JP4235587B2 - Rubber crawler - Google Patents

Rubber crawler Download PDF

Info

Publication number
JP4235587B2
JP4235587B2 JP2004165813A JP2004165813A JP4235587B2 JP 4235587 B2 JP4235587 B2 JP 4235587B2 JP 2004165813 A JP2004165813 A JP 2004165813A JP 2004165813 A JP2004165813 A JP 2004165813A JP 4235587 B2 JP4235587 B2 JP 4235587B2
Authority
JP
Japan
Prior art keywords
crawler
rubber
thickness direction
mpa
lug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004165813A
Other languages
Japanese (ja)
Other versions
JP2005343326A (en
Inventor
孝浩 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2004165813A priority Critical patent/JP4235587B2/en
Publication of JP2005343326A publication Critical patent/JP2005343326A/en
Application granted granted Critical
Publication of JP4235587B2 publication Critical patent/JP4235587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber crawler capable of compatibly realizing both the traction performance and the bend-resistant performance to a high degree. <P>SOLUTION: The rubber crawler 1 has a crawler thickness direction outer portion 7 arranged on the outer side in the crawler thickness direction and a grounding lug 2 protruded from an outer face 8 of the crawler thickness direction outer portion 7. The crawler thickness direction outer portion 7 consists of rubber in which the product of the maximum elongation (%) by the tensile strength (MPa) is &ge; 10,000 (MPa &times; %), and the 100% modulus is &le; 10 (MPa). The grounding lug 2 consists of rubber in which the 100% modulus is &ge; 15 (MPa). <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、建設機械や農機などの無限走行装置に用いられる無端帯状のゴムクローラに関するものである。   The present invention relates to an endless belt-like rubber crawler used in an infinite traveling device such as a construction machine or an agricultural machine.

ゴムクローラは、鉄クローラと比較して低騒音、乗り心地の良さ、路面保護性の高さなどの利点があり、広く用いられている。ゴムクローラには、芯金をゴムで覆ったタイプや、芯金の無いタイプなどがあるが、いずれにしてもゴムを無端帯状に形成することにより作製される。これらのゴムクローラでは、クローラ本体の外周面に接地ラグが突設されており、この接地ラグを地面等に食い込ませて牽引性能を高めている。したがって、接地ラグの剛性が高いほど牽引性能が高くなる傾向がある。この点に関して特許文献1では、接地ラグの内部に、クローラ本体又はラグ表面よりも高硬度のゴム質芯体(ウレタンゴム等)を埋設したクローラが提案されている。(特許文献1参照。)。
特開平9−249163号公報
Rubber crawlers are widely used because they have advantages such as low noise, good riding comfort and high road surface protection compared to iron crawlers. The rubber crawler includes a type in which a core metal is covered with rubber, a type without a core metal, and the like. In any case, the rubber crawler is manufactured by forming a rubber into an endless belt shape. In these rubber crawlers, a grounding lug protrudes from the outer peripheral surface of the crawler body, and this grounding lug bites into the ground or the like to enhance the traction performance. Therefore, the traction performance tends to increase as the rigidity of the ground lug increases. In this regard, Patent Document 1 proposes a crawler in which a rubber core (urethane rubber or the like) having a hardness higher than that of the crawler body or the lug surface is embedded in the ground lug. (See Patent Document 1).
Japanese Patent Laid-Open No. 9-249163

上述した従来技術のクローラでは、接地ラグの剛性を高めて牽引性能を向上させることができるとともに、高硬度のゴム質芯体を加硫ゴムで被覆することで摩耗性を改善しクラック等の発生を少なくすることができる。
今回、牽引性能に加えて耐屈曲性能においても従来技術より高い性能としうる本発明を見いだすに至った。
即ち本発明は、牽引性能と耐屈曲性能とを極めて高度に両立することができるゴムクローラを提供することを目的とする。
With the above-mentioned conventional crawlers, it is possible to improve the traction performance by increasing the rigidity of the ground lug, and also improve the wearability by covering the hard rubber core with vulcanized rubber and generating cracks etc. Can be reduced.
This time, the present inventors have found the present invention that can achieve higher performance than conventional technology in bending performance in addition to traction performance.
That is, an object of the present invention is to provide a rubber crawler capable of achieving both extremely high traction performance and bending resistance performance.

かかる目的を達成するための本発明は、クローラ本体と、このクローラ本体の外周面に突設された接地ラグとを備えたゴムクローラにおいて、前記クローラ本体の全部またはそのクローラ厚み方向外側の一部分は、最大伸び(%)と引張強さ(MPa)との積の値が10000(MPa・%)以上で且つ100%モジュラスが10(MPa)以下のゴムからなり、前記接地ラグは、100%モジュラスが15(MPa)以上で、かつ40(MPa)以下のゴムからなることを特徴とするゴムクローラである。
To achieve this object, the present invention provides a rubber crawler comprising a crawler main body and a grounding lug projecting on the outer peripheral surface of the crawler main body. The product of the maximum elongation (%) and the tensile strength (MPa) is a rubber having a value of 10000 (MPa ·%) or more and a 100% modulus of 10 (MPa) or less, and the ground lug has a 100% modulus. Is a rubber crawler characterized by being made of rubber of 15 (MPa) or more and 40 (MPa) or less .

このゴムクローラでは、前記クローラ本体の全部またはそのクローラ厚み方向外側の一部分は、最大伸び(%)と引張強さ(MPa)との積の値が10000(MPa・%)以上であるから、クローラを屈曲しても亀裂が入りにくくなり耐屈曲性能が高まる。そして、接地ラグは100%モジュラスが15(MPa)以上で、かつ40(MPa)以下のゴムからなるから、接地ラグの剛性が高まり牽引性能が向上するとともに、乗り心地の悪化を防止することができる
In this rubber crawler, the entire crawler body or a part on the outer side in the crawler thickness direction has a product of maximum elongation (%) and tensile strength (MPa) of 10,000 (MPa ·%) or more. Even if it is bent, cracks are less likely to occur and the bending resistance is improved. Since the ground lug is made of rubber having a 100% modulus of 15 (MPa) or more and 40 (MPa) or less , the rigidity of the ground lug is improved, the traction performance is improved , and the deterioration of the riding comfort can be prevented. I can .

なお、「最大伸び」とは、JIS K 6251で規定される「伸び」のことであり、所定の試験片を規定速度で破断するまで引っ張った場合における最大の伸び率(%)を示すものである。
また、「引張強さ」は、JIS K 6251に規定されるものであり、所定の試験片を規定速度で破断するまで引っ張った場合における最大の引っ張り応力を試験片の元の断面積で割った値(単位はMPa)である。
また、「100%モジュラス」とは、伸びが100%の際における引っ張り応力を試験片の元の断面積で割った値(単位はMPa)であり、JIS K 6251で規定されるものである。
“Maximum elongation” means “elongation” defined by JIS K 6251, and indicates the maximum elongation (%) when a predetermined test piece is pulled at a specified speed until it breaks. is there.
“Tensile strength” is defined in JIS K 6251, and the maximum tensile stress when a predetermined test piece is pulled at a specified speed until it breaks is divided by the original cross-sectional area of the test piece. Value (unit: MPa).
The “100% modulus” is a value (unit: MPa) obtained by dividing the tensile stress when the elongation is 100% by the original cross-sectional area of the test piece, and is defined by JIS K 6251.

以上に記載の発明によれば、クローラ本体またはその外側の一部分と接地ラグとで物性を相違させ、それぞれに最適物性のゴムを用いたので、耐屈曲性能と牽引性能とを極めて高度に両立し、しかも乗り心地の悪化を防止しうるゴムクローラとすることができる。
According to the invention described above, since the physical properties of the crawler body or a part of the outer side of the crawler are different from each other and the rubber having the optimum physical properties is used for each, the bending resistance and the traction performance are extremely highly compatible. And it can be set as the rubber crawler which can prevent the deterioration of riding comfort .

以下に、本発明の実施形態を図面を参照しつつ説明する。
図2は、本発明の本発明の一実施形態であるゴムクローラ1を外周面側(接地面側)から見た図であり、図3はこのゴムクローラ1を内周面側から見た図である。図1は図2のA−A線におけるゴムクローラ1の断面図であり、図4は図2のB−B線におけるゴムクローラ1の断面図である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 2 is a view of a rubber crawler 1 according to an embodiment of the present invention viewed from the outer peripheral surface side (ground surface side), and FIG. 3 is a view of the rubber crawler 1 viewed from the inner peripheral surface side. It is. 1 is a cross-sectional view of the rubber crawler 1 taken along line AA in FIG. 2, and FIG. 4 is a cross-sectional view of the rubber crawler 1 taken along line BB in FIG.

図2に示すように、ゴムクローラ1は、その接地面側に所定間隔おきに突設された接地ラグ2を備えている。接地ラグ2は、その長手方向がクローラ幅方向と平行となるように配置されており、またクローラ幅方向の中央位置において左右に分離されている。接地ラグ2は、クローラ幅方向中央に対して左右対称に設けられ、左右のラグ2は互いにクローラ長手方向位置が同位置(同位相)とされている。また、図4の断面図に示すように、各接地ラグ2の断面形状(ラグ長手方向に垂直な断面の断面形状)は略台形とされ、該台形における上底側が接地側となるような形状となっている。   As shown in FIG. 2, the rubber crawler 1 includes grounding lugs 2 that protrude at predetermined intervals on the grounding surface side. The grounding lug 2 is arranged so that its longitudinal direction is parallel to the crawler width direction, and is separated to the left and right at the center position in the crawler width direction. The ground lugs 2 are provided symmetrically with respect to the center in the crawler width direction, and the left and right lugs 2 are in the same position (same phase) in the crawler longitudinal direction. Further, as shown in the cross-sectional view of FIG. 4, the cross-sectional shape of each ground lug 2 (the cross-sectional shape of the cross-section perpendicular to the lug longitudinal direction) is substantially trapezoidal, and the top bottom side of the trapezoid is the ground side. It has become.

またゴムクローラ1は、クローラ長手方向の所定間隔おきに埋設された芯金3と、クローラ長手方向に沿って連続的に埋設されゴムクローラ1の伸びを規制する抗張体4(図1参照)と、を備えている。
図1に示すように、抗張体4は複数本設けられており、各抗張体4がクローラ長手方向に対して連続しているとともに、複数本の抗張体4はクローラ厚み方向の略同一位置においてクローラ幅方向に並列して設けられている。また抗張体4は、芯金3近傍のクローラ外周面側に配置されている。
芯金3は、図2及び図3で示すように、その長手方向がクローラ幅方向と平行になるように配置されており、更に、図2及び図4で示すように、各芯金3は各接地ラグ2とクローラ長手方向位置が同一(同位相)に配置されている。このように、芯金3と接地ラグ2とのクローラ長手方向位置を同一とすると、接地ラグ2の土台部分に芯金3が配置されることになるから、該土台部分の剛性が高まり、ひいては接地ラグ2の剛性が高まるから、ゴムクローラ1の牽引性能向上に寄与する。
The rubber crawler 1 includes a cored bar 3 embedded at predetermined intervals in the crawler longitudinal direction, and a tensile body 4 that is continuously embedded along the crawler longitudinal direction and regulates the elongation of the rubber crawler 1 (see FIG. 1). And.
As shown in FIG. 1, a plurality of tensile bodies 4 are provided, each of the tensile bodies 4 is continuous with respect to the crawler longitudinal direction, and the plurality of tensile bodies 4 are substantially in the crawler thickness direction. They are provided in parallel in the crawler width direction at the same position. The tensile body 4 is arranged on the outer peripheral surface side of the crawler in the vicinity of the cored bar 3.
As shown in FIGS. 2 and 3, the cored bar 3 is arranged so that its longitudinal direction is parallel to the crawler width direction. Further, as shown in FIGS. Each grounding lug 2 and crawler longitudinal direction position are arrange | positioned at the same (same phase). Thus, if the crawler longitudinal direction position of the metal core 3 and the grounding lug 2 is the same, the metal core 3 is disposed on the base part of the grounding lug 2, so that the rigidity of the base part increases, and consequently Since the rigidity of the grounding lug 2 increases, it contributes to the improvement of the traction performance of the rubber crawler 1.

図1及び図3に示すように、各芯金3は、その長手方向中央部付近においてクローラの内周面側に突出するとともに互いに対向している2つの脱輪防止突起3aと、該中央部からクローラ幅方向左右両側に伸びる翼部3bとを有している。また、図3に示すように、クローラ長手方向において互いに隣り合った芯金3と芯金3との間には、ゴムクローラ1をその厚み方向に貫通する貫通孔5が設けられている。この貫通孔5は、ゴムクローラ1のクローラ幅方向中央位置に一定間隔おきに設けられており、この貫通孔5に車両のスプロケット等の駆動輪が噛み合うことによりゴムクローラ1が駆動される。また、前述の脱輪防止突起3aにより、ゴムクローラ1が駆動輪等の車輪から脱落することが防止される。   As shown in FIG. 1 and FIG. 3, each cored bar 3 has two anti-derailing projections 3 a that protrude toward the inner peripheral surface side of the crawler in the vicinity of the central portion in the longitudinal direction and that face each other. And a wing portion 3b extending on both the left and right sides in the crawler width direction. As shown in FIG. 3, a through-hole 5 that penetrates the rubber crawler 1 in the thickness direction is provided between the cored bar 3 and the cored bar 3 adjacent to each other in the crawler longitudinal direction. The through-holes 5 are provided at regular intervals at the center position in the crawler width direction of the rubber crawler 1, and the rubber crawler 1 is driven by engagement of drive wheels such as a vehicle sprocket with the through-holes 5. Moreover, the rubber crawler 1 is prevented from falling off from wheels such as drive wheels by the above-described wheel removal preventing projection 3a.

図4及び図1に示すように、ゴムクローラ1のうちのゴム部分は、帯状に連続するクローラ本体10と、このクローラ本体10の外周面に突設された接地ラグ2と、からなる。そしてクローラ本体10は、クローラ厚み方向内側の一部分を構成する層状のクローラ厚み方向内側部分6と、クローラ厚み方向外側の一部分を構成する層状のクローラ厚み方向外側部分7と、からなる。また、芯金3の翼部3bは、これらクローラ厚み方向内側部分6とクローラ厚み方向外側部分7とに挟まれた位置に配置されている。クローラ厚み方向外側部分7の外面が、ゴムクローラ1の外周面8であり、この外周面8から接地ラグ2が突出している。   As shown in FIGS. 4 and 1, the rubber portion of the rubber crawler 1 includes a crawler main body 10 that is continuous in a band shape, and a grounding lug 2 that protrudes from the outer peripheral surface of the crawler main body 10. The crawler body 10 includes a layered crawler thickness direction inner portion 6 constituting a part inside the crawler thickness direction and a layered crawler thickness direction outer portion 7 constituting a part outside the crawler thickness direction. Further, the wing portion 3b of the cored bar 3 is disposed at a position sandwiched between the crawler thickness direction inner portion 6 and the crawler thickness direction outer portion 7. The outer surface of the outer portion 7 in the crawler thickness direction is the outer peripheral surface 8 of the rubber crawler 1, and the ground lug 2 protrudes from the outer peripheral surface 8.

なお、クローラ厚み方向内側部分6、クローラ厚み方向外側部分7及び接地ラグ2は、これら各部を構成する未加硫状態のゴム材料をそれぞれ同一の金型内に仕込んで一体成形されることにより、ゴム部分として一体化されている。図1や図4の断面図においては、理解しやすいように、クローラ厚み方向内側部分6とクローラ厚み方向外側部分7、及びクローラ厚み方向外側部分7と接地ラグ2の境界線を実線にて明瞭に示したが、実際には、かかる境界線は通常不明瞭であり、目視により認識することは通常困難である。また、この境界線は、ゴムクローラ1成型時のゴム流れ等の影響により、蛇行した形状あるいは凹凸を有する形状等となっていることが多いが、図1や図4では単純に直線で表示している。   The crawler thickness direction inner portion 6, the crawler thickness direction outer portion 7 and the ground lug 2 are integrally molded by charging unvulcanized rubber materials constituting these portions into the same mold, respectively. It is integrated as a rubber part. In the cross-sectional views of FIG. 1 and FIG. 4, the crawler thickness direction inner portion 6 and the crawler thickness direction outer portion 7 and the crawler thickness direction outer portion 7 and the boundary line between the ground lug 2 are clearly shown by solid lines for easy understanding. However, in practice, such boundaries are usually unclear and are usually difficult to recognize visually. In many cases, this boundary line has a meandering shape or a shape having irregularities due to the influence of the rubber flow at the time of molding the rubber crawler 1, but is simply displayed as a straight line in FIGS. ing.

ここで、接地ラグ2とクローラ厚み方向外側部分7とは、互いに配合の異なるゴムを用いている。そして接地ラグ2は、100%モジュラスが15(MPa)以上のゴムにより形成されている。一方、クローラ厚み方向外側部分7は、最大伸び(%)と引張強さ(MPa)との積の値(以下、伸び強さ乗算値ともいう)が10000(MPa・%)以上で且つ100%モジュラスが10(MPa)以下のゴムからなる。
接地ラグ2の100%モジュラスが15(MPa)以上であるから、接地ラグ2の剛性が高まり、高い牽引性能が確保される。
一方、クローラ厚み方向外側部分7は上述した伸び強さ乗算値を10000(MPa・%)以上としたので、耐屈曲性能が高くなっている。即ち、最大伸び(%)や引張強さ(MPa)が大きいほど屈曲しても亀裂が生じにくくなり耐屈曲性能が高くなる。更にクローラ厚み方向外側部分7は、100%モジュラスが10(MPa)以下とされているので、柔軟性が比較的高く、前述した伸び強さ乗算値の効果と相まって耐屈曲性能を相乗的に高めている。
Here, the grounding lug 2 and the crawler thickness direction outer side portion 7 use rubbers having different blends. The ground lug 2 is made of rubber having a 100% modulus of 15 (MPa) or more. On the other hand, the outer portion 7 in the crawler thickness direction has a product value of maximum elongation (%) and tensile strength (MPa) (hereinafter also referred to as a multiplication value of elongation strength) of 10,000 (MPa ·%) or more and 100%. It consists of rubber with a modulus of 10 (MPa) or less.
Since the 100% modulus of the ground lug 2 is 15 (MPa) or more, the rigidity of the ground lug 2 is increased and high traction performance is ensured.
On the other hand, the outer portion 7 in the crawler thickness direction has a high bending resistance because the above-described elongation strength multiplication value is 10,000 (MPa ·%) or more. That is, as the maximum elongation (%) and tensile strength (MPa) are larger, cracks are less likely to occur even when bent and the bending resistance is improved. Further, the outer portion 7 in the crawler thickness direction has a 100% modulus of 10 (MPa) or less, so that the flexibility is relatively high, and the bending resistance is synergistically enhanced in combination with the effect of the above-described multiplication product of elongation strength. ing.

従来のゴムクローラでは、クローラ厚み方向外側部分のゴムと接地ラグのゴムとが同一のゴム(同一配合のゴム)より形成されており、両者のゴムは100%モジュラス、最大伸び、引張強さがそれぞれ同一であった。したがって、耐屈曲性能と牽引性能との両立に限界があった。即ち、牽引性能を高めるべくゴム材料の100%モジュラスを高くすると耐屈曲性能が低下する傾向があり、逆に耐屈曲性能を高めるべくゴム材料の100%モジュラスを低くすると牽引性能が低下する傾向となってしまう。よってこの場合、牽引性能と耐屈曲性能とを両立を図ろうとすると、前述した特許文献1のように、ラグ内部に高硬度のゴム質芯体を埋設するといった比較的複雑な構造を採用する必要が生じていた。これに対して本発明では、上記構成とすることにより耐屈曲性能と牽引性能とを高度に両立している。   In conventional rubber crawlers, the rubber on the outer side in the crawler thickness direction and the rubber of the ground lug are formed from the same rubber (rubber of the same composition), and both rubbers have 100% modulus, maximum elongation, and tensile strength. Each was the same. Therefore, there is a limit to the balance between bending resistance and traction performance. That is, if the 100% modulus of the rubber material is increased to increase the traction performance, the bending resistance tends to decrease. Conversely, if the 100% modulus of the rubber material is decreased to increase the bending resistance, the traction performance tends to decrease. turn into. Therefore, in this case, in order to achieve both the traction performance and the bending resistance performance, it is necessary to employ a relatively complicated structure in which a high-hardness rubber core is embedded in the lug as described in Patent Document 1 described above. Has occurred. On the other hand, in the present invention, by adopting the above configuration, both the bending resistance performance and the traction performance are highly compatible.

なお、上述のように、クローラ厚み方向外側部分7のゴムの伸び強さ乗算値は大きいほど耐屈曲性能を高める上で有利であるから、クローラ厚み方向外側部分7を構成するゴムの物性は、好ましくは伸び強さ乗算値が11000(MPa)以上とするのがよい。   Note that, as described above, the larger the elongation strength multiplication value of the rubber in the crawler thickness direction outer portion 7 is, the more advantageous in enhancing the bending resistance, so the physical properties of the rubber constituting the crawler thickness direction outer portion 7 are: The elongation strength multiplication value is preferably 11000 (MPa) or more.

また上述のように、クローラ厚み方向外側部分7を構成するゴムの100%モジュラスが小さいほど耐屈曲性能を高める上で有利であるから、クローラ厚み方向外側部分7を構成するゴムの100%モジュラスは、好ましくは9(MPa)以下がよい。ただし、クローラ厚み方向外側部分7の100%モジュラスが過度に小さすぎると、牽引性能が低下することがあるので、好ましくは0.5(MPa)以上とするのがよい。   Further, as described above, the smaller the 100% modulus of the rubber constituting the crawler thickness direction outer portion 7 is, the more advantageous it is to improve the bending resistance. Therefore, the 100% modulus of the rubber constituting the crawler thickness direction outer portion 7 is , Preferably 9 (MPa) or less. However, if the 100% modulus of the outer portion 7 in the crawler thickness direction is excessively small, the traction performance may be deteriorated. Therefore, it is preferably 0.5 (MPa) or more.

接地ラグ2を構成するゴムは、上述のようにその100%モジュラスを大きくするほど牽引性能を高める上で有利であるから、接地ラグ2を構成するゴムの100%モジュラスは、好ましくは16(MPa)以上とするのがよい。なお、接地ラグ2の100%モジュラスが大きすぎると、乗り心地が悪くなることがあるので、好ましくは40(MPa)以下とするのがよい。
なお、ゴムクローラ1の有する複数個の接地ラグ2の全てにおいて、100%モジュラスを15(MPa)以上とする必要はなく、少なくとも一の接地ラグ2において100%モジュラスを15(MPa)以上とすればよい。ただし、牽引性能を重視する観点からは、ゴムクローラ1の有する全ての接地ラグ2の100%モジュラスを15(MPa)以上とするのが好ましい。また、複数個の接地ラグ2相互間において、各接地ラグ2を構成するゴムの100%モジュラスを変化させてもよい。個々の接地ラグ2の100%モジュラスを適宜変化させることにより、ゴムクローラ1の形状(接地ラグ2のパターン、接地ラグ2の形状等)を同一としつつゴムクローラ1の牽引性能を細かく設定することができ、ゴムクローラ1の設計自由度が高まる。
Since the rubber constituting the ground lug 2 is more advantageous in improving the traction performance as its 100% modulus is increased as described above, the rubber 100% modulus constituting the ground lug 2 is preferably 16 (MPa). ) Or better. Note that if the 100% modulus of the grounding lug 2 is too large, the ride comfort may be deteriorated, so the pressure is preferably set to 40 (MPa) or less.
Note that it is not necessary for all of the plurality of ground lugs 2 included in the rubber crawler 1 to have a 100% modulus of 15 (MPa) or higher, and at least one ground lug 2 has a 100% modulus of 15 (MPa) or higher. That's fine. However, from the viewpoint of emphasizing traction performance, it is preferable that the 100% modulus of all the ground lugs 2 of the rubber crawler 1 is 15 (MPa) or more. Moreover, you may change 100% modulus of the rubber which comprises each grounding lug 2 between several grounding lugs 2. FIG. By appropriately changing the 100% modulus of each grounding lug 2, the traction performance of the rubber crawler 1 can be set finely while keeping the shape of the rubber crawler 1 (the pattern of the grounding lug 2, the shape of the grounding lug 2, etc.) the same. This increases the degree of freedom in designing the rubber crawler 1.

上述のように、クローラ厚み方向外側部分7の伸び強さ乗算値は10000(MPa・%)以上とするが、その場合、最大伸びは500(%)以上とするのが好ましく、引張強さは20(MPa)以上とするのが好ましい。最大伸びと引張強さのいずれも所定値以上の値を確保しておくことにより、屈曲時の亀裂がさらに生じにくくなる。   As described above, the elongation strength multiplication value of the outer portion 7 in the crawler thickness direction is 10000 (MPa ·%) or more. In that case, the maximum elongation is preferably 500 (%) or more, and the tensile strength is 20 (MPa) or more is preferable. By securing a value equal to or greater than a predetermined value for both maximum elongation and tensile strength, cracks during bending are further less likely to occur.

なお、クローラ厚み方向外側部分の厚みは特に限定されない。ただし、クローラ厚み方向外側部分の厚みが薄すぎると、クローラ厚み方向外側部分の物性を上記範囲とした効果が少なくなるから、クローラ厚み方向外側部分の厚みは5mm以上が好ましく、10mm以上がより好ましい。同様の理由で、クローラ厚み方向外側部分の厚みは、クローラ本体10の厚みの10%以上とするのが好ましい。そして、クローラ本体部10の外側の一部のみならず、クローラ本体部10の全体について、伸び強さ乗算値を10000(MPa・%)以上とし且つ100%モジュラスを10(MPa)以下としてもよい。   In addition, the thickness of the crawler thickness direction outer side part is not specifically limited. However, if the thickness of the outer portion in the crawler thickness direction is too thin, the effect of setting the physical properties of the outer portion in the crawler thickness direction in the above range is reduced. Therefore, the thickness of the outer portion in the crawler thickness direction is preferably 5 mm or more and more preferably 10 mm or more. . For the same reason, the thickness of the outer portion in the crawler thickness direction is preferably 10% or more of the thickness of the crawler body 10. And not only a part of the outer side of the crawler main body 10 but also the entire crawler main body 10, the elongation strength multiplication value may be set to 10,000 (MPa ·%) or more and the 100% modulus may be set to 10 (MPa) or less. .

上述した実施形態では、クローラ本体10をクローラ厚み方向内側部分6とクローラ厚み方向外側部分7との2層構造としたが、本発明のクローラ厚み方向外側部分7はこのような構造に限定されるものではなく、前述のように、クローラ厚み方向外側部分7は、クローラ本体10の外周面を構成する層であればよい。また、クローラ本体10がクローラ厚み方向内側部分6とクローラ厚み方向外側部分7との2層構造でなく、クローラ本体10全体が単一層からなっていてもよい。   In the embodiment described above, the crawler body 10 has a two-layer structure of the crawler thickness direction inner portion 6 and the crawler thickness direction outer portion 7. However, the crawler thickness direction outer portion 7 of the present invention is limited to such a structure. Instead, as described above, the crawler thickness direction outer side portion 7 may be a layer constituting the outer peripheral surface of the crawler body 10. Further, the crawler main body 10 may not be a two-layer structure of the crawler thickness direction inner portion 6 and the crawler thickness direction outer portion 7, but the entire crawler main body 10 may be a single layer.

また、上述した実施形態のように、クローラ本体10がクローラ厚み方向内側部分6とクローラ厚み方向外側部分7との2層構造からなる場合、クローラ厚み方向内側部分6とクローラ厚み方向外側部分7とのゴム配合は相違していてもよいし、同一でもよい。ただし、クローラ厚み方向内側部分6とクローラ厚み方向外側部分7とを同一配合のゴムとすると、クローラ厚み方向内側部分6とクローラ厚み方向外側部分7とがより強固に一体化しやすく、ゴムクローラ1の耐久性が高まるので好ましい。   Further, as in the above-described embodiment, when the crawler body 10 has a two-layer structure of the crawler thickness direction inner portion 6 and the crawler thickness direction outer portion 7, the crawler thickness direction inner portion 6 and the crawler thickness direction outer portion 7 The rubber composition may be different or the same. However, if the crawler thickness direction inner portion 6 and the crawler thickness direction outer portion 7 are made of the same compounded rubber, the crawler thickness direction inner portion 6 and the crawler thickness direction outer portion 7 are more easily integrated, and the rubber crawler 1 It is preferable because durability is increased.

本発明では、接地ラグ2やクローラ厚み方向外側部分7のゴム配合を適宜変更することにより、同一のゴムクローラ1用金型であっても牽引性能や耐屈曲性能を細かく設定することができる。よって例えば、ラグ配置、ラグパターン、ラグ断面形状等を変えることなく牽引性能を変更することもできる。したがって、同一の金型で様々な路面に適応することが可能なゴムクローラ1を成型することができる。   In the present invention, by appropriately changing the rubber composition of the grounding lug 2 and the outer portion 7 in the crawler thickness direction, the traction performance and the bending resistance performance can be set finely even with the same mold for the rubber crawler 1. Thus, for example, the traction performance can be changed without changing the lug arrangement, the lug pattern, the lug cross-sectional shape, and the like. Therefore, the rubber crawler 1 that can be adapted to various road surfaces with the same mold can be molded.

ゴムクローラ1は、無端帯状のゴムクローラの製法として通常用いられる方法で作製することができる。ただし、実施形態では、クローラ厚み方向外側部分7と接地ラグ2とでゴム配合を互いに異ならせる必要があるから、クローラ厚み方向外側部分7用の未加硫ゴムと、接地ラグ2用の未加硫ゴムとをそれぞれ別々に用意し、両者をゴムクローラ1用の金型内に一緒に仕込んで加硫成型する必要がある。
即ち、ゴムクローラ1の製造方法を具体的に説明すると、図示省略するが、上下型からなる金型の下型に、クローラ厚み方向内側部分6用の帯状の未加硫ゴム、芯金3、抗張体4、クローラ厚み方向外側部分7用の帯状の未加硫ゴム、接地ラグ2用の未加硫ゴム(塊状)の順に載置した後、接地ラグ2成形用の凹部を有する上型を被せて型締めして加硫成形することにより、有端帯状のクローラ部材を作成する。その後、別の金型で、ゴムや芯金を追加しつつジョイント部を成型して無端帯状のゴムクローラ1とする。なお、接地ラグ2用の塊状の未加硫ゴムは、上記した上型の接地ラグ2成形用凹部に対応した位置にセットするとともに、該塊状ゴムの仕込量は、接地ラグ2の体積に対応させた量とする。また、接地ラグ2用の塊状の未加硫ゴムを、型締め前に上型の接地ラグ2形成用凹部内に充填させておいてもよい。また、接地ラグ2用の未加硫ゴムをあらかじめ未加硫状態にて接地ラグ2の形状に予備成型しておき、これをゴムクローラ1の金型内に載置(又は金型の接地ラグ2形成用凹部内にセット)して、上記のように加硫成型してもよい。この場合、ゴムクローラ1の金型の接地ラグ2成型用凹部が接地ラグ2用ゴムで充填されやすくなるから、ゴムクローラ1の加硫成型時において接地ラグ2成形用凹部にクローラ厚み方向外側部分7用のゴムが流入しにくくなる。
The rubber crawler 1 can be manufactured by a method usually used as a method for manufacturing an endless rubber crawler. However, in the embodiment, since it is necessary to make the rubber composition different between the crawler thickness direction outer portion 7 and the ground lug 2, the unvulcanized rubber for the crawler thickness direction outer portion 7 and the unvulcanized rubber for the ground lug 2 are not. It is necessary to prepare the vulcanized rubber separately and charge them together in a mold for the rubber crawler 1 for vulcanization molding.
That is, the manufacturing method of the rubber crawler 1 will be described in detail. Although not shown in the figure, a belt-shaped unvulcanized rubber for the inner portion 6 in the crawler thickness direction, a core metal 3, An upper die having a concave portion for forming the ground lug 2 after the tensile body 4, the belt-shaped unvulcanized rubber for the outer portion 7 in the crawler thickness direction, and the unvulcanized rubber (lumb) for the ground lug 2 are placed in this order. A crawler member with an end band is created by covering and clamping the mold and performing vulcanization molding. Thereafter, the joint portion is molded with another metal mold while adding rubber or a core metal to obtain an endless belt-like rubber crawler 1. The bulk unvulcanized rubber for the ground lug 2 is set at a position corresponding to the above-described concave portion for molding the ground lug 2 and the charged amount of the bulk rubber corresponds to the volume of the ground lug 2 Let the amount be. Further, the bulk unvulcanized rubber for the grounding lug 2 may be filled in the concave portion for forming the grounding lug 2 of the upper mold before clamping. Further, the unvulcanized rubber for the ground lug 2 is pre-molded into the shape of the ground lug 2 in an unvulcanized state and placed in the mold of the rubber crawler 1 (or the ground lug of the mold). 2 may be set in the recess for forming 2) and vulcanized as described above. In this case, since the concave portion for molding the ground lug 2 of the mold of the rubber crawler 1 is easily filled with the rubber for the ground lug 2, when the rubber crawler 1 is vulcanized, the concave portion for molding the ground lug 2 in the crawler thickness outer portion The rubber for 7 becomes difficult to flow in.

ゴムクローラ1は、以上のような製法により作製されたものであるから、上述したように、クローラ厚み方向外側部分7と接地ラグ2との境界線は蛇行したり凹凸を有したりしている。その原因は、加硫成型時のゴム流れ、接地ラグ2用未加硫ゴムの仕込量の誤差、クローラ厚み方向外側部分7用未加硫ゴムの仕込量の誤差、等である。よって、クローラ厚み方向外側部分7用のゴムと接地ラグ2用のゴムとはその境界線近傍において互いに入り交じったような状態となっているが、接地ラグ2の大半(少なくとも80%以上)のゴムは、上記の所定物性を有する接地ラグ2用のゴムからなり、クローラ厚み方向外側部分7の大半(少なくとも80%以上)のゴムは、上記の所定物性を有するクローラ厚み方向外側部分7用のゴムからなっている。   Since the rubber crawler 1 is manufactured by the above manufacturing method, as described above, the boundary line between the crawler thickness direction outer portion 7 and the grounding lug 2 meanders or has irregularities. . The causes are the rubber flow at the time of vulcanization molding, the error in the amount of unvulcanized rubber for the ground lug 2, the error in the amount of unvulcanized rubber for the outer portion 7 in the crawler thickness direction, and the like. Accordingly, the rubber for the outer portion 7 in the crawler thickness direction and the rubber for the grounding lug 2 are in a state of intermingling with each other in the vicinity of the boundary line, but most of the grounding lug 2 (at least 80% or more). The rubber is made of rubber for the grounding lug 2 having the above-mentioned predetermined physical properties, and most (at least 80% or more) of the crawler thickness-direction outer portion 7 is used for the crawler-thickness outer portion 7 having the predetermined physical properties. Made of rubber.

(実施例)
本発明の効果確認するため、4種類の実施例(実施例1〜4)及び8種類の比較例(比較例1〜8)を作製し評価した。全ての実施例及び全ての比較例(以下、全ての例ともいう)においては、クローラ厚み方向外側部分及び接地ラグの材質以外は全て共通のゴムクローラとした。例えば、ラグパターン等のクローラ形状や芯金の仕様等は全ての例で共通とした。
各例に用いるゴムとして、ゴムA〜ゴムEの5種類のゴムを作製した。これらは、ジエン系ゴム成分100重量部に対し、カーボンブラックを30〜100重量部(phr)、オイルを0〜50重量部(phr)、硫黄を0.5〜5重量部(phr)、加硫促進剤を0.5〜3.0重量部(phr)、をそれぞれ配合して作製した。カーボンブラック、オイル、硫黄、加硫促進剤の各phrを上記範囲内で適宜変更することにより、ゴムA〜ゴムEの5種類のゴムを作製した。
ゴムA〜ゴムEの仕様は以下の表1の通りである。
(Example)
In order to confirm the effect of the present invention, four types of examples (Examples 1 to 4) and eight types of comparative examples (Comparative Examples 1 to 8) were prepared and evaluated. In all the examples and all the comparative examples (hereinafter, also referred to as all examples), the rubber crawler is a common rubber crawler except for the crawler thickness direction outer portion and the material of the grounding lug. For example, the crawler shape such as the lug pattern and the specifications of the cored bar are common in all examples.
Five types of rubbers, rubber A to rubber E, were prepared as rubbers used in each example. These are 30 to 100 parts by weight (phr) of carbon black, 0 to 50 parts by weight (phr) of oil, 0.5 to 5 parts by weight (phr) of sulfur, and 100 parts by weight of diene rubber component. The sulfur accelerator was prepared by blending 0.5 to 3.0 parts by weight (phr). By changing each phr of carbon black, oil, sulfur, and vulcanization accelerator within the above range, five types of rubbers, rubber A to rubber E, were produced.
The specifications of rubber A to rubber E are as shown in Table 1 below.

Figure 0004235587
Figure 0004235587

そして、クローラ厚み方向外側部分及び接地ラグに上記ゴムA〜ゴムEを用いて各実施例及び各比較例を作製した。各例の仕様及び耐屈曲性能及び牽引性能の評価結果を表2に示す。

Figure 0004235587
And each Example and each comparative example were produced using the said rubber | gum A-rubber | gum E for a crawler thickness direction outer side part and a grounding lug. Table 2 shows the specifications of each example and the evaluation results of the bending resistance performance and the traction performance.
Figure 0004235587

各例における耐屈曲性能及び牽引性能は、各例のゴムクローラを車両に装着して走行させ、以下の基準によりそれぞれ4段階評価したものである。
〔耐屈曲性能〕
◎:100時間走行後の目視観察において、クローラ厚み方向外側部分や接地ラグの表面に亀裂が発生していない。
○:100時間走行後の目視観察において、クローラ厚み方向外側部分や接地ラグの表面にごく微細な亀裂が見られる。
△:100時間走行後の目視観察において、クローラ厚み方向外側部分や接地ラグの表面に小さな亀裂が見られる。
×:100時間走行後の目視観察において、クローラ厚み方向外側部分や接地ラグの表面に大きな亀裂が見られる。
〔牽引性能〕
◎:1tの物体を牽引させた場合、スリップしなかった。
○:1tの物体を牽引させた場合、まれにスリップして前進する。
△:1tの物体を牽引させた場合、スリップはするものの前進できる。
×:1tの物体を牽引させた場合、スリップして前進できない。
なお、耐屈曲性能及び牽引性能のいずれの評価においても、路面条件はドライとした。
The bending resistance performance and traction performance in each example are evaluated by four stages according to the following criteria, with the rubber crawler of each example mounted on a vehicle and running.
[Bending resistance]
(Double-circle): In the visual observation after driving | running | working for 100 hours, the crack does not generate | occur | produce in the crawler thickness direction outer side part or the surface of a grounding lug.
○: In the visual observation after traveling for 100 hours, very fine cracks are observed on the outer portion in the crawler thickness direction and the surface of the grounding lug.
(Triangle | delta): In the visual observation after driving | running | working for 100 hours, a small crack is seen in the crawler thickness direction outer side part and the surface of a grounding lug.
X: In visual observation after running for 100 hours, a large crack is observed on the outer portion in the crawler thickness direction and the surface of the grounding lug.
(Traction performance)
A: When the object of 1t was pulled, it did not slip.
○ When a 1t object is pulled, it rarely slips and moves forward.
Δ: When an object of 1t is pulled, it slips but can move forward.
X: When an object of 1t is pulled, it cannot slip and move forward.
Note that the road surface condition was dry in any evaluation of the bending resistance performance and the traction performance.

表2に示すように、全ての比較例においては、耐屈曲性能又は牽引性能の少なくともいずれかが△又は×の評価となっている。これに対して、全ての実施例においては、耐屈曲性能及び牽引性能のいずれも◎又は○の評価となっており、耐屈曲性能と牽引性能とが高度に両立している。   As shown in Table 2, in all the comparative examples, at least one of the bending resistance performance and the traction performance is evaluated as Δ or ×. On the other hand, in all the examples, both the bending resistance performance and the traction performance are evaluated as 又 は or ◯, and the bending resistance performance and the traction performance are highly compatible.

なお、接地ラグやクローラ厚み方向外側部分の基材ゴムとしてジエン系ゴムを用いる場合、かかるジエン系ゴムとしては、天然ゴム (NR)および/またはジエン系合成ゴム を用いることが出来る。ここで、ジエン系合成ゴム としては、たとえばスチレンブタジエンゴム (SBR)、イソプレン合成ゴム (IR)、アクリロニトリルブタジエンゴム (NBR)、イソブチレン−イソプレンゴム (IIR)、クロロプレンゴム (CR)などがあげられる。これらのゴム は、単独で用いてもよく、あるいは2種以上組み合わせて用いてもよい。   When a diene rubber is used as the base rubber for the ground lug or the outer portion in the crawler thickness direction, natural rubber (NR) and / or diene synthetic rubber can be used as the diene rubber. Here, examples of the diene-based synthetic rubber include styrene butadiene rubber (SBR), isoprene synthetic rubber (IR), acrylonitrile butadiene rubber (NBR), isobutylene-isoprene rubber (IIR), chloroprene rubber (CR), and the like. These rubbers may be used alone or in combination of two or more.

本発明において、ゴムクローラを構成するゴムの材質や組成は特に限定されないが、接地ラグと、クローラ厚み方向外側の一部分(またはクローラ本体の全部)とで同一の基材ゴムを用いると、接地ラグとクローラ厚み方向外側部分(またはクローラ本体の全部)との結合力が極めて強固となるので好ましい。   In the present invention, the material and composition of the rubber constituting the rubber crawler are not particularly limited, but if the same base rubber is used for the ground lug and a part of the crawler thickness direction outside (or the entire crawler body), the ground lug And the crawler thickness direction outer side portion (or all of the crawler body) are preferable because the bonding force becomes extremely strong.

図1は、本発明の一実施形態のゴムクローラにおける図2のA−A線での断面図である。1 is a cross-sectional view taken along line AA of FIG. 2 in a rubber crawler according to an embodiment of the present invention. 図2は、本発明の一実施形態であるゴムクローラを厚み方向外側(接地面側)から見た図である。FIG. 2 is a view of a rubber crawler according to an embodiment of the present invention as viewed from the outside in the thickness direction (grounding surface side). 図3は、図2のゴムクローラを厚み方向内側から見た図である。FIG. 3 is a view of the rubber crawler in FIG. 2 as viewed from the inside in the thickness direction. 図4は、図2のB−B線における断面図である。4 is a cross-sectional view taken along line BB in FIG.

符号の説明Explanation of symbols

1 ゴムクローラ
2 接地ラグ
7 クローラ厚み方向外側部分(クローラ本体のクローラ厚み方向外側の一部分)
8 外周面
10 クローラ本体
DESCRIPTION OF SYMBOLS 1 Rubber crawler 2 Grounding lug 7 Crawler thickness direction outer side part (Crawler main body crawler thickness direction outer side part)
8 Outer surface 10 Crawler body

Claims (1)

クローラ本体と、このクローラ本体の外周面に突設された接地ラグとを備えたゴムクローラにおいて、
前記クローラ本体の全部またはそのクローラ厚み方向外側の一部分は、最大伸び(%)と引張強さ(MPa)との積の値が10000(MPa・%)以上で且つ100%モジュラスが10(MPa)以下のゴムからなり、
前記接地ラグは、100%モジュラスが15(MPa)以上で、かつ40(MPa)以下のゴムからなることを特徴とするゴムクローラ。
In a rubber crawler comprising a crawler body and a grounding lug protruding on the outer peripheral surface of the crawler body,
The entire crawler body or a part of the crawler thickness direction outer side has a product of maximum elongation (%) and tensile strength (MPa) of 10,000 (MPa ·%) or more and 100% modulus of 10 (MPa). Made of the following rubber,
The rubber crawler characterized in that the ground lug is made of rubber having a 100% modulus of 15 (MPa) or more and 40 (MPa) or less .
JP2004165813A 2004-06-03 2004-06-03 Rubber crawler Expired - Fee Related JP4235587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165813A JP4235587B2 (en) 2004-06-03 2004-06-03 Rubber crawler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165813A JP4235587B2 (en) 2004-06-03 2004-06-03 Rubber crawler

Publications (2)

Publication Number Publication Date
JP2005343326A JP2005343326A (en) 2005-12-15
JP4235587B2 true JP4235587B2 (en) 2009-03-11

Family

ID=35496088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165813A Expired - Fee Related JP4235587B2 (en) 2004-06-03 2004-06-03 Rubber crawler

Country Status (1)

Country Link
JP (1) JP4235587B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4879779B2 (en) * 2007-03-02 2012-02-22 株式会社ブリヂストン Rubber crawler
JP2009078796A (en) * 2007-09-05 2009-04-16 Bridgestone Corp Rubber crawler and sprocket suitable for the same
CN103118930B (en) * 2010-09-21 2015-09-30 株式会社普利司通 Resilient track

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543574Y2 (en) * 1989-01-20 1997-08-06 オカモト株式会社 Crawler shoe
JPH0811756A (en) * 1994-07-04 1996-01-16 Ohtsu Tire & Rubber Co Ltd :The Elastic crawler
JPH08192779A (en) * 1995-01-18 1996-07-30 Ohtsu Tire & Rubber Co Ltd :The Elastic crawler
JP3734876B2 (en) * 1996-03-18 2006-01-11 住友ゴム工業株式会社 Elastic crawler
JP3601569B2 (en) * 1997-03-26 2004-12-15 株式会社ブリヂストン Resin-reinforced elastomer, method for producing the same, and pneumatic tire using the same
JPH11227646A (en) * 1998-02-12 1999-08-24 Bridgestone Corp Rubber crawler
CA2301788A1 (en) * 1999-05-12 2000-11-12 The Goodyear Tire & Rubber Company Endless rubber track and vehicle containing such track
JP2002019654A (en) * 2000-07-10 2002-01-23 Bridgestone Corp Rubber crawler
JP3805974B2 (en) * 2000-12-01 2006-08-09 住友ゴム工業株式会社 Elastic crawler
JP2003105139A (en) * 2001-07-24 2003-04-09 Ube Ind Ltd Rubber composition for belt

Also Published As

Publication number Publication date
JP2005343326A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP6618693B2 (en) Non pneumatic tire
JP5154972B2 (en) Pneumatic tires for motorcycles
EP2502807B1 (en) Vehicle track
EP1506913B1 (en) Rubber crawler track
JPS5855947B2 (en) Highly durable track belt
JP4235587B2 (en) Rubber crawler
JP3734876B2 (en) Elastic crawler
JP2003072315A (en) Non-pneumatic tire
JP2002337766A (en) Rubber crawler and rubber crawler running device
EP3746351B1 (en) Vehicle track core
JP6665973B2 (en) Crawler pad with improved durability
JP2002019654A (en) Rubber crawler
JP4017025B2 (en) Elastic crawler and tire-driven crawler travel device
JP2007276711A (en) Pneumatic tire
JP4879779B2 (en) Rubber crawler
JP4064123B2 (en) Rubber crawler
JP4284640B2 (en) Vinyl chloride resin pad and method for recycling vinyl chloride resin pad
JP2007283871A (en) Rubber crawler
JPH04331674A (en) Endless belt for crawler
US11370499B2 (en) Crawler track, in particular rubber crawler track
JP5588283B2 (en) Elastic crawler
JP5516038B2 (en) Run flat tire
JP4732907B2 (en) Rubber crawler
JP3049290B2 (en) Core for Crawler
JP5262325B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees