JP2005149961A - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP2005149961A
JP2005149961A JP2003387303A JP2003387303A JP2005149961A JP 2005149961 A JP2005149961 A JP 2005149961A JP 2003387303 A JP2003387303 A JP 2003387303A JP 2003387303 A JP2003387303 A JP 2003387303A JP 2005149961 A JP2005149961 A JP 2005149961A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
capacity
negative electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003387303A
Other languages
Japanese (ja)
Other versions
JP4255013B2 (en
Inventor
Atsushi Yamano
淳 山野
Tetsuo Kawai
徹夫 川合
Toshiyuki Edamoto
俊之 枝元
Mitsutoshi Watanabe
光俊 渡辺
Reiko Masukichi
令子 益吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2003387303A priority Critical patent/JP4255013B2/en
Publication of JP2005149961A publication Critical patent/JP2005149961A/en
Application granted granted Critical
Publication of JP4255013B2 publication Critical patent/JP4255013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte battery having a high capacity, superior characteristics, from a medium load to a light load, and high safety. <P>SOLUTION: The cylindrical non-aqueous electrolyte battery houses an electrode rolling body for rolling a sheet-like positive electrode and a sheet-like cathode via a separator, and a non-aqueous electrolyte in a bottomed cylindrical exterior can having an upper opening. Then, a metal foil is employed for the cathode as collector; a metal lithium or a lithium alloy is arranged on both the surfaces of the metal foil or one-sided surface; the metal lithium or the lithium alloy is partially crimped or is not crimped to the metal foil at all; and therewith, the nonaqueous electrolyte battery is formed, by setting the ratio between the cathode capacity and the positive electrode capacity, to be the cathode electrode capacity/positive electrode capacity =0.93 to 1.03. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、非水電解液電池に関し、さらに詳しくは、中負荷以下の用途に適した高容量でかつ安全で信頼性の高い円筒形非水電解液電池に関する。   The present invention relates to a non-aqueous electrolyte battery, and more particularly, to a high-capacity, safe, and highly reliable cylindrical non-aqueous electrolyte battery suitable for use under medium loads.

金属リチウムを負極活物質に使用したリチウム一次電池は、主にカメラなどの重負荷特性を要求される用途では電極面積を大きくする必要があり、薄く長尺状にした正極と負極との間にセパレータを介在させて6〜10周程度巻回した構造を採るのが一般的である。   Lithium primary batteries that use metallic lithium as the negative electrode active material need to have a large electrode area for applications that require heavy load characteristics, such as cameras, and between thin and long positive and negative electrodes. Generally, a structure in which a separator is interposed and wound about 6 to 10 turns is adopted.

このような巻回構造を採る場合においては、金属リチウムは該金属リチウムに圧着したリボン状ニッケルなどを集電リードとして取り出して外装缶に抵抗溶接などで接続されているが、放電に伴い金属リチウムが消耗して薄くなるため、リードと末端のリチウムとの間の抵抗が大きくなるという問題があった。   In the case of adopting such a winding structure, the metallic lithium is taken out as a current collecting lead such as ribbon-like nickel that is crimped to the metallic lithium and connected to the outer can by resistance welding or the like. There is a problem that the resistance between the lead and the terminal lithium is increased because the metal is consumed and thinned.

そのため、従来技術では、カメラ用途など重負荷特性を重視する巻回構造を有する電池において、金属リチウムを正極容量に対して過剰に充填した設計にすることで、放電末期まで金属リチウム全体の電気的接続が維持されるようにしていた。これは負極容量/正極容量の比が1以下、または1に近くなるほど放電末期になると、正負極の緊迫度が最も高い部分で放電反応が集中してリチウムが切れて集電リードとの電気的接続が取れなくなり、放電に寄与しない部分ができるために充填した電池容量が得られなくなるのを防止しようとすることに基づいている。例えば、カメラ用途など重負荷特性を重視した電池では、負極容量/正極容量の比が1.2〜1.5になるように設計されている。しかしながら、そのように負極の容量を過剰にすることは、容量不足を招くことになり、それに基づく、問題は、軽負荷になるほど顕著に現れ、中負荷〜軽負荷が重視されるメモリーバックアップや通信機能を要求される用途では、大きな容量不足を招くことになる。すなわち、正極容量に対して負極の金属リチウム容量を過剰にすると、放電に関与しない金属リチウムが大きな容積を占めることとなり、軽負荷での高容量化を妨げることになる。逆に過剰な金属リチウムが存在しないと、放電末期に金属リチウムの末端が電気的接続を断たれて利用できなくなるため、これも軽負荷での高容量化の妨げとなる。   For this reason, in the conventional technology, in a battery having a winding structure that places importance on heavy load characteristics such as camera applications, by designing the metal lithium to be excessively filled with respect to the positive electrode capacity, the electrical power of the entire metal lithium is reached until the end of discharge. The connection was maintained. This is because when the ratio of negative electrode capacity / positive electrode capacity is 1 or less or close to 1, the end of discharge is reached, the discharge reaction concentrates at the portion where the degree of tension of the positive and negative electrodes is the highest, and the lithium is cut off. This is based on an attempt to prevent the battery capacity from being filled because the connection cannot be made and a portion that does not contribute to the discharge is formed. For example, a battery that emphasizes heavy load characteristics such as a camera application is designed such that the ratio of negative electrode capacity / positive electrode capacity is 1.2 to 1.5. However, when the capacity of the negative electrode is excessive as described above, a capacity shortage is caused, and the problem based on the capacity becomes more noticeable as the load becomes lighter. In applications that require functions, a large capacity shortage will be caused. That is, when the metal lithium capacity of the negative electrode is excessive with respect to the positive electrode capacity, the metal lithium that does not participate in the discharge occupies a large volume, which hinders an increase in capacity under a light load. Conversely, if there is no excess metallic lithium, the end of the metallic lithium is disconnected at the end of discharge and becomes unusable, which also hinders high capacity under light loads.

また、貫通孔を有しない銅の層を金属リチウムの内側に配置することによって、高熱になった部分の熱を分散させることが提案されている(特許文献1)。
特開昭58−165256号公報
In addition, it has been proposed to disperse the heat of the high-heated portion by disposing a copper layer having no through hole inside the metallic lithium (Patent Document 1).
JP 58-165256 A

しかしながら、この特許文献1では、銅層の面積をリチウム面積の25〜80%としているため、放電が進行すると、銅層の周囲に沿ってリチウムが切れて電気的接続が断たれてしまって、容量低下を招き、前記問題点の解決策となり得なかった。また、前記と同様の目的で、複数個の貫通孔を有する金属箔を金属リチウムの内側に配置することも提案されている。
特開平11−195415号公報
However, in this patent document 1, since the area of the copper layer is set to 25 to 80% of the lithium area, when the discharge proceeds, lithium is cut along the periphery of the copper layer, and the electrical connection is cut off. The capacity was reduced and could not be a solution to the above problem. For the same purpose as described above, it has also been proposed to dispose a metal foil having a plurality of through holes inside metallic lithium.
Japanese Patent Laid-Open No. 11-195415

しかしながら、この方法による場合は、貫通孔に沿ってリチウムが切れて残ってしまい容量低下を招くため、この場合も前記問題点の解決策とはなり得なかった。   However, according to this method, lithium is cut off and remains along the through hole, resulting in a decrease in capacity. In this case as well, it cannot be a solution to the above problem.

本発明は、前記のような従来技術の問題点を解決し、高容量で中負荷〜軽負荷特性が優れ、しかも安全性が高い非水電解液電池を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a non-aqueous electrolyte battery having a high capacity, excellent medium load to light load characteristics, and high safety.

本発明は、上方開口部を有する有底円筒状の外装缶内に、シート状の正極とシート状の負極とをセパレータを介して巻回してなる電極巻回体と非水電解液とを収容した円筒形の非水電解液電池において、負極には金属箔を集電体として用い金属リチウムまたはリチウム合金を金属箔の両面または片面に配置し、その金属リチウムまたはリチウム合金が金属箔に一部圧着されているかまたは全く圧着されないようにするとともに、負極容量と正極容量との比を負極容量/正極容量=0.93〜1.03にすることによって、前記課題を解決したものである。   The present invention accommodates a non-aqueous electrolyte and an electrode winding body in which a sheet-like positive electrode and a sheet-like negative electrode are wound through a separator in a bottomed cylindrical outer can having an upper opening. In the cylindrical nonaqueous electrolyte battery, a metal foil is used as a current collector for the negative electrode, and metal lithium or a lithium alloy is disposed on both sides or one side of the metal foil, and the metal lithium or lithium alloy is partly on the metal foil. The above-mentioned problem is solved by making pressure bonding or not pressing at all and setting the ratio of negative electrode capacity to positive electrode capacity to negative electrode capacity / positive electrode capacity = 0.93 to 1.03.

本発明においては、上記のように、金属リチウムまたはリチウム合金を金属箔に配置する際、金属リチウムを例に挙げて説明すると、金属リチウムの全面を金属箔に圧着するのではなく、一部しか圧着しないか、または全く圧着しない。金属リチウムを金属箔に一部しか圧着しない場合は巻き始め端のみにすることが好ましい〔図3(b)中のT部参照〕。金属リチウムの全面を金属箔に圧着してしまうと巻回していくにつれて内側の金属リチウム(図3の4b)が撓んでしまい金属リチウムの表面にしわが入ってしまい容量が低下するなど、放電特性に悪影響を及ぼす。しかしながら、本発明では、金属リチウムを金属箔に全く圧着しないか、もしくは巻き始め端〔図3(b)中のT部参照〕のみしか金属箔に圧着しないため、巻き終わり方向に金属リチウムをずらしながら巻回することができ、上記の問題を解決することができる。   In the present invention, as described above, when metal lithium or a lithium alloy is disposed on a metal foil, the explanation will be made by taking metal lithium as an example. Do not crimp or do not crimp at all. In the case where only a part of the metal lithium is crimped to the metal foil, it is preferable that only the winding start end is set (see the T portion in FIG. 3B). If the entire surface of the metal lithium is crimped to the metal foil, the inner metal lithium (4b in FIG. 3) bends as it is wound, causing wrinkles on the surface of the metal lithium and lowering the capacity. Adversely affect. However, in the present invention, the metallic lithium is not crimped to the metal foil at all, or only the winding start end (see the T portion in FIG. 3B) is crimped to the metal foil. Thus, the above problem can be solved.

また、本発明においては、負極容量と正極容量とを負極容量/正極容量=0.93〜1.03にしているので、正極に対して過剰なリチウムが存在しないため高容量化が図れる。しかも、放電後においては、リチウムがほとんど残らないため、誤って電池が潰されるようなことになっても発火に至ることを防止できるので、安全性も高くなる。   In the present invention, since the negative electrode capacity and the positive electrode capacity are set to negative electrode capacity / positive electrode capacity = 0.93 to 1.03, the capacity can be increased because there is no excess lithium relative to the positive electrode. Moreover, since almost no lithium remains after discharge, even if the battery is accidentally crushed, it can be prevented from igniting, and the safety is also improved.

本発明によれば、中負荷〜軽負荷放電でも、リチウムが放電途中で切れて電気的接続が切断されて放電に寄与しなくなるのを防止することができる。また、本発明によれば、過剰なリチウムを仕込むことがないので、高容量化が図れ、また、放電後においても、リチウムがほとんど残らないため、誤って電池が潰されるようなことになっても発火に至ることがなく、安全性を確保することができる。従って、本発明によれば、高容量で中負荷〜軽負荷特性が優れ、しかも安全性が高い非水電解液電池を提供することができる。さらに、本発明によれば、巻回に伴い金属リチウムが撓んでしわ(皺)が入るのが防止できるので、この面からも高容量化が貢献できる。   According to the present invention, it is possible to prevent lithium from being cut during the discharge and the electrical connection from being cut off so as not to contribute to the discharge even in the middle load to the light load discharge. In addition, according to the present invention, since excess lithium is not charged, the capacity can be increased, and since the lithium is hardly left even after discharge, the battery is accidentally crushed. It is possible to ensure safety without causing ignition. Therefore, according to the present invention, it is possible to provide a non-aqueous electrolyte battery having high capacity, excellent medium load to light load characteristics, and high safety. Furthermore, according to the present invention, it is possible to prevent the metallic lithium from being bent and wrinkles (wrinkles) from being generated with the winding, and this also contributes to an increase in capacity.

本発明の非水電解液電池の一実施形態を図1に示す。図1において、非水電解液電池1は、上方開口部を有する有底円筒状の外装缶2と、外装缶2内に装填されたシート状の正極3と負極4とをセパレータ4を介して巻回してなる電極巻回体6と、非水電解液(以下、電池を表すとき以外は、簡略化して「電解液」という)と、外装缶2の上方開口部を封止する封口構造を有してなり、上記外装缶2は、鉄やステンレス鋼を素材とする。   One embodiment of the non-aqueous electrolyte battery of the present invention is shown in FIG. In FIG. 1, a nonaqueous electrolyte battery 1 includes a bottomed cylindrical outer can 2 having an upper opening, a sheet-like positive electrode 3 and a negative electrode 4 loaded in the outer can 2 via a separator 4. An electrode winding body 6 formed by winding, a non-aqueous electrolyte (hereinafter simply referred to as “electrolyte” except when representing a battery), and a sealing structure for sealing the upper opening of the outer can 2 The outer can 2 is made of iron or stainless steel.

封口構造は、外装缶2の上方開口部の内周縁に固定された蓋板8と、蓋板8の中央部に開設された開口に、ポリプロピレン製の絶縁パッキング9を介して装着された端子体10と、蓋板8の下部に配置された絶縁板11を有している。絶縁板11は、円盤状のベース部12の周縁に環状の側壁13を立設した上向きに開口する丸皿形状に形成されており、ベース部12の中央にはガス通口14が開設されている。蓋板8は、側壁13の上端部に受け止められた状態で、外装缶2の上方開口部の内周縁に、レーザー溶接で固定するか、またはパッキングを介したクリンプシールで固定されている。蓋板8または外装缶2の缶底2aには、薄肉部を設け、内圧が急激に上昇したときの対策としてのベントを設けることができる。正極3と端子体10の下面とは、正極リード体15で接続されている。負極リード体16は外装缶2の上部内面に溶接されている。   The sealing structure consists of a cover plate 8 fixed to the inner peripheral edge of the upper opening of the outer can 2 and a terminal body attached to an opening formed in the center of the cover plate 8 via a polypropylene insulating packing 9. 10 and an insulating plate 11 disposed below the lid plate 8. The insulating plate 11 is formed in a round plate shape that opens upward with an annular side wall 13 standing on the periphery of the disk-shaped base portion 12, and a gas passage 14 is opened at the center of the base portion 12. Yes. The cover plate 8 is fixed to the inner peripheral edge of the upper opening of the outer can 2 by laser welding or a crimp seal through packing while being received by the upper end of the side wall 13. The lid plate 8 or the can bottom 2a of the outer can 2 can be provided with a thin portion and provided with a vent as a countermeasure when the internal pressure rapidly increases. The positive electrode 3 and the lower surface of the terminal body 10 are connected by a positive electrode lead body 15. The negative electrode lead body 16 is welded to the upper inner surface of the outer can 2.

図2には、上記非水電解液電池に用いられている電極巻回体6を示しているが、図1に示すように、電極巻回体6は、正極3と負極4とをセパレータ5を介して巻回してなるものであって、全体として略円柱形状に形成されている。正極3は、同一の厚み寸法を有する帯状の2枚の正極シート3a、3bと、これら正極シート3a、3bの間に介在された集電体3cとを含み、電極巻回体6の作製時においては、正極シート3a、3bと集電体3cは、巻回始端部Sのみを圧着して固定した状態で巻回される〔図3の(c)参照〕。より詳しくは、図3に示すように、集電体3cが、正極シート3a、3bよりも数mm内側にくるように三者を重ね合わせた上で、巻回始端部3となる長さ方向の端部から3〜10mmをプレスして配置する。そして、その正極3を、負極4、セパレータ5とともに巻回して、電極巻回体6が作製されており、Eはその巻き終わり側を示している。   FIG. 2 shows the electrode winding body 6 used in the nonaqueous electrolyte battery. As shown in FIG. 1, the electrode winding body 6 includes a positive electrode 3 and a negative electrode 4 that are connected to a separator 5. Is formed in a substantially cylindrical shape as a whole. The positive electrode 3 includes two strip-shaped positive electrode sheets 3a and 3b having the same thickness dimension, and a current collector 3c interposed between the positive electrode sheets 3a and 3b. In FIG. 3, the positive electrode sheets 3a and 3b and the current collector 3c are wound in a state where only the winding start end portion S is crimped and fixed (see (c) of FIG. 3). More specifically, as shown in FIG. 3, the current collector 3 c is overlapped with the positive electrode sheets 3 a and 3 b so that the current collector 3 c is several mm inward, and the length direction becomes the winding start end portion 3. Press 3 to 10 mm from the end of the plate. And the positive electrode 3 is wound with the negative electrode 4 and the separator 5, and the electrode winding body 6 is produced, E shows the winding end side.

上記正極3の正極活物質としては、例えば、二酸化マンガン、フッ化カーボン、リチウムコバルト複合酸化物、スピネル形リチウムマンガン複合酸化物などを用いることができる。   As the positive electrode active material of the positive electrode 3, for example, manganese dioxide, carbon fluoride, lithium cobalt composite oxide, spinel-type lithium manganese composite oxide, or the like can be used.

正極3の電導助剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラックなどから選択される一種または2種以上を用いることができる。正極3のバインダーとしては、ポリテトラフルオロエチレン(ディスパージョンタイプのものでもよいし、粉末状のものでもよい)、ゴム系バインダーなどを用いることができるが、特にポリテトラフルオロエチレンのディスパージョンタイプのものを用いることが好ましい。   As the electrical conductivity assistant for the positive electrode 3, for example, one or more selected from graphite, carbon black, acetylene black, ketjen black, and the like can be used. As the binder of the positive electrode 3, polytetrafluoroethylene (dispersion type or powder type), rubber binder, or the like can be used, and in particular, a dispersion type of polytetrafluoroethylene. It is preferable to use one.

正極3の集電体3cとしては、例えば、SUS316や、SUS430、SUS444などのステンレス鋼からなる平織り金網、エキスパンドメタル、ラス網、パンチングメタル、金属箔などを用いることができる。集電体3cの表面には、後に詳しく説明するように、ペースト状の導電材を塗布しておくことが好ましい。   As the current collector 3c of the positive electrode 3, for example, a plain woven wire mesh made of stainless steel such as SUS316, SUS430, or SUS444, an expanded metal, a lath mesh, a punching metal, a metal foil, or the like can be used. As will be described in detail later, it is preferable to apply a paste-like conductive material to the surface of the current collector 3c.

集電体3cとして立体構造を有する網状のものを用いた場合も、金属箔やパンチングメタルなどの本質的に平板からなる材料を用いた場合と同様に、導電材の塗布により集電効果の著しい改善が認められる。これは、網状の集電体3cの金属部分が正極シート3a、3bと直接的に接触する経路のみならず、網目内に充填された導電材を介しての経路が有効に利用されていることによるものと推定される。   Even when a current collector 3c having a three-dimensional structure is used, as in the case of using an essentially flat material such as a metal foil or a punching metal, the current collecting effect is significantly increased by applying a conductive material. Improvement is observed. This is because not only the path in which the metal portion of the net-like current collector 3c is in direct contact with the positive electrode sheets 3a and 3b but also the path through the conductive material filled in the net is used effectively. It is estimated that

導電材の具体例としては、例えば、銀ペーストやカーボンペーストなどを用いることができる。とくにカーボンペーストは、銀ペーストに比べて材料費が安く済み、しかも銀ペーストと略同等の接触効果が得られるため、非水電解液電池の製造コストの低減化を図る上で好適である。導電材のバインダーとしては、水ガラスやイミド系のバインダーなどの耐熱性の材料を用いることが好ましい。これは正極シート3a、3b中の水分を除去する際に200℃を超える高温で乾燥処理するためである。   As a specific example of the conductive material, for example, silver paste or carbon paste can be used. In particular, the carbon paste is suitable for reducing the manufacturing cost of the non-aqueous electrolyte battery because the material cost is lower than that of the silver paste and the contact effect is almost the same as that of the silver paste. As the binder for the conductive material, it is preferable to use a heat resistant material such as water glass or an imide binder. This is because when the moisture in the positive electrode sheets 3a and 3b is removed, a drying process is performed at a high temperature exceeding 200 ° C.

負極4は、図1および図3の(b)に示すように、短尺の金属リチウム箔4aと長尺の金属リチウム箔4bを、集電体となる金属箔4cの巻き始め側のT部(それぞれ長さ10mm)にのみ圧着してなるものであり、この負極4は、正極3との間にセパレータ5を介在させて巻回して電極巻回体6にされる。この実施形態においては、負極に金属リチウムを用いているが、本発明においては、負極の反応成分がリチウムであればよく、従って、負極の作製にあたって、上記金属リチウムに代えて、例えばリチウム−アルミニウムなどのリチウム合金を用いてもよい。   As shown in FIG. 1 and FIG. 3 (b), the negative electrode 4 is composed of a short metal lithium foil 4a and a long metal lithium foil 4b, which are formed on a T portion on the winding start side of the metal foil 4c serving as a current collector ( The negative electrode 4 is wound with a separator 5 interposed between the negative electrode 4 and the positive electrode 3 to form an electrode winding body 6. In this embodiment, metallic lithium is used for the negative electrode. However, in the present invention, the reactive component of the negative electrode only needs to be lithium. Therefore, in preparing the negative electrode, for example, lithium-aluminum can be used instead of the above metal lithium. You may use lithium alloys, such as.

金属箔4cの素材としては、例えば、銅、ニッケル、鉄、ステンレス鋼などを挙げることができる。金属箔4cの厚み分だけ外装缶2の内部体積が減少するため、金属箔4cの厚み寸法は可及的に小さいことが好ましく、本実施形態においては、その厚み寸法は0.005mm以上0.1mm以下が好ましい。金属箔4cの厚みが0.005mmより薄い場合は金属箔4cが破れやすくなり、金属箔4cの厚みが0.1mmより厚くなると、リチウムなどの仕込み量が少なくなり、電池容量の低下を招くおそれがある。さらに、前記金属箔4cは、その幅が金属リチウム箔4a、4bの幅と同じかそれ以上であることが好ましく、また、前記金属箔は、その面積が両面に配置される金属リチウムの面積の和の70〜130%であることが好ましい。すなわち、金属箔の面積を上記のようにすることによって、金属箔4cの幅が金属リチウム箔4a、4bの幅と同じかまたは広く、長さが長くなるので、金属箔4cの周囲に沿って金属リチウム4a、4bが切れて電気的接続が断たれることを防ぐことができる。なお、図1よおび図2は、電極巻回体6の構造を概念的に示したものであり、とくに金属箔4cの厚み寸法などは実際とは異なる。   Examples of the material of the metal foil 4c include copper, nickel, iron, and stainless steel. Since the internal volume of the outer can 2 is reduced by the thickness of the metal foil 4c, the thickness dimension of the metal foil 4c is preferably as small as possible. In this embodiment, the thickness dimension is 0.005 mm or more and 0.00. 1 mm or less is preferable. If the thickness of the metal foil 4c is less than 0.005 mm, the metal foil 4c is likely to be torn, and if the thickness of the metal foil 4c is more than 0.1 mm, the amount of lithium and the like is reduced and the battery capacity may be reduced. There is. Furthermore, the metal foil 4c preferably has a width equal to or greater than the width of the metal lithium foils 4a and 4b, and the metal foil has an area of metal lithium arranged on both sides. It is preferably 70 to 130% of the sum. That is, by setting the area of the metal foil as described above, the width of the metal foil 4c is the same as or wider than the width of the metal lithium foils 4a and 4b, and the length becomes longer. It is possible to prevent the metallic lithium 4a and 4b from being cut and the electrical connection from being cut off. 1 and FIG. 2 conceptually show the structure of the electrode winding body 6, and the thickness dimension of the metal foil 4c is different from the actual one.

電解液は、有機溶媒などの非水系溶媒に電解質としてLiPF6 、LiClO4 、LiCF3 SO3 などを溶解して調製したものであって、その溶媒としてはエチレンカーボネート、プロピレンカーボネートなどの環状エステルにジメトキシエタンなどの鎖状エーテル、ジメチルカーボネートなどの鎖状エステルを混合したものが用いられ、電解液中の電解質の濃度としては0.3〜1.5mol/lが好ましい。 The electrolyte is prepared by dissolving LiPF 6 , LiClO 4 , LiCF 3 SO 3, etc. as an electrolyte in a non-aqueous solvent such as an organic solvent, and the solvent is a cyclic ester such as ethylene carbonate or propylene carbonate. A mixture of a chain ether such as dimethoxyethane and a chain ester such as dimethyl carbonate is used, and the concentration of the electrolyte in the electrolytic solution is preferably 0.3 to 1.5 mol / l.

セパレータ5としては、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリフェニレンスルフィド(PPS)などの不織布、微孔性フィルムなどを用いることができる。   As the separator 5, a nonwoven fabric such as polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), or a microporous film can be used.

電極巻回体6は、図3に示すような手順で作製することができる。まず、図3の(a)に示すように、セパレータ5を2つ割の巻回芯20に挟んで1周巻く。次に、図3の(b)に示すように、負極4を短尺の金属リチウム箔4aのみの一層部分から巻回芯20に向けて挿入して、図3の(C)に示すように、セパレータ5とともに1周巻き込む。続いて、図3の(c)に示すように、正極3をセパレータ5を介して負極4上に載置して巻回芯20で巻回する。ここで、正極3は、両正極シート3a、3bおよび集電体3cを固定した巻回始端部S側から巻回されるようにしてあり、負極4を構成する長尺の金属リチウム箔4b上にセパレータ5を介して載置した状態で巻回される。金属箔4cは、金属リチウム箔4a、4bの間に挟まれるようにして配置されており、それによって、負極4が構成されている。正極3、負極4およびセパレータ5とともに巻回芯20により巻回される。巻回終了後は、金属箔4cが最外周に配置される形となる。以上より、図1に示すような形態の電極巻回体6を得ることができる。   The electrode winding body 6 can be produced by a procedure as shown in FIG. First, as shown in FIG. 3 (a), the separator 5 is wound around the winding core 20 in half and wound once. Next, as shown in FIG. 3B, the negative electrode 4 is inserted from the single layer portion of the short metal lithium foil 4a only toward the winding core 20, and as shown in FIG. Wind one turn with the separator 5. Subsequently, as shown in FIG. 3C, the positive electrode 3 is placed on the negative electrode 4 through the separator 5 and wound around the winding core 20. Here, the positive electrode 3 is wound from the winding start end S side to which both the positive electrode sheets 3 a and 3 b and the current collector 3 c are fixed, and on the long metal lithium foil 4 b constituting the negative electrode 4. Is wound in a state of being placed via the separator 5. The metal foil 4c is disposed so as to be sandwiched between the metal lithium foils 4a and 4b, thereby forming the negative electrode 4. It is wound together with the positive electrode 3, the negative electrode 4 and the separator 5 by a winding core 20. After the winding is finished, the metal foil 4c is arranged on the outermost periphery. From the above, the electrode winding body 6 having the form as shown in FIG. 1 can be obtained.

また、図4の(a)に示すように、金属箔3cをあらかじめ巻回芯20に1周程度巻き込んだ後、図4の(b)に示すように負極4を構成する金属リチウムとセパレータ5とを重ねて正極3を包み込むようにして折り返した電極群を挿入し、巻回して電極体を作製してもかまわない。この場合、金属箔4cにはリチウムはまったく圧着されないことになる。   Also, as shown in FIG. 4 (a), after the metal foil 3c is previously wound around the winding core 20 for about one turn, the metallic lithium and separator 5 constituting the negative electrode 4 as shown in FIG. 4 (b). It is also possible to insert a folded electrode group so as to wrap up the positive electrode 3 and wind the electrode assembly to produce an electrode body. In this case, lithium is not bonded to the metal foil 4c at all.

本発明においては、負極容量と正極容量との比(負極容量/正極容量)を0.93〜1.03にしているが、これは、上記負極容量/正極容量が0.93より小さい場合は放電途中で電圧が急激に低下し、上記負極容量/正極容量が1.03より大きい場合は、高容量化の妨げになるからである。すなわち、上記負極容量/正極容量がが0.93より小さい場合は、正極容量が負極容量に比べて過剰に充填されているため、正極の容量が残っている間に、負極が完全に消費されてしまって、放電途中で電圧が急激に低下する。このように放電途中に電圧が急激に低下すると電池寿命の予測が困難になる。また、上記負極容量/正極容量が1.03より大きい場合は、負極が過剰に充填されることになり、高容量化を妨げることになる。そして、本発明においては、この負極容量と正極容量との比(負極容量/正極容量)は0.96〜1.03であることが好ましい。   In the present invention, the ratio of the negative electrode capacity to the positive electrode capacity (negative electrode capacity / positive electrode capacity) is set to 0.93 to 1.03. When the negative electrode capacity / positive electrode capacity is smaller than 0.93, This is because when the voltage drops rapidly during discharge and the negative electrode capacity / positive electrode capacity is larger than 1.03, the capacity is hindered. That is, when the negative electrode capacity / positive electrode capacity is smaller than 0.93, the positive electrode capacity is excessively filled as compared with the negative electrode capacity, so that the negative electrode is completely consumed while the positive electrode capacity remains. As a result, the voltage suddenly drops during the discharge. Thus, if the voltage drops rapidly during discharge, it becomes difficult to predict the battery life. On the other hand, when the negative electrode capacity / positive electrode capacity is larger than 1.03, the negative electrode is excessively filled, which hinders the increase in capacity. In the present invention, the ratio of the negative electrode capacity to the positive electrode capacity (negative electrode capacity / positive electrode capacity) is preferably 0.96 to 1.03.

次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。なお、この実施例においては、非水電解液電池として外径17mm、高さ45mmの円筒形リチウム電池を例に挙げて説明する。また、以下の実施例などにおいて、濃度や水分量などを示す%は、特にその基準を付記しないかぎり、質量%である。   Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In this embodiment, a cylindrical lithium battery having an outer diameter of 17 mm and a height of 45 mm will be described as an example of a nonaqueous electrolyte battery. Moreover, in the following examples etc.,% which shows a density | concentration, a water content, etc. is the mass% unless it mentions the reference | standard especially.

実施例1
この実施例1の非水電解液電池を、その〔正極の作製〕、〔負極の作製〕、〔電極巻回体の作製〕、〔電池組立て〕、〔後処理、予備放電、エージング〕の順に説明する。
〔正極の作製〕
この正極の作製を、「配合」、「シート化」、用いる「集電体」の順に説明する。
配合:
カーボンブラック3%と、二酸化マンガン(東ソー社製)92%の比率でプラネタリーミキサーを用いて乾式で5分間混合したのち、水を質量比で固形分の20%になるように添加して5分間混合した。得られた混合物にポリテトラフルオロエチレンディスパージョン(D−1、ダイキン工業社製)を固形分として5%を残りの水に希釈した状態で添加し、5分間混合した。配合剤中の水分は、固形分100に対して30に調整した。
Example 1
The nonaqueous electrolyte battery of Example 1 was manufactured in the order of [Preparation of positive electrode], [Preparation of negative electrode], [Preparation of electrode winding body], [Assembly of battery], [Post-treatment, Pre-discharge, Aging]. explain.
[Production of positive electrode]
The production of this positive electrode will be described in the order of “formulation”, “sheeting”, and “current collector” to be used.
Formula:
After mixing for 5 minutes in a dry manner using a planetary mixer at a ratio of 3% carbon black and 92% manganese dioxide (Tosoh Corp.), 5% water is added to give a solid content of 20%. Mixed for minutes. To the obtained mixture, polytetrafluoroethylene dispersion (D-1, manufactured by Daikin Industries, Ltd.) was added as a solid content in a state where 5% was diluted in the remaining water and mixed for 5 minutes. The water content in the formulation was adjusted to 30 with respect to the solid content of 100.

シート化:
上記のように混合して調製した配合剤を、直径250mmの2本ロールを用い、ロール温度を130±5℃に調整し、プレス圧7トン/cm、ロール間隔0.4mm、回転速度10rpmで、ロールによる圧延、シート化を行った。ロールを通過した配合剤(予備シート)を105℃±5℃で残水分が2%以下になるまで乾燥した。次いで乾燥後の予備シートを粉砕器を用いて粉砕した。ここでは、プレスされた予備シートが、元の見かけ体積の2倍以上になるまで粉砕した。粉砕された粒子径は、大部分が1mm以下であり、バインダーとして添加したポリテトラフルオロエチレンの繊維も1mm以下の長さに切断されていた。
Sheeting:
The compounding agent prepared by mixing as described above, using two rolls with a diameter of 250 mm, adjusting the roll temperature to 130 ± 5 ° C., pressing pressure 7 ton / cm, roll interval 0.4 mm, rotation speed 10 rpm Rolling with a roll and sheeting were performed. The compounding agent (preliminary sheet) that passed through the roll was dried at 105 ° C. ± 5 ° C. until the residual moisture became 2% or less. Next, the dried preliminary sheet was pulverized using a pulverizer. Here, the pressed preliminary sheet was pulverized until it became twice or more the original apparent volume. Most of the pulverized particle diameter was 1 mm or less, and the polytetrafluoroethylene fiber added as a binder was cut to a length of 1 mm or less.

粉砕された材料に対して、再度ロールによるシート化を行った。ロールの間隔は0.6±0.05mmに調整し、ロール温度は120±10℃、プレス圧7トン/cm、回転速度10rpmでシート化を行い、正極シートを得て、所定の寸法に切断した。この正極シートは、厚さが1.0mmで、密度が2.5g/cm3 であった。 The pulverized material was formed into a sheet by a roll again. The interval between the rolls is adjusted to 0.6 ± 0.05 mm, the roll temperature is 120 ± 10 ° C., the press pressure is 7 ton / cm, the sheet is formed at a rotation speed of 10 rpm, a positive electrode sheet is obtained, and is cut into a predetermined dimension. did. This positive electrode sheet had a thickness of 1.0 mm and a density of 2.5 g / cm 3 .

以上のようにして、内周用と外周用の2枚の正極シート3a、3b〔図1、図3の(c)参照〕を作製した。内周用の正極シート3aは幅37mm、長さ51mmであり、外周用の正極シート3bは幅37mm、長さ62mmであった。   In this way, two positive electrode sheets 3a and 3b [see FIG. 1 and FIG. 3 (c)] for the inner periphery and the outer periphery were produced. The inner periphery positive electrode sheet 3a was 37 mm wide and 51 mm long, and the outer periphery positive electrode sheet 3b was 37 mm wide and 62 mm long.

集電体:
ステンレス鋼(SUS316)製のエキスパンドメタルを集電体3cとして用いた。このエキスパンドメタルは、幅34mm、長さ56mmに切断し、その長さ方向の中央部に、厚さ0.1mm、幅3mmのステンレス鋼製のリボンを正極リード体15として抵抗溶接により取り付けた。集電体3cにカーボンペースト(日本黒鉛社製)を網の目につぶさない程度に塗布したのち、105℃±5℃の加熱温度で2時間以上乾燥した。なお、ここではカーボンペーストを5mg/cm2 となるように塗布した。
Current collector:
An expanded metal made of stainless steel (SUS316) was used as the current collector 3c. This expanded metal was cut into a width of 34 mm and a length of 56 mm, and a stainless steel ribbon having a thickness of 0.1 mm and a width of 3 mm was attached to the central portion in the length direction as a positive electrode lead body 15 by resistance welding. A carbon paste (manufactured by Nippon Graphite Co., Ltd.) was applied to the current collector 3c so as not to crush the mesh, and then dried at a heating temperature of 105 ° C. ± 5 ° C. for 2 hours or more. Here, the carbon paste was applied so as to be 5 mg / cm 2 .

次に、図3の(c)に示すように、2枚の正極シート3a、3bを、その間に集電体3cを介在させた状態で長さ方向の一端部のみを固定して三者を一体化した。具体的には、内、外周用の2枚の正極シート3a、3bは、長さ方向の一端を揃えるとともに、集電体3cの端部が正極シート3a、3bからはみ出さないようにセットし、その状態で長さ方向の端部から5mm(図1中のS部)をプレスにより圧着することで、三者を一体化した。続いて、これら正極シート3a、3bおよび集電体3cを250℃±10℃で6時間熱風乾燥して正極3を得た。なお、ここで正極シート3a、3bと集電体3cとを、一体化したのは、作業上の都合であり、独立した正極シート3a、3bと集電体3cとを巻回時に一体化しても特性上の問題はない。   Next, as shown in FIG. 3 (c), the two positive electrode sheets 3a and 3b are fixed to only one end in the length direction with the current collector 3c interposed therebetween. Integrated. Specifically, the two positive and negative electrode sheets 3a and 3b for inner and outer periphery are set so that one end in the length direction is aligned and the end of the current collector 3c does not protrude from the positive electrode sheets 3a and 3b. In this state, the three members were integrated by press-bonding 5 mm (the S portion in FIG. 1) from the end in the length direction with a press. Subsequently, the positive electrode sheets 3a and 3b and the current collector 3c were dried with hot air at 250 ° C. ± 10 ° C. for 6 hours to obtain the positive electrode 3. Here, the positive electrode sheets 3a and 3b and the current collector 3c are integrated for convenience of work, and the independent positive electrode sheets 3a and 3b and the current collector 3c are integrated at the time of winding. There is no problem in characteristics.

〔負極の作製〕
負極4は、幅37mm、厚さ0.28mmの金属リチウムを長さ46mmの金属リチウム箔4aと長さ82mmの金属リチウム箔4bに切断し、それらを負極の作製に用いた。そして、金属箔4cとしては、幅37mm、長さ135mm、厚み0.010mmの銅箔を用い、前記金属リチウム箔4bに幅3mm、長さ20mm、厚み0.1mmのニッケル製の負極リード体16を圧着した後、それらの金属リチウム箔4a、4bを前記金属箔4cとしての銅箔に図5に示すように巻き始め側のT部(それぞれ10mm)のみロールで圧着して負極を作製した。このときの銅箔の面積はその両面に配置される金属リチウム箔の面積の和の105%であった。
(Production of negative electrode)
For the negative electrode 4, metallic lithium having a width of 37 mm and a thickness of 0.28 mm was cut into a metallic lithium foil 4 a having a length of 46 mm and a metallic lithium foil 4 b having a length of 82 mm, and these were used for producing a negative electrode. The metal foil 4c is a copper foil having a width of 37 mm, a length of 135 mm, and a thickness of 0.010 mm. The nickel negative electrode lead body 16 having a width of 3 mm, a length of 20 mm, and a thickness of 0.1 mm is used for the metal lithium foil 4b. Then, these metal lithium foils 4a and 4b were pressure-bonded to the copper foil as the metal foil 4c with a roll only at the T portion (10 mm each) on the winding start side as shown in FIG. At this time, the area of the copper foil was 105% of the sum of the areas of the metal lithium foils disposed on both surfaces thereof.

〔電極巻回体の作製〕
幅44mm、厚さ0.025mmの微孔性ポリエチレンフィルム〔旭化成社製のハイポア(商品名)〕を140mmに切断してセパレータ5として用い、図3の(a)に示すように、2つ割の直径4mmの巻回芯20に挟んで1周巻いた。次いで、図3の(b)、(c)に示すように、負極4をセパレータ5と同時に1周巻き込んだのち、正極シート3a、3bの固定した側を巻回芯20側に載置して巻回した。巻回終了後は、金属箔4cが最外周を覆う形となった。以上より、図1に示すような電極巻回体6を得た。
[Production of wound electrode body]
A microporous polyethylene film (Hypore (trade name) manufactured by Asahi Kasei Co., Ltd.) having a width of 44 mm and a thickness of 0.025 mm is cut into 140 mm and used as the separator 5, and divided into two as shown in FIG. Was wound around the winding core 20 having a diameter of 4 mm. Next, as shown in FIGS. 3B and 3C, the negative electrode 4 is wound once around the separator 5 at the same time, and then the fixed side of the positive electrode sheets 3 a and 3 b is placed on the winding core 20 side. I wound it. After winding, the metal foil 4c covered the outermost periphery. From the above, an electrode winding body 6 as shown in FIG. 1 was obtained.

〔電池組立て〕
ニッケルメッキした鉄缶からなる外装缶2の底部に、厚さ0.2mmのポリプロピレン製の絶縁板7を挿入し、その上に電極巻回体6を正極リード体15が上側に向く姿勢で挿入した。負極リード体16は外装缶2の内面に抵抗溶接し、正極リード体15は、絶縁板11を挿入したのち、端子板10の下面に抵抗溶接した。この時点で絶縁抵抗を測定し、短絡がないことを確認した。
[Battery assembly]
A polypropylene insulating plate 7 having a thickness of 0.2 mm is inserted into the bottom of the outer can 2 made of nickel-plated iron can, and the electrode winding body 6 is inserted thereon with the positive electrode lead body 15 facing upward. did. The negative electrode lead body 16 was resistance welded to the inner surface of the outer can 2, and the positive electrode lead body 15 was resistance welded to the lower surface of the terminal plate 10 after inserting the insulating plate 11. At this point, the insulation resistance was measured and it was confirmed that there was no short circuit.

電解液は、0.5M LiClO4 /(PC+DME=1:2)を、外装缶2内に3.3ml注入した。注入は3回に分け、最終工程で減圧にて全量を注入した。電解液の注入後、蓋体8を外装缶2の開口部に嵌合し、レーザー溶接により外装缶2の開口端部の内周部と蓋体8の外周部とを溶接して外装缶2の開口部を封口した。なお、上記電解液について詳しく説明すると、上記電解液は、プロピレンカーボネート(PC)とジメトキシエタン(DME)との体積比1:2の混合溶媒にLiClO4 を0.5mol/l溶解させることによって調製した非水系の電解液である。 As the electrolytic solution, 3.3 ml of 0.5 M LiClO 4 / (PC + DME = 1: 2) was injected into the outer can 2. The injection was divided into three times, and the whole amount was injected under reduced pressure in the final step. After injecting the electrolytic solution, the lid 8 is fitted into the opening of the outer can 2 and the inner peripheral portion of the opening end of the outer can 2 and the outer peripheral portion of the lid 8 are welded by laser welding. The opening of was sealed. The electrolyte solution will be described in detail. The electrolyte solution is prepared by dissolving 0.5 mol / l of LiClO 4 in a mixed solvent of propylene carbonate (PC) and dimethoxyethane (DME) in a volume ratio of 1: 2. This is a non-aqueous electrolyte solution.

〔後処理:予備充電、エージング〕
封口した電池は、1Ωの抵抗で30秒間予備放電し、45℃で24時間保管した後、1Aの定電流で1分間2次予備放電を行った。予備放電後の電池を、室温で7日間エージングし、開路電圧を測定した。以上により、外径17.0mm、総高45.0mmの実施例1の非水電解液電池を得た。この実施例1の電池の負極容量と正極容量との比(以下、「負極容量/正極容量」で示す)は1.00であった。
[Post-processing: Pre-charging, aging]
The sealed battery was predischarged with a resistance of 1Ω for 30 seconds, stored at 45 ° C. for 24 hours, and then subjected to secondary predischarge with a constant current of 1 A for 1 minute. The battery after the preliminary discharge was aged at room temperature for 7 days, and the open circuit voltage was measured. Thus, a nonaqueous electrolyte battery of Example 1 having an outer diameter of 17.0 mm and a total height of 45.0 mm was obtained. The ratio of the negative electrode capacity to the positive electrode capacity of the battery of Example 1 (hereinafter referred to as “negative electrode capacity / positive electrode capacity”) was 1.00.

実施例2
金属リチウムの厚みを0.27mm、正極シートの厚みを1.01mmに変更した以外は、実施例1と同様に非水電解液電池を作製した。この実施例2の電池の負極容量/正極容量は0.96であり、銅箔の面積はその両面に配置される金属リチウム箔の面積の和の105%であった。
Example 2
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the thickness of metallic lithium was changed to 0.27 mm and the thickness of the positive electrode sheet was changed to 1.01 mm. The battery of Example 2 had a negative electrode capacity / positive electrode capacity of 0.96, and the area of the copper foil was 105% of the sum of the areas of the metal lithium foils disposed on both sides thereof.

実施例3
金属リチウムの厚みを0.27mmに変更した以外は、実施例1と同様に非水電解液電池を作製した。この実施例3の電池の負極容量/正極容量は0.97であり、銅箔の面積はその両面に配置されるリチウムの面積の和の105%であった。
Example 3
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the thickness of metallic lithium was changed to 0.27 mm. The battery of Example 3 had a negative electrode capacity / positive electrode capacity of 0.97, and the area of the copper foil was 105% of the sum of the areas of lithium disposed on both surfaces thereof.

実施例4
正極シートの厚みを0.98mmに変更した以外は、実施例1と同様に非水電解液電池を作製した。この実施例4の電池の負極容量/正極容量は1.03であり、銅箔の面積はその両面に配置されるリチウム面積の和の105%であった。
Example 4
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the thickness of the positive electrode sheet was changed to 0.98 mm. The battery of Example 4 had a negative electrode capacity / positive electrode capacity of 1.03, and the area of the copper foil was 105% of the sum of the lithium areas arranged on both sides thereof.

実施例5
銅箔の長さを92mmにして図6に示す負極を使用した以外は、実施例1と同様に非水電解液電池を作製した。なお、図6に示す負極は、金属箔4cとしての銅箔の長さが92mmであり、この銅箔に長さ46mmの金属リチウム箔4aの巻き始め側のT部(長さ10mm)のみロールで圧着し、また、長さ82mmの金属リチウム箔4bの巻き始め側のT部(長さ10mm)のみ銅箔にロールで圧着したもので、負極リード体16は金属リチウム箔4bと接する側の金属箔4cに取り付けられている。この実施例5の電池の負極容量/正極容量は1.00であり、銅箔の面積はその両面に配置される金属リチウムの面積の和の70%であった。
Example 5
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the length of the copper foil was 92 mm and the negative electrode shown in FIG. 6 was used. The negative electrode shown in FIG. 6 has a copper foil length of 92 mm as the metal foil 4c, and only the T portion (length 10 mm) on the winding start side of the metal lithium foil 4a having a length of 46 mm is rolled on this copper foil. In addition, only the T portion (10 mm in length) on the winding start side of the 82 mm-long metallic lithium foil 4b is pressure-bonded to the copper foil with a roll, and the negative electrode lead body 16 is on the side in contact with the metallic lithium foil 4b. It is attached to the metal foil 4c. The battery of Example 5 had a negative electrode capacity / positive electrode capacity of 1.00, and the area of the copper foil was 70% of the sum of the areas of metallic lithium disposed on both surfaces thereof.

実施例6
銅箔の長さを166mmにして図7に示す負極を使用した以外は、実施例1と同様に非水電解液電池を作製した。ここで、図7に示す負極について説明すると、金属箔4cとしての銅箔は長さが166mmであり、金属リチウム箔4aは長さが46mmで、その巻き始め側のT部(長さ10mm)のみ銅箔にロールで圧着し、金属リチウム箔4bは長さが92mmで、その巻き始め側のT部(長さ10mm)のみ銅箔にロールで圧着したもので、負極リード体16は金属リチウム箔4bと接する側の金属箔4cに取り付けられている。この実施例6の電池の負極容量/正極容量は1.00であり、銅箔の面積はその両面に配置される金属リチウムの面積の和の130%であった。
Example 6
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the length of the copper foil was 166 mm and the negative electrode shown in FIG. 7 was used. Here, the negative electrode shown in FIG. 7 will be described. The copper foil as the metal foil 4c has a length of 166 mm, the metal lithium foil 4a has a length of 46 mm, and the T portion on the winding start side (length 10 mm). Only the copper foil is pressure-bonded with a roll, the metal lithium foil 4b is 92 mm in length, and only the T portion (length 10 mm) on the winding start side is pressure-bonded to the copper foil with a roll. It is attached to the metal foil 4c on the side in contact with the foil 4b. The battery of Example 6 had a negative electrode capacity / positive electrode capacity of 1.00, and the area of the copper foil was 130% of the sum of the areas of metallic lithium disposed on both surfaces thereof.

実施例7
金属箔4cとしては長さ160mm、厚さ0.010mmの銅箔を用い、その金属箔4cとしての銅箔を図4の(a)に示すように巻回芯20に1周巻き込んだ後、幅37mm、厚み0.28mm、長さ128mmの金属リチウム箔からなる負極4と、幅44mm、厚さ0.025mm、長さ160mmの微孔性ポリエチレンフィルム〔旭化成社製のハイポア(商品名)〕からなるセパレータ5を重ねて図4の(b)に示すように正極3を包み込むように折り返した電極体を挿入して巻回した電極巻回体を用いて非水電解液電池を作製した。この実施例7の電池の負極容量/正極容量は1.00であり、銅箔の面積は両面に配置される金属リチウムの面積の和の125%であった。
Example 7
A copper foil having a length of 160 mm and a thickness of 0.010 mm is used as the metal foil 4c, and the copper foil as the metal foil 4c is wound around the winding core 20 as shown in FIG. Negative electrode 4 made of a lithium metal foil having a width of 37 mm, a thickness of 0.28 mm, and a length of 128 mm, and a microporous polyethylene film having a width of 44 mm, a thickness of 0.025 mm, and a length of 160 mm [Hypore (trade name) manufactured by Asahi Kasei Corporation] A non-aqueous electrolyte battery was manufactured using an electrode winding body in which an electrode body folded and wrapped around the positive electrode 3 as shown in FIG. The battery of Example 7 had a negative electrode capacity / positive electrode capacity of 1.00, and the area of the copper foil was 125% of the sum of the areas of metallic lithium disposed on both sides.

比較例1
図8に示すように金属箔を使用しない負極を用いた以外、実施例1と同じ構成で巻回して非水電解液電池を作製した。ここで、図8に示す負極について説明すると、金属リチウム箔4aは長さが46mmで、金属リチウム箔4bは長さが92mmであり、集電体としての銅箔を用いておらず、負極リード体16は、金属リチウム箔4aの巻き終わり側で、金属リチウム箔4aと金属リチウム箔4bとの間にその先端を差し込むように取り付けられている。そして、この比較例1の電池の負極容量/正極容量は1.00であった。
Comparative Example 1
As shown in FIG. 8, a non-aqueous electrolyte battery was produced by winding with the same configuration as in Example 1 except that a negative electrode not using a metal foil was used. Here, the negative electrode shown in FIG. 8 will be described. The metal lithium foil 4a has a length of 46 mm, the metal lithium foil 4b has a length of 92 mm, and does not use a copper foil as a current collector. The body 16 is attached on the winding end side of the metal lithium foil 4a so that the tip thereof is inserted between the metal lithium foil 4a and the metal lithium foil 4b. The battery of Comparative Example 1 had a negative electrode capacity / positive electrode capacity of 1.00.

比較例2
図8に示す場合と同様に金属箔を使用していない負極を用いた以外は、実施例2と同じ構成で巻回して非水電解液電池を作製した。この比較例2の電池の負極容量/正極容量は0.96であった。
Comparative Example 2
As in the case shown in FIG. 8, a non-aqueous electrolyte battery was produced by winding with the same configuration as in Example 2 except that a negative electrode not using a metal foil was used. The battery of Comparative Example 2 had a negative electrode capacity / positive electrode capacity of 0.96.

比較例3
図8に示す場合と同様に金属箔を使用していない負極を用いた以外は、実施例3と同じ構成で巻回して非水電解液電池を作製した。この比較例3の電池の負極容量/正極容量は0.97であった。
Comparative Example 3
As in the case shown in FIG. 8, a nonaqueous electrolyte battery was produced by winding with the same configuration as in Example 3 except that a negative electrode not using a metal foil was used. The battery of Comparative Example 3 had a negative electrode capacity / positive electrode capacity of 0.97.

比較例4
図8に示す場合と同様に金属箔を使用していない負極を用いた以外は、実施例4と同じ構成で巻回して非水電解液電池を作製した。この比較例4の電池の負極容量/正極容量は1.03であった。
Comparative Example 4
As in the case shown in FIG. 8, a non-aqueous electrolyte battery was produced by winding in the same configuration as in Example 4 except that a negative electrode not using a metal foil was used. The battery of Comparative Example 4 had a negative electrode capacity / positive electrode capacity of 1.03.

比較例5
正極シートの厚みを1.0mm、金属リチウムの厚みを0.25にした以外は、実施例1と同様に非水電解液電池を作製した。この比較例5の電池の負極容量/正極容量は0.90で、銅箔の面積はその両面に配置される金属リチウムの面積の和の105%であった。
Comparative Example 5
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the thickness of the positive electrode sheet was 1.0 mm and the thickness of the metal lithium was 0.25. The battery of Comparative Example 5 had a negative electrode capacity / positive electrode capacity of 0.90, and the area of the copper foil was 105% of the sum of the areas of metallic lithium disposed on both surfaces thereof.

比較例6
正極シートの厚みを0.99mm、金属リチウムの厚みを0.29mmにした以外は、実施例1と同様に非水電解液電池を作製した。この比較例6の電池の負極容量/正極容量は1.05で、銅箔の面積はその両面に配置される金属リチウムの面積の和の105%であった。
Comparative Example 6
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the thickness of the positive electrode sheet was 0.99 mm and the thickness of the metal lithium was 0.29 mm. The battery of Comparative Example 6 had a negative electrode capacity / positive electrode capacity of 1.05, and the area of the copper foil was 105% of the sum of the areas of metallic lithium disposed on both surfaces thereof.

比較例7
図8に示すような金属箔を使用していない負極を用いた以外、比較例6と同じ構成で巻回して比較例7の非水電解液電池を作製した。この比較例7の電池の負極容量/正極容量は1.05であった。
Comparative Example 7
A non-aqueous electrolyte battery of Comparative Example 7 was produced by winding in the same configuration as Comparative Example 6 except that a negative electrode not using a metal foil as shown in FIG. 8 was used. The negative electrode capacity / positive electrode capacity of the battery of Comparative Example 7 was 1.05.

上記実施例1〜7および比較例1〜7の電池を23℃、5mAの定電流で終止電圧2Vまで放電させたときの放電容量を測定した。各電池の試料数は5個ずつであり、その平均値を求め、その結果を軽負荷特性として負極容量/正極容量とともに表1に示す。また、上記実施例1〜7および比較例1〜7の電池を23℃、300mAの定電流で終止電圧2Vまで放電させたときの放電容量を測定した。各電池の試料数は5個ずつであり、その平均値を求め、その結果を中負荷特性として表1に示す。   The discharge capacity when the batteries of Examples 1 to 7 and Comparative Examples 1 to 7 were discharged to a final voltage of 2 V at a constant current of 23 ° C. and 5 mA was measured. The number of samples of each battery is 5, and the average value is obtained. The results are shown in Table 1 together with the negative electrode capacity / positive electrode capacity as light load characteristics. Moreover, the discharge capacity when the batteries of Examples 1 to 7 and Comparative Examples 1 to 7 were discharged to a final voltage of 2 V at a constant current of 23 ° C. and 300 mA was measured. The number of samples of each battery is five, the average value is obtained, and the results are shown in Table 1 as medium load characteristics.

Figure 2005149961
Figure 2005149961

表1に示すように、実施例1〜7は、比較例1〜7に比べて、5mA定電流放電での放電容量、300mA定電流放電での放電容量とも大きく、特に300mA定電流放電での放電容量が大きく、放電電流が1〜500mA程度の軽負荷〜中負荷での放電特性が優れていた。   As shown in Table 1, in Examples 1-7, compared with Comparative Examples 1-7, both the discharge capacity at 5 mA constant current discharge and the discharge capacity at 300 mA constant current discharge are large, especially at 300 mA constant current discharge. The discharge characteristics were large, and the discharge characteristics at light to medium loads with a discharge current of about 1 to 500 mA were excellent.

本発明の非水電解液電池の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the nonaqueous electrolyte battery of this invention. 本発明の非水電解液電池の一実施形態を示す横断面図である。It is a cross-sectional view which shows one Embodiment of the nonaqueous electrolyte battery of this invention. 本発明の非水電解液電池における電極巻回体を実施例1で作製する工程を示すもので、(a)は巻回心にセパレータのみを巻き付けた状態を示す図であり、(b)は負極を巻き付けるのに適するように配置した状態を示し、(c)は負極を一部巻き付け、正極を巻き付けるのに適するように配置した状態を示す。The process which produces the electrode winding body in the nonaqueous electrolyte battery of this invention in Example 1 is shown, (a) is a figure which shows the state which wound only the separator around the winding core, (b) The state arrange | positioned so that it may be suitable for winding a negative electrode is shown, (c) shows the state arrange | positioned so that it may be suitable for winding a part of negative electrode and winding a positive electrode. 本発明の非水電解液電池における電極巻回体を作製する工程を示すもので、(a)は巻回心に負極の金属箔を巻き付けに適するように配置した状態を示し、(b)は巻回心に負極の金属箔の一部を巻き付け、正極および負極を巻き付けに適するように配置した状態を示す。The process which produces the electrode winding body in the nonaqueous electrolyte battery of this invention is shown, (a) shows the state arrange | positioned so that the metal foil of a negative electrode might be suitable for winding to a winding core, (b) A state where a part of the metal foil of the negative electrode is wound around the winding core and the positive electrode and the negative electrode are arranged so as to be suitable for winding is shown. 実施例1において用いた負極の巻き付け前の状態を示す図である。It is a figure which shows the state before winding of the negative electrode used in Example 1. FIG. 実施例5において用いた負極の巻き付け前の状態を示す図である。It is a figure which shows the state before winding of the negative electrode used in Example 5. FIG. 実施例6において用いた負極の巻き付け前の状態を示す図である。It is a figure which shows the state before winding of the negative electrode used in Example 6. FIG. 比較例1において用いた負極の巻き付け前の状態を示す図である。It is a figure which shows the state before winding of the negative electrode used in the comparative example 1. FIG.

符号の説明Explanation of symbols

1 非水電解液電池
2 外装缶
3 正極
3a 正極シート
3b 正極シート
3c 集電体
4 負極
4a 金属リチウム箔
4b 金属リチウム箔
4c 金属箔
5 セパレータ
6 電極巻回体
15 正極リード体
16 負極リード体
20 巻回心
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte battery 2 Exterior can 3 Positive electrode 3a Positive electrode sheet 3b Positive electrode sheet 3c Current collector 4 Negative electrode 4a Metal lithium foil 4b Metal lithium foil 4c Metal foil 5 Separator 6 Electrode winding body 15 Positive electrode lead body 16 Negative electrode lead body 20 Winding heart

Claims (4)

上方開口部を有する有底円筒状の外装缶内に、シート状の正極とシート状の負極とをセパレータを介して巻回してなる電極巻回体と、非水電解液とを収容した円筒形の非水電解液電池であって、前記負極は金属箔を集電体として用い、金属リチウムまたはリチウム合金が金属箔の両面または片面に配置され、金属リチウムまたはリチウム合金が金属箔に一部圧着されているかまたは全く圧着されておらず、負極容量と正極容量との比が、負極容量/正極容量=0.93〜1.03であることを特徴とする非水電解液電池。 A cylindrical shape containing a non-aqueous electrolyte and an electrode winding body obtained by winding a sheet-like positive electrode and a sheet-like negative electrode through a separator in a bottomed cylindrical outer can having an upper opening. The negative electrode uses a metal foil as a current collector, the metal lithium or lithium alloy is disposed on both sides or one side of the metal foil, and the metal lithium or lithium alloy is partially crimped to the metal foil. A non-aqueous electrolyte battery characterized in that the ratio of negative electrode capacity to positive electrode capacity is negative electrode capacity / positive electrode capacity = 0.93 to 1.03. 金属リチウムまたはリチウム合金が金属箔の両面に配置され、金属箔の幅が金属リチウムまたはリチウム合金の幅と同じかまたはそれ以上で、金属箔の面積が金属リチウムまたはリチウム合金の全面積の70〜130%であることを特徴とする請求項1記載の非水電解液電池。 Metal lithium or lithium alloy is disposed on both sides of the metal foil, the width of the metal foil is equal to or greater than the width of the metal lithium or lithium alloy, and the area of the metal foil is 70 to 70% of the total area of the metal lithium or lithium alloy. The nonaqueous electrolyte battery according to claim 1, wherein the battery is 130%. 前記金属箔の厚みが0.005mm以上0.1mm以下であることを特徴とする請求項1または2記載の非水電解液電池。 The nonaqueous electrolyte battery according to claim 1 or 2, wherein the thickness of the metal foil is 0.005 mm or more and 0.1 mm or less. 前記金属箔が、銅、ニッケル、鉄、ステンレス鋼のいずれかからなるものであることを特徴とする請求項1〜3のいずれかに記載の非水電解液電池。 The non-aqueous electrolyte battery according to claim 1, wherein the metal foil is made of any one of copper, nickel, iron, and stainless steel.
JP2003387303A 2003-11-18 2003-11-18 Non-aqueous electrolyte battery Expired - Fee Related JP4255013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387303A JP4255013B2 (en) 2003-11-18 2003-11-18 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387303A JP4255013B2 (en) 2003-11-18 2003-11-18 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2005149961A true JP2005149961A (en) 2005-06-09
JP4255013B2 JP4255013B2 (en) 2009-04-15

Family

ID=34694684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387303A Expired - Fee Related JP4255013B2 (en) 2003-11-18 2003-11-18 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4255013B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091041A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Nonaqueous secondary battery
US7993770B2 (en) 2005-12-29 2011-08-09 Samsung Sdi Co., Ltd. Cylindrical lithium ion secondary battery
WO2017146357A1 (en) * 2016-02-24 2017-08-31 주식회사 엘지화학 Electrode assembly for lithium secondary battery, and lithium secondary battery and battery module including same
KR20170099748A (en) * 2016-02-24 2017-09-01 주식회사 엘지화학 Electrode assembly for lithium secondary battery and electrode module
KR20170110264A (en) * 2016-03-23 2017-10-11 주식회사 엘지화학 Electrode assembly for lithium secondary battery and module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339434A (en) * 1976-09-21 1978-04-11 Sanyo Electric Co Battery
JPS57128467A (en) * 1981-01-30 1982-08-10 Matsushita Electric Ind Co Ltd Cylindrical non-aqueous electrolytic solution battery
JPS58165256A (en) * 1982-01-18 1983-09-30 デユラセル・インタ−ナシヨナル・インコ−ポレ−テツド Method of improving error utility resistance for battery
JPH09134729A (en) * 1995-11-09 1997-05-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2000173602A (en) * 1998-12-08 2000-06-23 Toshiba Battery Co Ltd Cylindrical alkaline battery
JP2003178753A (en) * 2001-12-11 2003-06-27 Hitachi Maxell Ltd Lithium battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339434A (en) * 1976-09-21 1978-04-11 Sanyo Electric Co Battery
JPS57128467A (en) * 1981-01-30 1982-08-10 Matsushita Electric Ind Co Ltd Cylindrical non-aqueous electrolytic solution battery
JPS58165256A (en) * 1982-01-18 1983-09-30 デユラセル・インタ−ナシヨナル・インコ−ポレ−テツド Method of improving error utility resistance for battery
JPH09134729A (en) * 1995-11-09 1997-05-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2000173602A (en) * 1998-12-08 2000-06-23 Toshiba Battery Co Ltd Cylindrical alkaline battery
JP2003178753A (en) * 2001-12-11 2003-06-27 Hitachi Maxell Ltd Lithium battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993770B2 (en) 2005-12-29 2011-08-09 Samsung Sdi Co., Ltd. Cylindrical lithium ion secondary battery
JP2008091041A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Nonaqueous secondary battery
WO2017146357A1 (en) * 2016-02-24 2017-08-31 주식회사 엘지화학 Electrode assembly for lithium secondary battery, and lithium secondary battery and battery module including same
KR20170099748A (en) * 2016-02-24 2017-09-01 주식회사 엘지화학 Electrode assembly for lithium secondary battery and electrode module
CN108028413A (en) * 2016-02-24 2018-05-11 株式会社Lg化学 Electrode of lithium secondary cell component and the lithium secondary battery and battery module for including it
EP3312926A4 (en) * 2016-02-24 2018-09-26 LG Chem, Ltd. Electrode assembly for lithium secondary battery, and lithium secondary battery and battery module including same
KR101976174B1 (en) * 2016-02-24 2019-05-09 주식회사 엘지화학 Electrode assembly for lithium secondary battery and electrode module
US11024886B2 (en) 2016-02-24 2021-06-01 Lg Chem, Ltd. Electrode assembly having plurality of lithium metal sheets or lithium alloy sheets for lithium secondary battery, and lithium secondary battery and battery module including same
CN108028413B (en) * 2016-02-24 2021-07-30 株式会社Lg化学 Electrode assembly for lithium secondary battery, lithium secondary battery comprising same, and battery module
KR20170110264A (en) * 2016-03-23 2017-10-11 주식회사 엘지화학 Electrode assembly for lithium secondary battery and module
KR101964280B1 (en) * 2016-03-23 2019-04-01 주식회사 엘지화학 Electrode assembly for lithium secondary battery and module

Also Published As

Publication number Publication date
JP4255013B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
JP2007265846A (en) Cylindrical battery and its manufacturing method
JPH11283588A (en) Sealed battery
JP2003272597A (en) Sealed battery
JP2007128747A (en) Battery
JP2011187241A (en) Nonaqueous electrolyte secondary battery
JP4993860B2 (en) Non-aqueous electrolyte primary battery
JP4255013B2 (en) Non-aqueous electrolyte battery
JP4993859B2 (en) Non-aqueous electrolyte primary battery
JP2008192524A (en) Cylindrical nonaqueous electrolyte solution primary battery
JP7190018B2 (en) Cylindrical non-aqueous electrolyte primary battery
JP5620811B2 (en) Cylindrical non-aqueous electrolyte primary battery
JP5252691B2 (en) Cylindrical non-aqueous electrolyte primary battery and manufacturing method thereof
JP2000357505A (en) Nonaqueous electrolyte secondary battery
US8221509B2 (en) Battery and method for producing the same
JP4151840B2 (en) Non-aqueous electrolyte battery
JP2005267955A (en) Nonaqueous electrolyte secondary battery
JP2004335380A (en) Nonaqueous electrolyte battery
JP4129955B2 (en) Battery and battery manufacturing method
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JP4129966B2 (en) Non-aqueous electrolyte battery
JP4129952B2 (en) Non-aqueous electrolyte battery
JP4129965B2 (en) Non-aqueous electrolyte battery
JP2004327291A (en) Nonaqueous electrolyte battery
JP5019557B2 (en) Cylindrical non-aqueous electrolyte primary battery
JP4129740B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4255013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees