JP2008192383A - Cylindrical non-aqueous electrolytic liquid primary cell - Google Patents

Cylindrical non-aqueous electrolytic liquid primary cell Download PDF

Info

Publication number
JP2008192383A
JP2008192383A JP2007023631A JP2007023631A JP2008192383A JP 2008192383 A JP2008192383 A JP 2008192383A JP 2007023631 A JP2007023631 A JP 2007023631A JP 2007023631 A JP2007023631 A JP 2007023631A JP 2008192383 A JP2008192383 A JP 2008192383A
Authority
JP
Japan
Prior art keywords
positive electrode
sheet
electrode mixture
mixture layer
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007023631A
Other languages
Japanese (ja)
Inventor
Yasunori Masaoka
妥則 政岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2007023631A priority Critical patent/JP2008192383A/en
Publication of JP2008192383A publication Critical patent/JP2008192383A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylindrical non-aqueous electrolytic liquid primary cell superior in load characteristics and large in capacity. <P>SOLUTION: This is a cylindrical non-aqueous electrolytic liquid primary cell having an electrode wound-around body winding a sheet-shape positive electrode and a sheet-shape negative electrode through a separator in a cylindrical outer package can. The sheet-shape positive electrode has a positive electrode mixture containing a positive electrode active material, a conductive assistant, and a binder formed on a current collector, and a plurality of recessed parts are formed on the surface on the opposite side to the current collector of the positive electrode mixture layer. It is preferable that the recessed parts are formed by embossing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、筒形の非水電解液一次電池に関し、更に詳しくは、高容量で、重負荷放電特性に優れた筒形非水電解液一次電池に関するものである。   The present invention relates to a cylindrical non-aqueous electrolyte primary battery, and more particularly to a cylindrical non-aqueous electrolyte primary battery having a high capacity and excellent heavy load discharge characteristics.

筒形の非水電解液一次電池としては、シート状の正極とシート状の負極とをセパレータを介して巻回してなる電極巻回体を、非水電解液と共に筒形の外装缶内に有する構造をしているものが知られている。そして、このような筒形非水電解液一次電池の正極には、例えば、正極活物質、導電助剤およびバインダなどを混合して正極合剤とし、これをプレスなどにより均一に伸ばしてシート状にし、この正極合剤シートを集電体となる金属箔などと重ね合わせてプレスなどして、集電体上に正極合剤シートからなる正極合剤層を形成することにより作製したものが使用されている(例えば、特許文献1)。   As a cylindrical nonaqueous electrolyte primary battery, an electrode winding body formed by winding a sheet-like positive electrode and a sheet-like negative electrode through a separator is provided in a cylindrical outer can together with the nonaqueous electrolyte. What is structured is known. And in the positive electrode of such a cylindrical non-aqueous electrolyte primary battery, for example, a positive electrode active material, a conductive additive, a binder and the like are mixed to form a positive electrode mixture, which is uniformly stretched by a press or the like to form a sheet The positive electrode mixture sheet is used by forming a positive electrode material mixture layer made of a positive electrode material mixture sheet on the current collector by pressing the positive electrode material mixture sheet with a metal foil or the like as a current collector and pressing it. (For example, Patent Document 1).

近年、筒形非水電解液一次電池には、負荷特性や容量の向上の要請がある。ここで、筒形非水電解液一次電池を正極の点から改良する場合には、例えば、より多くの非水電解液を正極に保持させることが考えられる。   In recent years, there has been a demand for improvement in load characteristics and capacity of cylindrical nonaqueous electrolyte primary batteries. Here, when improving a cylindrical non-aqueous electrolyte primary battery from the point of a positive electrode, it is possible to hold | maintain more non-aqueous electrolyte to a positive electrode, for example.

筒形非水電解液一次電池に係る正極には、上記のように正極活物質などを含有する正極合剤層を有するものを用いているため、かかる正極合剤層の密度を低下させて、正極合剤層中に空隙をうまく形成することで、上記空隙に非水電解液を保持させることが可能である。   Since the positive electrode according to the cylindrical non-aqueous electrolyte primary battery has a positive electrode mixture layer containing a positive electrode active material as described above, the density of the positive electrode mixture layer is reduced, By successfully forming voids in the positive electrode mixture layer, it is possible to hold the non-aqueous electrolyte in the voids.

しかしながら、非水電解液の保持性を重視して正極合剤層中の空隙を大きくしすぎると、正極合剤層中の正極活物質の量が減り、例えば、電極巻回時に必要な強度が保てなくなる虞がある。その一方で、正極合剤層に形成した空隙は、電極巻回時に圧縮されてある程度減少するため、電極巻回時に必要な強度確保を重視して正極合剤層における非水電解液保持用の空隙の形成を制限すると、上記の圧縮によって空隙が減少してしまうことから、非水電解液を十分に保持して上記作用を良好に発揮できるだけの空隙を確保することが困難となる。   However, if the retention in the non-aqueous electrolyte is emphasized and the voids in the positive electrode mixture layer are made too large, the amount of the positive electrode active material in the positive electrode mixture layer is reduced. There is a risk of not being able to keep. On the other hand, since the gap formed in the positive electrode mixture layer is compressed to a certain extent when the electrode is wound, the emphasis is on securing the necessary strength when the electrode is wound. If the formation of the voids is restricted, the voids are reduced by the above-described compression, so that it is difficult to secure a void enough to sufficiently hold the non-aqueous electrolyte and exhibit the above-described effect satisfactorily.

他方、電極付近に保持する非水電解液量を増やす技術として、例えば特許文献2には、セパレータを、より緻密な微孔性フィルム層とより多くの空隙を有する不織布層との積層構造とすることで、不織布層と接する側の電極近傍の非水電解液の保持量を高める技術が提案されている。   On the other hand, as a technique for increasing the amount of the non-aqueous electrolyte retained in the vicinity of the electrode, for example, in Patent Document 2, the separator has a laminated structure of a denser microporous film layer and a nonwoven fabric layer having more voids. Thus, a technique for increasing the amount of non-aqueous electrolyte retained near the electrode on the side in contact with the nonwoven fabric layer has been proposed.

特開2005−32584号公報JP 2005-32584 A 特開2006−139918号公報JP 2006-139918 A

特許文献2に記載の技術によれば、上記の積層構造を有するセパレータの不織布層を正極側に配置して筒形非水電解液一次電池を構成することで、正極近傍の非水電解液保持量を高めることが可能であり、一定の効果は確保できるが、セパレータを積層構造とするために、電池容量に関与しないセパレータの電池内容積中に占める体積が大きくなる。このようなことから、特許文献2に記載の技術では、ある程度の容量の低下が回避し難い点で未だ改善の余地を残している。   According to the technique described in Patent Document 2, the non-woven electrolyte layer in the vicinity of the positive electrode is held by arranging the non-woven fabric layer of the separator having the above laminated structure on the positive electrode side to constitute the cylindrical non-aqueous electrolyte primary battery. The amount can be increased, and a certain effect can be ensured. However, since the separator has a laminated structure, the volume of the separator that is not involved in the battery capacity is increased. For this reason, the technique described in Patent Document 2 still has room for improvement in that it is difficult to avoid a certain decrease in capacity.

本発明は上記事情に鑑みてなされたものであり、その目的は、負荷特性に優れ、容量が大きな筒形非水電解液一次電池を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a cylindrical non-aqueous electrolyte primary battery having excellent load characteristics and a large capacity.

上記目的を達成し得た本発明の筒形非水電解液一次電池は、シート状正極とシート状負極とをセパレータを介して巻回してなる電極巻回体を筒形の外装缶内に有する電池であって、上記シート状正極は、集電体上に、正極活物質、導電助剤およびバインダを含有する正極合剤層が形成されてなるものであり、上記正極合剤層の集電体側とは反対側の表面に複数の凹部が形成されていることを特徴とするものである。   The cylindrical non-aqueous electrolyte primary battery of the present invention that has achieved the above object has an electrode winding body formed by winding a sheet-like positive electrode and a sheet-like negative electrode through a separator in a cylindrical outer can. The sheet-like positive electrode is a battery in which a positive electrode mixture layer containing a positive electrode active material, a conductive additive and a binder is formed on a current collector. A plurality of recesses are formed on the surface opposite to the body side.

本発明では、正極の正極活物質層表面に複数の凹部を形成し、これらの凹部に非水電解液を保持させて正極近傍での非水電解液保持量を高め、更に凹部の形成により正極合剤層の表面積、すなわち反応面積を大きくしている。本発明の非水電解液一次電池では、上記の構成を採用することで、電池容量の低下を可及的に抑制しつつ、正極近傍での非水電解液保持量増大による作用と、正極合剤層における反応面積増大による作用とを相乗的に機能させて、その負荷特性を高めている。   In the present invention, a plurality of recesses are formed on the surface of the positive electrode active material layer of the positive electrode, and the nonaqueous electrolyte is held in these recesses to increase the amount of nonaqueous electrolyte retained in the vicinity of the positive electrode. The surface area of the mixture layer, that is, the reaction area is increased. In the non-aqueous electrolyte primary battery of the present invention, by adopting the above-described configuration, while suppressing the decrease in battery capacity as much as possible, the effect of increasing the non-aqueous electrolyte holding amount in the vicinity of the positive electrode, The load characteristic is enhanced by synergistically functioning with the reaction area increase in the agent layer.

本発明によれば、負荷特性に優れ、容量の大きな筒形非水電解液一次電池を提供することができる。   According to the present invention, it is possible to provide a cylindrical non-aqueous electrolyte primary battery having excellent load characteristics and a large capacity.

図1に、本発明の非水電解液一次電池の一例を表す縦断側面図を示す。図1において、非水電解液一次電池1は、上方開口部を有する有底円筒状の外装缶2と、外装缶2内に装填されたシート状正極4とシート状負極5とをセパレータ6を介して巻回してなる電極巻回体3と、非水電解液(以下、単に「電解液」という)と、外装缶2の上方開口部を封止する封口構造を有している。言い換えれば、図1の非水電解液一次電池1は、外装缶2と外装缶2の上方開口部を封止する封口構造とで囲まれる空間内に、シート状正極4とシート状負極5とをセパレータ6を介して巻回してなる電極巻回体3や電解液といった発電要素を有するものである。上記外装缶2は、鉄やステンレス鋼などを素材とする。   FIG. 1 is a longitudinal side view showing an example of the non-aqueous electrolyte primary battery of the present invention. In FIG. 1, a nonaqueous electrolyte primary battery 1 includes a bottomed cylindrical outer can 2 having an upper opening, a sheet-like positive electrode 4 and a sheet-like negative electrode 5 loaded in the outer can 2, and a separator 6. And a sealing structure that seals an upper opening of the outer can 2, an electrode winding body 3 that is wound through a non-aqueous electrolyte (hereinafter simply referred to as “electrolyte”). In other words, the non-aqueous electrolyte primary battery 1 of FIG. 1 includes a sheet-like positive electrode 4 and a sheet-like negative electrode 5 in a space surrounded by an outer can 2 and a sealing structure that seals the upper opening of the outer can 2. Is wound through a separator 6 and has a power generation element such as an electrode winding body 3 and an electrolytic solution. The outer can 2 is made of iron or stainless steel.

封口構造は、外装缶2の上方開口部の内周縁に固定された蓋板8と、蓋板8の中央部に開設された開口に、ポリプロピレンなどを素材とする絶縁パッキング9を介して装着された端子体10と、蓋板8の下部に配置された絶縁板11とを有している。絶縁板11は、円盤状のベース部12の周縁に環状の側壁13を立設した上向きに開口する丸皿形状に形成されており、ベース部12の中央にはガス通口14が開設されている。蓋板8は、側壁13の上端部に受け止められた状態で、外装缶2の上方開口部の内周縁に、レーザー溶接で固定するか、またはパッキングを介したクリンプシールで固定されている。電池内圧が急激に上昇したときの対策として、蓋板8または外装缶2の缶底2aには、薄肉部(ベント)を設けることができる。正極4と端子体10の下面とは、正極リード体15で接続されている。また、負極5に取り付けられた負極リード体16は、外装缶2の上部内面に溶接されている。以下、本発明の非水電解液一次電池の構成を詳細に説明する。   The sealing structure is attached to the cover plate 8 fixed to the inner peripheral edge of the upper opening of the outer can 2 and the opening formed in the center of the cover plate 8 through an insulating packing 9 made of polypropylene or the like. Terminal body 10 and insulating plate 11 disposed below cover plate 8. The insulating plate 11 is formed in a round plate shape that opens upward with an annular side wall 13 standing on the periphery of the disk-shaped base portion 12, and a gas passage 14 is opened at the center of the base portion 12. Yes. The cover plate 8 is fixed to the inner peripheral edge of the upper opening of the outer can 2 by laser welding or a crimp seal through packing while being received by the upper end of the side wall 13. As a countermeasure when the battery internal pressure suddenly increases, a thin portion (vent) can be provided on the lid 8 or the can bottom 2a of the outer can 2. The positive electrode 4 and the lower surface of the terminal body 10 are connected by a positive electrode lead body 15. Further, the negative electrode lead body 16 attached to the negative electrode 5 is welded to the upper inner surface of the outer can 2. Hereinafter, the configuration of the nonaqueous electrolyte primary battery of the present invention will be described in detail.

<正極>
本発明に係るシート状正極としては、例えば、正極活物質に、導電助剤やバインダを配合し、必要に応じて水などを添加してなる正極合剤(スラリー)を、ロールなどを用いて圧延するなどして予備シート化し、これを乾燥・粉砕したものを再度ロール圧延などしてシート形状に成形したものを、集電体の片面または両面に重ね、プレスなどにより正極合剤シートと集電体とを一体化して、集電体の片面または両面に正極合剤シートからなる層(正極合剤層)を形成したものが使用できる。
<Positive electrode>
As the sheet-like positive electrode according to the present invention, for example, a positive electrode mixture (slurry) obtained by blending a positive electrode active material with a conductive additive or a binder and adding water or the like as necessary is used using a roll or the like. Rolled into a preliminary sheet, dried and pulverized, then rolled into a sheet shape again and stacked on one or both sides of the current collector. What integrated the electric body and formed the layer (positive electrode mixture layer) which consists of a positive mix sheet on the single side | surface or both surfaces of a collector can be used.

具体的には、例えば、集電体が、2枚の正極合剤シートよりも数mm内側にくるようにして三者を重ね合わせ、巻回始端部となる長さ方向の端部から3〜10mmの部分をプレスすることでシート状正極を製造できる。なお、作業上の観点からは、電極巻回体の作製に先立って、2枚の正極合剤シートと正極集電体とを一体化しておくことが好ましいが、独立した2枚の正極合剤シートとを、電極巻回体の巻回時に一体化しても構わず、このような製法によっても特性上は特に問題はない。   Specifically, for example, the current collector is overlapped by 3 mm so that the current collector is located several mm inside the two positive electrode mixture sheets, and 3 to 3 from the end in the length direction that becomes the winding start end. A sheet-like positive electrode can be produced by pressing a 10 mm portion. From the viewpoint of work, it is preferable that the two positive electrode mixture sheets and the positive electrode current collector are integrated prior to the production of the electrode winding body. The sheet may be integrated when the electrode winding body is wound, and there is no particular problem in terms of characteristics even by such a manufacturing method.

なお、本発明に係るシート状正極は、上記の製法により製造されたものに限定されず、他の製法により製造されたものであってもよい。例えば、正極合剤スラリーを集電体の片面または両面に塗布して乾燥し、必要に応じてプレス処理などを施して集電体上に正極合剤層を形成する製法により製造された正極でもよい。   In addition, the sheet-like positive electrode according to the present invention is not limited to those manufactured by the above manufacturing method, and may be manufactured by other manufacturing methods. For example, even a positive electrode manufactured by a manufacturing method in which a positive electrode mixture slurry is applied to one or both sides of a current collector and dried, and subjected to a press treatment as necessary to form a positive electrode mixture layer on the current collector. Good.

正極活物質としては、例えば、二酸化マンガン、フッ化カーボン、リチウムコバルト複合酸化物、スピネル型リチウムマンガン複合酸化物などが挙げられる。   Examples of the positive electrode active material include manganese dioxide, carbon fluoride, lithium cobalt composite oxide, spinel-type lithium manganese composite oxide, and the like.

また、導電助剤としては、例えば、黒鉛、カーボンブラック(ケッチェンブラックなど)、アセチレンブラックなどが挙げられ、これらを1種単独で用いる他、2種以上を併用してもよい。バインダとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂;ゴム系バインダ;などが使用できる。なお、PTFE、PVDFなどのフッ素樹脂の場合、ディスパージョンタイプのものでもよいし、粉末状のものでもよいが、ディスパージョンタイプのものが特に好適である。   Moreover, as a conductive support agent, graphite, carbon black (Ketjen black etc.), acetylene black etc. are mentioned, for example, These may be used individually by 1 type, and may use 2 or more types together. As the binder, fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF); rubber binders, and the like can be used. In the case of a fluororesin such as PTFE or PVDF, a dispersion type or a powder type may be used, but a dispersion type is particularly preferable.

シート状正極に係る正極合剤層においては、例えば、正極活物質の含有量を92〜97質量%、導電助剤の含有量を2〜4質量%、およびバインダの含有量を1〜4質量%とすることが好ましい。また、正極合剤層の厚み(集電体の両面に形成されている場合は、片面当たりの厚み)は、例えば、100〜2000μmであることが好ましい。   In the positive electrode mixture layer relating to the sheet-like positive electrode, for example, the content of the positive electrode active material is 92 to 97% by mass, the content of the conductive additive is 2 to 4% by mass, and the content of the binder is 1 to 4% by mass. % Is preferable. In addition, the thickness of the positive electrode mixture layer (when formed on both sides of the current collector, the thickness per side) is preferably, for example, 100 to 2000 μm.

シート状正極に係る正極合剤層の密度は、例えば、2.1〜2.8g/cmであることが好ましい。なお、本明細書でいうシート状正極の密度は、乾燥状態の正極合剤層の体積と重量によって求められる値である。 It is preferable that the density of the positive mix layer concerning a sheet-like positive electrode is 2.1-2.8 g / cm < 3 >, for example. In addition, the density of a sheet-like positive electrode as used in this specification is a value calculated | required by the volume and weight of the positive mix layer in a dry state.

非水電解液一次電池の負荷特性(特に中負荷での放電特性)を向上させる観点からは、導電助剤に、BET比表面積が400〜2000m/gのカーボンブラック(特にケッチェンブラック)を用い、正極合剤層における上記導電助剤の含有量を2.0〜4.0質量%とし、更に正極合剤層の密度を2.2〜2.7g/cmとすることがより好ましい。 From the viewpoint of improving the load characteristics of the non-aqueous electrolyte primary battery (especially the discharge characteristics at medium load), carbon black (particularly ketjen black) having a BET specific surface area of 400 to 2000 m 2 / g is used as a conductive additive. More preferably, the content of the conductive additive in the positive electrode mixture layer is 2.0 to 4.0% by mass, and the density of the positive electrode mixture layer is 2.2 to 2.7 g / cm 3. .

なお、本明細書でいう導電助剤のBET比表面積は、多分子吸着の理論式であるBET式を用いて、表面積を測定、計算したもので、活物質の表面と微細孔の比表面積である。また、後記の実施例におけるカーボンブラックのBET比表面積の測定には、窒素吸着法による比表面積測定装置(Mountech社製「Macsorb HM model−1201」)を用いた。   In addition, the BET specific surface area of the conductive assistant referred to in this specification is a surface area measured and calculated using the BET formula which is a theoretical formula of multimolecular adsorption. is there. Moreover, the specific surface area measuring apparatus by the nitrogen adsorption method ("Macsorb HM model-1201" by Mounttech) was used for the measurement of the BET specific surface area of carbon black in the Example mentioned later.

正極に用いる集電体としては、例えば、SUS316、SUS430、SUS444などのステンレス鋼を素材とするものが挙げられ、その形態としては、平織り金網、エキスパンドメタル、ラス網、パンチングメタル、箔(板)などが例示できる。集電体の厚みは、例えば、0.1〜0.4mmであることが好ましい。   Examples of the current collector used for the positive electrode include those made of stainless steel such as SUS316, SUS430, and SUS444, and the forms thereof include plain weave metal mesh, expanded metal, lath net, punching metal, and foil (plate). Etc. can be exemplified. The thickness of the current collector is preferably, for example, 0.1 to 0.4 mm.

正極集電体の表面には、ペースト状の導電材を塗布しておくことが望ましい。正極集電体として立体構造を有する網状のものを用いた場合も、金属箔やパンチングメタルなどの本質的に平板からなる材料を用いた場合と同様に、導電材の塗布により集電効果の著しい改善が認められる。これは、網状の集電体の金属部分が正極合剤層と直接的に接触する経路のみならず、網目内に充填された導電材を介しての経路が有効に利用されていることによるものと推定される。   It is desirable to apply a paste-like conductive material to the surface of the positive electrode current collector. When a positive electrode current collector having a three-dimensional structure is used, as in the case of using an essentially flat material such as a metal foil or a punching metal, the current collecting effect is remarkable by applying a conductive material. Improvement is observed. This is because not only the route in which the metal part of the mesh current collector is in direct contact with the positive electrode mixture layer but also the route through the conductive material filled in the mesh is effectively used. It is estimated to be.

導電材としては、例えば、銀ペーストやカーボンペーストなどを用いることができる。特にカーボンペーストは、銀ペーストに比べて材料費が安く済み、しかも銀ペーストと略同等の接触効果が得られるため、非水電解液一次電池の製造コストの低減化を図る上で好適である。導電材のバインダとしては、水ガラスやイミド系のバインダなどの耐熱性の材料を用いることが好ましい。これは正極合剤層中の水分を除去する際に200℃を超える高温で乾燥処理するためである。   As the conductive material, for example, silver paste or carbon paste can be used. In particular, the carbon paste is suitable for reducing the manufacturing cost of the non-aqueous electrolyte primary battery because the material cost is lower than that of the silver paste and the contact effect is almost the same as that of the silver paste. As the binder for the conductive material, it is preferable to use a heat resistant material such as water glass or an imide binder. This is because the drying process is performed at a high temperature exceeding 200 ° C. when moisture in the positive electrode mixture layer is removed.

本発明に係るシート状正極は、上記のようにして集電体上に形成された正極合剤層の表面(集電体と接する面とは反対側の表面)に、複数の凹部を有している。この凹部によって、電解液の保持性を高めて正極近傍の電解液量を増大させると共に、正極合剤層の表面積を増大させて反応面積を大きくしており、これらの構成によって電池の負荷特性向上を達成している。   The sheet-like positive electrode according to the present invention has a plurality of concave portions on the surface of the positive electrode mixture layer formed on the current collector as described above (the surface opposite to the surface in contact with the current collector). ing. These recesses increase electrolyte retention and increase the amount of electrolyte in the vicinity of the positive electrode, and also increase the surface area of the positive electrode mixture layer and increase the reaction area. Has achieved.

正極合剤層の表面に凹部としては、例えば、溝状のように連続した形状の凹部が複数形成されていてもよく、また、不連続な窪みのような形状の凹部が複数形成されていてもよい。   As the concave portion on the surface of the positive electrode mixture layer, for example, a plurality of continuous concave portions such as a groove shape may be formed, or a plurality of concave portions such as discontinuous depressions may be formed. Also good.

図2に、凹部が溝状である場合の例を示している。図2はシート状正極4の平面図であり、シート状正極4の有する正極合剤層40の表面に、平面視で菱形を描くように溝状の凹部400が形成されている。   FIG. 2 shows an example in which the recess is groove-shaped. FIG. 2 is a plan view of the sheet-like positive electrode 4, and a groove-like recess 400 is formed on the surface of the positive electrode mixture layer 40 of the sheet-like positive electrode 4 so as to draw a rhombus in a plan view.

図3に、図2のI−I線断面図を示しているが、この図3に示すように、シート状正極4では、集電体42の上側の正極合剤層40の表面に溝状の凹部400が形成されており、また、集電体42の下側の正極合剤層41の表面にも溝状の凹部410が形成されている。   FIG. 3 shows a cross-sectional view taken along the line I-I of FIG. 2. As shown in FIG. 3, the sheet-like positive electrode 4 has a groove shape on the surface of the positive electrode mixture layer 40 on the upper side of the current collector 42. And a groove-shaped recess 410 is also formed on the surface of the positive electrode mixture layer 41 on the lower side of the current collector 42.

また、図4には、凹部の溝状である場合の他の例を示している。この図4に示すシート状正極4における正極合剤層40の表面には、平面視で格子を描くように(すなわち、方形を描くように)溝状の凹部400が形成されている。   FIG. 4 shows another example in the case of a concave groove shape. On the surface of the positive electrode mixture layer 40 in the sheet-like positive electrode 4 shown in FIG. 4, groove-like recesses 400 are formed so as to draw a lattice in plan view (that is, draw a square).

凹部が溝状である場合、凹部の配置については特に制限はなく、例えば、シート状正極の平面視で、溝状の凹部により三角形、方形(菱形を除く、例えば、図4に示すもの)、菱形(例えば、図2に示すもの)などを描くように配置するなど、複数の溝状凹部が交差するように配置してもよく、また、複数の溝状凹部を交差しないように平行に配置してもよい。これらの中でも、後述するシート状正極の柔軟性向上作用をより高める観点からは、一方の対角線がシート状正極の長尺方向(すなわち、電極巻回体における巻回方向)に対して平行な菱形を描くように(例えば、図2に示すように)、溝状凹部を配置することがより好ましい。   When the recess is groove-shaped, there is no particular limitation on the arrangement of the recess. For example, in the plan view of the sheet-like positive electrode, the groove-shaped recess makes a triangle, square (excluding the diamond, for example, as shown in FIG. 4), A plurality of groove-like recesses may be arranged so as to draw a diamond shape (for example, the one shown in FIG. 2), and a plurality of groove-like recesses may be arranged in parallel so as not to intersect each other. May be. Among these, from the viewpoint of further enhancing the flexibility improvement effect of the sheet-like positive electrode described later, one of the diagonal lines is a rhombus parallel to the longitudinal direction of the sheet-like positive electrode (that is, the winding direction in the electrode winding body). It is more preferable to arrange the groove-shaped recess so as to draw (for example, as shown in FIG. 2).

溝状の凹部の深さは、正極合剤層の厚みの、1/2以下であることが好ましく、1/3以下であることがより好ましい。凹部の深さを大きくしすぎると、凹部の形成によって、正極合剤層中のバインダが切断される場合があり、また、凹部が原因となって巻回時に正極に割れが生じる場合があるからである。なお、凹部を形成することによる電池の負荷特性向上作用をより有効に発揮させる観点からは、溝状凹部の深さは、正極合剤層の厚みの1/10以上とすることが好ましく、1/5以上とすることがより好ましい。   The depth of the groove-like recess is preferably 1/2 or less, more preferably 1/3 or less of the thickness of the positive electrode mixture layer. If the depth of the concave portion is too large, the binder in the positive electrode mixture layer may be cut due to the formation of the concave portion, and the positive electrode may be cracked during winding due to the concave portion. It is. In addition, from the viewpoint of more effectively exerting the effect of improving the load characteristics of the battery by forming the recess, the depth of the groove-like recess is preferably 1/10 or more of the thickness of the positive electrode mixture layer. More preferably, / 5 or more.

また、溝状凹部の幅(開口部分の幅)は、溝状凹部の深さと同程度であることが好ましく、具体的には、0.05mm以上0.5mm以下とすることがより好ましい。   Further, the width of the groove-shaped recess (the width of the opening) is preferably about the same as the depth of the groove-shaped recess, and more specifically 0.05 mm to 0.5 mm.

正極合剤層表面には凹部を複数形成するが、例えば、図2や図4に示すような配置で溝状の凹部を形成する場合、平行に配置された隣り合う凹部同士の間隔は、1mm以上4mm以下とすることが好ましい。   A plurality of recesses are formed on the surface of the positive electrode mixture layer. For example, when groove-like recesses are formed as shown in FIGS. 2 and 4, the interval between adjacent recesses arranged in parallel is 1 mm. The thickness is preferably 4 mm or less.

溝状凹部の横断面の形状については特に制限はなく、図3に示すようなU字状の他、V字状などが挙げられる。   There is no restriction | limiting in particular about the shape of the cross section of a groove-shaped recessed part, In addition to U shape as shown in FIG. 3, V shape etc. are mentioned.

図5は、凹部が不連続な窪み状である場合の例であり、シート状正極における正極合剤層40の表面に、開口部の形状が円形の凹部400が複数形成されている。   FIG. 5 shows an example in which the concave portion has a discontinuous hollow shape, and a plurality of concave portions 400 having a circular opening are formed on the surface of the positive electrode mixture layer 40 in the sheet-like positive electrode.

凹部を不連続な窪み状とする場合、その形状については特に制限はなく、例えば、開口部分の平面視形状が、図5に示す円形の他、三角形、方形など、各種の形状とすることができる。凹部の配置についても特に制限はないが、特定の箇所に凹部を密集させたり、一部に凹部をあまり形成しないといった配置をすることなく、凹部形成箇所全体にわたって、ほぼ均等になるように凹部を配置することが好ましい。   When the concave portion is formed in a discontinuous concave shape, the shape is not particularly limited, and for example, the shape of the opening in plan view may be various shapes such as a triangle and a square in addition to the circular shape shown in FIG. it can. There is no particular restriction on the arrangement of the concave portions, but the concave portions are arranged so as to be almost uniform over the entire concave portion formation place without arranging the concave portions densely at a specific location or forming a small portion of the concave portion. It is preferable to arrange.

凹部が不連続な窪み状である場合の凹部の深さは、凹部が溝状である場合と同様に、正極合剤層の厚みの、1/2以下であることが好ましく、1/3以下であることがより好ましい。凹部の深さを大きくしすぎると、凹部の形成によって、正極合剤層中のバインダが切断される場合があり、また、凹部が原因となって巻回時に正極に割れが生じる場合があるからである。なお、凹部が不連続な窪み状の場合も、凹部が溝状である場合と同様に、凹部を形成することによる電池の負荷特性向上作用をより有効に発揮させる観点からは、凹部の深さは、正極合剤層の厚みの、1/10以上とすることが好ましく、1/5以上とすることがより好ましい。   The depth of the recess when the recess is a discontinuous recess is preferably 1/2 or less, and 1/3 or less of the thickness of the positive electrode mixture layer, similarly to the case where the recess is a groove. It is more preferable that If the depth of the concave portion is too large, the binder in the positive electrode mixture layer may be cut due to the formation of the concave portion, and the positive electrode may be cracked during winding due to the concave portion. It is. In addition, in the case where the concave portion is a discontinuous concave shape, the depth of the concave portion from the viewpoint of more effectively exerting the effect of improving the load characteristics of the battery by forming the concave portion, as in the case where the concave portion is a groove shape. Is preferably 1/10 or more, more preferably 1/5 or more of the thickness of the positive electrode mixture layer.

凹部が不連続な窪み状の場合、個々の凹部のサイズについては特に制限はないが、例えば、平面視での開口部分の面積を、0.004〜0.4mmとすることが好ましい。また、凹部が不連続な窪み状の場合、隣接する凹部間の距離は、例えば、1〜4mmとすることが好ましい。 In the case where the concave portion is a discontinuous concave shape, the size of each concave portion is not particularly limited. For example, the area of the opening portion in a plan view is preferably set to 0.004 to 0.4 mm 2 . Moreover, when a recessed part is a discontinuous hollow shape, it is preferable that the distance between adjacent recessed parts shall be 1-4 mm, for example.

凹部が溝状である場合、凹部が不連続な窪み状である場合のいずれにおいても、凹部を形成することによる電池の負荷特性向上作用をより確実に発揮させる観点から、平面視での凹部の開口部分の総面積を、正極合剤層の平面視での総面積中、10%以上とすることが好ましく、20%以上とすることがより好ましい。また、平面視での凹部の開口部分の総面積を大きくしすぎると、正極活物質の充填量低下を引き起こすことがあるため、平面視での凹部の開口部分の総面積は、正極合剤層の平面視での総面積中、50%以下とすることが好ましく、40%以下とすることがより好ましい。   In any case where the concave portion is a groove shape or the concave portion is a discontinuous concave shape, from the viewpoint of more reliably exerting an effect of improving the load characteristics of the battery by forming the concave portion, The total area of the openings is preferably 10% or more, more preferably 20% or more, of the total area of the positive electrode mixture layer in plan view. In addition, if the total area of the opening portions of the recesses in plan view is too large, the filling amount of the positive electrode active material may be reduced. Therefore, the total area of the opening portions of the recesses in plan view is the positive electrode mixture layer. Is preferably 50% or less, and more preferably 40% or less in the total area in plan view.

なお、凹部としては、上記の通り、溝状であっても不連続な窪み状であってもよいが、電解液の流通がより良好となって、より放電反応がスムーズに進みやすいと考えられ、また、後述する正極合剤層の柔軟性向上効果がより得られやすいと考えられることから、溝状であることがより好ましい。   As described above, the concave portion may be a groove shape or a discontinuous depression shape, but it is considered that the flow of the electrolytic solution becomes better and the discharge reaction proceeds more smoothly. Moreover, since it is thought that the softness | flexibility improvement effect of the positive mix layer mentioned later is acquired more easily, it is more preferable that it is groove shape.

正極合剤層表面の凹部は、エンボス加工により形成されていることが好ましい。エンボス加工により形成することによって、正極の強度低下を引き起こすことなく、効率よく凹部を形成することができる。   The concave portion on the surface of the positive electrode mixture layer is preferably formed by embossing. By forming by embossing, it is possible to efficiently form the recesses without causing a decrease in the strength of the positive electrode.

具体的には、集電体上に正極合剤層を形成した後に、凹部を形成するためのロール(エンボスロール)を通過させたり、スタンプ式に加圧することにより、正極合剤層表面に凹部形成することができるが、その他の手段を用いてもよい。なお、エンボスロールを用いた凹部形成の際には、エンボスロールを50〜150℃に加熱してもよい。   Specifically, after the positive electrode mixture layer is formed on the current collector, a concave portion is formed on the surface of the positive electrode mixture layer by passing a roll (embossing roll) for forming a concave portion or pressurizing in a stamp type. It can be formed, but other means may be used. In addition, when forming the recessed part using an embossing roll, you may heat an embossing roll to 50-150 degreeC.

例えば、正極合剤層に係るバインダとして、PTEFを用いた場合、エンボス加工により凹部を形成すると、PTFEのフィブリルが引き伸ばされるために、正極合剤層の柔軟性を高めることができる。よって、この場合には、正極活物質の充填量を高めるために正極合剤層の密度を大きくしても、巻回時の正極合剤層の割れを抑制できることから、より高容量の電池とすることができる。   For example, when PTEF is used as the binder related to the positive electrode mixture layer, when the concave portions are formed by embossing, the PTFE fibrils are stretched, so that the flexibility of the positive electrode mixture layer can be increased. Therefore, in this case, even if the density of the positive electrode mixture layer is increased in order to increase the filling amount of the positive electrode active material, cracking of the positive electrode mixture layer during winding can be suppressed. can do.

<負極>
本発明に使用できる負極としては、図1に示すようなシート状負極が挙げられ、このシート状負極は、例えば、負極活物質である金属リチウム箔と、負極集電体である金属箔とで構成される。金属リチウム箔の材料としては金属リチウムのみならず、リチウム−アルミニウムなどのリチウム合金を挙げることができる。金属リチウム箔の厚みとしては、例えば、0.15〜0.4mmであることが好ましい。
<Negative electrode>
Examples of the negative electrode that can be used in the present invention include a sheet-like negative electrode as shown in FIG. 1. The sheet-like negative electrode includes, for example, a metal lithium foil that is a negative electrode active material and a metal foil that is a negative electrode current collector. Composed. Examples of the material for the metal lithium foil include not only metal lithium but also lithium alloys such as lithium-aluminum. The thickness of the metal lithium foil is preferably 0.15 to 0.4 mm, for example.

負極集電体の素材としては、銅、ニッケル、鉄、ステンレスなどを挙げることができる。負極集電体の厚み分だけ外装缶の内部体積が減少するため、負極集電体の厚み寸法は可及的に小さいことが好ましく、具体的には、例えば、0.1mm以下とすることが推奨される。すなわち、負極集電体が厚すぎると、負極活物質である金属リチウム箔などの仕込み量を少なくせざるを得ず、電池容量の低下を招く虞がある。また、負極集電体が薄すぎると、破れやすくなるため、負極集電体の厚みは、0.005mm以上とすることが望ましい。また、負極集電体は、その幅が金属リチウム箔の幅と同じか、それよりも広いことが好ましく、また、その面積が片面に配置される金属リチウム箔の面積の100〜130%であることが好ましい。負極集電体の面積を上記のようにすることによって、負極集電体の幅が金属リチウム箔の幅と同じかまたは広く、長さが長くなるため、負極集電体の周囲に沿って金属リチウム箔が切れて電気的接続が断たれることを防ぐことができる。   Examples of the material for the negative electrode current collector include copper, nickel, iron, and stainless steel. Since the internal volume of the outer can decreases by the thickness of the negative electrode current collector, the thickness dimension of the negative electrode current collector is preferably as small as possible, specifically, for example, 0.1 mm or less. Recommended. That is, if the negative electrode current collector is too thick, the amount of metal lithium foil or the like that is the negative electrode active material must be reduced, which may lead to a decrease in battery capacity. Moreover, since it will be easy to tear when a negative electrode collector is too thin, it is desirable that the thickness of a negative electrode collector be 0.005 mm or more. The width of the negative electrode current collector is preferably the same as or wider than the width of the metal lithium foil, and the area is 100 to 130% of the area of the metal lithium foil arranged on one side. It is preferable. By making the area of the negative electrode current collector as described above, the width of the negative electrode current collector is the same as or wider than the width of the metal lithium foil, and the length becomes longer. It is possible to prevent the lithium foil from being cut and the electrical connection from being cut off.

<電解液>
本発明の非水電解液一次電池に係る電解液としては、有機溶媒などの非水系溶媒に電解質としてLiPF、LiClO、LiCFSOなどを溶解して調製したものが挙げられる。その溶媒としてはエチレンカーボネート、プロピレンカーボネートなどの環状エステルにジメトキシエタンなどの鎖状エーテル、ジメチルカーボネートなどの鎖状エステルを混合したものが例示できる。電解液中の電解質の濃度としては0.3〜1.5mol/lが好ましい。
<Electrolyte>
Examples of the electrolyte solution according to the non-aqueous electrolyte primary battery of the present invention include those prepared by dissolving LiPF 6 , LiClO 4 , LiCF 3 SO 3 , and the like as an electrolyte in a non-aqueous solvent such as an organic solvent. Examples of the solvent include a mixture of a cyclic ester such as ethylene carbonate and propylene carbonate with a chain ether such as dimethoxyethane and a chain ester such as dimethyl carbonate. The concentration of the electrolyte in the electrolytic solution is preferably 0.3 to 1.5 mol / l.

<セパレータ>
セパレータとしては、従来公知の非水電解液一次電池に採用されている微孔性フィルム製のセパレータや不織布製のセパレータが適用できる。
<Separator>
As a separator, the separator made from a microporous film and the separator made from a nonwoven fabric which are employ | adopted as a conventionally well-known nonaqueous electrolyte primary battery are applicable.

セパレータとなる微孔性フィルムを構成する樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)などのポリエステル;ポリフェニレンスルフィド(PPS);などが挙げられる。このような微孔性フィルムの市販品としては、例えば、旭化成株式会社製「ハイポア」(商品名)、東燃化学社製「セティーラ」(商品名)などが挙げられる。   Examples of the resin constituting the microporous film serving as the separator include polyolefins such as polyethylene (PE) and polypropylene (PP); polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT); polyphenylene sulfide (PPS) And so on. Examples of such commercially available microporous films include “Hypore” (trade name) manufactured by Asahi Kasei Corporation, “Setilla” (trade name) manufactured by Tonen Chemical Co., Ltd., and the like.

また、セパレータとなる不織布としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)などのポリエステル;ポリフェニレンスルフィド(PPS);などを素材とし、公知の各種製法で製造されたものを用いることができる。   Moreover, as a nonwoven fabric used as a separator, for example, polyolefins such as polyethylene (PE) and polypropylene (PP); polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT); polyphenylene sulfide (PPS); Those produced by various known production methods can be used.

更に、上記微孔性フィルムと上記不織布とを積層した構造のセパレータを用いてもよい。   Furthermore, you may use the separator of the structure which laminated | stacked the said microporous film and the said nonwoven fabric.

セパレータの厚みは、例えば、15〜50μmであることが好ましい。   The thickness of the separator is preferably 15 to 50 μm, for example.

なお、本発明の非水電解液一次電池を説明するに当たり、図1〜図5を参照したが、これらの図面は、本発明の電池の一例を示すものに過ぎず、本発明の電池はこれらの図面に図示したものに限定される訳ではない。また、図1〜図5は、本発明の電池の構成を説明するためのものであって、そのサイズなどは必ずしも正確ではない。   In describing the non-aqueous electrolyte primary battery of the present invention, FIGS. 1 to 5 were referred to. However, these drawings are only examples of the battery of the present invention, and the battery of the present invention is not limited to these. It is not necessarily limited to what is illustrated in the drawings. Moreover, FIGS. 1-5 is for demonstrating the structure of the battery of this invention, Comprising: The size etc. are not necessarily exact.

本発明の非水電解液一次電池は、負荷特性に優れており、しかも容量が大きいため、このような特性を生かして、住宅用火災警報器の電源用途や、ガス、電気、水道などの各種メーターの電源用途などを始めとして、従来公知の非水電解液一次電池が適用されている各種用途に適用することができる。   The non-aqueous electrolyte primary battery of the present invention is excellent in load characteristics and has a large capacity. Therefore, taking advantage of such characteristics, it can be used as a power source for fire alarms for houses, as well as various types of gas, electricity, water, etc. It can be applied to various uses to which a conventionally known non-aqueous electrolyte primary battery is applied, including a power source use of a meter.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。この実施例においては、筒形非水電解液一次電池として、外径:17mm、高さ:45mmの円筒形非水電解液一次電池を例に挙げて説明する。なお、本実施例で使用する「%」は、特に断らない限り質量基準(質量%)である。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention. In this embodiment, a cylindrical nonaqueous electrolyte primary battery having an outer diameter of 17 mm and a height of 45 mm will be described as an example of a cylindrical nonaqueous electrolyte primary battery. In addition, "%" used in a present Example is a mass reference | standard (mass%) unless there is particular notice.

実施例1
実施例1の筒形非水電解液一次電池について、[正極の作製]、[負極の作製]、[電極巻回体の作製]、[電池組み立て]、[後処理(予備放電、エージング)]の順に説明する。
Example 1
For the cylindrical nonaqueous electrolyte primary battery of Example 1, [Preparation of positive electrode], [Preparation of negative electrode], [Preparation of wound electrode], [Assembly of battery], [Post-treatment (preliminary discharge, aging)] Will be described in the order.

[正極の作製]
まず、以下の手順で、正極合剤(質量比で、固形分:水分=100:30のもの)を調製した。BET比表面積が1000m/gのカーボンブラック:3%と二酸化マンガン(東ソー社製):92%とを、プラネタリーミキサーを用いて乾式で5分間混合した後、水を固形分の20%(質量比)となるように添加して5分間混合した。PTFEディスパージョン(ダイキン工業社製「D−1」)を、固形分が、正極合剤の固形分で5%に当たる量だけ用意し、これを残りの水で希釈して、上記の混合物に添加し、5分間混合して正極合剤を得た。
[Production of positive electrode]
First, a positive electrode mixture (in mass ratio, solid content: water content = 100: 30) was prepared by the following procedure. Carbon black having a BET specific surface area of 1000 m 2 / g: 3% and manganese dioxide (manufactured by Tosoh Corporation): 92% were mixed for 5 minutes in a dry manner using a planetary mixer, and then water was added to a solid content of 20% ( Mass ratio) and mixed for 5 minutes. Prepare PTFE dispersion ("D-1" manufactured by Daikin Industries, Ltd.) in an amount corresponding to 5% of the solid content of the positive electrode mixture, dilute it with the remaining water, and add to the above mixture And mixed for 5 minutes to obtain a positive electrode mixture.

上記の正極合剤を、直径:250mmの2本ロールを用い、ロール温度を125±5℃に調整し、プレス圧:7トン/cm、ロール間隔:0.4mm、回転速度:10rpmの条件で、ロール圧延してシート化した。ロールを通過した正極合剤(予備シート)を105±5℃で残水分が2%以下になるまで乾燥した。次いで乾燥後の予備シートを粉砕機を用いて粉砕した後、再度ロールによるシート化を行った。ロールの間隔は0.6±0.05mmに調整し、ロール温度:125±10℃、プレス圧:7トン/cm、回転速度:10rpmの条件でシート化して正極合剤層とするための平板状シートを得た。得られた平板状シートは、厚みが1.0mmで、外装缶内径の5.9%に相当する。また、平板状シートの密度は2.5g/cmであり、上記手法により求めた空隙率は、42%であった。 Using the above positive electrode mixture, two rolls having a diameter of 250 mm, adjusting the roll temperature to 125 ± 5 ° C., press pressure: 7 ton / cm, roll interval: 0.4 mm, rotation speed: 10 rpm The sheet was rolled and rolled. The positive electrode mixture (preliminary sheet) that passed through the roll was dried at 105 ± 5 ° C. until the residual moisture was 2% or less. Next, the dried preliminary sheet was pulverized using a pulverizer, and then formed into a sheet by a roll again. A flat plate for forming a positive electrode mixture layer by adjusting the roll interval to 0.6 ± 0.05 mm, forming a sheet under the conditions of roll temperature: 125 ± 10 ° C., press pressure: 7 ton / cm, rotation speed: 10 rpm A sheet was obtained. The obtained flat sheet has a thickness of 1.0 mm and corresponds to 5.9% of the inner diameter of the outer can. The density of the flat sheet was 2.5 g / cm 3 , and the porosity determined by the above method was 42%.

この平板状シートを、直径:100mmの2本のエンボスロール間に通過させることで、平板状シートの片面に、図2に示すように、平面視で菱形を描くように溝状の凹部を形成して正極合剤シートを得た。なお、上記溝状の凹部は、正極合剤シート片面の全体にわたって、ほぼ均一に形成した。形成された溝状の凹部の深さは0.2mmであり、これは正極合剤シート(すなわち、正極合剤層)の厚みの1/5に相当する。溝状凹部の幅は0.2mmで、凹部同士の間隔は1.5mmとした。凹部の断面形状は図3に示すようにU字状とした。正極合剤シートを平面視した場合における凹部の開口部分の総面積は、正極合剤シートの平面視での総面積中、約25%であった。   By passing this flat sheet between two embossing rolls having a diameter of 100 mm, a groove-shaped recess is formed on one side of the flat sheet so as to draw a rhombus in a plan view as shown in FIG. Thus, a positive electrode mixture sheet was obtained. In addition, the said groove-shaped recessed part was formed substantially uniformly over the whole positive electrode mixture sheet single side | surface. The depth of the formed groove-like recess is 0.2 mm, which corresponds to 1/5 of the thickness of the positive electrode mixture sheet (that is, the positive electrode mixture layer). The width of the groove-shaped recess was 0.2 mm, and the interval between the recesses was 1.5 mm. The cross-sectional shape of the recess was U-shaped as shown in FIG. When the positive electrode mixture sheet was viewed in plan, the total area of the openings of the recesses was about 25% of the total area of the positive electrode mixture sheet in plan view.

この正極合剤シートを裁断して、幅:37mm、長さ:51mmの内周用の正極合剤シートと、幅:37mm、長さ:62mmの外周用の正極合剤シートを得た。   The positive electrode mixture sheet was cut to obtain an inner periphery positive electrode mixture sheet having a width of 37 mm and a length of 51 mm, and an outer periphery positive electrode mixture sheet having a width of 37 mm and a length of 62 mm.

正極集電体には、厚み0.3mmのステンレス鋼(SUS316)製のエキスパンドメタルを用いた。このエキスパンドメタルを、幅:34mm、長さ:56mmに切断し、長さ方向の中央部に、厚み:0.1mm、幅;3mmのステンレス鋼製のリボンを正極リード体として抵抗溶接により取り付けた。更にこのエキスパンドメタルに、カーボンペースト(日本黒鉛社製)を、網の目をつぶさない程度に塗布した後、105±5℃の温度で乾燥して正極集電体とした。なお、カーボンペーストの塗布量は、乾燥後の塗布量で5mg/cmとなるようにした。 As the positive electrode current collector, an expanded metal made of stainless steel (SUS316) having a thickness of 0.3 mm was used. This expanded metal was cut to a width of 34 mm and a length of 56 mm, and a stainless steel ribbon having a thickness of 0.1 mm and a width of 3 mm was attached to the central portion in the length direction by resistance welding as a positive electrode lead body. . Further, a carbon paste (manufactured by Nippon Graphite Co., Ltd.) was applied to the expanded metal so as not to crush the mesh, and then dried at a temperature of 105 ± 5 ° C. to obtain a positive electrode current collector. The coating amount of the carbon paste was set to 5 mg / cm 2 after drying.

次に、内周用の正極合剤シートと外周用の正極合剤シートの間に正極集電体を介在させた状態で、長さ方向の片端部のみを固定して三者を一体化した。具体的には、内周用の正極合剤シートと外周用の正極合剤シートを、長さ方向の片端を揃えると共に、正極集電体の端部が、2枚の正極合剤シートの、両者を揃えた片端部からはみ出ないようにセットし、その状態で、2枚の正極合剤シートの、両者を揃えた片端部から5mmの箇所をプレスにより圧着することで、三者を一体化した。その後、2枚の正極合剤シートと正極集電体とを一体化したものを250±10℃で6時間熱風乾燥して、幅が37mmで、正極合剤層の集電体側とは反対側の表面に複数の凹部を有するシート状正極を得た。   Next, in a state where the positive electrode current collector is interposed between the positive electrode mixture sheet for the inner periphery and the positive electrode mixture sheet for the outer periphery, only one end in the length direction is fixed and the three parties are integrated. . Specifically, the positive electrode mixture sheet for the inner periphery and the positive electrode mixture sheet for the outer periphery are aligned with one end in the length direction, and the end of the positive electrode current collector is composed of two positive electrode mixture sheets. Set the two so that they do not protrude from one end, and in that state, press the 5mm portion of the two positive electrode mixture sheets from one end where both are aligned, and unite the three. did. Thereafter, the two positive electrode mixture sheets and the positive electrode current collector integrated with each other were dried with hot air at 250 ± 10 ° C. for 6 hours, the width was 37 mm, and the side opposite to the current collector side of the positive electrode mixture layer A sheet-like positive electrode having a plurality of recesses on the surface was obtained.

[負極の作製]
負極は、幅:39mm、長さ:170mm、厚み:10μmの銅箔(負極集電体)上に、幅:37mm、長さ:87mm、厚み:0.30mmの金属リチウム箔と、幅:37mm、長さ:50mm、厚み:0.30mmの金属リチウム箔を配置して構成した。まず、長さが50mmの方の金属リチウム箔に、幅:3mm、長さ:20mm、厚み:0.1mmのニッケル製の負極リード体を圧着した。その後、上記の2枚の金属リチウム箔を、離間させた状態で上記銅箔上に配置し、シート状負極を作製した。
[Production of negative electrode]
The negative electrode has a width: 39 mm, a length: 170 mm, a thickness: 10 μm on a copper foil (negative electrode current collector), a width: 37 mm, a length: 87 mm, a thickness: 0.30 mm metal lithium foil, and a width: 37 mm. A metal lithium foil having a length of 50 mm and a thickness of 0.30 mm was arranged. First, a negative electrode lead made of nickel having a width of 3 mm, a length of 20 mm, and a thickness of 0.1 mm was pressure-bonded to a metal lithium foil having a length of 50 mm. Thereafter, the two metal lithium foils were placed on the copper foil in a separated state to produce a sheet-like negative electrode.

[電極巻回体の作製]
セパレータとして、幅:44mm、長さ:170mm、厚み:25μmの微孔性ポリエチレンフィルム[旭化成社製「ハイポア」(商品名)]を用意した。
[Production of wound electrode body]
As a separator, a microporous polyethylene film [“Hypore” (trade name) manufactured by Asahi Kasei Co., Ltd.] having a width of 44 mm, a length of 170 mm, and a thickness of 25 μm was prepared.

シート状負極の銅箔上に接着テープを貼り付け、この接着テープにセパレータを熱溶着によって貼り付けた。次に、セパレータの上記熱溶着部分を、2つ割の直径:3.5mmの巻回芯に挟み、1周巻いた。次いで、負極をセパレータと共に1周巻き込んだ後、シート状正極の固定した側を巻回芯側に載置して巻回した。巻回終了後は、銅箔が最外周を覆う形となった。以上により、電極巻回体を得た。   Adhesive tape was affixed on the copper foil of a sheet-like negative electrode, and the separator was affixed on this adhesive tape by heat welding. Next, the heat-welded portion of the separator was sandwiched between two winding cores having a diameter of 3.5 mm and wound once. Next, after winding the negative electrode together with the separator once, the side on which the sheet-like positive electrode was fixed was placed on the winding core side and wound. After winding, the copper foil covered the outermost periphery. The electrode winding body was obtained by the above.

[電池組み立て]
筒形非水電解液一次電池の組み立て工程を、図1を参照して説明する。Niメッキした鉄缶からなる有底円筒形の外装缶2の内底部2aに、厚み:0.2mmのポリプロピレン製の絶縁板を挿入し、その上に電極巻回体3を、正極リード体15が上側を向く姿勢で挿入した。電極体3の負極リード体16を外装缶2の内面に抵抗溶接し、正極リード体15は、絶縁板11を挿入した後に、電池蓋8の端子板10の下面に抵抗溶接した。この時点で絶縁抵抗を測定し、短絡がないことを確認した。なお、電池蓋8には、Niメッキした鉄製のものを用いた。
[Battery assembly]
An assembly process of the cylindrical non-aqueous electrolyte primary battery will be described with reference to FIG. An insulating plate made of polypropylene having a thickness of 0.2 mm is inserted into the inner bottom portion 2a of the bottomed cylindrical outer can 2 made of Ni-plated iron can, and the electrode winding body 3 and the positive electrode lead body 15 are inserted thereon. Was inserted in a posture facing upward. The negative electrode lead body 16 of the electrode body 3 was resistance welded to the inner surface of the outer can 2, and the positive electrode lead body 15 was resistance welded to the lower surface of the terminal plate 10 of the battery lid 8 after inserting the insulating plate 11. At this point, the insulation resistance was measured and it was confirmed that there was no short circuit. The battery lid 8 was made of Ni-plated iron.

電解液には、ECとPCとDMEとを10:5:85(体積比)で混合した混合溶媒に、LiCFSOを0.5mol/lの濃度で溶解させた非水系の溶液を用意し、これを外装缶2内に3.5ml注入した。注入は3回に分け、最終工程で減圧しつつ全量を注入した。電解液の注入後、電池蓋8を外装缶2の上方開口部に嵌合し、レーザー溶接により外装缶2の開口端部の内周部と電池蓋8の外周部とを溶接して外装缶2の開口部を封口した。 As the electrolyte, a non-aqueous solution prepared by dissolving LiCF 3 SO 3 at a concentration of 0.5 mol / l in a mixed solvent in which EC, PC, and DME are mixed at a volume ratio of 10: 5: 85 is prepared. Then, 3.5 ml of this was injected into the outer can 2. The injection was divided into three times, and the whole amount was injected while reducing the pressure in the final step. After injecting the electrolytic solution, the battery lid 8 is fitted into the upper opening of the outer can 2, and the inner peripheral portion of the opening end of the outer can 2 and the outer peripheral portion of the battery lid 8 are welded by laser welding. 2 openings were sealed.

[後処理(予備放電、エージング)]
封口した電池を、1Ωの抵抗で30秒間予備放電し、70℃で6時間保管した後、1Ωの定抵抗で1分間、2次予備放電を行った。予備放電後の電池を、室温で7日間エージングし、開路電圧を測定して安定電圧が得られていることを確認して、外径:17.0mm、総高:45.0mmの筒形非水電解液一次電池を得た。この筒形非水電解液一次電池の全溶媒中におけるECの含有量は10体積%である。
[Post-treatment (preliminary discharge, aging)]
The sealed battery was preliminarily discharged with a resistance of 1Ω for 30 seconds, stored at 70 ° C. for 6 hours, and then subjected to a secondary preliminary discharge with a constant resistance of 1Ω for 1 minute. The battery after the preliminary discharge was aged at room temperature for 7 days, and the open circuit voltage was measured to confirm that a stable voltage was obtained. The outer diameter was 17.0 mm and the total height was 45.0 mm. A water electrolyte primary battery was obtained. The content of EC in all the solvents of the cylindrical non-aqueous electrolyte primary battery is 10% by volume.

実施例2
平板状シートを、直径:100mmの2本のエンボスロール間に通過させることで、平板状シートの片面に、図4に示すように、平面視で方形を描くように溝状の凹部を形成して正極合剤シートを得た。なお、上記溝状の凹部は、正極合剤シート片面の全体にわたって、ほぼ均一に形成した。
Example 2
By passing the flat sheet between two embossing rolls having a diameter of 100 mm, a groove-shaped recess is formed on one side of the flat sheet so as to draw a square in plan view as shown in FIG. Thus, a positive electrode mixture sheet was obtained. In addition, the said groove-shaped recessed part was formed substantially uniformly over the whole positive electrode mixture sheet single side | surface.

形成された溝状の凹部の深さは0.2mmであり、これは正極合剤シート(すなわち正極合剤層)の厚みの1/5に相当する。溝状凹部の幅は0.2mmで、凹部同士の間隔は2mmとした。凹部の断面形状は図3に示すようにU字状とした。正極合剤シートを平面視した場合における凹部の開口部分の総面積は、正極合剤シートの平面視での総面積中、約15%であった。   The depth of the formed groove-like recess is 0.2 mm, which corresponds to 1/5 of the thickness of the positive electrode mixture sheet (that is, the positive electrode mixture layer). The width of the groove-shaped recess was 0.2 mm, and the interval between the recesses was 2 mm. The cross-sectional shape of the recess was U-shaped as shown in FIG. When the positive electrode mixture sheet was viewed in plan, the total area of the opening portions of the recesses was about 15% of the total area of the positive electrode mixture sheet in plan view.

上記の正極合剤シートを用いた以外は、実施例1と同様にして筒形非水電解液一次電池を作製した。   A cylindrical non-aqueous electrolyte primary battery was produced in the same manner as in Example 1 except that the positive electrode mixture sheet was used.

実施例3
平板状シートを、直径:100mmの2本のエンボスロール間に通過させることで、平板状シートの片面に、図5に示すように、不連続な窪み状であり平面視で円形の凹部を形成して正極合剤シートを得た。なお、上記窪み状の凹部は、正極合剤シート片面の全体にわたって、ほぼ均一に形成した。
Example 3
By passing the flat sheet between two embossing rolls having a diameter of 100 mm, as shown in FIG. 5, a circular recess is formed on one side of the flat sheet as shown in FIG. Thus, a positive electrode mixture sheet was obtained. In addition, the said hollow-shaped recessed part was formed substantially uniformly over the whole positive electrode mixture sheet single side | surface.

形成された凹部の深さは0.2mmであり、これは正極合剤シート(すなわち、正極合剤層)の厚みの1/5に相当する。凹部のサイズは、平面視で開口部分の面積が約0.03mmとなるようにした。凹部の断面形状は図3に示すようにU字状とした。正極合剤シートを平面視した場合における凹部の開口部分の総面積は、正極合剤シートの平面視での総面積中、約8%であった。 The depth of the formed recess is 0.2 mm, which corresponds to 1/5 of the thickness of the positive electrode mixture sheet (that is, the positive electrode mixture layer). The size of the recess was such that the area of the opening was about 0.03 mm 2 in plan view. The cross-sectional shape of the recess was U-shaped as shown in FIG. When the positive electrode mixture sheet was viewed in plan, the total area of the openings of the recesses was about 8% of the total area of the positive electrode mixture sheet in plan view.

上記の正極合剤シートを用いた以外は、実施例1と同様にして筒形非水電解液一次電池を作製した。   A cylindrical non-aqueous electrolyte primary battery was produced in the same manner as in Example 1 except that the positive electrode mixture sheet was used.

比較例1
実施例1と同様にして作製した平板状シートを、そのまま正極合剤シートとして用いた以外は、実施例1と同様にして筒形非水電解液一次電池を作製した。
Comparative Example 1
A cylindrical nonaqueous electrolyte primary battery was produced in the same manner as in Example 1 except that the flat sheet produced in the same manner as in Example 1 was used as it was as the positive electrode mixture sheet.

[放電容量測定]
実施例1〜3および比較例1の筒形非水電解液一次電池について、20℃で5mAの連続放電および20℃で40mAの連続放電をそれぞれ行い、終止電圧2Vとした場合の放電容量を測定した。なお、各電池の試料数は5個とし、その平均値を各実施例、比較例の電池の放電容量とした。また、各実施例、比較例の電池について、40mAでの連続放電による放電容量を5mAでの連続放電による放電容量で割り、これを百分率で表した容量比率を求め、この容量比率によって電池の負荷特性を評価した。5mAでの連続放電(5mA放電)による放電容量、40mAでの連続放電(40mA放電)による放電容量、および容量比率を表1に示す。
[Discharge capacity measurement]
For the cylindrical non-aqueous electrolyte primary batteries of Examples 1 to 3 and Comparative Example 1, the discharge capacity was measured when a continuous discharge of 5 mA at 20 ° C. and a continuous discharge of 40 mA at 20 ° C. were respectively performed to obtain a final voltage of 2V. did. In addition, the number of samples of each battery was five, and the average value was made into the discharge capacity of the battery of each Example and a comparative example. In addition, for the batteries of the examples and comparative examples, the discharge capacity due to continuous discharge at 40 mA was divided by the discharge capacity due to continuous discharge at 5 mA, and the capacity ratio expressed as a percentage was obtained. Characteristics were evaluated. Table 1 shows the discharge capacity due to continuous discharge at 5 mA (5 mA discharge), the discharge capacity due to continuous discharge at 40 mA (40 mA discharge), and the capacity ratio.

Figure 2008192383
Figure 2008192383

表1から明らかなように、正極合剤層の集電体側とは反対側の表面に複数の凹部を形成した実施例1〜3の筒形非水電解液一次電池は、比較例1の電池に比べて放電容量が大きい。そして、実施例1〜3の筒形非水電解液一次電池は、軽負荷である5mA放電での放電容量と、40mA放電での放電容量との間に大きな差が生じておらず、容量比率が高いことから、負荷特性も良好である。   As is clear from Table 1, the cylindrical nonaqueous electrolyte primary batteries of Examples 1 to 3 in which a plurality of recesses were formed on the surface of the positive electrode mixture layer opposite to the current collector side were the batteries of Comparative Example 1. The discharge capacity is larger than And the cylindrical non-aqueous electrolyte primary batteries of Examples 1 to 3 did not have a large difference between the discharge capacity at 5 mA discharge, which is a light load, and the discharge capacity at 40 mA discharge, and the capacity ratio Is high, the load characteristics are also good.

[電極の柔軟性確認試験]
実施例1〜3および比較例1の筒形非水電解液一次電池に係る電極巻回体を分解し、最外周となる正極の表面の状態を観察した結果を表2に示す。観察は目視にて行った。
[Electrode flexibility check test]
Table 2 shows the results of disassembling the electrode winding bodies according to the cylindrical nonaqueous electrolyte primary batteries of Examples 1 to 3 and Comparative Example 1 and observing the state of the surface of the positive electrode serving as the outermost periphery. Observation was performed visually.

Figure 2008192383
Figure 2008192383

表2から明らかなように、実施例1〜3の筒形非水電解液一次電池に係る正極の表面には、巻回後に亀裂が確認できないか、もしくは亀裂はわずかであるのに対して、比較例1の筒形非水電解液一次電池に係る正極の表面には多くの亀裂が確認できる。よって、特に実施例1および2の電池に係る正極の正極合剤層は柔軟性が優れていることが確認できる。   As is apparent from Table 2, the surface of the positive electrode according to the cylindrical nonaqueous electrolyte primary batteries of Examples 1 to 3 has no cracks after winding, or the cracks are slight, Many cracks can be confirmed on the surface of the positive electrode according to the cylindrical non-aqueous electrolyte primary battery of Comparative Example 1. Therefore, it can be confirmed that the positive electrode mixture layer of the positive electrode according to the batteries of Examples 1 and 2 is particularly excellent in flexibility.

本発明の筒形非水電解液一次電池の一例を示す縦断面模式図である。It is a longitudinal cross-sectional schematic diagram which shows an example of the cylindrical nonaqueous electrolyte primary battery of this invention. 本発明の筒形非水電解液一次電池に係るシート状正極の一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the sheet-like positive electrode which concerns on the cylindrical nonaqueous electrolyte primary battery of this invention. 図2のI−I線断面図である。It is the II sectional view taken on the line of FIG. 本発明の筒形非水電解液一次電池に係るシート状正極の他の例を示す平面模式図である。It is a plane schematic diagram which shows the other example of the sheet-like positive electrode which concerns on the cylindrical nonaqueous electrolyte primary battery of this invention. 本発明の筒形非水電解液一次電池に係るシート状正極の他の例を示す平面模式図である。It is a plane schematic diagram which shows the other example of the sheet-like positive electrode which concerns on the cylindrical nonaqueous electrolyte primary battery of this invention.

符号の説明Explanation of symbols

1 筒形非水電解液一次電池
2 外装缶
3 電極巻回体
4 シート状正極
5 シート状負極
6 セパレータ
8 蓋板
10 端子体
40、41 正極合剤層
42 正極集電体
400、410 凹部
DESCRIPTION OF SYMBOLS 1 Cylindrical non-aqueous electrolyte primary battery 2 Exterior can 3 Electrode winding body 4 Sheet-like positive electrode 5 Sheet-like negative electrode 6 Separator 8 Cover plate 10 Terminal body 40, 41 Positive electrode mixture layer 42 Positive electrode collector 400, 410 Recessed part

Claims (4)

シート状正極とシート状負極とをセパレータを介して巻回してなる電極巻回体を筒形の外装缶内に有する筒形非水電解液一次電池であって、
上記シート状正極は、集電体上に、正極活物質、導電助剤およびバインダを含有する正極合剤層が形成されてなるものであり、
上記正極合剤層の集電体側とは反対側の表面に複数の凹部が形成されていることを特徴とする筒形非水電解液一次電池。
A cylindrical non-aqueous electrolyte primary battery having an electrode winding body formed by winding a sheet-like positive electrode and a sheet-like negative electrode through a separator in a cylindrical outer can,
The sheet-like positive electrode is formed by forming a positive electrode mixture layer containing a positive electrode active material, a conductive additive and a binder on a current collector,
A cylindrical non-aqueous electrolyte primary battery, wherein a plurality of recesses are formed on the surface of the positive electrode mixture layer opposite to the current collector side.
正極合剤層の表面における複数の凹部が、溝状である請求項1に記載の筒形非水電解液一次電池。   The cylindrical nonaqueous electrolyte primary battery according to claim 1, wherein the plurality of recesses on the surface of the positive electrode mixture layer have a groove shape. 正極合剤層の表面における複数の凹部が、エンボス加工により形成されたものである請求項1または2に記載の筒形非水電解液一次電池。   The cylindrical non-aqueous electrolyte primary battery according to claim 1 or 2, wherein a plurality of concave portions on the surface of the positive electrode mixture layer are formed by embossing. 正極合剤層の含有するバインダが、ポリテトラフルオロエチレンである請求項1〜3のいずれかに記載の筒形非水電解液一次電池。   The cylindrical nonaqueous electrolyte primary battery according to any one of claims 1 to 3, wherein the binder contained in the positive electrode mixture layer is polytetrafluoroethylene.
JP2007023631A 2007-02-02 2007-02-02 Cylindrical non-aqueous electrolytic liquid primary cell Withdrawn JP2008192383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007023631A JP2008192383A (en) 2007-02-02 2007-02-02 Cylindrical non-aqueous electrolytic liquid primary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007023631A JP2008192383A (en) 2007-02-02 2007-02-02 Cylindrical non-aqueous electrolytic liquid primary cell

Publications (1)

Publication Number Publication Date
JP2008192383A true JP2008192383A (en) 2008-08-21

Family

ID=39752290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007023631A Withdrawn JP2008192383A (en) 2007-02-02 2007-02-02 Cylindrical non-aqueous electrolytic liquid primary cell

Country Status (1)

Country Link
JP (1) JP2008192383A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216228A (en) * 2010-03-31 2011-10-27 Nissan Motor Co Ltd Electrode manufacturing device and method
JP2013069428A (en) * 2011-09-20 2013-04-18 Toyota Motor Corp Secondary battery
CN104183817A (en) * 2013-05-24 2014-12-03 太阳诱电株式会社 Electrode for electrochemical device, electrochemical device, and method for manufacturing electrode for electrochemical device
CN105679550A (en) * 2016-03-07 2016-06-15 苏文电能科技有限公司 Novel high-rate supercapacitor electrode plate and supercapacitor
WO2017073016A1 (en) * 2015-10-30 2017-05-04 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216228A (en) * 2010-03-31 2011-10-27 Nissan Motor Co Ltd Electrode manufacturing device and method
JP2013069428A (en) * 2011-09-20 2013-04-18 Toyota Motor Corp Secondary battery
CN104183817A (en) * 2013-05-24 2014-12-03 太阳诱电株式会社 Electrode for electrochemical device, electrochemical device, and method for manufacturing electrode for electrochemical device
WO2017073016A1 (en) * 2015-10-30 2017-05-04 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
US10811729B2 (en) 2015-10-30 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
CN105679550A (en) * 2016-03-07 2016-06-15 苏文电能科技有限公司 Novel high-rate supercapacitor electrode plate and supercapacitor

Similar Documents

Publication Publication Date Title
JP5194070B2 (en) Secondary battery
US20110217576A1 (en) Wound electrode assembly and battery
CN109075305A (en) Non-aqueous electrolyte secondary battery
CN108886130A (en) Non-aqueous electrolyte secondary battery
JP4968768B2 (en) Cylindrical non-aqueous electrolyte battery
JP2008192383A (en) Cylindrical non-aqueous electrolytic liquid primary cell
JP7102348B2 (en) Positive electrode for non-aqueous electrolyte secondary battery containing liquid electrolyte and non-aqueous electrolyte secondary battery containing liquid electrolyte
US10090526B2 (en) Non-aqueous electrolyte secondary battery and method for producing the same
JP2008192524A (en) Cylindrical nonaqueous electrolyte solution primary battery
JP4993860B2 (en) Non-aqueous electrolyte primary battery
JP4993859B2 (en) Non-aqueous electrolyte primary battery
JP5620811B2 (en) Cylindrical non-aqueous electrolyte primary battery
JP5252691B2 (en) Cylindrical non-aqueous electrolyte primary battery and manufacturing method thereof
JP2006139918A (en) Cylinder-shaped nonaqueous electrolyte battery
JP2022031953A (en) Cylindrical non-aqueous electrolyte primary battery
JP4151840B2 (en) Non-aqueous electrolyte battery
JP4129955B2 (en) Battery and battery manufacturing method
JP5019557B2 (en) Cylindrical non-aqueous electrolyte primary battery
JP2007207640A (en) Cylindrical non-aqueous electrolytic solution primary battery
JP2011154788A (en) Battery
JP2005149961A (en) Non-aqueous electrolyte battery
JP4129952B2 (en) Non-aqueous electrolyte battery
US12034150B2 (en) Lithium ion secondary battery and method for manufacturing same
JP4257192B2 (en) Non-aqueous electrolyte battery
JP2012178266A (en) Winding type battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406