JP4242932B2 - 鋼帯の連続焼鈍における一次冷却方法 - Google Patents
鋼帯の連続焼鈍における一次冷却方法 Download PDFInfo
- Publication number
- JP4242932B2 JP4242932B2 JP10535197A JP10535197A JP4242932B2 JP 4242932 B2 JP4242932 B2 JP 4242932B2 JP 10535197 A JP10535197 A JP 10535197A JP 10535197 A JP10535197 A JP 10535197A JP 4242932 B2 JP4242932 B2 JP 4242932B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- cooling
- steel strip
- steel
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
【発明の属する技術分野】
本発明は、鋼帯の連続焼鈍における過時効処理前の急冷処理を含む一次冷却方法において、冷却ガスにH2 ガスを含む不活性ガスを混合して急速冷却する方法に関する。
【0002】
【従来の技術】
冷間圧延後の鋼帯は硬過ぎて加工性が殆どないので、そのままではプレス成形ができず実用に供されない。鋼帯の加工性を向上させるには、鋼帯の結晶粒度を十分に大きくすること、及び鋼帯に含まれる固溶炭素をできるだけ少なくすることが必要である。
そこで、加熱工程と、均熱工程と、1次冷却工程と、過時効工程及び最終冷却工程からなる連続焼鈍処理が行われている。即ち、連続焼鈍処理は、冷間圧延後の鋼帯を再結晶温度以上に加熱し、700〜850℃の均熱温度にて一定時間保持して結晶粒を成長させると共に、その際溶解した炭素を無害化するべく、一次冷却の前半でフェライト地の固溶炭素量を多くし、更には操業上クーリングバックル等の形状不良を防ぐために一定温度(600〜700℃)までの徐冷を行って、一次冷却の後半で過時効温度(約400℃)まで急冷している。そして、この温度で一定時間保持し固溶炭素をセメンタイトとして析出させて固溶炭素を減少させた後、最終冷却することによって行われる。
前記一次冷却の後半の急冷処理において気水冷却を使用し水を用いて冷却すると、鋼帯表面に酸化膜が生成し、連続焼鈍直後に酸洗等を行う後処理が必要であるので、不活性ガスを鋼帯に吹き付けて冷却する方法において、冷却能の大きいH2 ガスを多量に含み基材ガスがN2 である冷却ガスを用いる冷却方法が、例えば特公昭55−1969号公報や特開平6−346156号公報において提案されている。
前記特公昭55−1969号公報においては、H2 ガスの濃度が50%以上の範囲で調整することが記載され、特開平6−346156号公報においては、70〜90%の範囲でH2 ガス濃度を調整することが記載されている。
【0003】
【発明が解決しようとする課題】
しかしながら、前記公報記載の技術においては、以下のような点については十分な解明がなされていないことが判明した。
▲1▼H2 ガスの濃度が上がれば確かに冷却能力が上がるが、コスト高になる。また、H2 ガスの濃度がその爆発限界である6%を越えて増加した不活性ガスを使用することは、爆発の危険性が高まり安全性に問題が生じる。
▲2▼同一の薄板用連続焼鈍設備で異なった鋼種、例えば、軟鋼の中の普通用鋼(低炭素鋼)、絞り用鋼(低炭素鋼)、及び、深絞り用鋼(低炭素鋼)、超深絞り用鋼(極低炭素鋼)、また、2相組織型高張力鋼(高Mn鋼)等を焼鈍する場合、それほど急冷を要さない普通用鋼や超深絞り用鋼においても、他の急冷を要する絞り用鋼や深絞り用鋼と同一のH2 ガスの濃度で急冷することは、必要以上に経費がかかり経済性に劣るという問題を有する。特に、昨今では多種多様な鋼種を連続して焼鈍する頻度が増加し、各鋼種に適した冷却ガスを用いることが強く希求されている。
▲3▼そこで、H2 ガスの濃度を下げて、ノズルからのガスの吹き付け速度を増加すれば、高い冷却能力は達成できるが、一定速度以上になると、通過する鋼帯にバタツキが発生し、鋼帯に傷が付き易い。なお、ここで吹き付け速度とは、鋼帯に吹き付けられる冷却ガスのノズルから吹き出るときの速度をいう。
本発明はかかる事情に鑑みてなされたもので、高価なH2 ガスの使用量を低減し経済性を向上させると共に、安全性も高め、かつ、最も効率的でしかも廉価な鋼帯の連続焼鈍における一次冷却方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
前記目的に沿う請求項1記載の鋼帯の連続焼鈍における一次冷却方法は、加熱工程、均熱工程、少なくとも後半に急冷処理工程を有する一次冷却工程、過時効処理工程、及び最終冷却工程を有し、多種の鋼種を同一の連続焼鈍設備で焼鈍する鋼帯の連続焼鈍における一次冷却方法であって、
前記急冷処理工程の開始温度を600〜700℃、終了温度を200〜450℃とし、前記急冷処理工程に使用する冷却ガスを、多数のノズルが設けられ、該ノズル全体の開口面積が前面側面積の2〜4%になるように形成され、前記ノズルの先端から前記鋼帯の表面までの距離を70mm以下とした吹き付けガス箱を使用して前記鋼帯に吹き付け、しかも、前記冷却ガスにH2ガスを含む不活性ガスを使用し、前記鋼帯の鋼種により必要な冷却速度に応じて、前記H2ガスの濃度を1〜5%及び30〜60%の2つの範囲間で切り替え、更に、前記H 2 ガスの濃度が30〜60%の領域にある場合、前記急冷処理工程における冷却速度CR(℃/秒)と板厚t(mm)との関係が以下の式を満足し、かつ前記冷却ガスの吹き付け温度を30〜100℃、その吹き付け速度を115〜150m/秒としている。
CR・t≧80℃・mm/秒
【0005】
請求項1記載の鋼帯の連続焼鈍における一次冷却方法においては、急冷処理工程に使用する冷却ガスに、H2ガスを含む不活性ガスを使用し、更に、H2ガス濃度可変手段を備えて鋼帯の鋼種に応じて、二つの濃度領域で変化させるようにしている。即ち、普通用鋼や、超深絞り用鋼等のようにそれほど急冷を要さない鋼種の場合にはH2ガスの濃度を1〜5%の領域とすると共に、絞り用鋼や、深絞り用鋼や、2相組織型高張力鋼のような鋼種の場合にはH2ガスの濃度を30〜60%の領域の間で変化させるようにしている。
この場合、鋼帯の連続焼鈍における一次冷却方法は、H2ガス濃度が1〜5%の領域にある場合は、冷却ガスの吹き付け温度を80〜150℃、その吹き付け速度を80〜100m/秒とし、一方、H2ガス濃度が30〜60%の領域にある場合は、前記冷却ガスの吹き付け温度を30〜100℃、その吹き付け速度を115〜150m/秒とするのが好ましい。なお、H2ガス濃度(%)の単位は、体積%とする。
【0006】
【発明の実施の形態】
続いて、添付した図面を参照しつつ本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここに、図1は本発明の一実施の形態に係る鋼帯の連続焼鈍における一次冷却方法を適用した薄板用連続焼鈍設備の説明図、図2は同連続焼鈍設備の炉部における鋼帯の通過時間と温度の関係を示すグラフ、図3は急冷処理を行う装置の斜視図、図4は冷却ガスのボックスと冷却ガスを吹き出すノズルの正面図、図5は図4のI−I線による断面図、図6は急冷処理の制御を行う制御装置のブロック図、図7は同制御装置によるH2 ガスの濃度の制御手順を示すフローチャート、図8はノズルの開口面積比率とブロワー動力比との関係を示すグラフ、図9は(ノズル口径/吹き付け距離)とブロワー動力比との関係を示すグラフ、図10は冷却ガス中のH2 ガスの濃度とバタツキを起こす限界速度との関係を示すグラフ、図11、図12はH2 ガスの濃度と急冷帯のランニングコスト指数との関係を示すグラフ、図13は急冷帯における鋼帯の通過時間と温度との関係を示すグラフ、図14はH2 ガスの濃度と熱伝達係数との関係を示すグラフである。
【0007】
本発明の一実施の形態に係る鋼帯の連続焼鈍における一次冷却方法を適用した炉部(以下、連続焼鈍炉という)10aを具備する連続焼鈍設備10が図1に示されている。図示するように、炉部10aは、加熱帯11、均熱帯12、一次冷却帯13、過時効帯14、及び二次冷却帯である最終冷却帯15からなり、一次冷却帯13は前半の徐冷帯13aと後半の急冷帯13bとで構成されている。
前記連続焼鈍炉10aの入側には、材料コイルの巻き戻し機16、先行及び後行鋼帯26を接続する溶接機17、電解清浄を行う前処理装置18、及び入側ルーパー19を備え、連続焼鈍炉10aの出側には、出側ルーパー20、調質圧延機21、コイルの耳切り、検査及び塗油等の処理を行う精整装置22、製品コイル単位で鋼帯を切断する分割剪断機23及び製品コイルの巻取り機24を備えている。
【0008】
前記一次冷却帯13の後半部分の急冷帯13bを構成する急冷装置13cを図3に示すが、垂直方向に配列された複数対のスタビライジングロール25によって支持されて垂直に走行する鋼帯26を挟んで吹き付けガス箱27、28が設けられている。鋼帯26の両面に配設された吹き付けガス箱27、28の片側には並列に接続された複数のダンパー27a、28a及び断面Y字状の吹き込み分岐ダクト29を介して吹き込み集合ダクト30の上部流出口が連設されており、吹き込み集合ダクト30の下部流入口はモータ35によって駆動されるブロワー34の吐出口に接続されている。吹き付けガス箱27、28の他方側には、吹き付けガス箱27、28によって鋼帯26に吹き付けられた冷却ガスを回収する複数の吸引ダクト31が設けられている。これらの吸引ダクト31の流入口は吹き付けガス箱27、28の他方側に面しており、その流出口はそれぞれ吸引集合ダクト31aの上部に連結されている。一方、吸引集合ダクト31aの下端には水等を冷媒とする熱交換器32が取付けられており、加熱された冷却ガスを冷却すると共に、冷却されたガスを下部ダクト33を通じてブロワー34に導くようにしている。なお、熱交換器32にフロンやアンモニア等の冷媒を用いる冷凍機を付加し、冷却ガスを更に冷却することも可能である。
【0009】
図3に示すように、吹き付けガス箱28の内部には冷却ガス中のH2 ガスの濃度を測定するH2 センサ36が配置されており、H2 センサ36で測定したH2 ガスの濃度の値は制御部37に転送される。また、H2 ガスタンク38及びN2 ガスタンク39が連続焼鈍炉10aの近傍に配置されている。H2 ガスタンク38及びN2 ガスタンク39はH2 ガス供給管42及びN2 ガス供給管43を介してN2 ガスとH2 ガスを混合するミキサー43aに接続されている。ミキサー43aは、更に、吹き込み集合ダクト30に接続されている。H2 ガス供給管42及びN2 ガス供給管43には制御部37と配線されたH2 ガス開閉バルブ40及びN2 ガス開閉バルブ41がそれぞれ装着されており、制御部37からの駆動信号に基づいて制御される。なお、図3において、矢印は冷却ガスの流れを示す。図3では、H2 センサ36が上方の吹き付けガス箱28に配置されているが、上方及び下方の吹き付けガス箱28にそれぞれH2 センサ36を設置することも可能である。この場合、各H2 センサ36で検出されたそれぞれの値の平均値を求め、それを基準にして全ての吹き付けガス箱28内のH2 ガスの濃度を制御してもよいし、また各H2 センサ36が検出した値により、それぞれ独立して各吹き付けガス箱28内のH2 ガスの濃度を制御してもよい。
【0010】
前記吹き付けガス箱27(又は28)を図4、図5に示すが、吹き付けガス箱27の表面に短管からなる多数のノズル44が設けられている。このノズル44は円管状に突出する円孔ノズルからなり、吹き出し口の内径Dが、例えば9.2mmとなって、吹き付けガス箱27の前面に千鳥足状に配列されている。
また、ノズル44全体の開口面積は、吹き付けガス箱27の前面側面積の2〜4%になるように形成され、それぞれのノズル44から冷却ガスが一定の風速で吹き出すようになっている。ノズル44の開口面積比率と、ブロワー34の動力との関係を図8に示すが、図に示すように開口面積比率が2〜4%程度が最も効率がよい。これは開口面積比率が4%を越えると同一風量に対して冷却ガスの風速が減少し、開口面積比率が2%を越えない範囲では同一風量では流速が高くなってノズル44における圧力損失がより大きくなるからと判断される。
【0011】
また、図5に示すように、ノズル44の先端から鋼帯26の表面までの距離、即ち、吹き付け距離dは70mm以下となって、ノズル44の突出長さLが(100mm−d)以上になるように調整されている。これはノズル44の先端から鋼帯26までの距離dが大きくなると、鋼帯26の表面に吹き付けられる冷却ガスの流速が減衰するからであり、ノズル44の突出長さLを(100mm−d)以上としたのは、ノズル44の吹き出し口の背部に冷却ガスの逃げる部分を作ることによって、吹き付けられて熱せられた冷却ガスの鋼帯26表面での滞留を減少し、冷却を効率的ならしめると共に、鋼帯26の幅方向の冷却均一性をよくするためである。
【0012】
各ノズル44の吹き出し口の内径D(ノズル口径)について検討する。図9には〔ノズル口径D/吹き付け距離d〕とブロワー34の動力との関係を示しているが、〔ノズル口径D/吹き付け距離d〕が小さい程ブロワー34の動力が減少している。
また、ノズル44から冷却ガスを吹き出して高冷却能力を実現するためには、ノズル44を密に配置し冷却ガスの個々のジェット流のノズル軸芯付近の最も冷却能力の高い部分が鋼帯26に密にかつ一様に分布される必要がある。従って、ノズル口径Dは小さい程有利になるが、ノズル口径Dを小さくすると、ノズル44の個数が増加し設備及び保守のコストが高騰するという不利な面があるので、この両者を考慮すると吹き出し口のノズル口径Dはd/5以下であってしかも実用的に加工できる3mm以上とするのが好ましい。
【0013】
次に、図1、図2を参照して連続焼鈍設備10の動作の概要を説明し、本発明の一実施の形態に係る鋼帯の連続焼鈍における一次冷却方法について説明する。巻き戻し機16から巻き解かれた鋼帯26は、溶接機17によって先に送られた鋼帯26に連結され、電解洗浄装置等を含む前処理装置18に送られる。この後、入側ルーパー19を通って連続焼鈍炉10aの加熱帯11に供給されて再結晶温度以上に加熱され(以上、加熱工程A)、次いで均熱帯12に供給され、700〜850℃の温度に一定時間保持される(以上、均熱工程B)。これらの工程A、Bで鋼帯26は再結晶し引き続いて粒成長が進行するので、軟質化すると同時に高い加工性を持つようになる。しかし、鋼帯26に高温度の熱処理を施すと鋼帯26中の炭化物が組織中に溶解し、鋼帯26をそのまま冷却すると、固溶した炭素が多量に鋼帯26中に存在するようになる。この固溶炭素は時間の経過と共に析出して鋼帯26を硬化させると同時に、大きな降伏点伸びを発生させるので、固溶炭素の存在は好ましいものではない。
【0014】
そこで、鋼帯26中の固溶炭素量をできるだけ少なくするために、均熱処理後に過時効帯14で固溶炭素が拡散可能で且つ炭素の固溶限の小さな温度域(400℃前後)で一定時間保持する過時効処理が施される。これにより、固溶炭素がセメンタイト(Fe3 C)として析出し、鋼帯26中の固溶炭素量は大きく減少する(以上、過時効処理工程D)。
この過時効処理を促進するために、鋼帯26は均熱後A1 変態点(723℃)以下のある温度TS まで徐冷帯13aで徐冷した後、急冷帯13bで過時効温度まで急速冷却される。この急速冷却によって急冷終点(図2における温度TE )では固溶炭素は、Fe−C系平衡状態図におけるその温度での炭素固溶限より過剰な炭素がフェライト地に固溶していて過飽和状態となり、過時効処理時のセメンタイトの析出が促進される。ここで、鋼帯26は前述のように、均熱後、一次冷却の前半でA1 変態点以下のある温度TS まで冷却されるが、これはフェライト地の固溶炭素量を多くすると共に、操業上クーリングバックル等の形状不良を防ぐ目的を持つ。このような操業上の理由からTS の上限は、700℃とされる。
【0015】
また、図2に示すように、TS は急冷開始温度であり、急冷終点である過時効温度に近づきすぎては意味がないので、下限は600℃とされる。また、急冷終点温度TE の上限は過時効開始温度の上限で450℃とすべきである。そして、一次冷却の後半、急冷帯13bで行う急速冷却工程の冷却速度は、前記過飽和状態を達成するために冶金学的に60℃/秒以上、望ましくは80℃/秒程度以上が必要とされる。即ち、前記冷却速度が60℃/秒未満では製品である鋼帯26中の固溶炭素量が多くなりすぎて硬化しプレス時の加工性が劣化する(以上、一次冷却工程C)。
そして、過時効処理を経た鋼帯26は最終冷却帯15で室温まで徐冷される(以上、最終冷却工程E)。
【0016】
また、高張力鋼帯、特にフェライト地にマルテンサイトが混在する2相組織型高張力鋼帯を製造する場合には、焼鈍サイクルに工夫がなされており、加熱帯11においてA1 変態点以上の温度まで加熱し(加熱工程A′)、その温度で均熱し、フェライトとオーステナイトの二相状態とした上で(均熱工程B′)、徐冷帯13aで徐冷した後、急冷帯13bで急冷開始温度TS より急冷する。そして、急冷終点温度TE ′は、マルテンサイト化変態温度MS (化学成分によって異なるが250℃程度)より下の温度でオーステナイトを効率よくマルテンサイトに変態させる。従って、TE ′の下限温度は200℃としている。
【0017】
この急冷処理工程での冷却速度が不足すると、連続冷却変態曲線におけるフェライト、パーライト等への変態開始のノーズ(Nose)に引っ掛かって、オーステナイトの一部はそれらの相に変態してしまい、マルテンサイト化変態の効率が悪くなる。このことから冶金学的には急速冷却工程には60℃/秒の冷却速度が必要であり、合金成分を一層節約しようとする場合には、100℃/秒以上が望ましい。この様子を図2に一点鎖線で示すが、一次冷却工程C′の部分で約200℃まで急速冷却され、その後過時効帯14で低温保定工程D′に移行した後、最終冷却工程E′に移っている。
【0018】
実際の操業においては、多種な鋼を同一の連続焼鈍設備10で焼鈍する必要が生じ、焼鈍される鋼種としては、軟鋼の中の普通用鋼(低炭素鋼)、絞り用鋼(低炭素鋼)、深絞り用鋼(低炭素鋼)、及び、超深絞り用鋼(極低炭素用鋼)、又、2相組織型高張力鋼(高Mn鋼)等が挙げられる。その際、急冷処理工程における冷却条件はこれらの鋼種毎に変更できることが好ましく、望ましい冷却条件を表1に示す。
【0019】
【表1】
【0020】
表1に示すように、絞り用鋼、深絞り用鋼、及び、2相組織型高張力鋼は、冷却速度を高くし冷却ガスのH2 ガスの濃度を30〜60%とすることが好ましい。この根拠は後で説明する。
普通用鋼及び超深絞り用鋼は冷却速度を比較的低くすることが可能で、冷却ガス中のH2 ガスの濃度も1〜5%と抑えることができる。H2 ガスの濃度が5%を越えるにつれ、必要とされる冷却速度を越える傾向となり、高価なH2 を使用する理由を失うと共に、H2 ガスの爆発限界である6%を越えることとなり好ましくない。
しかしながら、冷却速度が遅い分、急速冷却工程におけるパスの長さを長くするか、又は、鋼帯26の搬送速度を遅くして冷却終点温度を確保する必要がある。高い冷却速度を必要としない理由は、普通用鋼は固溶炭素の経時析出による硬化や降伏点伸びの増加等がその用途を考慮してあまり問題視されないからであり、また、超深絞り用鋼は炭素含有量が極めて少ない上に特殊処理してあるため固溶炭素がほとんど存在せず過時効処理工程が必要ないからである。
【0021】
鋼種を変更する場合は、溶接機17によって異なる鋼種を溶接し、連続して焼鈍を行うが、一次冷却工程Cの急冷処理工程においては、冷却ガス中のH2 ガスの濃度を変更し、冷却速度を制御する。なお、吹き出しガス組成の変更には時間を要するので、表1の低い冷却速度で十分な鋼種と高い冷却速度を必要とする鋼種をそれぞれロット編成し、それらのロット間の移り変わりの時に、H2 ガスの濃度を切り替える方法が生産効率上好ましい。
H2 ガス濃度可変手段Fは、前述したH2 センサ36と、制御部37と、H2 ガスタンク38と、N2 ガスタンク39と、H2 ガス開閉バルブ40と、N2 ガス開閉バルブ41と、H2 ガス供給管42と、N2 ガス供給管43と、ミキサー43aとからなる。
【0022】
以下にH2 ガス濃度可変手段Fを用いた、冷却ガス中のH2 ガスの濃度の変更手順について、図3、図6、及び、図7を用いて説明する。
まず、各鋼種の目標とする冷却ガス中のH2 ガスの濃度Cset をキーボード49から制御部37に入力し、制御部37内のRAM47に格納する(ステップS1)。なお、H2 ガスの濃度は1〜5%及び30〜60%の範囲間で切り替える他、0を越え60%以下の範囲で変化させることもできる。H2 ガスの濃度が60%を越えるにつれ、後述するように鋼帯26の冷却能に変化がなくただ高価なH2 ガスの量が増加するだけなので好ましくない。
次に、新たに焼鈍する鋼種を選定し、キーボード49から制御部37に入力し、RAM47に格納する(ステップS2)。H2 センサ36は吹き付けガス箱28内の冷却ガス中のH2 ガスの濃度を常時測定し、そのH2 ガスの濃度の値Cmes を制御部37に転送し、入出力インターフェイス45を介して計算機CPU46に取り込む(ステップS3)。CPU46においては、H2 センサ36で測定されたH2 ガスの濃度の値Cmes から設定されたH2 ガスの濃度の値Cset を引き、その値を許容範囲である所定値δと比較し、その差分が所定値δより大きいかどうかを判定する(ステップS4)。
【0023】
ステップS4がYESである場合は、H2 ガスの濃度を低下させる必要があるので、N2 ガス開閉バルブ41を開き、ミキサー43aに供給されるN2 ガス量を増加させ、吹き付けガス中のN2 量の割合を増大させる。この場合、H2 ガスの濃度を急速に低減させるため一時的にH2 ガス開閉バルブ40を閉じてもよい。N2 ガス開閉バルブ41を開いた後にステップS3を再度実行し冷却ガス中のH2 ガスの濃度を改めて測定する(ステップS5)。
ステップS4がNOである場合は、H2 ガスの濃度が設定値より低いかどうかを判定するため、再度H2 ガスの濃度の設定値Cset と測定値Cmes の差分を、許容範囲である所定値δと比較する(ステップS6)。
【0024】
ステップS6がYESである場合、即ち、H2 ガスの濃度の設定値Cset と測定値Cmes の差分が所定値δより大きく、かつ、H2 ガスの濃度の設定値Cset が測定値Cmes より大きい場合には、ステップS7を実行する。
ステップS7においては、H2 ガス開閉バルブ40を開くことにより、H2 ガスをH2 ガスタンク38からH2 ガス供給管42やミキサー43aを経由して吹き込み集合ダクト30に供給する。その後、ステップS3を再度実行しH2 ガスの濃度をモニターする。
ステップS6がNOの場合、つまり、H2 ガスの濃度の設定値Cset と測定値Cmes の差分が所定値δの範囲内に収まっている場合は、H2 ガス開閉バルブ40とN2 ガス開閉バルブ41はどちらも変化させずに、ステップS3を実行し冷却ガス中のH2 ガスの濃度を再度測定する。これらの制御手順はROM48内にプログラムとして格納され、必要に応じて順次CPU46に取り込まれる。
【0025】
次に、絞り用鋼、深絞り用鋼、及び、2相組織型高張力鋼の急冷処理条件について考察する。連続焼鈍炉10aの急冷帯13bの冷却能力は、冷却速度をCR(℃/秒)、鋼帯26の厚みをt(mm)とし、連続焼鈍炉10aで焼鈍する鋼帯26の板厚が通常1mm程度であることを考慮すると、(1)式が成立することが必要になる。
CR・t≧60℃・mm/秒 ・・・・(1)
一方、伝熱理論によって熱伝達係数α(kcal/m2 h℃)は次の(2)式であることが知られている。
CR=k・α/t (ここで、kは定数) ・・・・(2)
この(2)式を変形すると次の(3)式のようになる。
CR・t=k・α ・・・・(3)
これを前記した(1)式に代入すると(4)式のようになる。
k・α ≧ 60 ℃・mm/秒 ・・・・(4)
【0026】
ここで、急冷帯13bを図3に示すような急冷装置13cに特定した場合には、定数kの値が決まり、この値を(4)式に代入すると、前記(1)式の条件を満たす熱伝達係数αの値は(5)式のようになる。
α ≧ 410 kcal/m2 h℃ ・・・・(5)
前記急冷処理工程に前述のように気水冷却を使用すると、(5)式を満足する冷却は可能であるが、鋼帯26の表面に薄い酸化膜が形成され、焼鈍後の後処理で軽酸洗、酸洗リンス、化成性向上のための特殊処理、最終リンスの工程が必要となるので設備コストが増加するという欠点がある。そこで、不活性ガスのジェット流を鋼帯26に吹き付けて急冷することとした。特に、H2 ガスは冷却能が高いため、H2 ガスとN2 ガスとの混合ガスを冷却ガスとして使用することとした。
【0027】
ところで、急冷帯13bの冷却能を示す前記した熱伝達係数αは、本発明者がパイロットラインテストにより得た実験式によれば、冷却ガスのノズル44からの吹き付け速度V及び冷却ガスの種類との関数であって次の(6)式のように表せる。
α=K・λa ・Vb (ここで、a>0、b>0) ・・・・(6)
λ:ガスの種類によって変わる定数、V:吹き付け速度、
K,a,b:定数
(6)式から、冷却ガスの吹き付け速度Vを速くすれば熱伝達係数αは大きくなるので、比較的コストのかかる100%H2 ガスを使用しなくても、冷却ガスの吹き付け速度を大きくすることによって、冷却能力の向上を図ることができることが分かる。ところが、冷却ガスの吹き付け速度を一定以上に増大すると、ブロワー運転のための電力費用が急激に増大すると共に、冷却する鋼帯26にバタツキを生じさせ、更に単位体積当たりの重量の大きいN2 ガスの割合が増加するとこの傾向が著しくなる。これは、鋼帯26にバタツキを発生させる力は、吹き付けガスの運動エネルギーに最も強く影響される(比例する)と考えられ、吹き付けガスの運動エネルギーEは以下の式(7)のように表されるからである。
【0028】
E= γ/2g×v2 (ここで、γはガスの比重、gは重力の加速度、vはガスの流速) ・・・・(7)
鋼帯26にバタツキが発生すると、鋼帯26が冷却ガスのノズル44の先端等に当たって鋼帯26に掻き疵が発生する等の問題がある。そこで、図3に示すような急冷装置13cを用いて、冷却ガス温度を一定(100℃)にし、H2 ガスの濃度を変えた冷却ガスを鋼帯26に吹き付け、バタツキを起こす限界吹き付け速度を検討した結果を図10に示す。なお、このバタツキを起こす限界は、鋼帯26の板厚t及び張力によって多少変化する。また、図3に示すスタビライジングロール25の間隔を短くすることによって緩和されるので、冷却ガスの吹き付け速度を大きくすることもできる。
【0029】
また、前記(6)式の条件を左右するものに、冷却ガスの温度がある。図3に示す急冷装置13cでは、鋼帯26の冷却に使用した冷却ガスは、吸引ダクト31から吸引されて熱交換器32によって熱交換されている。この熱交換器32の冷媒には安価な水を使用しているので、熱交換器32を通過した冷却ガスの温度は80〜150℃となるが、効率的な熱交換を行って80〜100℃程度とするのが経済的にもより好ましい。また、前記熱交換器32にフロンやアンモニア等を冷媒とする冷凍機を付加して冷却ガスの温度を30〜80℃とすることも可能であり、これによって更に効率的な鋼帯26の冷却を行うことができる。
【0030】
普通用鋼や超深絞り用鋼を急冷処理する場合は、冷却速度をそれほど大きくせずに、H2 ガス濃度が1〜5%の領域に設定されるが、冷却ガスの温度は80〜150℃の範囲が好適に用いられる。冷却ガスの温度が80℃を下まわるにつれ、前述したように、冷凍機を設置せねばならず急冷装置13cの構造が複雑となりメンテナンスに手間がかかると共に、電力消費量の増大によりランニングコストも高くなり好ましくない。この際、冷却速度の条件はそれほど厳しくないので、冷却ガスの温度が80℃以上でも品質に悪影響を与えることは少ない。また、冷却ガスの温度が150℃を越えるにつれ、冷却能力が不足して通常の搬送速度では必要な温度まで冷却できなくなるので好ましくない。
【0031】
一方、絞り用鋼、深絞り用鋼、及び、2相組織型高張力鋼を急冷処理する場合は、冷却速度は高くして、H2 ガス濃度が30〜60%の領域に設定され、冷却ガスの温度を30〜150℃の範囲とすることが好ましい。冷却ガスの温度が30℃未満になるにつれ、前述したように、循環して使用される冷却ガスを30℃以下とする熱交換器32の拡張や冷凍機の設置が別途必要であり現実的でない。冷却ガスの吹き付け温度が150℃を越えるにつれ、普通用鋼や超深絞り用鋼を急冷処理する場合と同様に、冷却能力が不足して通常の搬送速度では必要な温度まで冷却できなくなるので好ましくない。
【0032】
次に、冷却ガス中のH2 ガスの濃度を低くするとN2 ガスの濃度が増加し、N2 ガスは安価であるので、使用する冷却ガスの値段は安価になる。ところが、冷却ガス中のH2 ガスの濃度を小さくすると、N2 ガスの濃度が大きくなって、冷却ガスの単位体積当たりの重量が大きくなりブロワー34等の電力費が嵩む。また、冷却ガス中のH2 ガスの濃度を増加すると熱伝達係数αは増加することになる。前記(1)式を満たす条件で、冷却ガス中のH2 ガスの濃度を変えた場合の冷却ガスのランニングコストについて調べた実験例1及び実験例2の結果を、図11、図12にそれぞれ示す。そして、冷却ガス中のH2 ガスの量が減少すると熱伝達係数が小さくなるので、その分は冷却ガスのノズル44からの吹き付け速度で補なっている。
【0033】
図11には厚みが0.798mmで幅が1300mmの鋼帯を270m/分で搬送して、鋼帯温度を675℃から410℃に急冷させた場合の鋼帯1トン当たりの冷却ガスのランニングコスト指数を示す。
そして、図12には厚みが0.633mm、幅が1300mmの鋼帯を260m/分で搬送して、鋼帯温度を670℃から270℃に急冷した場合の鋼帯1トン当たりの冷却ガスのランニングコスト指数を示す。図11、図12において、破線は冷却ガス費用を、一点鎖線は電力費用を、実線はこれらを加えた場合の総合費用である。
図11においては、冷却ガス中のH2 ガスの濃度が約45%の場合が、図12においては約55%の場合が最もランニングコストが下がる。
【0034】
次に、ノズルの形状及び配置、冷却ガスの速度等の冷却条件を一定にした場合の熱伝達係数αは、図13に示すように急冷処理を行う実際の操業試験のデータから次の(8)、(9)式によって計算した。
α=A・t・(i1 −i2 )/(ΔT・θ) ・・・・(8)
ΔT=(T1 −T2 )/ln(T1 −Tg )/(T2 −Tg ) ・(9)
ここで、T1 :鋼帯の入口側の温度、T2 :鋼帯の出口側の温度、i1 :入口側の鋼帯のエンタルピー、i2 :出口側の鋼帯のエンタルピー、θ:鋼帯の通過時間、A:定数、t:鋼帯の厚み、Tg :冷却ガスの温度を示す。
冷却ガスの吹き付け速度Vを130m/秒、及び100m/秒にして、H2 ガスの濃度を種々変化させた場合のデータから計算した熱伝達係数αを図14に示す。H2 ガスの濃度が60%を越えると、熱伝達係数αが飽和していることが分かる。従って、H2 ガスの濃度が60%を越える冷却ガスを使用しても、大きな冷却効果がないことになる。
また、冶金学的条件から導き出された前記(5)式の条件を図14に適用すると、冷却ガスの吹き付け速度Vが100m/秒以上であり、且つ、H2 ガスの濃度が30%以上であることが必要となる。
【0035】
図10〜図14の結果から、絞り用鋼、深絞り用鋼、及び、2相組織型高張力鋼を急冷処理する場合は、冷却ガス中のH2 ガスの濃度は30〜60%を使用するのが、経済的に前記(1)式の条件を得る冷却能力を与えることが分かる。この場合においては、鋼帯26にバタツキを生じさせない冷却ガスの最大速度は図10から115〜150m/秒であることが分かるが、以上の他の冷却条件を満足して前記(5)式を満足する冷却ガスの吹き付け速度の下限は100m/秒となり、これ未満の場合には、前記(5)式を満足する冷却能力を与えることができない。
【0036】
なお、実験によれば、冷却ガスの速度が100m/秒未満の場合には、鋼帯26の表面に付着して流動しない不動層(境界層ともいう)が形成され易くなり熱伝達係数が小さくなる。普通用鋼(低炭素鋼)及び超深絞り用鋼(極低炭素鋼)の場合は、冷却ガスの吹き付け速度が80〜100m/秒の範囲なので、或る程度の不動層が形成され冷却速度が低下するが、前述した様に急速冷却の必要性が少なく、この範囲でも操業が可能である。冷却ガスの吹き付け速度が80m/秒未満になると冷却能力が不足して通常の搬送速度では必要な温度まで冷却できなくなるので好ましくない。冷却ガスの吹き付け速度が100m/秒を越える場合は、必要以上の冷却速度となりブロワー34の電力消費が必要以上に増加し好ましくない。
【0037】
前記実施の形態においては、本発明の理解を容易にするために、具体的数字に基づいて説明したが、本発明の要旨を変更しない程度の変更は当然可能であり、この場合にも本発明は適用される。
【0038】
【発明の効果】
本発明に係る鋼帯の連続焼鈍における一次冷却方法においては、加熱工程、均熱工程、少なくとも後半に急冷処理工程を有する一次冷却工程、過時効処理工程、及び最終冷却工程を有する鋼帯の連続焼鈍における一次冷却方法であって、急冷処理工程に使用する冷却ガスに、H2 ガスを含む不活性ガスを使用し、更に、急冷処理工程において鋼帯の鋼種により必要な冷却速度に応じてH2 ガスの濃度を1〜5%及び30〜60%の2つの範囲間で切り替える。それにより、異なった材質の鋼をそれぞれの品質を満足する冷却条件で急冷処理でき、高価なH2 ガスの使用量を低減でき経済性に優れると共に、不必要なH2 ガスを使用しないので、H2 ガスによる爆発等の危険性が低減し、安全性や作業性が向上する。また、同一の薄板用連続焼鈍設備を用いて多種の鋼種を焼鈍できるので、作業範囲が拡がり、多様な操業が可能となり、操業上のフレキシビリティが向上する。
なお、冷却ガス中のH2 ガスの濃度を0を越え60%以下の範囲で変化させた場合には、H2 ガスの使用量を節約しつつ、それぞれの鋼種に適した冷却速度を得ることができる。
また、冷却ガスの吹き付け温度を30〜150℃、その吹き付け速度を80〜150m/秒とした場合には、鋼種により求められる冷却速度に応じてH2 ガス濃度に加え、冷却ガスの温度、吹き付け速度を適切に選ぶことによって、冷却能力と経済性の双方を満足する最適な冷却条件を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る鋼帯の連続焼鈍における一次冷却方法を適用した薄板用連続焼鈍設備の説明図である。
【図2】同連続焼鈍設備の炉部における鋼帯の通過時間と温度の関係を示すグラフである。
【図3】急冷処理を行う装置の斜視図である。
【図4】冷却ガスのボックスと冷却ガスを吹き出すノズルの正面図である。
【図5】図4のI−I線による断面図である。
【図6】急冷処理の制御を行う制御装置のブロック図である。
【図7】同制御装置によるH2 ガスの濃度の制御手順を示すフローチャートである。
【図8】ノズルの開口面積比率とブロワー動力比との関係を示すグラフである。
【図9】ノズル口径/吹き付け距離とブロワー動力比との関係を示すグラフである。
【図10】冷却ガス中のH2 ガスの濃度とバタツキを起こす限界速度との関係を示すグラフである。
【図11】H2 ガスの濃度と急冷帯のランニングコスト指数との関係を示すグラフである。
【図12】H2 ガスの濃度と急冷帯のランニングコスト指数との関係を示すグラフである。
【図13】急冷帯における鋼帯の通過時間と温度との関係を示すグラフである。
【図14】H2 ガスの濃度と熱伝達係数との関係を示すグラフである。
【符号の説明】
10 連続焼鈍設備 10a 炉部
11 加熱帯 12 均熱帯
13 一次冷却帯 13a 徐冷帯
13b 急冷帯 13c 急冷装置
14 過時効帯 15 最終冷却帯
16 巻き戻し機 17 溶接機
18 前処理装置 19 入側ルーパー
20 出側ルーパー 21 調質圧延機
22 精整装置 23 分割剪断機
24 巻取り機 25 スタビライジングロール
26 鋼帯 27 吹き付けガス箱
27a ダンパー 28 吹き付けガス箱
28a ダンパー 29 吹き込み分岐ダクト
30 吹き込み集合ダクト 31 吸引ダクト
31a 吸引集合ダクト 32 熱交換機
33 下部ダクト 34 ブロワー
35 モータ 36 H2 センサー
37 制御部 38 H2 ガスタンク
39 N2 ガスタンク 40 H2 ガス開閉バルブ
41 N2 ガス開閉バルブ 42 H2 ガス供給管
43 N2 ガス供給管 43a ミキサー
44 ノズル 45 入出力インターフェイス
46 CPU 47 RAM
48 ROM 49 キーボード
Claims (1)
- 加熱工程、均熱工程、少なくとも後半に急冷処理工程を有する一次冷却工程、過時効処理工程、及び最終冷却工程を有し、多種の鋼種を同一の連続焼鈍設備で焼鈍する鋼帯の連続焼鈍における一次冷却方法であって、
前記急冷処理工程の開始温度を600〜700℃、終了温度を200〜450℃とし、前記急冷処理工程に使用する冷却ガスを、多数のノズルが設けられ、該ノズル全体の開口面積が前面側面積の2〜4%になるように形成され、前記ノズルの先端から前記鋼帯の表面までの距離を70mm以下とした吹き付けガス箱を使用して前記鋼帯に吹き付け、しかも、前記冷却ガスにH2ガスを含む不活性ガスを使用し、前記鋼帯の鋼種により必要な冷却速度に応じて、前記H2ガスの濃度を1〜5%及び30〜60%の2つの範囲間で切り替え、更に、前記H 2 ガスの濃度が30〜60%の領域にある場合、前記急冷処理工程における冷却速度CR(℃/秒)と板厚t(mm)との関係が以下の式を満足し、かつ前記冷却ガスの吹き付け温度を30〜100℃、その吹き付け速度を115〜150m/秒としたことを特徴とする鋼帯の連続焼鈍における一次冷却方法。
CR・t≧80℃・mm/秒
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10535197A JP4242932B2 (ja) | 1996-04-26 | 1997-04-07 | 鋼帯の連続焼鈍における一次冷却方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13085196 | 1996-04-26 | ||
JP8-130851 | 1996-04-26 | ||
JP10535197A JP4242932B2 (ja) | 1996-04-26 | 1997-04-07 | 鋼帯の連続焼鈍における一次冷却方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1036920A JPH1036920A (ja) | 1998-02-10 |
JP4242932B2 true JP4242932B2 (ja) | 2009-03-25 |
Family
ID=26445660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10535197A Expired - Fee Related JP4242932B2 (ja) | 1996-04-26 | 1997-04-07 | 鋼帯の連続焼鈍における一次冷却方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4242932B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101320309B1 (ko) * | 2011-10-04 | 2013-10-23 | 주식회사 포스코 | 소둔로내 버클저감시스템 및 버클저감방법 |
-
1997
- 1997-04-07 JP JP10535197A patent/JP4242932B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1036920A (ja) | 1998-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3365469B2 (ja) | 鋼帯の連続焼鈍における一次冷却方法 | |
AU2008267505B2 (en) | Process for hot rolling and for heat treatment of a steel strip | |
EP0954392B1 (en) | Process for producing a steel strip or sheet | |
JP2721861B2 (ja) | 熱間圧延鋼線材の直接急冷方法 | |
WO1999050464A1 (fr) | Four de traitement thermique en continu, et procede de regulation du gaz atmospherique et procede de refroidissement dans un four de traitement thermique en continu | |
US4363472A (en) | Steel strip continuous annealing apparatus | |
JP2764167B2 (ja) | 熱間圧延リング状線材の直接パテンティング装置およびその方法 | |
JP2020190017A (ja) | 還元性雰囲気炉の露点制御方法および還元性雰囲気炉、ならびに冷延鋼板の製造方法および溶融亜鉛めっき鋼板の製造方法 | |
JP4242932B2 (ja) | 鋼帯の連続焼鈍における一次冷却方法 | |
JP6870701B2 (ja) | 鋼板の冷却方法、鋼板の冷却装置および鋼板の製造方法 | |
EP0803583B1 (en) | Primary cooling method in continuously annealing steel strips | |
KR20020001618A (ko) | 연속 풀림로의 입구측 또는 출구측에 배치되는 롤과, 이롤을 포함하는 급랭 구역 유닛 | |
JP2002294351A (ja) | 高強度冷延鋼板の製造方法 | |
US4770722A (en) | Methods for heat treatment of steel rods | |
EP0086331A1 (en) | Continuous heat treating line for mild and high tensile strength stell strips or sheets | |
JP3968406B1 (ja) | 鋼線材のパテンティング方法 | |
JPH11335744A (ja) | 連続熱処理炉ならびに連続熱処理炉における雰囲気制御方法および冷却方法 | |
JP2004115830A (ja) | 連続焼鈍及び溶融メッキ兼用設備における冷却設備並びに冷却方法 | |
JP2647274B2 (ja) | ストリップ連続熱処理設備用冷却ユニットの制御方法 | |
JPH0381009A (ja) | ステンレス鋼帯の温間圧延における板温制御方法 | |
JPH06158180A (ja) | 金属帯の連続焼鈍設備 | |
JPH05263148A (ja) | ストリップ連続熱処理設備用冷却炉の制御方法 | |
JPS6130632A (ja) | 鋼帯の冷却方法 | |
JPH05263150A (ja) | 細径鋼線の雰囲気パテンティング装置 | |
JPH06306485A (ja) | 金属帯の熱処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060912 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061110 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20061212 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080415 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080612 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080701 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081209 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081226 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140109 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |