JP4236193B2 - Battery cover for cylindrical battery, cylindrical battery and method for manufacturing the same - Google Patents

Battery cover for cylindrical battery, cylindrical battery and method for manufacturing the same Download PDF

Info

Publication number
JP4236193B2
JP4236193B2 JP2004289834A JP2004289834A JP4236193B2 JP 4236193 B2 JP4236193 B2 JP 4236193B2 JP 2004289834 A JP2004289834 A JP 2004289834A JP 2004289834 A JP2004289834 A JP 2004289834A JP 4236193 B2 JP4236193 B2 JP 4236193B2
Authority
JP
Japan
Prior art keywords
battery
electrolyte
cylindrical
precursor
cylindrical battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004289834A
Other languages
Japanese (ja)
Other versions
JP2005340156A (en
Inventor
三七十郎 牛島
淳 山野
隆文 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2004289834A priority Critical patent/JP4236193B2/en
Publication of JP2005340156A publication Critical patent/JP2005340156A/en
Application granted granted Critical
Publication of JP4236193B2 publication Critical patent/JP4236193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Primary Cells (AREA)

Description

本発明は、筒形電池用の電池蓋、および該電池蓋を用いてなる筒形電池に関するものである。   The present invention relates to a battery lid for a cylindrical battery and a cylindrical battery using the battery lid.

カメラ用途に用いられるリチウム一次電池などの筒形電池では、例えば下記の製法が採用されている。まず、開口部を有する有底筒状の電池缶内に、正極、負極、セパレータなどを装填し、該電池缶の開口部に電池蓋を嵌合し、レーザー溶接などで溶接封止する。この電池蓋には電解液注入口が設けられており、該注入口から電解液を電池缶内に注入した後、該注入口に封止部材を挿入し、レーザー溶接などで溶接封止して、製品(筒形電池)とする。   For cylindrical batteries such as lithium primary batteries used for camera applications, for example, the following manufacturing method is adopted. First, a positive electrode, a negative electrode, a separator, and the like are loaded into a bottomed cylindrical battery can having an opening, and a battery lid is fitted into the opening of the battery can and sealed by laser welding or the like. The battery lid is provided with an electrolyte inlet, and after injecting the electrolyte into the battery can from the inlet, a sealing member is inserted into the inlet and welded and sealed by laser welding or the like. And product (cylindrical battery).

ところで、上記の如き筒形電池の電池蓋には、電池外側となる面の中央部に端子体が取り付けられることが一般的であるため、電解液注入口は端子体設置部位以外の箇所に設けられている。よって、多数の電池缶に連続的に電解液を注入可能な装置を用いて電解液を注入する場合、個々の電池缶毎に、装置上での電解液注入口の位置がずれるため、電解液注入装置の注入ノズルの位置を電解液注入口の位置に合わせる作業が必要となる。従来は、例えば、カメラで電解液注入口の位置をモニターして、該注入口と注入ノズルとの位置合わせを行っていたため、作業が煩雑であり、また、電解液注入装置も高価なものとなっており、筒形電池の製造コスト低減の阻害要因となっていた。   By the way, since it is common that a terminal body is attached to the center part of the surface which becomes the battery outer side in the battery lid of the cylindrical battery as described above, the electrolyte injection port is provided at a place other than the terminal body installation site. It has been. Therefore, when injecting electrolyte using a device that can continuously inject electrolyte into a large number of battery cans, the position of the electrolyte inlet on the device shifts for each battery can. The operation | work which matches the position of the injection | pouring nozzle of an injection apparatus with the position of an electrolyte injection hole is needed. Conventionally, for example, the position of the electrolyte injection port is monitored by a camera and the alignment between the injection port and the injection nozzle is performed, so that the operation is complicated, and the electrolyte injection device is also expensive. Therefore, it has been an impediment to reducing the manufacturing cost of cylindrical batteries.

本発明は、上記事情に鑑みてなされたものであり、筒形電池の製造を容易化して、製造コスト低減を達成し得る筒形電池用電池蓋、および該電池蓋を用いてなる筒形電池、並びに該筒形電池の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and facilitates the manufacture of a cylindrical battery and achieves a reduction in manufacturing cost, and a cylindrical battery using the battery cover. And a method of manufacturing the cylindrical battery.

本発明は、円筒形の筒形電池の外装を構成するための、平面視で円形の筒形電池用電池蓋(以下、単に「電池蓋」という場合がある)に、該電池内部に電解液を注入するための電解液注入口を設けることに加えて、電解液注入装置の注入ノズルと該電解液注入口との位置を合わせるための凹部を設け、かつ電池蓋の中心を基準点としたとき、上記電解液注入口の中心および上記基準点を通る線分と、上記凹部の中心および上記基準点を通る線分とのなす内角を30〜180°とすることによって、上記課題を解決したものである。
The present invention provides a battery cover for a cylindrical battery that is circular in plan view (hereinafter sometimes simply referred to as a “battery cover”) for constituting an exterior of a cylindrical tube battery, and an electrolyte solution inside the battery. In addition to providing an electrolyte inlet for injecting electrolyte, a recess for aligning the position of the injection nozzle of the electrolyte injector and the electrolyte inlet is provided, and the center of the battery lid is used as a reference point When the inner angle formed by the line segment passing through the center of the electrolyte inlet and the reference point and the line segment passing through the center of the recess and the reference point is set to 30 to 180 °, the above-described problem has been solved. Is.

本発明の電池蓋を用いて筒形電池を製造するには、上方開口部を有する有底円筒形の電池缶内に、少なくとも正極、負極およびセパレータを装填し、平面視で円形の電池蓋を、上記電池缶の開口部に嵌合し、該電池缶の開口端部と該電池蓋の周縁部とを溶接封止して筒形電池前駆体とする工程と、該筒形電池前駆体の該電池蓋の電解液注入口から電解液を注入する工程と、該電解液注入口に封止部材を挿入し、溶接封止する工程を有する筒形電池の製造方法であって、上記電池蓋に、端子体を中央部に有し、かつ電池缶内に電解液を注入するための電解液注入口と、電解液注入装置の注入ノズルと該電解液注入口との位置を合わせるための凹部とを有していて、電池蓋の中心を基準点としたとき、上記電解液注入口の中心および上記基準点を通る線分と、上記凹部の中心および上記基準点を通る線分とのなす内角が、30〜180°である電池蓋を使用し、電解液注入工程に先立って、上記電解液注入口と、電解液注入装置の注入ノズルとの位置を合わせるために、上記筒形電池前駆体の上記電池蓋の凹部に、位置合わせ部材を挿入することにより、該筒形電池前駆体の位置決めを行う製造方法が採用できる。
To manufacture a cylindrical battery using the battery lid of the present invention, at least a positive electrode, a negative electrode, and a separator are loaded into a bottomed cylindrical battery can having an upper opening, and a circular battery lid is formed in a plan view. A step of fitting into the opening of the battery can and welding and sealing the opening end of the battery can and the peripheral edge of the battery lid to form a tubular battery precursor; and A method for producing a cylindrical battery, comprising: a step of injecting an electrolyte from an electrolyte inlet of the battery lid; and a step of inserting a sealing member into the electrolyte inlet and performing welding sealing. And a recess for aligning the electrolyte injection port for injecting the electrolyte into the battery can, the injection nozzle of the electrolyte injection device, and the electrolyte injection port. When the center of the battery lid is the reference point, the center of the electrolyte inlet and the reference point are And an inner angle formed by a line segment passing through the center of the recess and the reference point is 30 to 180 °, and prior to the electrolyte injection step, the electrolyte injection port, A manufacturing method for positioning a cylindrical battery precursor by inserting an alignment member into a concave portion of the battery lid of the cylindrical battery precursor in order to align the position with an injection nozzle of an electrolyte injection device. Can be adopted.

このように、本発明によれば、電解液注入装置の注入ノズルの位置を、電解液注入口の位置に合わせるために、位置合わせ部材を電池蓋の凹部に嵌めるだけで、機械的に注入ノズルの位置決めができる。なお、筒形電池前駆体の位置決めは、例えば、電解液注入装置の注入ノズルに上記位置合わせ部材を持たせ、電解液の注入の直前に行ってもよく、また、筒形電池前駆体を保持用治具に保持した状態で、上記位置合わせ部材を有する器具によって筒形電池前駆体の位置決めを行って、保持用治具に位置固定する手法によってもよい。なお、後者の場合には、筒形電池前駆体を保持用治具に保持(位置固定)したままの状態で、電解液注入工程および電解液注入口の溶接封止工程に供することができる。   As described above, according to the present invention, in order to align the position of the injection nozzle of the electrolytic solution injection device with the position of the electrolytic solution injection port, the injection nozzle is mechanically inserted only by fitting the alignment member into the recess of the battery lid. Can be positioned. The cylindrical battery precursor may be positioned, for example, by holding the above-mentioned alignment member in the injection nozzle of the electrolyte injection device and immediately before the injection of the electrolyte, or holding the cylindrical battery precursor. A method may be used in which the cylindrical battery precursor is positioned by an instrument having the alignment member while being held on the holding jig, and the position is fixed to the holding jig. In the latter case, the tubular battery precursor can be used for the electrolytic solution injection step and the electrolytic injection port welding sealing step with the holding jig held (position fixed).

なお、上記電池蓋では、上記凹部を2以上有していることが好ましい。凹部が複数の場合には、注入ノズルの位置決めの際のずれなどが生じにくく、電解液注入口と注入ノズルとの位置合わせをより安定的に行うことができる。   The battery lid preferably has two or more of the concave portions. When there are a plurality of recesses, misalignment or the like during positioning of the injection nozzle is unlikely to occur, and positioning of the electrolyte injection port and the injection nozzle can be performed more stably.

また、本発明には、上記本発明の電池蓋を用いて得られる上記の筒形電池も包含される。   The present invention also includes the above cylindrical battery obtained using the battery lid of the present invention.

本発明によれば、電池缶内に電解液を注入する際の電池蓋の電解液注入口と注入ノズルとの位置合わせ作業、更には、電解液注入口の溶接封止の際の位置決めが極めて容易となり、生産速度を高め得ると共に、電解液注入装置もより簡素なものとすることができる。よって、筒形電池の製造コストを低減することが可能である。   According to the present invention, the positioning of the electrolyte inlet and the injection nozzle of the battery lid when injecting the electrolyte into the battery can, and the positioning of the electrolyte inlet at the time of welding and sealing are extremely important. The production speed can be increased, and the electrolyte injection device can be made simpler. Therefore, it is possible to reduce the manufacturing cost of the cylindrical battery.

以下、図を用いて本発明を詳細に説明する。図1は本発明の筒形電池用電池蓋の一例を示す平面概略図、図2は本発明の筒形電池用電池蓋の他の例を示す平面概略図、図3は図2に示す電池蓋を用いた本発明の筒形電池の例を示す断面概略図であり、図3の示す断面は、図2のI−I線断面に対応している。図1の電池蓋10は電解液注入口11と、1つの凹部12を有しており、図2および図3の電池蓋10は電解液注入口11と、2つの凹部12、12を有している。図1〜図3の13は端子体であり、電池蓋10の中央部に開設された開口に、ポリプロピレンなどの樹脂製の絶縁パッキング(図3中、15)を介して装着されている(図3)。   Hereinafter, the present invention will be described in detail with reference to the drawings. 1 is a schematic plan view showing an example of a battery cover for a cylindrical battery according to the present invention, FIG. 2 is a schematic plan view showing another example of the battery cover for a cylindrical battery according to the present invention, and FIG. 3 is a battery shown in FIG. FIG. 4 is a schematic cross-sectional view showing an example of a cylindrical battery of the present invention using a lid, and the cross section shown in FIG. 3 corresponds to the cross section taken along the line II in FIG. The battery lid 10 in FIG. 1 has an electrolyte inlet 11 and one recess 12, and the battery lid 10 in FIGS. 2 and 3 has an electrolyte inlet 11 and two recesses 12, 12. ing. Reference numeral 13 in FIGS. 1 to 3 denotes a terminal body, which is attached to an opening formed in the central portion of the battery lid 10 via an insulating packing made of resin such as polypropylene (15 in FIG. 3) (FIG. 3). 3).

<電池蓋>
電池蓋は、電池缶の開口部を封口するための部材であるが、図1や図2に示すように、電池蓋の中央部には端子体が設置されるため、電解液注入口は、電池蓋の中央部には設けることができない。このため、多数の電池缶に連続的に電解液を注入可能な装置を用いて電解液を注入する場合、個々の電池缶毎に、装置上での電解液注入口の位置がずれることから、電解液注入装置の注入ノズルの位置を電解液注入口の位置に合わせる作業が必要となる。本発明では、電池蓋10に凹部12を設け、電解液注入装置の注入ノズルや位置合わせ用器具に、例えば棒状の位置合わせ部材を設けておき、該位置合わせ部材を該凹部12に嵌め込むことで、筒形電池前駆体(電池缶内に発電要素を装填し、電池缶開口端に電池蓋を溶接したもの)の位置決めを単純且つ機械的に行えるようにし、該注入ノズルと電解液注入口11との位置合わせを極めて容易とした点に最大の特徴を有している。
<Battery cover>
The battery lid is a member for sealing the opening of the battery can, but as shown in FIG. 1 and FIG. 2, a terminal body is installed at the center of the battery lid. It cannot be provided at the center of the battery lid. For this reason, when injecting an electrolyte using a device capable of continuously injecting an electrolyte into a large number of battery cans, the position of the electrolyte injection port on the device is shifted for each individual battery can. The operation | work which matches the position of the injection nozzle of an electrolyte solution injection apparatus with the position of an electrolyte solution injection port is needed. In the present invention, the battery lid 10 is provided with a recess 12, for example, a rod-like alignment member is provided in an injection nozzle or an alignment tool of the electrolyte solution injection device, and the alignment member is fitted into the recess 12. Thus, the cylindrical battery precursor (with the power generation element loaded in the battery can and the battery lid welded to the battery can open end) can be positioned simply and mechanically, and the injection nozzle and the electrolyte injection port 11 has the greatest feature in that the alignment with the electrode 11 is extremely easy.

なお、電池蓋10の凹部12の形状は特に限定されず、位置合わせ部材の底面形状や水平断面形状に合わせて、この位置合わせ部材が確実に嵌り且つずれ難い形状とすればよい。例えば、水平断面の形状が円形(真円形、楕円形など);三角形(正三角形、二等辺三角形など)、四角形(正方形、長方形など)などの多角形;などの凹部が挙げられる。なお、上記位置合わせ部材の嵌め込みを容易とする観点からは、水平断面の形状が円形(特に真円形)の凹部が好適である。   The shape of the concave portion 12 of the battery lid 10 is not particularly limited, and may be a shape that the alignment member can be securely fitted and hardly displaced in accordance with the bottom surface shape or the horizontal sectional shape of the alignment member. For example, concave portions such as a horizontal cross-sectional shape of a circle (true circle, ellipse, etc.); a triangle (equilateral triangle, isosceles triangle, etc.), a polygon such as a quadrangle (square, rectangle, etc.); In addition, from the viewpoint of facilitating the fitting of the alignment member, a recess having a circular horizontal cross section (especially a true circle) is preferable.

凹部12のサイズも特に制限はなく、位置合わせ部材が確実に嵌り且つずれ難いサイズ(開口部面積および深さ)とすればよい。凹部の好適サイズは電池蓋やこの電池蓋を用いて得られる筒形電池の大きさにもよるが、例えば、開口部面積で3mm以上、より好ましくは6mm以上とすることが望ましく、このような開口部面積とすることで、筒形電池前駆体の位置決めを、より確実に達成することができる。また、凹部の開口部面積の上限は、一般的な筒形電池の大きさから実際に設置可能であることを考慮すると、30mmとすることが好ましい。例えば開口部の形状が円形(真円形)の凹部の場合、上記の開口部面積を達成するために、その半径を1mm以上(より好ましくは1.5mm以上)であって、3mm以下とすることが望ましい。 The size of the recess 12 is not particularly limited, and may be a size (opening area and depth) in which the alignment member can be securely fitted and hardly displaced. The preferred size of the recess depends on the size of the battery lid and the cylindrical battery obtained by using this battery lid. For example, the opening area is preferably 3 mm 2 or more, more preferably 6 mm 2 or more. By setting it as such an opening area, positioning of a cylindrical battery precursor can be achieved more reliably. In addition, the upper limit of the opening area of the recess is preferably set to 30 mm 2 in consideration of the fact that it can be actually installed from the size of a general cylindrical battery. For example, in the case of a concave portion having a circular shape (perfect circle), the radius is 1 mm or more (more preferably 1.5 mm or more) and 3 mm or less in order to achieve the above-described opening area. Is desirable.

また、凹部12の深さは、0.5mm以上、より好ましくは1mm以上とすることが望ましく、このような深さとすることで、位置合わせ部材を凹部にしっかりと嵌め込むことが可能となるため、筒形電池前駆体の位置決めを、より確実に達成することができる。また、凹部の深さの上限は、一般的な筒形電池で実際に設置可能であることを考慮すると、例えば3mmとすることが好ましい。   In addition, the depth of the recess 12 is desirably 0.5 mm or more, more preferably 1 mm or more. By setting the depth to such a depth, the alignment member can be firmly fitted in the recess. The positioning of the cylindrical battery precursor can be achieved more reliably. Further, the upper limit of the depth of the recess is preferably set to 3 mm, for example, considering that it can be actually installed with a general cylindrical battery.

凹部の形成位置は、電解液注入口から、ある程度の距離をもたせることが好ましい。凹部と電解液注入口との距離が近すぎると、例えば、注入ノズルに位置合わせ部材を設けた電解液注入装置を用いる場合、位置合わせ部材を注入ノズルに設置することが困難となるからである。具体的には、電池蓋10の中心部を基準点としたときに、電解液注入口11の中心および基準点を通る線分と、凹部12の中心および基準点を通る線分とのなす内角が、30°以上、より好ましくは60°以上、さらに好ましくは75°以上であって、180°以下、より好ましくは120°以下、さらに好ましくは90°以下とすることが推奨される。
It is preferable that the recess is formed at a certain distance from the electrolyte inlet. This is because, if the distance between the recess and the electrolyte injection port is too short, for example, when using an electrolyte injection device provided with an alignment member on the injection nozzle, it is difficult to install the alignment member on the injection nozzle. . Specifically, when the center portion of the battery lid 10 is used as a reference point, an internal angle formed by a line segment passing through the center of the electrolyte inlet 11 and the reference point and a line segment passing through the center of the recess 12 and the reference point. However, it is recommended that the angle be 30 ° or more, more preferably 60 ° or more, still more preferably 75 ° or more, and 180 ° or less, more preferably 120 ° or less, and still more preferably 90 ° or less.

なお、凹部12の数は、図1に示すように1つでもよいし、図2に示すように2つでもよく、さらに3つ以上(例えば、3つ、4つ、5つなど)でも構わない。ただし、電解液注入口と注入ノズルとの位置合わせの際の安定性を高める観点からは、凹部の数を2以上とすることが好ましい。凹部の数が2以上の場合には、位置合わせの際に、位置合わせ部材を有する器具や注入ノズルとの接点を増やすことができるため、筒形電池前駆体の位置決めの際の位置ずれなどがより生じにくくなり、凹部が1つのときに比べて、より安定的に位置決めを行うことができるようになる。他方、凹部の数をあまり多くしすぎると、電池蓋の加工や、電解液注入装置の注入ノズルが位置合わせ部材を有するときには該注入ノズルの設計が困難となることから、3つ以下とすることが現実的である。   The number of recesses 12 may be one as shown in FIG. 1, two as shown in FIG. 2, or three or more (for example, three, four, five, etc.). Absent. However, it is preferable that the number of the recesses is 2 or more from the viewpoint of improving the stability at the time of alignment between the electrolyte solution injection port and the injection nozzle. When the number of recesses is two or more, the number of contacts with an instrument having an alignment member or an injection nozzle can be increased during alignment, so that there is a displacement in positioning the cylindrical battery precursor. It becomes harder to occur and positioning can be performed more stably than when there is only one recess. On the other hand, if the number of recesses is excessively large, it becomes difficult to design the injection nozzle when processing the battery lid or the injection nozzle of the electrolyte injection device has an alignment member. Is realistic.

例えば、図2に示すように電池蓋が凹部を2つ有する場合には、電解液注入口の中心および基準点を通る線分と、各凹部の中心および基準点を通る線分とのなす内角は、それぞれ同じ角度であってもよく、異なる角度であっても構わないが、位置決めの際の安定性を高める観点からは、同じ角度とすることが好ましい。   For example, when the battery lid has two recesses as shown in FIG. 2, the internal angle formed by the line segment passing through the center of the electrolyte inlet and the reference point and the line segment passing through the center of each recess and the reference point These may be the same angle or different angles, but are preferably the same angle from the viewpoint of improving the stability during positioning.

電解液注入口11のサイズ・形状には特に制限はなく、従来公知の筒形電池で採用されていたのと同様のサイズ・形状とすればよい。例えば、円形とし、その直径を0.5〜3mmとすることが一般的である。   There is no restriction | limiting in particular in the size and shape of the electrolyte injection hole 11, What is necessary is just to make it the same size and shape as employ | adopted with the conventionally well-known cylindrical battery. For example, it is common to use a circular shape with a diameter of 0.5 to 3 mm.

電池蓋10の素材としては、例えば、鉄やステンレス鋼が一般的である。鉄の場合には、表面にNiなどのメッキを施したものが好ましい。電池蓋10の大きさは、これを用いる筒形電池の大きさに依存するが、例えば、円筒形の筒形電池の場合には、電池蓋10の直径を9〜35mmとすることが一般的である。なお、本発明の電池蓋が適用される本発明の筒形電池は、円筒形状のものである。また、電池蓋10を形成する金属板の厚みは、通常0.1〜1mmである。
As a material of the battery lid 10, for example, iron or stainless steel is generally used. In the case of iron, it is preferable that the surface is plated with Ni or the like. The size of the battery lid 10 depends on the size of the cylindrical battery using the battery lid 10. For example, in the case of a cylindrical cylindrical battery, the diameter of the battery lid 10 is generally 9 to 35 mm. It is. The cylindrical battery of the present invention to which the battery lid of the present invention is applied has a cylindrical shape. Moreover, the thickness of the metal plate which forms the battery cover 10 is 0.1-1 mm normally.

また、図1や図2に示すように、電池蓋10には、内圧が急激に上昇したときの対策として、薄肉のベント14を設けることもできる。例えば、図1や図2に示すような円形の電池蓋10の場合、ベント14は、電池蓋10の外周に沿って、両端間の内角が90〜150°程度となるように設けることが一般的である。なお、ベント14を有する電池蓋10では、このベント14の形成箇所以外の箇所で、電解液注入口11および凹部12を形成する。   As shown in FIGS. 1 and 2, the battery lid 10 may be provided with a thin vent 14 as a countermeasure when the internal pressure suddenly increases. For example, in the case of a circular battery lid 10 as shown in FIGS. 1 and 2, the vent 14 is generally provided along the outer periphery of the battery lid 10 so that the inner angle between both ends is about 90 to 150 °. Is. In the battery lid 10 having the vent 14, the electrolyte solution inlet 11 and the recess 12 are formed at a place other than the place where the vent 14 is formed.

<筒形電池>
図3を用いて本発明の筒形電池を説明する。なお、図3に示した筒形電池は、あくまで本発明の筒形電池の一例を示すものであり、本発明の筒形電池の内部構造は、図3の構造に限定される訳ではない。また、円筒形の場合は電池缶の側壁に位置合わせの基準となり得る平坦部を有しないため、電解液注入の際の位置決めをするに当たり本発明は特に有効である。
<Cylindrical battery>
The cylindrical battery of the present invention will be described with reference to FIG. Note that the cylindrical battery shown in FIG. 3 is merely an example of the cylindrical battery of the present invention, and the internal structure of the cylindrical battery of the present invention is not limited to the structure of FIG. Further, in the case of a cylindrical shape, the present invention is particularly effective for positioning at the time of electrolyte injection because the side wall of the battery can does not have a flat portion that can serve as a reference for alignment.

図3の筒形電池20は、外装が、電池蓋10と、上方開口部を有する有底筒状の電池缶21で構成されている。そして、電池缶21の内底面には、樹脂製(ポリプロピレン製など)の絶縁板29が挿入されている。また、電池蓋10の下部には樹脂製(ポリプロピレン製など)の絶縁板25が設置されている。絶縁板25は、円盤状のベース部26の周縁に環状の側壁27を立設した上向きに開口する丸皿形状に形成されており、ベース部26の中央にはガス通口28が開設されている。電池蓋10は、側壁27の上端部に受け止められた状態で、その周縁部が電池缶21の開口端部と、例えばレーザー溶接により溶接封止されている。   3 has a battery lid 10 and a bottomed cylindrical battery can 21 having an upper opening. An insulating plate 29 made of resin (such as polypropylene) is inserted into the inner bottom surface of the battery can 21. In addition, an insulating plate 25 made of resin (such as polypropylene) is installed at the bottom of the battery lid 10. The insulating plate 25 is formed in a round plate shape with an annular side wall 27 standing on the periphery of a disc-shaped base portion 26 and opened upward. A gas passage 28 is opened at the center of the base portion 26. Yes. In a state where the battery lid 10 is received by the upper end of the side wall 27, the peripheral edge thereof is welded and sealed to the open end of the battery can 21 by, for example, laser welding.

絶縁体25と絶縁体29との間には、正極、負極およびセパレータで構成される電極体22が装填されている。この電極体22は、少なくとも正極、負極およびセパレータを有しており(図示しない)、正極と端子体13の下面とで、正極リード体23によって接続されている。また、電極体22の負極と電池缶21の内面とは、負極リード体24によって接続されている。そして、筒形電池20の内部には、電解液が注入されている。   An electrode body 22 composed of a positive electrode, a negative electrode, and a separator is loaded between the insulator 25 and the insulator 29. The electrode body 22 has at least a positive electrode, a negative electrode, and a separator (not shown), and the positive electrode and the lower surface of the terminal body 13 are connected by a positive electrode lead body 23. The negative electrode of the electrode body 22 and the inner surface of the battery can 21 are connected by a negative electrode lead body 24. An electrolytic solution is injected into the cylindrical battery 20.

なお、筒形電池20では、電池蓋10に設けられていた電解液注入口(図示しない)は、封止部材を挿入した上で、例えばレーザー溶接により溶接封止されている。   In the cylindrical battery 20, an electrolyte solution inlet (not shown) provided in the battery lid 10 is welded and sealed, for example, by laser welding after inserting a sealing member.

電極体22としては、例えば、シート形状の正極とシート状の負極の間にセパレータを介在させて渦巻状に巻回した渦巻状電極体などの巻回電極体が挙げられる。   Examples of the electrode body 22 include a wound electrode body such as a spiral electrode body wound in a spiral shape with a separator interposed between a sheet-shaped positive electrode and a sheet-shaped negative electrode.

正極の正極活物質としては、例えば、二酸化マンガン、フッ化カーボン、リチウムコバルト複合酸化物、スピネル型リチウムマンガン複合酸化物などを用いることができる。   As the positive electrode active material of the positive electrode, for example, manganese dioxide, carbon fluoride, lithium cobalt composite oxide, spinel type lithium manganese composite oxide, or the like can be used.

正極の導電助剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラックなどから選択される一種または二種以上の導電性物質を用いることができる。正極のバインダーとしては、ポリテトラフルオロエチレン(PTFE)(ディスパージョンタイプのものでもよく、粉末状のものでも構わない)、ゴム系バインダーなどを用いることができるが、PTFEのディスパージョンタイプのものが特に好適である。   As the conductive assistant for the positive electrode, for example, one or two or more kinds of conductive substances selected from graphite, carbon black, acetylene black, ketjen black and the like can be used. As the binder of the positive electrode, polytetrafluoroethylene (PTFE) (dispersion type or powder type), rubber binder, etc. can be used, but a PTFE dispersion type can be used. Particularly preferred.

また、正極が、同一の厚み寸法を有する2枚の正極シートと、これらの正極シートの間に介在された集電体を含む積層体であることも好ましい。巻回電極体製造の際には、これら正極シートと集電体は、巻回始端部のみを圧着して固定しておくことが好ましい。具体的には、上記集電体が、2枚の正極シートよりも数mm内側に来るように三者を重ね合わせた上で、巻回始端部となる長手方向の端部から3〜10mmをプレスしておくことが好ましい。   Moreover, it is also preferable that a positive electrode is a laminated body containing the two positive electrode sheets which have the same thickness dimension, and the electrical power collector interposed between these positive electrode sheets. In the production of the wound electrode body, it is preferable that the positive electrode sheet and the current collector are fixed by crimping only the winding start end. Specifically, after overlapping the three so that the current collector is several mm inward from the two positive electrode sheets, 3-10 mm from the end in the longitudinal direction that is the winding start end It is preferable to press.

正極に用いる集電体としては、例えば、SUS316、SUS430、SUS444などのステンレス鋼からなる平織り金網、エキスバンドメタル、ラス網、パンチングメタル、金属箔などを用いることができる。なお、集電体の表面には、後述するようにペースト状の導電材を塗布しておくことが好ましい。   As the current collector used for the positive electrode, for example, a plain woven wire mesh made of stainless steel such as SUS316, SUS430, or SUS444, an extended metal, a lath mesh, a punching metal, a metal foil, or the like can be used. In addition, it is preferable to apply a paste-like conductive material to the surface of the current collector as described later.

集電体として立体構造を有する網状のものを用いた場合でも、導電材を塗布しておくことにより、金属箔やパンチングメタルなどの本質的に平板からなる材料を用いた場合と同様に、集電効果の著しい改善が認められる。これは、網状の集電体の金属部分が正極シートと直接的に接触する経路のみならず、網目状に充填された導電材を介しての経路が有効に利用されることによるものと推定される。   Even when a current collector having a three-dimensional structure is used, by applying a conductive material, the current collector is collected in the same manner as when a material consisting essentially of a flat plate such as metal foil or punching metal is used. Significant improvement in electrical effect is observed. This is presumed to be due to the fact that not only the path in which the metal portion of the net-like current collector is in direct contact with the positive electrode sheet but also the path through the mesh-filled conductive material is effectively used. The

導電材の具体例としては、例えば、銀ペースト、カーボンペーストなどを用いることができる。特にカーボンペーストは、銀ペーストに比べて材料費が安く済み、しかも銀ペーストと略同等の接触効果が得られるため、筒形電池の製造コストの低減化を図る上で好適である。導電材のバインダーには、水ガラスやイミド系のバインダーなどの耐熱性材料を用いることが好ましい。正極の製造工程において、正極シート中の水分を除去するために200℃を超える高温で乾燥処理することがあるからである。   As a specific example of the conductive material, for example, a silver paste, a carbon paste, or the like can be used. In particular, the carbon paste is suitable for reducing the manufacturing cost of the cylindrical battery because the material cost is lower than that of the silver paste and the contact effect is almost the same as that of the silver paste. For the binder of the conductive material, it is preferable to use a heat resistant material such as water glass or an imide binder. This is because in the manufacturing process of the positive electrode, a drying process may be performed at a high temperature exceeding 200 ° C. in order to remove moisture in the positive electrode sheet.

負極としては、例えば、金属リチウム箔、箔状のリチウム合金(例えば、リチウム−アルミニウム合金など)などで構成されるものが挙げられる。   Examples of the negative electrode include a metal lithium foil, a foil-like lithium alloy (for example, a lithium-aluminum alloy) and the like.

また、負極が、短尺の金属リチウム箔と長尺の金属リチウム箔、およびこれらの金属リチウム箔の間に介在させた集電体を含む積層体であることも好ましい。この場合には、集電体と長尺の金属リチウム箔とを重ね合わせて、巻き始め側の端部から10mm程度圧着させておき、さらに、短尺の金属リチウム箔は、超尺の金属リチウム箔と集電体との圧着部の終端(集電体の内側の終端)より内側で集電体に重ねて、短尺の金属リチウム箔の端部から10mm程度圧着させておくことが好ましい。なお、2枚の金属リチウム箔と集電体を含む負極の場合にも、金属リチウム箔に代えて、箔状のリチウム合金(リチウム−アルミニウム合金など)を用いてもよい。   In addition, the negative electrode is preferably a laminate including a short metal lithium foil, a long metal lithium foil, and a current collector interposed between these metal lithium foils. In this case, the current collector and the long metal lithium foil are overlapped and crimped by about 10 mm from the end portion on the winding start side. Further, the short metal lithium foil is an ultra-long metal lithium foil. It is preferable to overlap the current collector on the inner side of the end of the crimping portion between the electrode and the current collector (the inner end of the current collector) and to crimp about 10 mm from the end of the short metal lithium foil. In the case of a negative electrode including two metal lithium foils and a current collector, a foil-like lithium alloy (such as a lithium-aluminum alloy) may be used instead of the metal lithium foil.

負極に用いる集電体は、金属箔で構成される。金属箔の素材としては、銅、ニッケル、鉄、ステンレス鋼などが例示できる。なお、金属箔の厚み分だけ電池缶21の内部体積が減少するため、金属箔の厚み寸法は可及的に小さいことが好ましく、例えば、0.005mm以上0.1mm以下とすることが推奨される。金属箔の厚みが大きすぎると、電池缶21の内部体積減少を抑制するためには、金属リチウム箔などの厚みを減少させざるを得ず、電池容量に低下を招く虞がある。金属箔の幅は、短尺および長尺の金属リチウム箔と同じかそれ以上であることが好ましい。また、金属箔の面積は、その両面に配される金属リチウム箔の面積の和の70〜130%であることが好ましい。金属箔の面積を上記のようにすることで、金属箔の幅が両面に配される金属リチウム箔の幅と同じかまたは広く、長さが長くなるので、筒形電池の使用中の消費により金属リチウム箔が切れるなどする現象が生じても、負極内での電気的接続を維持することができる。   The current collector used for the negative electrode is composed of a metal foil. Examples of the metal foil material include copper, nickel, iron, and stainless steel. In addition, since the internal volume of the battery can 21 is reduced by the thickness of the metal foil, the thickness dimension of the metal foil is preferably as small as possible, for example, 0.005 mm or more and 0.1 mm or less is recommended. The If the thickness of the metal foil is too large, the thickness of the metal lithium foil or the like must be reduced in order to suppress a decrease in the internal volume of the battery can 21, which may cause a reduction in battery capacity. The width of the metal foil is preferably the same as or longer than that of the short and long metal lithium foils. Moreover, it is preferable that the area of metal foil is 70 to 130% of the sum of the areas of the metal lithium foil arranged on both surfaces thereof. By making the area of the metal foil as described above, the width of the metal foil is the same as or wider than the width of the metal lithium foil disposed on both sides, and the length becomes longer. Even if a phenomenon such as breakage of the metal lithium foil occurs, the electrical connection in the negative electrode can be maintained.

セパレータとしては、ポリオレフィン(ポリエチレン、ポリプロピレンなど)、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレートなど)、ポリフェニレンスルフィドなどで構成される不織布、微孔性フィルムなどを用いることができる。   As the separator, a nonwoven fabric made of polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene terephthalate, polybutylene terephthalate, etc.), polyphenylene sulfide, etc., a microporous film, etc. can be used.

電解液は、使用する正極および負極の構成によって好適なものを選択すればよいが、例えば、上記の巻回電極体の場合では、有機溶媒などの非水系溶媒に電解質を溶解させて調製したものが好ましい。具体的には、溶媒としては、環状エステル(エチレンカーボネート、プロピレンカーボネートなど)に、鎖状エーテル(ジメトキシエタンなど)および/または鎖状エステル(ジメチルカーボネートなど)を混合したものが好ましく、電解質としては、LiPF、LiClO、LiCFSOなどが好適であり、電解液中の電解質の濃度としては、0.3〜1.5mol/lとすることが推奨される。 The electrolyte solution may be selected according to the configuration of the positive electrode and the negative electrode to be used. For example, in the case of the above wound electrode body, the electrolyte solution is prepared by dissolving the electrolyte in a non-aqueous solvent such as an organic solvent. Is preferred. Specifically, the solvent is preferably a mixture of a cyclic ester (ethylene carbonate, propylene carbonate, etc.) and a chain ether (dimethoxyethane, etc.) and / or a chain ester (dimethyl carbonate, etc.). , LiPF 6 , LiClO 4 , LiCF 3 SO 3 and the like are suitable, and the concentration of the electrolyte in the electrolytic solution is recommended to be 0.3 to 1.5 mol / l.

電極体22を上記の巻回電極体とする場合には、すべての正極−負極間にセパレータが介在するように、且つ負極が最外周に配置されるように巻回する。また、負極に上記の積層体を用いる場合には、負極の集電体(金属箔)が最外周に配置されるように、金属リチウム箔と金属箔の長さを調節しておく。巻回数には特に制限はなく、電池缶21の容積との関係から適宜設定すればよい。   When the electrode body 22 is the above-described wound electrode body, the winding is performed so that the separator is interposed between all the positive and negative electrodes, and the negative electrode is disposed on the outermost periphery. Moreover, when using said laminated body for a negative electrode, the length of metal lithium foil and metal foil is adjusted so that the collector (metal foil) of a negative electrode may be arrange | positioned in the outermost periphery. There is no restriction | limiting in particular in winding frequency, What is necessary is just to set suitably from the relationship with the volume of the battery can 21. FIG.

なお、電極体22を上記巻回電極体とする場合、負極容量と正極容量との比(負極容量/正極容量)を0.93以上1.03以下とすることが好ましい。負極容量/正極容量の値が小さすぎると放電途中で電圧が急激に低下することがあり、大きすぎると高容量化を阻害することがあるからである。すなわち、負極容量/正極容量の値が0.93より小さい場合には、正極が負極に比べて過剰に充填されているため、正極の容量が残っている間に負極が完全に消費されてしまい、放電途中で電圧が急激に低下する。このように放電途中に電圧が急激に低下すると電池寿命の予測が困難になる。他方、負極容量/正極容量の値が1.03より大きい場合には、負極が過剰に充填されることになるため、高容量化の妨げとなる。   In addition, when making the electrode body 22 into the said winding electrode body, it is preferable that ratio (negative electrode capacity / positive electrode capacity) of negative electrode capacity | capacitance and positive electrode capacity shall be 0.93 or more and 1.03 or less. This is because if the value of the negative electrode capacity / positive electrode capacity is too small, the voltage may drop rapidly during discharge, and if it is too large, the increase in capacity may be hindered. That is, when the negative electrode capacity / positive electrode capacity value is smaller than 0.93, the positive electrode is excessively filled as compared with the negative electrode, so that the negative electrode is completely consumed while the positive electrode capacity remains. In the middle of discharge, the voltage drops rapidly. Thus, if the voltage drops rapidly during discharge, it becomes difficult to predict the battery life. On the other hand, when the negative electrode capacity / positive electrode capacity value is larger than 1.03, the negative electrode is excessively filled, which hinders the increase in capacity.

<筒形電池の製造方法>
次に、本発明の筒形電池の製造方法を図3に基づいて説明する。内底面に絶縁板29を有する電池缶21に電極体22を装填し、電極体22中の負極と電池缶21の内面とを負極リード体24で接続する。その後、絶縁板25を装着する。電池蓋10の端子板13下面と電極体22の正極とを正極リード体23で接続した後に、該電池蓋10電池缶21の開口部に嵌合し、該電池缶21の開口端部と電池蓋10の周縁部とをレーザー溶接などにより溶接封止し、筒形電池前駆体とする。
<Method for producing cylindrical battery>
Next, the manufacturing method of the cylindrical battery of this invention is demonstrated based on FIG. An electrode body 22 is loaded into a battery can 21 having an insulating plate 29 on the inner bottom surface, and the negative electrode in the electrode body 22 and the inner surface of the battery can 21 are connected by a negative electrode lead body 24. Thereafter, the insulating plate 25 is attached. After the lower surface of the terminal plate 13 of the battery lid 10 and the positive electrode of the electrode body 22 are connected by the positive electrode lead body 23, the battery lid 10 is fitted into the opening of the battery can 21, and the opening end of the battery can 21 and the battery The peripheral part of the lid 10 is welded and sealed by laser welding or the like to obtain a cylindrical battery precursor.

次に、電池蓋10の電解液注入口(図示しない)から、電池内部に電解液を注入するが、この電解液注入工程に先立って、電解液注入口と注入ノズルとの位置を合わるために、筒形電池前駆体の位置決めを行う。筒形電池前駆体の位置決めは、例えば、下記の2方法で行うことができる。   Next, an electrolytic solution is injected into the battery from an electrolytic solution injection port (not shown) of the battery lid 10. In order to align the electrolytic solution injection port and the injection nozzle prior to this electrolytic solution injection step. Next, the cylindrical battery precursor is positioned. The cylindrical battery precursor can be positioned by, for example, the following two methods.

第1の方法としては、位置合わせ部材を備えた注入ノズルを有する電解液注入装置を用い、該位置合わせ部材を電池蓋10の凹部(図示しない)に嵌めて、注入ノズルと電解液注入口の位置が合うように、筒形電池前駆体の位置決めを行う。なお、位置合わせ部材としては、例えば、棒状など、凹部に嵌めて位置決めできるものであれば、特に制限されない。   As a first method, an electrolytic solution injection device having an injection nozzle provided with an alignment member is used, and the alignment member is fitted into a recess (not shown) of the battery lid 10 so that the injection nozzle and the electrolyte injection port are The cylindrical battery precursor is positioned so that the positions match. The alignment member is not particularly limited as long as it can be positioned by fitting in a recess, for example, a rod shape.

第2の方法では、図4に示すように筒形電池前駆体20aを保持用治具30で保持して行う。保持用治具30は、筒形電池前駆体20aの側壁(電池缶の側壁)を保持する機構と、筒形電池前駆体20aの位置決め後に、位置を固定する機構を有している。よって、位置合わせ部材を有する器具を用い、筒形電池前駆体20aの電池蓋の凹部12に該器具の位置合わせ部材を嵌めて筒形電池前駆体20aの位置決めをし、保持用治具30で位置固定する。保持用治具30で位置固定された筒形電池前駆体20aを、該保持用治具30に保持したままの状態で電解液注入工程に供する。電解液注入装置には、保持用治具30を固定するための固定治具を備えたものを用い、該固定治具に保持用治具30を固定すれば、電解液注入装置の注入ノズルと、筒形電池前駆体20aの電解液注入口11との位置が合うように設定しておくことで、電解液注入口11と注入ノズルとの位置合わせを、極めて容易に行うことができる。第2の方法で使用する位置合わせ部材を有する器具に係る位置合わせ部材についても、例えば、棒状など、凹部に嵌めて位置決めできるものであれば、特に制限されない。なお、図4では図示していないが、保持用治具30は、その側壁や底面などに、電解液注入装置などに固定するための各種手段(穴や切り込みなど)が設けられていてもよい。   In the second method, as shown in FIG. 4, the cylindrical battery precursor 20 a is held by a holding jig 30. The holding jig 30 has a mechanism for holding the side wall of the cylindrical battery precursor 20a (side wall of the battery can) and a mechanism for fixing the position after the positioning of the cylindrical battery precursor 20a. Therefore, using an appliance having an alignment member, the alignment member of the appliance is fitted into the recess 12 of the battery lid of the cylindrical battery precursor 20a to position the cylindrical battery precursor 20a, and the holding jig 30 is used. Fix the position. The cylindrical battery precursor 20 a fixed in position by the holding jig 30 is subjected to an electrolyte injection process while being held by the holding jig 30. As the electrolyte injection device, a device provided with a fixing jig for fixing the holding jig 30 is used, and if the holding jig 30 is fixed to the fixing jig, the injection nozzle of the electrolyte injection device By setting the position of the cylindrical battery precursor 20a so as to be aligned with the electrolytic solution injection port 11, the alignment between the electrolytic solution injection port 11 and the injection nozzle can be performed very easily. The alignment member related to the instrument having the alignment member used in the second method is not particularly limited as long as it can be positioned by being fitted in a recess, for example, a rod shape. Although not shown in FIG. 4, the holding jig 30 may be provided with various means (holes, notches, etc.) for fixing to the electrolyte solution injection device or the like on the side wall or the bottom surface thereof. .

なお、上記(1)の方法、(2)の方法のいずれにおいても、位置決めの際の筒形電池前駆体および位置合わせ部材の動作などについては、特に制限はないが、例えば、円筒形の筒形電池の場合には、筒形電池前駆体の側壁(電池缶の側壁)を保持する機構を有する治具によって筒形電池前駆体を保持し、位置合わせ部材を筒形電池前駆体の電池蓋の凹部に嵌めるに当たり、筒形電池前駆体の長手方向の中心を通る軸(電池蓋の中心と、電池缶底面の中心とを取る軸)を回転軸とする回転動作により位相変化させて、位置決めを行うことが好ましい。上記(1)の方法の場合では、電解液注入装置が電解液注入の際に筒形電池前駆体を保持する治具を、上記の筒形電池前駆体の側壁を保持する機構を有する治具とすればよい。また、上記(2)の方法の場合には、上記保持用治具が上記の筒形電池前駆体の側壁を保持する機構を有する治具に該当する。   In any of the above methods (1) and (2), there are no particular restrictions on the operation of the cylindrical battery precursor and the alignment member during positioning, but for example, a cylindrical tube In the case of a battery, the cylindrical battery precursor is held by a jig having a mechanism for holding the side wall of the cylindrical battery precursor (side wall of the battery can), and the alignment member is a battery lid of the cylindrical battery precursor. When fitting into the recess, positioning is performed by changing the phase by a rotation operation with the axis passing through the longitudinal center of the cylindrical battery precursor (the axis taking the center of the battery lid and the center of the bottom of the battery can) as the rotation axis. It is preferable to carry out. In the case of the method (1), the jig for holding the cylindrical battery precursor when the electrolyte injection apparatus injects the electrolyte, and the jig having the mechanism for holding the side wall of the cylindrical battery precursor. And it is sufficient. In the case of the method (2), the holding jig corresponds to a jig having a mechanism for holding the side wall of the cylindrical battery precursor.

電解液注入後の筒形電池前駆体を、電解液注入口の溶接封止工程に供し、電解液注入口に封止部材を挿入し、レーザー溶接などで溶接封止して製品(筒形電池)とする。なお上記(2)の位置決め方法を採用した場合には、溶接装置にも、上記保持用治具を固定するための固定治具を有し、該固定治具に保持用治具を固定すれば、溶接装置の溶接手段と筒形電池前駆体の電解液注入口との位置が合うように設定しておくことが好ましい。この場合には、筒形電池前駆体を保持用治具に保持したままの状態で溶接封止工程に供すれば、溶接手段と筒形電池前駆体の溶接予定位置(電解液注入口)との位置合わせが極めて容易となるため、筒形電池の生産性を更に向上させることができる。   The cylindrical battery precursor after injection of the electrolytic solution is subjected to a welding sealing process of the electrolytic solution injection port, a sealing member is inserted into the electrolytic solution injection port, and the product is sealed by laser welding or the like (cylindrical battery) ). When the positioning method (2) is adopted, the welding apparatus also has a fixing jig for fixing the holding jig, and the holding jig is fixed to the fixing jig. It is preferable to set the welding means of the welding apparatus so that the positions of the electrolytic solution injection port of the cylindrical battery precursor are matched. In this case, if it is subjected to the welding sealing process with the cylindrical battery precursor held in the holding jig, the welding means and the planned welding position (electrolyte inlet) of the cylindrical battery precursor Therefore, the productivity of the cylindrical battery can be further improved.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。なお、本実施例で用いる「%」は、特に断らない限り質量基準である。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention. The “%” used in this example is based on mass unless otherwise specified.

実施例1
図1に示す構造の電池蓋を用いて筒形電池を作製した。電池蓋および電池缶の素材は、Niメッキを施した鉄とした。電池蓋および電池缶に用いた金属板の厚みは、それぞれ0.6mm、0.25mmである。
Example 1
A cylindrical battery was produced using the battery lid having the structure shown in FIG. The material for the battery lid and battery can was iron plated with Ni. The thicknesses of the metal plates used for the battery lid and the battery can are 0.6 mm and 0.25 mm, respectively.

また電池蓋は、直径が16.1mmの円形で、電解液注入口は、電池蓋の中心から5.95mmの点を中心とする直径1mmの円形とした。また、凹部は、電解液注入口の中心から75°で、電池蓋の中心から5.35mmの箇所を中心とする直径2mmの円形とし、その深さを1mmとした。ベントは、電池蓋の中心と電解液注入口の中心を通る線分を、電池蓋円周方向の中央部として両側にそれぞれ60°の角度位置までで、且つ中心を電池蓋の中心とし電解液注入口の中心を通る円が、ベント底面の中央部(電池蓋の直径方向の中央部)を通るように設けた。また、ベントの底面の幅(電池蓋直径方向の幅)は1.2mmとした。さらに、電池蓋には、図3に示すものと同様に、ポリプロピレン製の絶縁パッキングを介して端子体を設置してある。   The battery lid was a circle having a diameter of 16.1 mm, and the electrolyte inlet was a circle having a diameter of 1 mm centered at a point 5.95 mm from the center of the battery lid. Further, the concave portion was formed into a circular shape having a diameter of 2 mm centered at a position of 5.35 mm from the center of the battery lid at 75 ° from the center of the electrolyte solution inlet, and the depth thereof was set to 1 mm. The vent is a line segment passing through the center of the battery lid and the center of the electrolyte inlet, with the central portion in the battery lid circumferential direction at 60 ° angle positions on both sides, and with the center as the center of the battery lid. A circle passing through the center of the inlet was provided so as to pass through the center of the bottom of the vent (the center in the diameter direction of the battery lid). The width of the bottom of the vent (the width in the battery lid diameter direction) was 1.2 mm. Furthermore, the terminal body is installed in the battery cover through the insulation packing made from a polypropylene similarly to what is shown in FIG.

電池缶の内底面に厚みが0.2mmのポリプロピレン製の絶縁板を挿入し、正極リード体および負極リード体を取り付けた巻回電極体を、正極リード体が上側を向く姿勢で挿入した。続いて、負極リード体を電池缶の内面に抵抗溶接し、正極リード体は、絶縁板(図3に示すものと同様のもの)を挿入した後、電池蓋の端子体下面に抵抗溶接した。この時点で絶縁抵抗を測定し、短絡がないことを確認した。その後、電池蓋を電池缶の開口端に嵌合し、電池蓋の外周部と電池缶の開口端部の内周面とをレーザー溶接により溶接封止した。   A polypropylene insulating plate having a thickness of 0.2 mm was inserted into the inner bottom surface of the battery can, and the wound electrode body to which the positive electrode lead body and the negative electrode lead body were attached was inserted with the positive electrode lead body facing upward. Subsequently, the negative electrode lead body was resistance welded to the inner surface of the battery can, and the positive electrode lead body was resistance welded to the lower surface of the terminal body of the battery lid after inserting an insulating plate (similar to that shown in FIG. 3). At this point, the insulation resistance was measured and it was confirmed that there was no short circuit. Thereafter, the battery lid was fitted to the opening end of the battery can, and the outer peripheral portion of the battery lid and the inner peripheral surface of the opening end portion of the battery can were welded and sealed by laser welding.

なお、上記巻回電極体は、以下のものを用いた。
[正極]
カーボンブラック:3%と、二酸化マンガン(東ソー社製):92%とを、プラネタリーミキサーを用いて乾式で5分混合した後、水を質量比で固形分の20%となるように添加して、さらに5分混合した。得られた混合物にPTFEディスパージョン(ダイキン工業社製「D−1」)を固形分として5%を、残りの水に希釈した状態で添加し、5分混合して配合剤を調製した。最終的な配合剤中の水分は、質量比で、固形分100に対して30とした。
In addition, the following were used for the said wound electrode body.
[Positive electrode]
Carbon black: 3% and manganese dioxide (manufactured by Tosoh Corporation): 92% are mixed by a dry method using a planetary mixer for 5 minutes, and then water is added so that the solid content is 20% by mass ratio. For another 5 minutes. To the resulting mixture, PTFE dispersion (“D-1” manufactured by Daikin Industries, Ltd.) as a solid content was added in a state of 5% diluted in the remaining water and mixed for 5 minutes to prepare a compounding agent. The water content in the final compounding agent was 30 with respect to the solid content of 100 by mass ratio.

上記の配合剤を、直径:250mmの2本ロールを用い、ロール温度を130±5℃に調整し、プレス圧:7トン/cm、ロール間隔:0.4mm、回転速度:10rpmの条件でロールによる圧延、シート化を行った。ロールを通過した配合剤(予備シート)を105℃±5℃で残水分が2%以下になるまで乾燥した。次いで乾燥後の予備シートを粉砕器を用いて粉砕した。ここでは、プレスされた予備シートが、元の見かけ体積の2倍以上になるまで粉砕した。粉砕された粒子径は、大部分が1mm以下であり、バインダーとして添加したPTFEの繊維も1mm以下の長さに切断されていた。   Using the above-mentioned compounding agent, two rolls having a diameter of 250 mm, adjusting the roll temperature to 130 ± 5 ° C., and rolling under the conditions of press pressure: 7 ton / cm, roll interval: 0.4 mm, rotation speed: 10 rpm Rolling and sheeting was performed. The compounding agent (preliminary sheet) that passed through the roll was dried at 105 ° C. ± 5 ° C. until the residual moisture became 2% or less. Next, the dried preliminary sheet was pulverized using a pulverizer. Here, the pressed preliminary sheet was pulverized until it became twice or more the original apparent volume. Most of the pulverized particle diameter was 1 mm or less, and the PTFE fiber added as a binder was cut to a length of 1 mm or less.

粉砕された材料に対して、再度ロールによるシート化を行った。ロールの間隔は0.6±0.05mmに調整し、ロール温度は120±10℃、プレス圧:7トン/cm、回転速度:10rpmの条件でシート化を行い、正極シートを得て、所定の寸法に切断した。この正極シートは、厚みが1.0mmで、密度が2.5g/cmであった。 The pulverized material was formed into a sheet by a roll again. The gap between the rolls was adjusted to 0.6 ± 0.05 mm, the roll temperature was 120 ± 10 ° C., the press pressure was 7 ton / cm, and the rotation speed was 10 rpm. Cut to dimensions. This positive electrode sheet had a thickness of 1.0 mm and a density of 2.5 g / cm 3 .

以上のようにして、内周用と外周用の2枚の正極シートを作製した。内周用の正極シートは幅:37mm、長さ:51mmであり、外周用の正極シートは幅:37mm、長さ:62mmであった。   As described above, two positive electrode sheets for inner circumference and outer circumference were produced. The positive electrode sheet for the inner periphery was 37 mm in width and 51 mm in length, and the positive electrode sheet for the outer periphery was 37 mm in width and 62 mm in length.

ステンレス鋼(SUS316)製のエキスパンドメタルを正極用の集電体として用いた。このエキスパンドメタルを幅:34mm、長さ:56mmに切断し、その長さ方向の中央部に、厚さ:0.1mm、幅:3mmのステンレス鋼製のリボンを正極リード体として抵抗溶接により取り付けた。集電体にカーボンペースト(日本黒鉛社製)を網の目につぶさない程度に塗布したのち、105±5℃の加熱温度で2時間以上乾燥した。なお、ここではカーボンペーストを5mg/cmとなるように塗布した。 An expanded metal made of stainless steel (SUS316) was used as a current collector for the positive electrode. This expanded metal is cut to a width of 34 mm and a length of 56 mm, and a stainless steel ribbon having a thickness of 0.1 mm and a width of 3 mm is attached to the central portion in the length direction by resistance welding as a positive electrode lead body. It was. A carbon paste (manufactured by Nippon Graphite Co., Ltd.) was applied to the current collector to such an extent that it was not crushed by the mesh, and then dried at a heating temperature of 105 ± 5 ° C. for 2 hours or more. Here, the carbon paste was applied so as to be 5 mg / cm 2 .

次に、2枚の正極シートを、その間に集電体を介在させた状態で長さ方向の一端部のみを固定して三者を一体化した。具体的には、内、外周用の2枚の正極シートは、長さ方向の一端を揃えるとともに、集電体の端部が正極シートからはみ出さないようにセットし、その状態で長さ方向の端部から5mmをプレスにより圧着することで、三者を一体化した。続いて、これら正極シートおよび集電体を250±10℃で6時間熱風乾燥して正極を得た。なお、ここで2枚の正極シートと集電体とを一体化したのは、作業上の都合であり、独立した正極シートと集電体とを巻回時に一体化しても特性上の問題はない。   Next, three positive electrodes were integrated by fixing only one end in the length direction with a current collector interposed therebetween. Specifically, the two positive and negative electrode sheets for the inner and outer circumferences are set so that one end in the length direction is aligned and the end of the current collector does not protrude from the positive electrode sheet. The three parties were integrated by press-bonding 5 mm from the end of each. Subsequently, the positive electrode sheet and the current collector were dried with hot air at 250 ± 10 ° C. for 6 hours to obtain a positive electrode. Note that the two positive electrode sheets and the current collector are integrated here for the convenience of work. Even if the independent positive electrode sheet and the current collector are integrated at the time of winding, there is no problem in characteristics. Absent.

[負極の作製]
幅:37mm、厚み:0.28mmの金属リチウムを、長さ:46mmの短尺の金属リチウム箔と長さ:82mmの長尺の金属リチウム箔に切断し、これらを負極の作製に用いた。そして、集電体となる金属箔としては、幅:37mm、長さ:135mm、厚み:0.010mmの銅箔を用い、長尺の金属リチウム箔に幅:3mm、長さ:20mm、厚み;0.1mmのニッケル製の負極リード体を圧着した後、銅箔と長尺の金属リチウム箔とを重ね合わせて、巻き始め側となる端部から10mm程度圧着させておき、さらに、短尺の金属リチウム箔は、超尺の金属リチウム箔と銅箔との圧着部の終端(銅箔の内側の終端)より内側で銅箔に重ねて、短尺の金属リチウム箔の端部から10mm程度圧着させて負極を作製した。このときの銅箔の面積はその両面に配置される金属リチウム箔の面積の和の105%であった。
[Production of negative electrode]
Metal lithium having a width of 37 mm and a thickness of 0.28 mm was cut into a short metal lithium foil having a length of 46 mm and a long metal lithium foil having a length of 82 mm, and these were used for producing a negative electrode. And as metal foil used as a collector, the copper foil of width: 37mm, length: 135mm, thickness: 0.010mm is used, width: 3mm, length: 20mm, thickness to long metal lithium foil; After crimping a 0.1 mm nickel negative electrode lead body, a copper foil and a long metal lithium foil are overlapped and crimped about 10 mm from the end on the winding start side, and further a short metal The lithium foil is overlapped on the copper foil inside the end of the crimped portion between the ultra-thin metal lithium foil and the copper foil (the inner end of the copper foil), and is crimped by about 10 mm from the end of the short metal lithium foil. A negative electrode was produced. At this time, the area of the copper foil was 105% of the sum of the areas of the metal lithium foils disposed on both surfaces thereof.

[巻回電極体の作製]
幅:44mm、厚み:0.025mmの微孔性ポリエチレンフィルム[旭化成社製のハイポア(商品名)]を140mmに切断してセパレータとして用い、2つ割の直径:4mmの巻回芯に挟んで1周巻いた。負極をセパレータと同時に1周巻き込んだのち、正極シートの固定した側を巻回芯側に載置して3回巻回した。巻回終了後は、銅箔が最外周を覆う形となった。以上により、巻回電極体を得た。
[Production of wound electrode body]
A microporous polyethylene film [Hypore (trade name) manufactured by Asahi Kasei Co., Ltd.] with a width of 44 mm and a thickness of 0.025 mm is cut into 140 mm and used as a separator, and sandwiched between two winding cores with a diameter of 4 mm: 4 mm I rolled one lap. After winding the negative electrode one turn at the same time as the separator, the fixed side of the positive electrode sheet was placed on the winding core side and wound three times. After winding, the copper foil covered the outermost periphery. Thus, a wound electrode body was obtained.

電池蓋と電池缶の溶接封止後に、電池内に電解液を注入した。電解液には、プロピレンカーボネート(PC)とジメトキシエタン(DME)との体積比1:2の混合溶媒にLiClOを0.5mol/l溶解させることによって調製した非水系の電解液を用いた。電解液の注入の際には、棒状の位置合わせ部材を備えた注入ノズルを有する電解液注入装置を用い、該装置に備え付けの、電池前駆体の電池缶の側壁を保持する機構を有する治具によって電池前駆体を保持し、電池前駆体の長手方向の中心を通る軸(電池蓋の中心と電池缶底面の中心とを通る軸)を回転軸する回転動作により位相変化させつつ、位置合わせ部材を電池蓋に設けた上記凹部に嵌めることで電池前駆体の位置決めを行った。電池前駆体の位置決め後、電解液の注入を3回に分けて行い、最終工程で減圧にて全量を注入した。続いて、電解液注入口にリベット形状の封止部材を装填し、レーザー溶接により溶接封止して、外径:17mm、高さ:45mmの円筒形電池を得た。 After the battery lid and battery can were sealed by welding, an electrolyte solution was injected into the battery. As the electrolytic solution, a non-aqueous electrolytic solution prepared by dissolving LiClO 4 in a molar ratio of 1: 2 in a mixed solvent of propylene carbonate (PC) and dimethoxyethane (DME) at 0.5 mol / l was used. When injecting the electrolyte, a jig having a mechanism for holding the side wall of the battery can of the battery precursor provided in the apparatus using an electrolyte injection apparatus having an injection nozzle provided with a rod-shaped alignment member The alignment member is configured to hold the battery precursor and to change the phase by a rotation operation that rotates the axis passing through the longitudinal center of the battery precursor (the axis passing through the center of the battery lid and the center of the bottom of the battery can). Was placed in the recess provided on the battery lid to position the battery precursor. After positioning the battery precursor, the electrolyte solution was injected in three portions, and the entire amount was injected under reduced pressure in the final step. Subsequently, a rivet-shaped sealing member was loaded into the electrolyte inlet, and was welded and sealed by laser welding to obtain a cylindrical battery having an outer diameter of 17 mm and a height of 45 mm.

実施例2
実施例1と同様にして作製した電解液注入前の電池前駆体を、図4に示すような保持用治具で保持した。この保持用治具は、電池前駆体の電池缶の側壁を保持する機構と、電池前駆体の位置決め後に、位置を固定する機構を有している。この保持用治具に保持した電池前駆体について、棒状の位置合わせ部材を有する器具を用いて、電池前駆体の長手方向の中心を通る軸(電池蓋の中心と電池缶底面の中心とを通る軸)を回転軸する回転動作により位相変化させつつ、位置合わせ部材を電池蓋に設けた凹部に嵌めることで電池前駆体の位置決めを行い、保持用治具で位置固定した。
Example 2
The battery precursor before injection of the electrolytic solution produced in the same manner as in Example 1 was held with a holding jig as shown in FIG. This holding jig has a mechanism for holding the side wall of the battery can of the battery precursor, and a mechanism for fixing the position after the positioning of the battery precursor. For the battery precursor held by the holding jig, an instrument having a rod-shaped alignment member is used to pass the axis passing through the center in the longitudinal direction of the battery precursor (the center of the battery lid and the center of the battery can bottom). The battery precursor was positioned by fitting the alignment member into the recess provided in the battery lid while the phase was changed by a rotation operation that rotates the shaft), and the position was fixed by a holding jig.

保持用治具に位置固定した電池前駆体を、保持用治具ごと、電解液注入装置の固定治具に固定することで、電池前駆体の電解液注入口と電解液注入装置の注入ノズルとの位置を合わせた。続いて、実施例1と同様にして電池前駆体に電解液を注入した。電解液注入後の電池前駆体の電解液注入口にリベット形状の封止部材を装填し、これを保持用治具ごとレーザー溶接装置の固定治具に固定することで、溶接予定位置(電解液注入口)とレーザーとの位置合わせをした。そして、実施例1と同じ条件で溶接封止して円筒形電池を得た。   By fixing the battery precursor positioned on the holding jig together with the holding jig to the fixing jig of the electrolytic solution injection device, the electrolytic solution injection port of the battery precursor and the injection nozzle of the electrolytic solution injection device The position of was adjusted. Subsequently, an electrolytic solution was injected into the battery precursor in the same manner as in Example 1. A rivet-shaped sealing member is loaded into the electrolyte inlet of the battery precursor after the electrolyte is injected, and the holding jig is fixed to the fixing jig of the laser welding apparatus together with the holding jig, so that the planned welding position (electrolyte) The inlet) was aligned with the laser. And it sealed by welding on the same conditions as Example 1, and obtained the cylindrical battery.

このように上記凹部を備えた電池蓋を用いた実施例1および実施例2の円筒形電池では、電解液注入の際に、注入ノズルと電解液注入口の位置合わせをカメラで確認しながら行っていた従来の筒形電池の製法に比べて、電解液注入工程に要する時間が格段に短縮化でき、生産速度を大幅に向上させ得ることが確認できた。また、電解液注入装置では、位置確認用のカメラのような精密機器も不要であり、装置のコストやメンテナンスを省略できることも確認できた。   Thus, in the cylindrical batteries of Example 1 and Example 2 using the battery lid provided with the above-described recess, the injection nozzle and the electrolyte injection port were aligned while being checked with the camera when the electrolyte was injected. Compared with the conventional method of manufacturing a cylindrical battery, it was confirmed that the time required for the electrolyte injection step can be remarkably shortened and the production rate can be greatly improved. In addition, it was confirmed that the electrolyte injection device does not require a precision device such as a camera for position confirmation, and the cost and maintenance of the device can be omitted.

本発明の筒形電池用電池蓋の一例を示す平面概略図である。It is a plane schematic diagram showing an example of a battery lid for cylindrical batteries of the present invention. 本発明の筒形電池用電池蓋の他の例を示す平面概略図である。It is the plane schematic which shows the other example of the battery cover for cylindrical batteries of this invention. 本発明の筒形電池の一例を示す断面概略図である。It is a section schematic diagram showing an example of a cylindrical battery of the present invention. 筒形電池前駆体を保持用治具で保持した様子を示す斜視図である。It is a perspective view which shows a mode that the cylindrical battery precursor was hold | maintained with the jig | tool for holding.

符号の説明Explanation of symbols

10 筒形電池用電池蓋
11 電解液注入口
12 凹部
13 端子体
14 ベント
15 絶縁パッキング
20 筒形電池
20a 筒形電池前駆体
21 電池缶
22 電極体
23 正極リード体
24 負極リード体
25 絶縁板
26 ベース部
27 側壁
28 ガス通口
29 絶縁板
30 保持用治具
DESCRIPTION OF SYMBOLS 10 Battery cover for cylindrical batteries 11 Electrolyte injection port 12 Recess 13 Terminal body 14 Vent 15 Insulation packing 20 Cylindrical battery 20a Cylindrical battery precursor 21 Battery can 22 Electrode body 23 Positive electrode lead body 24 Negative electrode lead body 25 Insulating plate 26 Base part 27 Side wall 28 Gas inlet 29 Insulating plate 30 Holding jig

Claims (6)

円筒形の筒形電池の外装を構成するための、平面視で円形の電池蓋であって、
該電池蓋は、中央部に端子体を有しており、かつ上記電池内部に電解液を注入するための電解液注入口、および電解液注入装置の注入ノズルと該電解液注入口との位置を合わせるための凹部を有していて、
電池蓋の中心を基準点としたとき、上記電解液注入口の中心および上記基準点を通る線分と、上記凹部の中心および上記基準点を通る線分とのなす内角が、30〜180°であることを特徴とする筒形電池用電池蓋。
A battery lid that is circular in plan view for constituting the outer casing of a cylindrical cylindrical battery,
The battery lid has a terminal body at the center, and has an electrolyte inlet for injecting an electrolyte into the battery, and positions of an injection nozzle of the electrolyte injector and the electrolyte inlet If you are have a recess for matching,
When the center of the battery lid is used as a reference point, the internal angle formed by the line segment passing through the center of the electrolyte solution inlet and the reference point and the line segment passing through the center of the recess and the reference point is 30 to 180 °. cylindrical battery battery lid, characterized in der Rukoto.
上記凹部を2以上有する請求項1に記載の電池蓋。   The battery lid according to claim 1, wherein the battery lid has two or more concave portions. 正極、負極、セパレータおよび電解液を含む発電要素が装填された、上方開口部を有する有底筒形の電池缶と、請求項1または2に記載の電池蓋を有し、
上記電池缶の開口端部と、上記電池蓋の周縁部が溶接封止され、
上記電池蓋の電解液注入口は、封止部材が挿入され且つ溶接封止されていることを特徴とする筒形電池。
A positive electrode, a negative electrode, a power generating element comprising a separator and an electrolyte is loaded, the battery can of a bottomed circular cylindrical having an upper opening, a battery lid according to claim 1 or 2,
The opening end of the battery can and the peripheral edge of the battery lid are welded and sealed,
A cylindrical battery characterized in that the electrolyte inlet of the battery lid is sealed with a sealing member inserted and welded.
上方開口部を有する有底筒形の電池缶内に、少なくとも正極、負極およびセパレータを装填し、平面視で円形の電池蓋を、上記電池缶の開口部に嵌合し、該電池缶の開口端部と該電池蓋の周縁部とを溶接封止して筒形電池前駆体とする工程と、該筒形電池前駆体の該電池蓋の電解液注入口から電解液を注入する工程と、該電解液注入口に封止部材を挿入し、溶接封止する工程を有する筒形電池の製造方法であって、
上記電池蓋に、端子体を中央部に有し、かつ電池缶内に電解液を注入するための電解液注入口と、電解液注入装置の注入ノズルと該電解液注入口との位置を合わせるための凹部とを有していて、電池蓋の中心を基準点としたとき、上記電解液注入口の中心および上記基準点を通る線分と、上記凹部の中心および上記基準点を通る線分とのなす内角が、30〜180°である電池蓋を使用し、
電解液注入工程に先立って、上記電解液注入口と、電解液注入装置の注入ノズルとの位置を合わせるために、上記筒形電池前駆体の上記電池蓋の凹部に、位置合わせ部材を挿入することにより、該筒形電池前駆体の位置決めを行うことを特徴とする筒形電池の製造方法。
A bottomed circular cylindrical batteries the can having an upper opening, at least the positive electrode was charged with the negative electrode and the separator, a circular battery cover in a plan view, fitted into the opening of the battery can, of the battery cans A step of welding and sealing the open end and the peripheral portion of the battery lid to form a cylindrical battery precursor; and a step of injecting an electrolyte from the electrolyte inlet of the battery lid of the cylindrical battery precursor; , A method of manufacturing a cylindrical battery having a step of inserting a sealing member into the electrolyte solution inlet and performing welding sealing,
The battery lid has a terminal body at the center, and the electrolyte inlet for injecting the electrolyte into the battery can, the injection nozzle of the electrolyte injector, and the electrolyte inlet are aligned. And a line passing through the center of the electrolyte inlet and the reference point, and a line passing through the center of the recess and the reference point. Use a battery lid with an internal angle of 30-180 °,
Prior to the electrolyte injection step, an alignment member is inserted into the concave portion of the battery lid of the cylindrical battery precursor in order to align the electrolyte injection port and the injection nozzle of the electrolyte injection device. Thus, the cylindrical battery precursor is positioned, thereby manufacturing a cylindrical battery.
上記位置合わせ部材を備えた注入ノズルを有する電解液注入装置を用いて、上記筒形電池前駆体の位置決めを行う請求項4に記載の製造方法。   The manufacturing method of Claim 4 which positions the said cylindrical battery precursor using the electrolyte solution injection apparatus which has the injection | pouring nozzle provided with the said alignment member. 上記筒形電池前駆体を保持用治具で保持し、上記位置合わせ部材を有する器具により該筒形電池前駆体の位置決めを行って該保持用治具に位置固定し、
上記筒形電池前駆体を上記保持用治具に保持したままの状態で電解液注入工程に供し、
更に、電解液注入後の上記筒形電池前駆体を、上記保持用治具に保持したままの状態で、電解液注入口の溶接封止工程に供する請求項4に記載の製造方法。
Holding the cylindrical battery precursor with a holding jig, positioning the cylindrical battery precursor with an instrument having the alignment member, and fixing the position to the holding jig;
Subjecting the tubular battery precursor to the electrolyte injection step while being held in the holding jig,
Furthermore, the manufacturing method of Claim 4 which uses for the welding sealing process of an electrolyte injection port in the state which hold | maintained the said cylindrical battery precursor after electrolyte injection with the said holding jig.
JP2004289834A 2004-04-30 2004-10-01 Battery cover for cylindrical battery, cylindrical battery and method for manufacturing the same Expired - Fee Related JP4236193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289834A JP4236193B2 (en) 2004-04-30 2004-10-01 Battery cover for cylindrical battery, cylindrical battery and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004135256 2004-04-30
JP2004289834A JP4236193B2 (en) 2004-04-30 2004-10-01 Battery cover for cylindrical battery, cylindrical battery and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005340156A JP2005340156A (en) 2005-12-08
JP4236193B2 true JP4236193B2 (en) 2009-03-11

Family

ID=35493459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289834A Expired - Fee Related JP4236193B2 (en) 2004-04-30 2004-10-01 Battery cover for cylindrical battery, cylindrical battery and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4236193B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158832B2 (en) * 2006-01-19 2013-03-06 日立マクセルエナジー株式会社 Sealed battery
KR101174897B1 (en) * 2010-10-12 2012-08-17 삼성에스디아이 주식회사 battery assembly
KR101549398B1 (en) 2014-05-20 2015-09-02 주식회사 비츠로셀 reserve battery case
CN114730977A (en) * 2021-03-24 2022-07-08 宁德新能源科技有限公司 Battery and electronic device having the same
SE545487C2 (en) * 2022-08-31 2023-09-26 Northvolt Ab A cylindrical secondary cell lid comprising multiple recessed contact portions

Also Published As

Publication number Publication date
JP2005340156A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4207451B2 (en) Cylindrical lithium ion secondary battery and manufacturing method thereof
KR100559363B1 (en) Flat non-aqueous electrolyte secondary cell
WO2011001617A1 (en) Winding electrode group and battery
JP2007265846A (en) Cylindrical battery and its manufacturing method
JP2013073757A (en) Electrode plate and wound type electrode battery
CN109891640B (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2017141613A1 (en) Rectangular secondary battery
JP2011187337A (en) Cylindrical battery cell with non-aqueous electrolyte
JP3821434B2 (en) Battery electrode group and non-aqueous electrolyte secondary battery using the same
JP5571318B2 (en) Cylindrical battery
JP5620811B2 (en) Cylindrical non-aqueous electrolyte primary battery
JP4968768B2 (en) Cylindrical non-aqueous electrolyte battery
JPWO2018173899A1 (en) Non-aqueous electrolyte secondary battery
CN111886717A (en) Secondary battery
JP4236193B2 (en) Battery cover for cylindrical battery, cylindrical battery and method for manufacturing the same
US8343641B2 (en) Electrode assembly and secondary battery having the same
JP2008192524A (en) Cylindrical nonaqueous electrolyte solution primary battery
JP2010205429A (en) Nonaqueous electrolyte secondary battery and electrode for the same
JP4993859B2 (en) Non-aqueous electrolyte primary battery
JP2008192383A (en) Cylindrical non-aqueous electrolytic liquid primary cell
JP5252691B2 (en) Cylindrical non-aqueous electrolyte primary battery and manufacturing method thereof
JPH09171809A (en) Laser sealed battery
JP7288816B2 (en) Electrochemical cell and manufacturing method thereof
JP4289820B2 (en) Secondary battery
JP4129955B2 (en) Battery and battery manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081212

R150 Certificate of patent or registration of utility model

Ref document number: 4236193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees