mounting heating object and substrate processing apparatus using the same
JPH11312570A (en) Ceramic heater
JP2001135715A (en) Temperature measuring element and ceramic base material for semiconductor manufacturing apparatus
JP3563726B2 (en) Wafer support member
JP2004296532A (en) Hot plate unit
JP4081396B2 (en) Thermocouple mounting structure of ceramic heater
JP4243216B2 (en) Wafer support member
JP4009138B2 (en) Wafer support member
JP2000286331A (en) Wafer support member
JP3694607B2 (en) Contact heating heater and contact heating apparatus using the same
JP2002184557A (en) Heater for semiconductor manufacturing and inspecting device
JP3850314B2 (en) Wafer support member and wafer heating method using the same
JP2003077781A (en) Ceramic heater for semiconductor manufacturing/ inspecting device
JP2002083858A (en) Wafer heating device
JP2005026585A (en) Ceramic joined body
JP2007013175A (en) Wafer support member and method of heating wafer using the same
JP2004177412A (en) Temperature measurement element and ceramic base for semiconductor production device
JP2001237304A (en) Ceramic substrate for semiconductor manufacturing/ inspecting device
JP3439439B2 (en) Ceramic substrate for thermocouples and semiconductor manufacturing equipment
JP2002203664A (en) Ceramic heater for semiconductor manufacturing.testing equipment
JP2004296445A (en) Ceramic heater, manufacturing method of the same, and ceramic heater manufacturing system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040603

R150 Certificate of patent or registration of utility model

Ref document number: 3563726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees