JP4238036B2 - 汚染土壌の浄化方法 - Google Patents

汚染土壌の浄化方法 Download PDF

Info

Publication number
JP4238036B2
JP4238036B2 JP2002577125A JP2002577125A JP4238036B2 JP 4238036 B2 JP4238036 B2 JP 4238036B2 JP 2002577125 A JP2002577125 A JP 2002577125A JP 2002577125 A JP2002577125 A JP 2002577125A JP 4238036 B2 JP4238036 B2 JP 4238036B2
Authority
JP
Japan
Prior art keywords
soil
humus
mixture
complex
ferrihydrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002577125A
Other languages
English (en)
Other versions
JPWO2002078871A1 (ja
Inventor
尚秀 斉藤
利明 大倉
道文 高山
Original Assignee
株式会社リオン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リオン filed Critical 株式会社リオン
Publication of JPWO2002078871A1 publication Critical patent/JPWO2002078871A1/ja
Application granted granted Critical
Publication of JP4238036B2 publication Critical patent/JP4238036B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【技術分野】
本発明は、土壌の浄化方法に係り、特に重金属を含む汚染土壌を浄化する方法に関するものである。
【0002】
【背景技術】
近年、地球の環境汚染が深刻なものとなり、環境問題に関心が高まっている。環境汚染の一つである土壌汚染としては、トリクロロエチレンなど発ガン性のある有害化学物質による土壌汚染、重金属類による土壌汚染、これらの両方による複合汚染が問題となっている。
土壌汚染は、工場の事故や廃棄物の不法投棄等により引き起こされるが、土壌の浄化能力を上回る量の有害化学物質や重金属が土壌に入ると、土壌の諸機能が損なわれるとともに、地下水の汚染の原因ともなる。また、土壌汚染による環境破壊は、汚染する行為が行われて公害という形になって現れるまでに長い期間がかかるため、土壌汚染の対策は、難しいものとなっている。
【0003】
そこで、わが国でも、深刻化した土壌汚染の状況に鑑みて、土壌に関する環境基準が整備され、土壌・地下水汚染の対策に関する基盤が整備されてきている。
土壌浄化は、汚染された土地の土壌を、汚染されていない土壌に入れ替える「土壌の入れ替え」を行い、汚染土壌を別の場所に搬送して浄化する方法が一般的に行われている。
また、汚染が広範な範囲に亘る場合には、揚水井戸などを設けて汚染地下水を揚水し土壌を浄化する方法も行われている。
【0004】
しかし、上記のような従来の土壌の浄化方法によれば、大掛かりな装置が必要になるという問題点があった。
土壌の入れ替えを行う場合には、汚染土壌と清浄土壌とを入れ替える工事のほか、汚染土壌の運搬、さらに土壌の浄化装置が必要であり、大掛かりな工事と装置が必要であった。また、汚染地下水の揚水による浄化方法によれば、揚水井戸のほか、活性炭吸着装置等の浄化装置が必要となり、大掛かりな装置が必要であった。
また、狭い範囲の土壌の浄化が必要なケースも増えているが、上記従来の方法によれば、工事が大掛かりとなってしまうため、狭い範囲の土壌の浄化を手軽に行うことができる方法の開発が望まれていた。
【0005】
本発明は、上記問題点および要望に鑑みなされたものであり、本発明の目的は、大掛かりな装置を用いずに、簡易に行うことができる土壌の浄化方法を提供することにある。
【0006】
【発明の開示】
本発明における土壌の浄化方法は、有機物のpHを、5以上に調整するpH調整工程と、ミネラル液水溶液に浸漬させるミネラル液浸漬工程と、前記有機物を攪拌しながら前記ミネラル液希釈水を添加させる一次発酵工程と、該一次発酵工程から取り出した前記有機物を堆肥場内に堆積させて発酵させながら、ミネラル液希釈水を添加する二次発酵・完熟工程と、該二次発酵・完熟工程で得られた有機堆肥に攪拌しながらミネラル液水溶液を添加する堆肥後ミネラル添加工程を、少なくとも備える工程によって製造するフェリハイドライト腐植複合体製造工程と、前記フェリハイドライト腐植複合体製造工程で製造されたフェリハイドライト腐植複合体を、汚染土壌近くの土壌の上に載置する腐植複合体最下層配置工程と、前記腐植複合体最下層配置工程で得た腐植複合体最下層の上に、前記汚染土壌と、前記フェリハイドライト腐植複合体とを交互に載置して腐植・土壌積層体を形成する腐植・土壌積層工程と、前記腐植・土壌積層体を攪拌して腐植・土壌混合物を得る腐植・土壌攪拌工程と、を行うことを特徴とする。
【0007】
また、前記ミネラル液浸漬工程は、前記有機物のpHを5以上に維持し、鉄が、略pH3以下では、Fe3+として、略pH3〜略pH4では、Fe3+とFe(OH) として、略pH4〜略pH5では、Fe3+とFe(OH)2+とFe(OH) として、略pH5より高いpHでは、Fe(OH)2+とFe(OH) とFe(OH)として存在し、玄武岩および安山岩を含む群からなる少なくとも一の堆積岩土壌を無機酸で抽出して得たミネラル液を水で希釈したミネラル液希釈水に浸漬してなることを特徴とする
【0008】
このように、フェリハイドライト腐植複合体を製造し、この製造されたフェリハイドライト腐植複合体を用いているため、土壌回復資材に含まれるフェリハイドライト腐植複合体特有の性質により、効率よく土壌の浄化を行うことが可能となる。つまり、フェリハイドライト腐植複合体を用いることにより、効率よく重金属土壌の浄化を行うことが可能となるのである。
【0009】
また、フェリハイドライト腐植複合体を用いることにより、効率よく有機物土壌の浄化を行うことが可能となるのである。
【0010】
そして、土壌の上に、まず腐植複合体を載置する腐植複合体最下層配置工程を行っているため、汚染土壌に含まれる重金属や有害有機化合物が、土壌に移行することを防止することが可能となる。
【0011】
また、前記腐植・混合物積層工程と、前記腐植・混合物攪拌工程と、を所定回順次繰り返して行い、
繰り返し行って得た前記腐植・混合物の混合物を、もとの前記汚染土壌の場所に戻す戻し工程を行うように構成すると好適である。
このように、腐植複合体最下層の上に、汚染土壌と、フェリハイドライト腐植複合体とを交互に載置して腐植・土壌積層体を形成する腐植・土壌積層工程を行っているので、後工程である腐植・土壌攪拌工程で、腐植複合体と汚染土壌とを、容易にまんべんなく混合させることが可能となる。
【0012】
【発明を実施するための最良の形態】
以下、本発明の実施例を図面に基づいて説明する。なお、以下に説明する部材、配置等は本発明を限定するものでなく、本発明の趣旨の範囲内で種々改変することができるものである。
(実施の形態1)
本実施形態は、フェリハイドライト腐植複合体を使って、重金属の土壌を浄化(不活性化)する方法である。
本実施形態のフェリハイドライト腐植複合体とは、非晶質フェリハイドライト(以下フェリハイドライトという)と有機物との複合体をいう。また、「腐植」とは、本明細書では、土壌有機物を意味し、堆肥と同義である。
フェリハイドライト(Ferrihydrite)とは、一般式5Fe・9HOで表される非晶質鉄水和酸化物である。一般的には、地球表層において初期段階で形成される低結晶度の鉄鉱物として知られている。
フェリハイドライトは、有機化合物のカルボキシル基やカルボニル基のOH端、O端と配位結合する性質があり凝集体を形成する。比表面積が約200(m/g)と大きく、有機化合物のOH端、O端との反応に供される場が広いため、触媒能が高く、凝集体を形成する能力が高いことが分かっている。
【0013】
本実施形態のフェリハイドライト腐植複合体は、玄武岩、安山岩等の堆積岩土壌に、濃度10〜20重量%の硫酸水溶液を添加して酸可溶成分を抽出した天然由来のイオン化ミネラル濃縮液(株式会社リオン製のクレイエクストラクトW.W;以下、ミネラル液と称する。)と、有機物化合物混合物とを原料として、下記の製造工程により製造される。
ミネラル液は、鉄を7000〜13000(ppm)程度含む。ミネラル液に含まれる鉄は、pHによって異なる形態で存在する。pH3以下では、鉄は、Fe3+、pH3〜pH4では、Fe3+とFe(OH) 、pH4〜pH5では、Fe3+とFe(OH)2+とFe(OH) 、pH5より高いpHでは、Fe(OH)2+とFe(OH) とFe(OH)として存在する。
また、本実施形態のミネラル液の母材である土壌を硫酸抽出した残渣は、純鉄(Fe(3+))と、非結晶質の針鉄鉱(α−FeOOH)とを含んでいる。ここで、純鉄(Fe(3+))とは、変化しにくい安定した鉄をいい、酸化されず、溶出しないという性質を有する鉄をいう。
有機化合物混合物としては、畜糞、生ゴミ、食品廃棄物、剪定枝や廃材チップ、浄化槽汚泥等の有機廃棄物を用いる。
【0014】
フェリハイドライト腐植複合体の製造方法について説明する。
まず、公知のシュレッダーで破砕した有機物廃棄物のpH調整工程を行う。この工程では、消石灰(水酸化カルシウム:Ca(OH))を添加して、有機物のpHを、5以上に調整する。このpH調整工程により、後のミネラル液浸漬工程以降の各工程で、有機物とミネラル液水溶液との混合物のpHが5以上となるため、フェリハイドライト形成が可能となる。
pH調整工程の後、pH5以上に調整された有機物を、5000倍に水で希釈したミネラル液希釈水槽に浸漬し、5時間以上放置するミネラル液希釈水浸漬工程を行う。
【0015】
このように、ミネラル液を水で希釈するのは、ミネラル液は、pHが0.1〜0.2程度であるため、ミネラル液原液に有機物化合物を添加すると、堆肥化過程で発酵を行う菌が死滅してしまい、後のミネラル添加・発酵工程で、堆肥化することができなくなるからである。
このミネラル液希釈水は、菌死滅防止のためには、pH5〜7とすると好適である。
その後、公知のブレンダ内で、ミネラル液希釈水を添加し、攪拌しながら有機物を発酵させる一次発酵(ミネラル液添加)工程を行う。ここでは、公知の発酵助剤を添加してもよい。
【0016】
次いで、有機物をブレンダ11から取りだし、二次発酵・完熟(ミネラル液添加)工程を行う。この工程では、ブレンダから取り出した有機物を、屋根のある堆肥場内で堆積して発酵させながら、ミネラル液希釈水を更に添加する。有機物の温度が65℃〜70℃に達した時点で、ブルドーザ、ショベルカー等を用いた攪拌による切り返しをしながら、7000倍ミネラル液希釈水の補給を行う。
二次発酵・完熟(ミネラル液添加)工程開始から3週間程度で有機物は完熟堆肥となる。
その後、完熟した有機物堆肥に、攪拌しながらミネラル液希釈水を添加する堆肥化後ミネラル添加工程を行う。
以上で、本実施形態で用いるフェリハイドライト腐植複合体を完成する。このフェリハイドライト腐植複合体中のフェリハイドライト量は5PPMとする。また、このフェリハイドライト腐植複合体のCEC(陽イオン交換容量)は約80(meq)(肥料分析法の酢酸アンモニウム法による測定)である。
【0017】
なお、本実施形態では、上記方法により製造されたフェリハイドライト腐植複合体を用いるが、これに限定されず、他の方法により製造されたもの、または天然のフェリハイドライト腐植複合体を用いてもよい。
なお、このフェリハイドライト腐植複合体の汚染改善効果は、陽イオン交換容量(CEC)にて特定する。陽イオン交換容量とは、土壌が陽イオンを吸着できる最大量(陰荷電の総量)をいい、塩基置換容量ともいわれている。本実施形態で用いるフェリハイドライト腐植複合体としては、陽イオン交換容量が30(meq)以上、好ましくは50(meq)以上のものを用いるとよい。
【0018】
次に、本実施形態に係る土壌の浄化方法について説明する。
予め、土壌1のうち問題となっている汚染土壌2の付近の場所に、公知のトラック自動車を用いてフェリハイドライト腐植複合体(以下、腐植複合体と称する。)3を積んでおく
次いで、図1(B)のように、構内の汚染土壌2近くの土壌4の上に、腐植複合体を、略円盤状または略板状となるように載置して腐植複合体最下層5を形成する腐植複合体最下層配置工程21を行う。この工程は、公知のブルドーザで腐植複合体を移動させることにより行う。
なお、本実施形態では、土壌4の上に、まず腐植複合体を載置している。土壌4の上に、腐植複合体よりも先に汚染土壌2を載置すると、汚染土壌2に含まれる重金属や有害有機化合物が、土壌4に移行する恐れがあるからである。
【0019】
次いで、図1(B)のように、腐植複合体最下層4の上に、汚染土壌2を略円盤状または略板状となるように載置して汚染土壌第一層6を形成する汚染土壌第一層配置工程を行う。この工程は、公知のブルドーザで汚染土壌2を移動させることにより行う。
その後、腐植・土壌積層工程22を行う。この工程では、まず、腐植複合体を、汚染土壌第一層6の上に略円盤状または略板状となるように載置して腐植複合体第二層7を形成する腐植複合体第二層配置工程と、腐植複合体第二層7の上に、汚染土壌2を略円盤状または略板状となるように載置して汚染土壌第二層8を形成する汚染土壌第二層配置工程を行う。
さらに、この腐植複合体第二層配置工程と同様の手順で、汚染土壌第二層8の上に腐植複合体第三層9を形成する腐植複合体第三層配置工程と、汚染土壌第二層配置工程と同様の手順で、腐植複合体第三層9の上に汚染土壌第三層10を形成する汚染土壌第三層配置工程を行う。
【0020】
以上のようにして、図1(C)に示す腐植・土壌積層体11が完成する
このように、腐植複合体最下層配置工程21と腐植・土壌積層工程22とを行って、腐植複合体層5、7、9と汚染土壌層6、8、10とを交互に形成することにより、後工程である腐植・土壌攪拌工程23で、腐植複合体と汚染土壌とを、容易にまんべんなく混合させることが可能となる。
処理する汚染土壌の量によって異なるが、各腐植複合体配置工程では、腐植・土壌積層体11全体の高さを2〜3m程度とすると、作業効率の点から好適である。
【0021】
次いで、図1(C)の腐植・土壌積層体11を、公知のブルドーザを用いて攪拌混合し、腐植・土壌混合物12を得る腐植・土壌攪拌工程23を行う。
腐植・土壌攪拌工程23は、フェリハイドライト表面のOH基と重金属カチオンとをよく接触させ、フェリハイドライト表面にまんべんなく重金属を吸着させる為に行う。
この腐植・土壌攪拌工程23で、腐植複合体に含まれるフェリハイドライトに、重金属および有機物を吸着させることとなる。この場合の吸着は、紙のフィルターに重金属が付着する機構と類似した機構により進行する。
腐植・土壌攪拌工程23では、充分に攪拌する。酸素を充分に供給して、土壌中又は複合体中の微生物の活性を促すためである。また、紫外線を腐植・土壌混合物12中に充分に取り込んで、フェリハイドライトの有機化合物分解反応の触媒能を活性化させるためである。
【0022】
その後、腐植・土壌混合物12を、図1(D)に示すように、土壌4とは異なる場所に移動する移動工程24を行い、次の汚染土壌浄化処理に備える。
その後、腐植・土壌攪拌工程23で得た腐植・土壌混合物12を、上記汚染土壌2の代わりに用い、新たな腐植複合体3を用いて、上記腐植複合体最下層配置工程から上記移動工程までの工程と同様の手順を行う。
具体的には、構内の土壌の上に、腐植複合体を載置する腐植複合体最下層5再配置工程25を行う。
【0023】
その後、この再配置工程25で得た腐植複合体最下層5の上に、攪拌工程で形成された腐植・土壌混合物12と、腐植複合体とを交互に載置して腐植・混合物積層体11を形成する腐植・混合物積層工程26を行う。
次いで、腐植・混合物積層工程26で得た腐植・混合物積層体11を攪拌して腐植・混合物の混合物12を得る腐植・混合物攪拌工程27と、この腐植・混合物の混合物12を移動する移動工程28を行う。
この後、腐植複合体最下層再配置工程、腐植・混合物積層工程、腐植・混合物攪拌工程、移動工程を、所定回、例えば2〜4回程度順次繰り返し行う繰り返し工程29を行う。なお、この所定回には、2回以上の複数回のほか、1回も含まれるものとする。
【0024】
その後、原子吸光光度法により土壌の浄化処理を完了した浄化処理済土壌の重金属量の定量を行う。また、ガラス電極法により、pHを測定する。
重金属が不活性化し、中和され、または弱酸性となったことを確認した後、浄化処理済土壌を、もとの汚染土壌2の場所に戻す戻し工程30を行い、土壌の浄化を完了する。
その後、必要がある場合には、新たな汚染土壌2について、図2に示す工程により、土壌の浄化処理を行う。
【0025】
実施形態で使用するフェリハイドライト腐植複合体の量は、処理する汚染土壌の量、質によっても異なるが、一般的には、汚染土壌1tに対し、フェリハイドライト腐植複合体の量が0.2〜0.5t、好ましくは0.4t程度となるようにするとよい。汚染土壌1tに対するフェリハイドライト腐植複合体量を0.5t以下としたのは、0.5tより多くなると、後の戻し工程30で、元の場所に収まらない混合物の量が多くなり過ぎるからである。
したがって、例えば、図2の腐植複合体最下層配置工程21から移動工程24のみ行う場合には、すでに述べたように、積層体11全体の高さが2〜3mであるので、腐植複合体層5、7、9は、20〜30cm程度の厚さ、汚染土壌層6、8、10は、50〜80cm程度の厚さとなる。
【0026】
また、一般的には、汚染土壌1tに対し、フェリハイドライト量が1〜5g程度となるように、フェリハイドライト腐植複合体を混合するとよい。
なお、腐植複合体最下層再配置工程25、腐植・混合物積層工程26、腐植・混合物攪拌工程27を行う代わりに、図3に示すように、混合物最下層配置工程35、混合物・土壌積層工程36、混合物・土壌攪拌工程37を行ってもよい。この浄化方法は、腐植・土壌攪拌工程23で得た腐植・土壌混合物12を腐植複合体3の代わりに用い、新たな汚染土壌2を用いて、上記腐植複合体最下層配置工程21から上記移動工程24までの工程と同様の手順を行うものである。
【0027】
具体的には、構内の汚染土壌2近くの土壌の上に、攪拌工程23で形成された腐植・土壌混合物を載置する混合物最下層配置工程35を行う。
その後、この配置工程35で得た混合物最下層の上に、汚染土壌2と、攪拌工程23で形成された腐植・土壌混合物とを交互に載置して混合物・土壌積層体を形成する混合物・土壌積層工程36を行う。
次いで、混合物・土壌積層工程36で得た混合物・土壌積層体を攪拌して混合物・土壌の混合物を得る混合物・土壌攪拌工程37と、この混合物・土壌の混合物を移動する移動工程38を行う。
この後、混合物最下層配置工程35、混合物・土壌積層工程36、混合物・土壌攪拌工程37、移動工程38を、所定回、例えば2〜4回程度順次繰り返し行う繰り返し工程39を行う。なお、この所定回には、2回以上の複数回のほか、1回も含まれるものとする。
その後、重金属の定量、pHの測定を行い、重金属が不活性化し、中和され、または弱酸性となったことを確認した後、浄化処理済土壌を、もとの汚染土壌2の場所に戻し、土壌の浄化を完了する。
【0028】
なお、図3に示す浄化方法では、移動工程24の後で混合物最下層配置工程を行っているが、戻し工程30の後で混合物最下層配置工程を行ってもよい。
なお、腐植・土壌積層工程22では、pH5以上に調整した前記したミネラル液希釈水を、汚染土壌6、8、10または腐植・土壌の混合物12に散布して行ってもよい。腐植・土壌攪拌工程23では、ミネラル液希釈水を散布しながら攪拌してもよい。ミネラル液希釈水の散布は、散布する汚染土壌6、8、10または腐植・土壌の混合物12のpHを5以上に維持した状態で行う。また、腐植・混合物積層工程26、混合物・土壌積層工程36、腐植・混合物攪拌工程27、混合物・土壌攪拌工程37、繰り返し工程29、39でも、土壌等のpHを5以上として、同様にミネラル液希釈水を散布してもよい。
【0029】
また、腐植複合体最下層配置工程21の前に、腐植・土壌積層体11を配置する土壌2に、予めpH5以上に調整した前記したミネラル液希釈水を、散布しておいてもよい。このようにすれば、腐植複合体最下層5よりも下に、第一層として汚染土壌を載置することも可能となる。
また、すべての工程の前に、予め汚染土壌2にミネラル液希釈水を散布しておいてもよいし、汚染土壌2を掘削しながらミネラル液希釈水を散布してもよい。
本実施形態の土壌の浄化方法では、土壌回復資材としてフェリハイドライト腐植複合体を用いているため、土壌回復資材に含まれるフェリハイドライト特有の性質により、効率よく土壌の浄化を行うことが可能となる。
【0030】
フェリハイドライトは、表面で変異荷電特性をもつ−OH基が、プラスのイオンを持つ重金属を吸着、キレート結合し、固定、不活性化させる性質を有するため、重金属を含む土壌の浄化を行うことが可能となる。さらに、フェリハイドライトは比表面積が180〜200m/gと大きく、重金属を吸着できる面積が広いため、フェリハイドライトを含むフェリハイドライト腐植複合体を用いることにより、効率よく重金属土壌の浄化を行うことが可能となるのである。
また、フェリハイドライトは、負電荷を持つ有機化合物の官能基とキレート結合して凝集する性質、鉄水和酸化物の有機化合物の分解を触媒する性質を有するため、有機化合物の吸着分解、不活性化により、有機化合物を含む土壌の浄化を行うことが可能となる。さらに、フェリハイドライトは比表面積が180〜200m/gと大きく、有機化合物を吸着分解、不活性化できる面積が広いため、フェリハイドライトを含むフェリハイドライト腐植複合体を用いることにより、効率よく有機物土壌の浄化を行うことが可能となるのである。
【0031】
(実施例1)
以下、図2に示す土壌の浄化方法により、汚染土壌を浄化した実施例について説明する。
本例では、廃棄物処理場に隣接した土地の汚染土壌の浄化を行った。重金属であるカドミウム(Cd)を280ppm、銅(Cu)を350ppm含む汚染土壌1tを汚染土壌として用いた。
本例の浄化方法の手順について説明する。
汚染土壌近くの土壌の上に、ブルドーザで、腐植複合体を、高さ10cmになるように平らに載置し、その上に、汚染土壌を高さ50cmになるように載置した。その後、この汚染土壌の上に、腐植複合体と、汚染土壌とを、複合体層の高さが10cm、汚染土壌層の高さが50cmになるように順次積層し、腐植・土壌積層体11を形成した。全体として、腐植複合体層が3層、汚染土壌層が3層で、合計6層、腐植複合体が全体で0.2t、汚染土壌が全体で1tになるようにした。
その後、この腐植・土壌積層体11を、ブルドーザを用いてその場で攪拌し、1.2tの腐植・土壌混合物12を得た。
この腐植・土壌混合物12を、数m移動させ、次の土壌浄化処理に備えた。
【0032】
次いで、再度、ブルドーザで、腐植複合体を、高さ10cmになるように平らに載置した。その上に、腐植・土壌混合物12の一部を高さ60cmになるように載置した。その後、この腐植・土壌混合物の上に、腐植複合体と、腐植・土壌混合物とを、腐植複合体層の高さが10cm、腐植・土壌混合物層の高さが60cmになるように順次積層し、腐植・混合物積層体11'を、合計6層となるように形成した。このとき用いた腐植・土壌混合物12は1.2t、腐植複合体は0.2tとした。
その後、この腐植・土壌積層体11を、ブルドーザを用いてその場で攪拌し、1.4tの腐植・土壌混合物12'を得て、土壌の浄化を完了した。
【0033】
この土壌の浄化処理を行った腐植・土壌混合物12'の重金属量を測定したところ、カドミウムは10ppm、銅は8ppmになっていた。
この測定結果より、土壌中の重金属量が目標値以下になっていたと判断し、1.4tの腐植・土壌混合物12'のうち1tを、元の汚染土壌があった場所に戻した。
以上で、土壌の浄化処理を終了した。
このように、本例の土壌の浄化方法によれば、土壌中の重金属量が減少し、重金属が不活性化されることが分かった。
【0034】
なお、腐植・土壌混合物12'のうち残り0.4tは、他の汚染土壌の浄化処理に用いた。
また、廃棄物処理場に隣接した他の土地の汚染土壌の浄化を行った。重金属である鉛(Pb)を0.1〜0.2ppm含む汚染土壌1tを汚染土壌として用い、実施例1と同様の手順を行ったところ、浄化処理後の腐植・土壌混合物12'の鉛量を測定したところ、0.014〜0.020ppmになっていた。
このように、本例の土壌の浄化方法によれば、土壌中の重金属量が減少し、重金属が不活性化されることが分かった。
【0035】
【産業上の利用性】
以上のように本発明によれば、土壌回復資材としてフェリハイドライト腐植複合体を用いているため、土壌回復資材に含まれるフェリハイドライト特有の性質により、効率よく土壌の浄化を行うことが可能となる。
フェリハイドライトは、表面で変異荷電特性をもつ−OH基が、プラスのイオンを持つ重金属を吸着、キレート結合し、固定、不活性化させる性質を有するため、重金属を含む土壌の浄化を行うことが可能となる。さらに、フェリハイドライトは比表面積が180〜200m/gと大きく、重金属を吸着できる面積が広いため、フェリハイドライトを含むフェリハイドライト腐植複合体を用いることにより、効率よく重金属土壌の浄化を行うことが可能となるのである。
【0036】
また、フェリハイドライトは、負電荷を持つ有機化合物の官能基とキレート結合して凝集する性質、鉄水和酸化物の有機化合物の分解を触媒する性質を有するため、有機化合物の吸着分解、不活性化により、有機化合物を含む土壌の浄化を行うことが可能となる。さらに、フェリハイドライトは比表面積が180〜200m/gと大きく、有機化合物を吸着分解、不活性化できる面積が広いため、フェリハイドライトを含むフェリハイドライト腐植複合体を用いることにより、効率よく有機物土壌の浄化を行うことが可能となるのである。
【図面の簡単な説明】
図1は本発明の土壌の浄化方法の一実施形態の概略を示す説明図であり、図2は本発明に係る土壌の浄化方法の一実施形態の流れを示すブロック図であり、図3は本発明に係る土壌の浄化方法の他の実施形態の流れを示すブロック図である。

Claims (3)

  1. 有機物のpHを、5以上に調整するpH調整工程と、ミネラル液水溶液に浸漬させるミネラル液浸漬工程と、前記有機物を攪拌しながら前記ミネラル液希釈水を添加させる一次発酵工程と、該一次発酵工程から取り出した前記有機物を堆肥場内に堆積させて発酵させながら、ミネラル液希釈水を添加する二次発酵・完熟工程と、該二次発酵・完熟工程で得られた有機堆肥に攪拌しながらミネラル液水溶液を添加する堆肥後ミネラル添加工程を、少なくとも備える工程によって製造するフェリハイドライト腐植複合体製造工程と、
    前記フェリハイドライト腐植複合体製造工程で製造されたフェリハイドライト腐植複合体を、汚染土壌近くの土壌の上に載置する腐植複合体最下層配置工程と、
    前記腐植複合体最下層配置工程で得た腐植複合体最下層の上に、前記汚染土壌と、前記フェリハイドライト腐植複合体とを交互に載置して腐植・土壌積層体を形成する腐植・土壌積層工程と、
    前記腐植・土壌積層体を攪拌して腐植・土壌混合物を得る腐植・土壌攪拌工程と、を行うことを特徴とする汚染土壌の浄化方法。
  2. 前記ミネラル液浸漬工程は、前記有機物のpHを5以上に維持し、鉄が、略pH3以下では、Fe3+として、略pH3〜略pH4では、Fe3+とFe(OH) として、略pH4〜略pH5では、Fe3+とFe(OH)2+とFe(OH) として、略pH5より高いpHでは、Fe(OH)2+とFe(OH) とFe(OH)として存在し、玄武岩および安山岩を含む群からなる少なくとも一の堆積岩土壌を無機酸で抽出して得たミネラル液を水で希釈したミネラル液希釈水に5時間以上浸漬してなることを特徴とする請求項1記載の汚染土壌の浄化方法。
  3. 前記腐植・混合物積層工程と、前記腐植・混合物攪拌工程と、を所定回順次繰り返して行い、
    繰り返し行って得た前記腐植・混合物の混合物を、もとの前記汚染土壌の場所に戻す戻し工程を行うことを特徴とする請求項記載の汚染土壌の浄化方法。
JP2002577125A 2001-03-28 2002-03-27 汚染土壌の浄化方法 Expired - Fee Related JP4238036B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001094169 2001-03-28
JP2001094169 2001-03-28
PCT/JP2002/002948 WO2002078871A1 (fr) 2001-03-28 2002-03-27 Procede de regeneration de sols pollues

Publications (2)

Publication Number Publication Date
JPWO2002078871A1 JPWO2002078871A1 (ja) 2004-07-22
JP4238036B2 true JP4238036B2 (ja) 2009-03-11

Family

ID=18948409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002577125A Expired - Fee Related JP4238036B2 (ja) 2001-03-28 2002-03-27 汚染土壌の浄化方法

Country Status (2)

Country Link
JP (1) JP4238036B2 (ja)
WO (1) WO2002078871A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105923963A (zh) * 2016-06-16 2016-09-07 中国科学院南京地理与湖泊研究所 一种沉积物中持久性有机污染物的原位活性覆盖修复方法
CN106000480A (zh) * 2016-05-24 2016-10-12 马鞍山中创环保科技有限公司 一种土壤修复用离子交换纤维及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218359A (ja) * 2005-02-08 2006-08-24 Kochi Univ 重金属除去剤および重金属の除去方法
JP6552172B2 (ja) * 2014-09-12 2019-07-31 株式会社御池鐵工所 汚染物供給装置及び汚染物分別装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286974A (en) * 1976-01-16 1977-07-20 Mitsubishi Heavy Ind Ltd Treatment of waste matter containing heavy metal
JPH06122519A (ja) * 1991-05-27 1994-05-06 Toda Kogyo Corp 非晶質含水酸化第二鉄粒子粉末及びその製造法
JP3204030B2 (ja) * 1995-03-16 2001-09-04 株式会社大林組 セレン汚染土壌の不溶化処理方法
JP3919881B2 (ja) * 1997-06-04 2007-05-30 株式会社▲吉▼田生物研究所 パイプ状微粒子酸化鉄の製造方法
JPH1147727A (ja) * 1997-08-07 1999-02-23 Toyota Motor Corp 汚染土壌の浄化方法
JPH11347525A (ja) * 1998-06-03 1999-12-21 Motoo Kanke 黒墨土を利用した生ゴミ発酵方法
JP2000051835A (ja) * 1998-08-12 2000-02-22 Dowa Mining Co Ltd 鉄粉を用いた土壌の浄化方法
JP3336380B2 (ja) * 1999-08-27 2002-10-21 独立行政法人産業技術総合研究所 ヒ素除去用吸着剤およびこれを用いたヒ素イオンを含有する被処理水の処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106000480A (zh) * 2016-05-24 2016-10-12 马鞍山中创环保科技有限公司 一种土壤修复用离子交换纤维及其制备方法
CN106000480B (zh) * 2016-05-24 2019-07-05 马鞍山中创环保科技有限公司 一种土壤修复用离子交换纤维及其制备方法
CN105923963A (zh) * 2016-06-16 2016-09-07 中国科学院南京地理与湖泊研究所 一种沉积物中持久性有机污染物的原位活性覆盖修复方法

Also Published As

Publication number Publication date
JPWO2002078871A1 (ja) 2004-07-22
WO2002078871A1 (fr) 2002-10-10

Similar Documents

Publication Publication Date Title
Batool et al. Removal of toxic metals from wastewater in constructed wetlands as a green technology; catalyst role of substrates and chelators
Yang et al. Utilization of iron sulfides for wastewater treatment: a critical review
Singh et al. Reduction of heavy metals during composting
Bavandpour et al. Removal of dissolved metals in wetland columns filled with shell grits and plant biomass
Randall et al. Bioretention gardens for improved nutrient removal
Karna et al. State of the science review: Potential for beneficial use of waste by-products for in situ remediation of metal-contaminated soil and sediment
CN112795383A (zh) 一种多种重金属复合污染土壤修复剂及其应用方法
Gottinger et al. Development of an iron-amended biofilter for removal of arsenic from rural Canadian prairie potable water
Cui et al. Heavy metal stabilization remediation in polluted soils with stabilizing materials: a review
JP4238036B2 (ja) 汚染土壌の浄化方法
Liu et al. Co-pyrolysis with pine sawdust reduces the environmental risks of copper and zinc in dredged sediment and improves its adsorption capacity for cadmium
Das et al. Understanding of the biochemical events in a chemo-bioreactor during continuous acid mine drainage treatment
Carricondo Anton et al. Alternative use of rice straw ash as natural fertilizer to reduce phosphorous pollution in protected wetland ecosystems
Sheoran Performance of three aquatic plant species in bench-scale acid mine drainage wetland test cells
Anwar et al. Prospect of utilizing coal mine drainage sludge as an iron source for value-creating applications
Xie et al. Factors influencing bioavailability of arsenic to crops
US20050152833A1 (en) Phosphorus removal from animal waste
JP4596737B2 (ja) フェリハイドライト腐植複合体からなる土壌回復資材及びその製造方法
Petrik et al. Utilization of fly ash for acid mine drainage remediation
Monga et al. Biochar, Clay, Zeolites, and Microorganism-based Methods for Remediation of Heavy Metals
CN105032917A (zh) 铬渣渗滤液污染土壤应急处置方法
Yang et al. “Soil for Soil Remediation” Strategy Driven on Converting Natural Soils into Fe2O3-CAN-Type Zeolite Composites for Dual Ionic Heavy Metal-Contaminated Soil Remediation: Universality, Synergistic Effects, and Mechanism
Nepfumbada The synthesis of calcium phosphate from municipal wastewater and its application for the removal of metals from acidic effluents
Kietliñska Engineered wetlands and reactive bed filters for treatment of landfill leachate
Stead Environmental Implications of Using the Natural Zeolite Clinoptilolite for the Remediation of Sludge-Amended Soils

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

R150 Certificate of patent or registration of utility model

Ref document number: 4238036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees