JP4238067B2 - Moisture sensitive crimped composite fiber - Google Patents

Moisture sensitive crimped composite fiber Download PDF

Info

Publication number
JP4238067B2
JP4238067B2 JP2003157715A JP2003157715A JP4238067B2 JP 4238067 B2 JP4238067 B2 JP 4238067B2 JP 2003157715 A JP2003157715 A JP 2003157715A JP 2003157715 A JP2003157715 A JP 2003157715A JP 4238067 B2 JP4238067 B2 JP 4238067B2
Authority
JP
Japan
Prior art keywords
component
composite fiber
polyester component
fiber
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003157715A
Other languages
Japanese (ja)
Other versions
JP2004360094A (en
Inventor
正人 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Fibers Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2003157715A priority Critical patent/JP4238067B2/en
Publication of JP2004360094A publication Critical patent/JP2004360094A/en
Application granted granted Critical
Publication of JP4238067B2 publication Critical patent/JP4238067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Multicomponent Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は湿度変化により可逆的に捲縮率が変化する複合繊維に関し、更に詳しくはその捲縮率の変化が大きく、かつ構成成分の剥離が生じ難い複合繊維に関する。
【0002】
【従来の技術】
木綿・羊毛・羽毛などの天然繊維が湿度変化によって可逆的にその形態・捲縮率が変化することは、従来から良く知られている。これに対して、合成繊維に同様の機能を付与する検討がなされており、ナイロン6と変性ポリエチレンテレフタレートとをサイドバイサイド型複合繊維が特許文献1、2等で提案されている。しかしこれら複合繊維は、染色等の後工程や実用において、ポリアミド成分とポリエステル成分との接合部で剥離が生じやすいといった問題がある。また、乾燥状態と吸湿状態での捲縮率の変化をさらに大きくしたいといった要望がある。さらに、捲縮率の変化を向上させる試みとしては、特許文献3に、ポリエステル成分とポリアミド成分とを扁平状に接合し、かつ、ポリアミド成分にナイロン4のような吸湿率の高いポリアミドを用いた複合繊維が提案されている。しかし、かかる従来技術も、乾燥状態と吸湿状態での捲縮率の変化を著しく向上させるものではなく、さらなる改良が望まれている。
【0003】
【特許文献1】
特開昭58−46118号公報
【特許文献2】
特開昭58−46119号公報
【特許文献3】
特開平3−213518号公報
【0004】
【発明が解決しようとする課題】
本発明の目的は、上記従来技術を背景になされたものであり、乾燥状態と吸湿状態における捲縮率の差が十分に大きく、染色等の後工程においてポリアミド成分とポリエステル成分との剥離が生じ難い複合繊維を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記従来技術に鑑み、ポリエステル成分とポリアミド成分とからなる複合繊維について、その複合形状を種々検討したところ、乾燥状態と吸湿状態での捲縮率の変化が極めて大きく、しかも両成分の剥離の問題がほとんど発生しないものがあることを見出した。
【0006】
かくして本発明によれば、ポリアミド成分とポリエステル成分とがサイドバイサイドに接合されている複合繊維であって、該ポリエステル成分が、5−ナトリウムスルホイソフタル酸が1.0〜5.0モル%共重合されている変成ポリエチレンテレフタレートであり、該繊維横断面において、ポリエステル成分に少なくとも1つの中空部を有し、該中空部の該繊維横断面の断面積に対して占める割合が0.5〜10%であり、ポリエステル成分とポリアミド成分の接合部が波形状であると共に、乾燥状態と吸湿状態における複合繊維の捲縮率の差が、15%以上であることを特徴とする感湿捲縮複合繊維」が提供される。
【0007】
【発明の実施の形態】
本発明の複合繊維はポリエステル成分とポリアミド成分がサイドバイサイドに接合されている複合繊維である。
【0008】
上記ポリアミド成分としては、主鎖中にアミド結合を有するものであり、例えば、ナイロン4、ナイロン6、ナイロン66、ナイロン46、ナイロン12等が挙げられる。特にコスト性、汎用性、製糸性等の観点からナイロン6、ナイロン66が好ましい。なお、これらをベースに公知の成分を共重合せしめても良く、酸化チタンやカーボンブラック等の顔料、公知の抗酸化剤、帯電防止剤、耐光剤等を含有していても良い。
【0009】
一方、ポリエステル成分は、5−ナトリウムスルホイソフタル酸が1.0〜5.0モル%、好ましくは1.5〜3.5モル%、より好ましくは2.0〜3.0モル%共重合させた変成ポリエチレンテレフタレートである必要がある。5−ナトリウムスルホイソフタル酸の共重合量が1.0モル%未満の場合は、ポリアミド成分との剥離が発生し十分な性能を発現することができない。逆に、5−ナトリウムスルホイソフタル酸の共重合量が5.0モル%を超える場合は、ポリエステル成分の溶融粘度が大きくなり製糸性が大きく低下する。なお、上記ポリエステル成分は、必要に応じて各種の成分を共重合またはブレンドしていてもかまわない。
【0010】
本発明においては、複合繊維が、該繊維横断面において、ポリエステル成分に少なくとも1つの中空部を有していることが肝要であり、この中空部が複合繊維の捲縮発現に極めて大きな影響を与え、乾燥状態と吸湿状態との捲縮率の変化を大きくすることができる。
【0011】
ポリアミド成分とポリエステル成分とから構成される本発明のサイドバイサイド複合繊維の捲縮は、該繊維を熱処理して、両成分に収縮率差及び熱収縮応力差が生じることによって発現する。つまり、ポリアミド成分は熱処理しても収縮率及び熱収縮応力が共に高いのに対し、ポリエステル成分は熱セットして容易に結晶化が進み、収縮率及び熱収縮応力が共に低いため、ポリアミド成分が内側に、ポリエステル成分が外側に配された捲縮が発現する。さらに、吸湿状態では外側のポリアミド成分が吸湿して伸長し、内側のポリエステル成分の長さ変化がほとんど起こらないので捲縮率が低くなる。
【0012】
ところが、前述したようにポリエステル成分に5−ナトリウムスルホイソフタル酸を共重合すると該成分の結晶性が低下し、乾燥状態における複合繊維の捲縮率を十分に高くすることが困難となる。
【0013】
これに対して、本発明者は、複合繊維のポリエステル成分側に中空部を形成することにより、ポリエステル成分の配向度を高め、結晶化しにくい5−ナトリウムスルホイソフタル酸を共重合させても結晶化を促進でき、乾燥状態での捲縮率をアップできることを見出した。さらに、かかる複合繊維は、乾燥状態での捲縮率が非常に大きいのにもかかわらず、吸湿状態においてはポリアミド成分が十分に伸長して捲縮率が低下し、乾燥状態と吸湿状態での収縮率差を格段に向上できることがわかった。
【0014】
上記中空部の複合繊維横断面の断面積に占める割合(以下中空率と称することがある)は0.5〜10%、好ましくは1〜8%、より好ましくは2〜6%である必要がある。中空率が0.5%未満の場合は、ポリエステル成分の結晶化が進まず十分な捲縮を付与することができず、一方、中空率が10%を超えると製糸性が低下する。中空部の数は、1つが好ましいが複数個であってもよい。上記中空率は、中空部が2つ以上の場合、その中空部の合計面積から求める。なお、中空部の形状としては、例えば丸、三角、四角等形状を例示することができる。
【0015】
本発明のサイドバイサイド型複合繊維においては、ポリアミド成分とポリエステル成分との接合部の形状に特徴を有しており、その形状が波形状であることが重要である。これは、ポリアミド成分とポリエステル成分との剥離防止に有効である。この原因については、必ずしも明確ではないが、上記波形状が、単なる直線状あるいは凸状の接合部形状と比べて、その接合界面長が長いこと、及び、剥離が起ころうとする際その応力が分散されることが考えられる。ここで、波形状とは、複合繊維の横断面において、一方の成分が他の成分にそれぞれ1以上凸に張り出し、全体として波形の形状をしていることをいい、例えば、図1(1)〜(5)に示すような形状のものをいう。
【0016】
本発明においては、以上に説明したポリエステル成分側に中空部を形成することと、ポリエステル成分とポリアミド成分の接合部を波形状とすることの両方の効果により、捲縮率変化の向上と、接合部での剥離防止の両立が可能となる。
【0017】
また、本発明においては、乾燥状態と吸湿状態における複合繊維の捲縮率の差が15%以上であることが必要であり、好ましくは17〜50%、さらに好ましくは20〜40%である。これにより快適性に優れた布帛とすることができる。
【0018】
ポリアミド成分とポリエステル成分との繊維横断面における面積比は、ポリアミド/ポリエステル=30/70〜70/30の範囲が好ましく、より好ましくは40/60〜60/40の範囲である。
【0019】
本発明の複合繊維の総繊度は特に限定されないが、通常の衣料用素材として用いられるのは40〜200dtex、単繊度は1〜6dtexのものを用いることができる。なお、必要に応じて本発明の交絡処理が施されていても良い。
【0020】
本発明の複合繊維は、例えば次の方法により製造することができる。図1(1)に示す繊維断面形状を有する複合繊維は、例えば図2に示すような、ポリエステル成分側とポリアミド成分側の吐出孔が分離し、かつ、ポリエステル成分側の吐出孔面積SAがポリアミド側の吐出孔面積SBよりも大きい(つまり、ポリエステル成分側の吐出線速度をポリアミド側の吐出線速度よりも小さくなるようにした)紡糸口金を用い、それぞれの吐出孔からポリエステル及びポリアミドの溶融ポリマーを吐出し、それらを溶融状態で接合し、これを冷却固化し、これを必要に応じて延伸することにより得ることができる。上記紡糸口金を用いる場合、SA/SBを1.1〜1.8の範囲とするのが好ましい。
【0021】
さらに、延伸を行う場合は、紡糸で得られ未延伸糸を一旦巻き取った後これを延伸、さらに必要に応じて熱処理を行う、いわゆる別延方式のほか、未延伸糸を一旦巻き取らないで延伸、さらに必要に応じて熱処理を行う、いわゆる直延方式のどちらの方法も採用することができる。上記紡糸における紡糸速度はとしては、例えば、通常採用されている1000〜3500m/分程度の紡糸速度のものを採用することができる。また、延伸、熱処理は、延伸後の伸度が25〜50%、延伸後の収縮率が5〜15%程度になるように条件を設定するのが、捲縮の発現、製織編性などからは好ましい。
【0022】
【実施例】
以下実施例により、本発明を更に具体的に説明する。なお、実施例における各項目は次の方法で測定した。
(1)ポリアミドの固有粘度
m−クレゾールを溶媒として使用し30℃で測定した。
(2)ポリエステルの固有粘度
オルソクロロフェノールを溶媒として使用し35℃で測定した。
(3)強度(cN/dtex)、伸度(%)
繊維試料を気温25℃、湿度60%の恒温恒湿に保たれた部屋に一昼夜放置した後、サンプルの長さ100mmを(株)島津製作所製引っ張り試験機テンシロンにセットし、200mm/minの速度にて伸張し、破断時の強度、伸度を測定した。
(4)沸水収縮率BWS(%)
JIS L1013 8.18 B法に準じて測定した。沸水温度はBoil状態とした。
(5)ポリアミド成分とポリエステル成分の接合部形状
複合繊維の任意の断面について、1500倍のカラー繊維断面写真をとり、フィラメント中のポリアミド成分とポリエステル成分との接合形状を調査した。
(6)中空率(%)
(4)で得られたカラー繊維断面写真を300%に拡大し、中空部の面積(a)とフィラメント全体の面積(b)の比(a/b×100)にて求めた。
(7)ポリアミド成分とポリアミド成分との剥離状況弊社
複合繊維を筒編みし、カチオン染料にてボイル染色後120℃の高圧染色機中にて30分処理した後、この筒編みを解きほぐして繊維を取り出し、(4)と同様にしてカラー繊維断面写真をとり、その写真から剥離状況を調査した。
(8)吸湿捲縮率TCh(%)及び乾燥捲縮率TCd(%)
複合繊維を長さ30cmのカセにとり、1.77×10-3cN/dtex(2mmg/de)の荷重をかけて沸騰水中で30分間処理して捲縮を発現させ、次いで24時間自然乾燥を行い、吸湿捲縮率TChと乾熱捲縮率TCdの測定用サンプルをそれぞれ準備した。
前者のサンプルを水中に30分間浸漬後、これを取り出し、ろ紙で付着した水をふき取った後、10分以内に下記方法で求めた捲縮率TCを吸湿捲縮率TCh(%)とした。一方、後者のサンプルを、温度100℃で10分間乾燥した後、10分以内に下記方法で求めた捲縮率TCを乾燥捲縮率TCd(%)とした。また、両者の差(TCd−TCh)を、吸湿による複合繊維糸の変化率△TCとした。
なお、捲縮率TCは、複合繊維を、温度25℃、湿度60℃の雰囲気下で、0.177cN/dtex(200mmg/de)の荷重下で1分間放置後の長さを測定しその長さをL1とし、その後、1.77×10-3cN/dtex(2mmg/de)の荷重下で1分間放置後の長さを測定しL2とし、次式より求めた。
捲縮率TC(%)=(L1−L2)/L1×100
【0023】
[実施例1]
固有粘度[η]が1.1のナイロン6(Ny6)と、固有粘度[η]が0.46で2.6モル%の5−ナトリウムスルホイソフタル酸を共重合させた変性ポリエチレンテレフタレート(PET)とをそれぞれ270℃、290℃にて溶融し、図2の複合紡糸口金(PET側の円弧状スリットの面積SA=0.165mm2、スリットの幅A1=0.15mm、Ny6側の円弧状スリットの面積SB=0.110mm2、スリットの幅A2=0.10mm、両スリットの間隔d=0.08mm)を用い、それぞれ11.5g/分の吐出量にて押出して接合しサイドバイサイド型複合繊維を形成し、冷却固化・油剤を付与したあと、糸状を速度1000m/分、温度60℃のローラーにて予熱し、ついで、速度2700m/分、温度140℃に加熱されたローラー間で延伸熱処理を行い巻き取って86dtex−24filの複合繊維を得た。得られた複合繊維の横断面は、図1(1)の如く、PET成分側に中空部があり、Ny6成分とPET成分との接合部は波形の形状を有していた。結果を表1に示す。
【0024】
[比較例1]
従来公知の、Ny6成分側とPET成分側の吐出孔面積が同じであり、中空部を形成しない複合紡糸口金を用いた以外は実施例1と同様にして、複合繊維を得た。得られた複合繊維の横断面は、図3の如く、ポリエステル成分側に中空部を有しておらず、ポリアミド成分はポリエステル成分側に凸状にせり出してはいるが、その接合部は波形の形状にはなっておらず、単純な曲線状であった。結果を表1に示す。
【0025】
[実施例2、3、及び、比較例2]
PETの溶融温度を表1のように変更し、中空率を同表のように変更した以外は実施例1と同様にして紡糸を行い、複合繊維を得た。結果を表1に示す。
【0026】
[実施例4、5、及び、比較例3、4]
PETを、それぞれ表1に示した5−ナトリウムスルホイソフタル酸の共重合量のPETに変更した以外は、実施例1と同様にして、複合繊維繊維を得た。結果を表1に示す。
【0027】
【表1】

Figure 0004238067
【0028】
【発明の効果】
本発明によれば、乾燥状態と吸湿状態での捲縮率の変化が十分に大きく、かつ、ポリアミド成分とポリエステル成分との接合部の剥離が著しく改善され、快適布帛として好適な複合繊維を提供することができる。
【図面の簡単な説明】
【図1】本発明の複合繊維の横断面の例を示した模式図。
【図2】本発明で使用される紡糸口金の吐出孔の一例を示した模式図。
【図3】従来の複合繊維の横断面の一例を示した模式図。
【符号の説明】
ア:ポリアミド成分
イ:ポリエステル成分
ウ:ポリアミド成分とポリエステル成分との接合部
エ:中空部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite fiber having a crimp rate that reversibly changes due to a change in humidity. More specifically, the present invention relates to a composite fiber having a large change in the crimp rate and hardly causing separation of constituent components.
[0002]
[Prior art]
It has been well known that natural fibers such as cotton, wool and feathers reversibly change their form and crimp rate due to changes in humidity. On the other hand, studies on imparting the same function to synthetic fibers have been made, and side-by-side type composite fibers of nylon 6 and modified polyethylene terephthalate have been proposed in Patent Documents 1 and 2 and the like. However, these composite fibers have a problem that peeling is likely to occur at a joint portion between a polyamide component and a polyester component in a post-process such as dyeing or in practical use. There is also a demand for further increasing the change in crimp rate between the dry state and the moisture absorption state. Furthermore, as an attempt to improve the change in the crimp rate, in Patent Document 3, a polyester component and a polyamide component are joined in a flat shape, and a polyamide having a high moisture absorption rate such as nylon 4 is used as the polyamide component. Composite fibers have been proposed. However, this conventional technique does not remarkably improve the change in the crimp rate between the dry state and the moisture absorption state, and further improvement is desired.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 58-46118 [Patent Document 2]
JP 58-46119 A [Patent Document 3]
Japanese Patent Laid-Open No. 3-213518
[Problems to be solved by the invention]
The object of the present invention is based on the background of the above prior art, and there is a sufficiently large difference in the crimp rate between the dry state and the moisture absorption state, and the polyamide component and the polyester component are peeled off in subsequent steps such as dyeing. It is to provide a difficult composite fiber.
[0005]
[Means for Solving the Problems]
In view of the above prior art, the present inventors have studied various composite shapes of composite fibers composed of a polyester component and a polyamide component. As a result, the change in the crimp rate between the dry state and the moisture absorption state is extremely large. It has been found that there are those that hardly cause the problem of peeling of both components.
[0006]
Thus, according to the present invention, a composite fiber in which a polyamide component and a polyester component are bonded side-by-side, and the polyester component is copolymerized with 1.0 to 5.0 mol% of 5-sodium sulfoisophthalic acid. A modified polyethylene terephthalate having at least one hollow part in the polyester component in the fiber cross section, and the proportion of the hollow part relative to the cross-sectional area of the fiber cross section being 0.5 to 10% Yes, the joint between the polyester component and the polyamide component is corrugated, and the difference in crimp rate of the composite fiber between the dry state and the moisture absorption state is 15% or more. Is provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The conjugate fiber of the present invention is a conjugate fiber in which a polyester component and a polyamide component are bonded side by side.
[0008]
The polyamide component has an amide bond in the main chain, and examples thereof include nylon 4, nylon 6, nylon 66, nylon 46, nylon 12, and the like. Nylon 6 and nylon 66 are particularly preferable from the viewpoints of cost, versatility, yarn-making property, and the like. In addition, a known component may be copolymerized based on these, and may contain a pigment such as titanium oxide or carbon black, a known antioxidant, an antistatic agent, a light-resistant agent, and the like.
[0009]
On the other hand, the polyester component is copolymerized with 5-sodium sulfoisophthalic acid in an amount of 1.0 to 5.0 mol%, preferably 1.5 to 3.5 mol%, more preferably 2.0 to 3.0 mol%. Modified polyethylene terephthalate. When the copolymerization amount of 5-sodium sulfoisophthalic acid is less than 1.0 mol%, peeling from the polyamide component occurs and sufficient performance cannot be exhibited. On the contrary, when the copolymerization amount of 5-sodium sulfoisophthalic acid exceeds 5.0 mol%, the melt viscosity of the polyester component becomes large and the yarn-making property is greatly lowered. In addition, the said polyester component may copolymerize or blend various components as needed.
[0010]
In the present invention, it is important that the composite fiber has at least one hollow portion in the polyester component in the cross section of the fiber, and this hollow portion has a very large influence on the crimp development of the composite fiber. The change in the crimp rate between the dry state and the moisture absorption state can be increased.
[0011]
The crimp of the side-by-side composite fiber of the present invention composed of a polyamide component and a polyester component is manifested by heat-treating the fiber and causing a shrinkage rate difference and a heat shrinkage stress difference between the two components. In other words, the polyamide component has a high shrinkage rate and heat shrinkage stress even after heat treatment, whereas the polyester component easily heats and crystallizes, and both the shrinkage rate and heat shrinkage stress are low. On the inside, a crimp with the polyester component arranged on the outside appears. Furthermore, in the hygroscopic state, the outer polyamide component absorbs and elongates, and the length of the inner polyester component hardly changes, so that the crimp rate is lowered.
[0012]
However, as described above, when 5-sodium sulfoisophthalic acid is copolymerized with the polyester component, the crystallinity of the component is lowered, and it becomes difficult to sufficiently increase the crimp rate of the composite fiber in the dry state.
[0013]
In contrast, the present inventor formed a hollow portion on the polyester component side of the composite fiber to increase the degree of orientation of the polyester component and crystallize even when 5-sodium sulfoisophthalic acid, which is difficult to crystallize, is copolymerized. It was found that the crimping rate in the dry state can be increased. Furthermore, such a composite fiber has a very large crimp rate in the dry state, but the polyamide component is sufficiently stretched in the moisture absorption state to reduce the crimp rate, and in the dry state and the moisture absorption state. It was found that the shrinkage rate difference can be remarkably improved.
[0014]
The ratio of the hollow part to the cross-sectional area of the composite fiber cross section (hereinafter sometimes referred to as the hollow ratio) needs to be 0.5 to 10%, preferably 1 to 8%, more preferably 2 to 6%. is there. When the hollow ratio is less than 0.5%, crystallization of the polyester component does not proceed and sufficient crimps cannot be imparted. On the other hand, when the hollow ratio exceeds 10%, the spinning property is lowered. The number of hollow portions is preferably one, but may be plural. When the number of hollow portions is two or more, the hollow ratio is determined from the total area of the hollow portions. In addition, as a shape of a hollow part, shapes, such as a circle, a triangle, a square, can be illustrated, for example.
[0015]
The side-by-side type composite fiber of the present invention is characterized by the shape of the bonded portion between the polyamide component and the polyester component, and it is important that the shape is corrugated. This is effective for preventing peeling between the polyamide component and the polyester component. The cause of this is not necessarily clear, but the wave shape has a longer joint interface length than the simple straight or convex joint shape, and the stress is dispersed when peeling occurs. It is thought that it is done. Here, the wave shape means that in the cross section of the composite fiber, one component protrudes from the other component by one or more so as to form a wave shape as a whole. For example, FIG. 1 (1) It has a shape as shown in (5).
[0016]
In the present invention, the effect of both the formation of the hollow portion on the polyester component side described above and the corrugated portion of the polyester component and the polyamide component is improved, and the crimp ratio is improved and bonded. This makes it possible to prevent peeling at the part.
[0017]
In the present invention, the difference in crimp of the composite fibers in the dry state and moisture conditions must be at least 15%, good Mashiku is 17 to 50%, more preferably at 20-40% is there. Thereby, it can be set as the fabric excellent in comfort.
[0018]
The area ratio in the fiber cross section of the polyamide component and the polyester component is preferably in the range of polyamide / polyester = 30/70 to 70/30, more preferably in the range of 40/60 to 60/40.
[0019]
Although the total fineness of the conjugate fiber of the present invention is not particularly limited, those having a normal fineness of 40 to 200 dtex and single fineness of 1 to 6 dtex can be used. In addition, the confounding process of this invention may be performed as needed.
[0020]
The conjugate fiber of the present invention can be produced, for example, by the following method. The composite fiber having the fiber cross-sectional shape shown in FIG. 1 (1) has a discharge hole SA on the polyester component side and a polyamide component side separated as shown in FIG. Using a spinneret that is larger than the discharge hole area SB on the side (that is, the discharge linear velocity on the polyester component side is smaller than the discharge linear velocity on the polyamide side). Can be obtained by discharging them, joining them in a molten state, cooling and solidifying them, and stretching them as necessary. When using the above spinneret, SA / SB is preferably in the range of 1.1 to 1.8.
[0021]
Furthermore, in the case of performing stretching, after winding the unstretched yarn obtained by spinning once, this is stretched and further subjected to heat treatment as necessary. Either a so-called direct extension method in which stretching and heat treatment are performed as necessary can be employed. As the spinning speed in the above spinning, for example, a spinning speed of about 1000 to 3500 m / min which is usually employed can be adopted. In addition, for stretching and heat treatment, the conditions are set so that the elongation after stretching is 25 to 50% and the shrinkage after stretching is about 5 to 15%. Is preferred.
[0022]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, each item in an Example was measured with the following method.
(1) The intrinsic viscosity of polyamide was measured at 30 ° C. using m-cresol as a solvent.
(2) Intrinsic Viscosity of Polyester Measured at 35 ° C. using orthochlorophenol as a solvent.
(3) Strength (cN / dtex), elongation (%)
After leaving the fiber sample in a room maintained at a constant temperature and humidity of 25 ° C. and 60% humidity for a whole day and night, a sample length of 100 mm was set on a tensile tester Tensilon manufactured by Shimadzu Corporation, and a speed of 200 mm / min. The strength and elongation at break were measured.
(4) Boiling water shrinkage BWS (%)
It measured according to JIS L1013 8.18 B method. The boiling water temperature was set to the boil state.
(5) Shape of bonded portion of polyamide component and polyester component For an arbitrary cross section of the composite fiber, a 1500-fold color fiber cross-sectional photograph was taken, and the bonded shape of the polyamide component and the polyester component in the filament was investigated.
(6) Hollow ratio (%)
The cross-sectional photograph of the color fiber obtained in (4) was enlarged to 300%, and the ratio (a / b × 100) of the area (a) of the hollow part and the area (b) of the whole filament was obtained.
(7) Peeling condition between polyamide component and polyamide component We knitted our composite fiber in a tube, boiled it with a cationic dye and treated it in a high-pressure dyeing machine at 120 ° C for 30 minutes. The color fiber cross-section photograph was taken out in the same manner as in (4), and the peeling state was investigated from the photograph.
(8) Hygroscopic crimp rate TCh (%) and dry crimp rate TCd (%)
The composite fiber is taken into a 30 cm long casserole, applied with a load of 1.77 × 10 −3 cN / dtex (2 mmg / de) and treated in boiling water for 30 minutes to develop crimps, and then air-dried for 24 hours. The samples for measurement of the moisture absorption crimp rate TCh and the dry heat crimp rate TCd were prepared.
The former sample was immersed in water for 30 minutes, then taken out, wiped off the water adhering with filter paper, and the crimp rate TC determined by the following method within 10 minutes was taken as the moisture absorption crimp rate TCh (%). On the other hand, after the latter sample was dried at a temperature of 100 ° C. for 10 minutes, the crimp rate TC determined by the following method within 10 minutes was defined as the dry crimp rate TCd (%). Further, the difference (TCd−TCh) between the two was defined as the rate of change ΔTC of the composite fiber yarn due to moisture absorption.
The crimp ratio TC is a length obtained by measuring the length of the composite fiber after standing for 1 minute under a load of 0.177 cN / dtex (200 mmg / de) in an atmosphere at a temperature of 25 ° C. and a humidity of 60 ° C. The thickness was set to L1, and then the length after standing for 1 minute under a load of 1.77 × 10 −3 cN / dtex (2 mmg / de) was measured and set to L2, which was obtained from the following formula.
Crimp rate TC (%) = (L1-L2) / L1 × 100
[0023]
[Example 1]
Modified polyethylene terephthalate (PET) obtained by copolymerizing nylon 6 (Ny6) with an intrinsic viscosity [η] of 1.1 and 2.6 mol% of 5-sodium sulfoisophthalic acid with an intrinsic viscosity [η] of 0.46 Are melted at 270 ° C. and 290 ° C., respectively, and the composite spinneret of FIG. 2 (PET side arc slit area SA = 0.165 mm 2 , slit width A1 = 0.15 mm, Ny6 side arc slit SB = 0.110 mm 2 , slit width A 2 = 0.10 mm, and distance between both slits d = 0.08 mm), and extruded and joined at a discharge rate of 11.5 g / min. After cooling, solidifying and applying an oil agent, the filament is preheated with a roller having a speed of 1000 m / min and a temperature of 60 ° C., and then heated to a speed of 2700 m / min and a temperature of 140 ° C. Wound up performs a stretch heat treatment between rollers that were to obtain a composite fiber of 86dtex-24fil in. As shown in FIG. 1 (1), the obtained composite fiber had a hollow portion on the PET component side, and the joint portion between the Ny6 component and the PET component had a corrugated shape. The results are shown in Table 1.
[0024]
[Comparative Example 1]
A composite fiber was obtained in the same manner as in Example 1 except that a conventionally known composite spinneret having the same discharge hole area on the Ny6 component side and the PET component side and having no hollow part was used. As shown in FIG. 3, the cross section of the obtained composite fiber does not have a hollow portion on the polyester component side, and the polyamide component protrudes in a convex shape on the polyester component side, but the joint portion is corrugated. It was not a shape, and it was a simple curve. The results are shown in Table 1.
[0025]
[Examples 2, 3 and Comparative Example 2]
Spinning was carried out in the same manner as in Example 1 except that the melting temperature of PET was changed as shown in Table 1 and the hollow ratio was changed as shown in the same table to obtain composite fibers. The results are shown in Table 1.
[0026]
[Examples 4 and 5 and Comparative Examples 3 and 4]
A composite fiber fiber was obtained in the same manner as in Example 1 except that PET was changed to PET having a copolymerization amount of 5-sodium sulfoisophthalic acid shown in Table 1, respectively. The results are shown in Table 1.
[0027]
[Table 1]
Figure 0004238067
[0028]
【The invention's effect】
According to the present invention, a change in the crimp rate between a dry state and a moisture absorption state is sufficiently large, and peeling of a bonded portion between a polyamide component and a polyester component is remarkably improved, and a composite fiber suitable as a comfortable fabric is provided. can do.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a cross section of a conjugate fiber of the present invention.
FIG. 2 is a schematic view showing an example of a discharge hole of a spinneret used in the present invention.
FIG. 3 is a schematic view showing an example of a cross section of a conventional conjugate fiber.
[Explanation of symbols]
A: Polyamide component A: Polyester component C: Joint part of polyamide component and polyester component D: Hollow part

Claims (1)

ポリアミド成分とポリエステル成分とがサイドバイサイドに接合されている複合繊維であって、該ポリエステル成分が、5−ナトリウムスルホイソフタル酸が1.0〜5.0モル%共重合されている変成ポリエチレンテレフタレートであり、該繊維横断面において、ポリエステル成分に少なくとも1つの中空部を有し、該中空部の該繊維横断面の断面積に対して占める割合が0.5〜10%であり、ポリエステル成分とポリアミド成分の接合部が波形状であると共に、乾燥状態と吸湿状態における複合繊維の捲縮率の差が15%以上であることを特徴とする感湿捲縮複合繊維。A composite fiber in which a polyamide component and a polyester component are bonded side by side, and the polyester component is a modified polyethylene terephthalate copolymerized with 1.0 to 5.0 mol% of 5-sodium sulfoisophthalic acid. In the fiber cross section, the polyester component has at least one hollow part, and the ratio of the hollow part to the cross sectional area of the fiber cross section is 0.5 to 10%, and the polyester component and the polyamide component The moisture- sensitive crimped composite fiber is characterized in that the joint portion is corrugated and the difference in crimp rate of the composite fiber between the dry state and the moisture absorption state is 15% or more .
JP2003157715A 2003-06-03 2003-06-03 Moisture sensitive crimped composite fiber Expired - Lifetime JP4238067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003157715A JP4238067B2 (en) 2003-06-03 2003-06-03 Moisture sensitive crimped composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003157715A JP4238067B2 (en) 2003-06-03 2003-06-03 Moisture sensitive crimped composite fiber

Publications (2)

Publication Number Publication Date
JP2004360094A JP2004360094A (en) 2004-12-24
JP4238067B2 true JP4238067B2 (en) 2009-03-11

Family

ID=34051339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157715A Expired - Lifetime JP4238067B2 (en) 2003-06-03 2003-06-03 Moisture sensitive crimped composite fiber

Country Status (1)

Country Link
JP (1) JP4238067B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9700077B2 (en) 2004-03-19 2017-07-11 Nike, Inc. Article of apparel with variable air permeability
US7437774B2 (en) 2004-03-19 2008-10-21 Nike, Inc. Article of apparel incorporating a zoned modifiable textile structure
US20050208857A1 (en) 2004-03-19 2005-09-22 Nike, Inc. Article of apparel incorporating a modifiable textile structure
CN100523326C (en) 2004-09-03 2009-08-05 帝人纤维株式会社 Composite fiber
WO2006090808A1 (en) * 2005-02-23 2006-08-31 Teijin Fibers Limited Composite fabric material undergoing three-dimensional structure change upon water absorption and textile product
JP4567500B2 (en) * 2005-03-23 2010-10-20 帝人ファイバー株式会社 Fabrics and textiles whose structure is three-dimensionally changed by water absorption
JP2006264309A (en) * 2005-02-23 2006-10-05 Teijin Fibers Ltd Multilayer structure varying in three-dimentional structure by absorbing water and textile product
JP2007231453A (en) * 2006-03-01 2007-09-13 Teijin Fibers Ltd Moisture-sensitive crimped conjugate fiber
US8187984B2 (en) 2006-06-09 2012-05-29 Malden Mills Industries, Inc. Temperature responsive smart textile
US8389100B2 (en) 2006-08-29 2013-03-05 Mmi-Ipco, Llc Temperature responsive smart textile
JP2008057099A (en) 2006-08-29 2008-03-13 Mmi-Ipco Llc Temperature responsive smart textile
WO2009104607A1 (en) * 2008-02-20 2009-08-27 帝人ファイバー株式会社 Fabric and textile products

Also Published As

Publication number Publication date
JP2004360094A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP4870795B2 (en) Manufacturing method of composite fiber
TWI413715B (en) Conjugate fiber-containing yarn
EP1801274B1 (en) Woven/knit fabric including crimped fiber and becoming rugged upon humidification, process for producing the same, and textile product
JP4238067B2 (en) Moisture sensitive crimped composite fiber
KR20070070178A (en) Woven/knit fabric including crimped fiber and decreasing in porosity upon humidification, process for producing the same, and textile product
JP4414851B2 (en) Woven knitted fabrics and textile products that improve air permeability when wet
JP4866103B2 (en) Composite fiber
TWI573906B (en) Elastic nonwoven fabric and method for producing thereof
JP2003239141A (en) Moisture sensitive crimped conjugated fiber
JP4414854B2 (en) Water-repellent knitted fabrics and textiles that improve air permeability when absorbing moisture
JP2007231453A (en) Moisture-sensitive crimped conjugate fiber
JP2008274478A (en) Moisture-sensitive latently crimping conjugate fiber
JP2010059570A (en) Woven fabric and textile product
JP4866109B2 (en) False twisted yarn
JP4018960B2 (en) Moisture sensitive crimped composite fiber
JP4128692B2 (en) Composite spun yarn having dyed wholly aromatic polyamide short fibers and fabric using the same
JP3598027B2 (en) Special composite crimped yarn
JPS59216918A (en) Twisted polyester fiber and its manufacture
JP4866110B2 (en) Blended yarn
JP2007231474A (en) Thick and thin conjugated fiber
JP2007239139A (en) Composite false-twisted yarn
JP2007231475A (en) Undrawn conjugated fiber
JPH11350243A (en) Short fiber suitable to high-speed carding and its production
JP2018100458A (en) Composite fiber and production method thereof
JP2009041148A (en) Woven fabric and textile product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

R150 Certificate of patent or registration of utility model

Ref document number: 4238067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term