JP4231376B2 - Supercritical fluid processing apparatus and method - Google Patents
Supercritical fluid processing apparatus and method Download PDFInfo
- Publication number
- JP4231376B2 JP4231376B2 JP2003348639A JP2003348639A JP4231376B2 JP 4231376 B2 JP4231376 B2 JP 4231376B2 JP 2003348639 A JP2003348639 A JP 2003348639A JP 2003348639 A JP2003348639 A JP 2003348639A JP 4231376 B2 JP4231376 B2 JP 4231376B2
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- supercritical
- liquid
- state
- pressure vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Cleaning Or Drying Semiconductors (AREA)
Description
本発明は、LSIやMEMS素子等を超臨界流体を用いて現像後の洗浄又は乾燥を行う新規な超臨界流体処理装置及びその方法に関する。 The present invention relates to a novel supercritical fluid processing apparatus and method for cleaning or drying LSIs, MEMS elements, and the like after development using a supercritical fluid.
LSIやMEMS素子を始めとする大規模・高性能デバイスを製作するためには、極微細パターンが必要となる。この極微細パターンは露光、現像、リンス洗浄(以下、単にリンスと言う)及び乾燥を経て形成されるレジストパターンや、エッチング、水洗、リンス・乾燥を経て形成されるエッチングパターンである。レジストとは、光、X線、電子線などに感光する高分子材料である。 In order to manufacture large-scale and high-performance devices such as LSI and MEMS elements, ultrafine patterns are required. This ultrafine pattern is a resist pattern formed through exposure, development, rinse cleaning (hereinafter simply referred to as “rinse”) and drying, or an etching pattern formed through etching, water washing, rinsing / drying. A resist is a polymer material that is sensitive to light, X-rays, electron beams and the like.
しかしながら、極微細パターンの形成段階の乾燥工程でパターンが倒れる現象が生じ、性能を満足させるパターンが形成できない問題が生じていた。この原因は、乾燥時にパターン間に残ったリンス液の毛細管力が極微細パターンに作用してパターンを倒すことにある。 However, there has been a problem that the pattern collapses during the drying process in the formation stage of the ultrafine pattern, and a pattern that satisfies the performance cannot be formed. The cause of this is that the capillary force of the rinsing liquid remaining between the patterns during drying acts on the ultrafine pattern and causes the pattern to fall.
毛細管力は、パターン間に残ったリンス液内圧力と大気圧との差で生じるもので、リンス液の表面張力に関係する。従って、リンス液の表面張力が大きい程、毛細管力は大きくなりパターンは倒れ易くなる。このパターン倒れを解決するために、通常用いるリンス液から表面張力の小さいリンス液に置換し、この状態から乾燥する。表面張力は、液体と気体の界面が形成された状態で発生する。それゆえ、表面張力を無くすために液体と気体の界面を生じさせることなく乾燥する方法として、超臨界流体を用いた乾燥方法が特許文献1に知られている。一般に使われる超臨界流体としては、臨界圧力、臨界温度が低く安全な二酸化炭素(CO2)がある。
The capillary force is generated by the difference between the pressure in the rinse liquid remaining between the patterns and the atmospheric pressure, and is related to the surface tension of the rinse liquid. Therefore, as the surface tension of the rinsing liquid increases, the capillary force increases and the pattern tends to collapse. In order to solve this pattern collapse, the rinse liquid usually used is replaced with a rinse liquid having a low surface tension, and drying is performed from this state. The surface tension is generated in a state where an interface between liquid and gas is formed. Therefore,
図4は、従来のこの超臨界二酸化炭素を用いた微細構造乾燥装置の構成図である。先ず、加熱手段と冷却手段とを備えた高圧乾燥処理容器103内部に乾燥しようとする被乾燥物106を入れる。次に、乾燥溶媒(液体二酸化炭素)を貯蔵するサイホン管付液取りボンベやコールドエバポレータ(以下CE)からなるボンベ100等からバルブ104を開けて乾燥溶媒(液体/気体)を送出し、この乾燥溶媒を圧縮して送出する高圧ポンプ101にて圧送する。この時、乾燥溶媒中に含有される水分に溶解した不純物やサイホン管付液取りボンベなどから混入した金属微粒子を濾過手段102で濾過する。
FIG. 4 is a block diagram of a conventional microstructure drying apparatus using this supercritical carbon dioxide. First, an object to be dried 106 to be dried is placed in a high-pressure
次に、高圧乾燥処理容器103内が濾過された液体二酸化炭素で満たされ、被乾燥物がリンス液に代わって完全に液体二酸化炭素で覆われた状態にし、極微細パターン間に溜まっているリンス液を液体二酸化炭素で洗い置換した後、高圧乾燥処理容器103の温度を上昇させて臨界点以上の温度及び圧力(二酸化炭素の臨界条件:31℃、73MPa)にして、液化二酸化炭素を超臨界二酸化炭素に変換する。最後に高圧乾燥処理容器103の温度を超臨界温度以上に保持したまま調節弁105を開けて超臨界二酸化炭素を外部に放出して大気圧とし、その後高圧乾燥処理容器102の温度を室温程度まで冷却して乾燥を終了する。
Next, the inside of the high-pressure
この従来の乾燥方法として、超臨界流体は、気体の拡散性と液体の溶解性(高密度性)を兼ね備えた状態で、液体から超臨界状態を経て気体へ状態変化させると平衡線を介さずに状態変化できる。そのため、超臨界流体で満たされた状態から徐々に流体を放出すると、液体/気体の界面が形成されないことから表面張力による作用を生じさせることなく乾燥することができる。 As a conventional drying method, a supercritical fluid has both gas diffusivity and liquid solubility (high density), and if it changes from a liquid to a gas via a supercritical state, it does not go through an equilibrium line. The state can be changed. Therefore, when the fluid is gradually discharged from the state filled with the supercritical fluid, the liquid / gas interface is not formed, and therefore, it is possible to dry without causing an effect due to the surface tension.
尚、液体二酸化炭素で置換可能なリンス液としては、例えば、2-プロパノール、エタノール、アルコール等があるが、被乾燥物洗浄に用いるリンス液が二酸化炭素と混和しないものであれば、このリンス液を二酸化炭素親和性を有する別のリンス液に置換しておく必要がある。 The rinsing liquid that can be replaced with liquid carbon dioxide includes, for example, 2-propanol, ethanol, alcohol, and the like. If the rinsing liquid used for washing the object to be dried is immiscible with carbon dioxide, this rinsing liquid is used. Must be replaced with another rinsing solution having affinity for carbon dioxide.
又、LSIやMEMS素子の洗浄において、超臨界流体を溶媒とする洗浄方法として特許文献2及び3が知られている。その洗浄方法は前述の乾燥と同様の方法で行われる。 Further, Patent Documents 2 and 3 are known as cleaning methods using a supercritical fluid as a solvent for cleaning LSIs and MEMS elements. The washing method is performed in the same manner as the above drying.
従来の微細構造の乾燥又は洗浄では、溶媒中に含有される水分に溶解した不純物やサイホン管付液取りボンベなどから溶け出した金属微粒子を多量に含有した液体二酸化炭素を昇圧/昇温して超臨界流体を生成している。この溶媒中に含有される水分に溶解した不純物やサイホン管付液取りボンベなどから溶け出した金属微粒子は、液体二酸化炭素の導入経路に設置したフィルタによって除去するのは困難なため、清浄度の高い超臨界流体を得ることが困難であった。 In conventional drying or washing of fine structures, liquid carbon dioxide containing a large amount of impurities dissolved in water contained in a solvent or metal fine particles dissolved from a liquid collecting cylinder with a siphon tube is pressurized / heated up. Supercritical fluid is generated. Impurities dissolved in the moisture contained in this solvent and metal fine particles that have dissolved out of the liquid collection cylinder with siphon tube are difficult to remove with a filter installed in the liquid carbon dioxide introduction path. It was difficult to obtain a high supercritical fluid.
また、液体二酸化炭素の導入経路にフィルタを設置して液体二酸化炭素中に含有される水分に溶解した不純物やサイホン管付液取りボンベなどから溶け出した金属微粒子を除去しようとした場合、液体二酸化炭素中に不純物や金属微粒子を多量に含有しているため、フィルタに懸かる負荷が大きく、フィルタ寿命を著しく低下させる。また、不純物や金属微粒子除去性能としてフィルタにおける最高の濾過精度まで発揮させることができない。例えば、焼結フィルタにおける最高濾過精度は、0.003μm程度であるが、液体では約2μmでの除去性能までしか発揮できない。 In addition, when a filter is installed in the liquid carbon dioxide introduction path to remove impurities dissolved in the water contained in the liquid carbon dioxide or metal fine particles dissolved from the liquid collection cylinder with a siphon tube, etc. Since carbon contains a large amount of impurities and metal fine particles, the load on the filter is large, and the filter life is significantly reduced. In addition, the highest filtration accuracy in the filter cannot be exhibited as the performance of removing impurities and metal fine particles. For example, the maximum filtration accuracy in the sintered filter is about 0.003 μm, but the liquid can only exhibit the removal performance at about 2 μm.
また、液体二酸化炭素をフィルタによって濾過する場合、高圧の液化ガスがフィルタハウジングから出て行く際に断熱膨張が発生し、液体二酸化炭素が固体化(ドライアイス化)する場合があり、フィルタを破壊してしまう恐れがある。 Also, when liquid carbon dioxide is filtered through a filter, adiabatic expansion occurs when high-pressure liquefied gas leaves the filter housing, and the liquid carbon dioxide may solidify (dry ice), destroying the filter. There is a risk of doing.
更に、不純物や金属微粒子の濾過性能を優先して一旦気体の二酸化炭素へ変換し、不純物や金属微粒子を濾過後に液体へ再変換した場合、エンタルピを用いて解説すると、a点(20℃、約6Mpa)液体のエンタルピは114(kcal/kg)、b点(20℃、約6Mpa)気体のエンタルピは151(kcal/kg)となり、b点−a点=151−114=37(kcal/kg)となる。また、超臨界点から液体へと変換した場合は、a点(20℃、約6Mpa)液体、c点(31.1℃、7.382Mpa)超臨界点のエンタルピにより、c点-a点=133-114=19(kcal/kg)となり、気体から液体へ変換した場合のエンタルピは、超臨界から液化する場合の約2倍であり、エネルギーの消費が大きい。 Furthermore, when the filtration performance of impurities and metal fine particles is prioritized and converted to gaseous carbon dioxide, and impurities and metal fine particles are converted back to liquid after filtration, the point of enthalpy (20 ° C, approx. 6Mpa) Liquid enthalpy is 114 (kcal / kg), b point (20 ℃, about 6Mpa) Gas enthalpy is 151 (kcal / kg), b point-a point = 151-114 = 37 (kcal / kg) It becomes. In addition, when converted from a supercritical point to a liquid, the c point-a point = 133-114 due to the enthalpy of the a point (20 ° C., about 6 MPa) liquid and the c point (31.1 ° C., 7.382 MPa) supercritical point. = 19 (kcal / kg), and the enthalpy when converted from gas to liquid is about twice that of liquefaction from supercritical, and energy consumption is large.
本発明の目的は、超臨界流体による被処理物の洗浄又は乾燥に際し、フィルタの破壊を防止し、清浄度が高く、更にエネルギー消費を少なくできる超臨界流体処理装置及びその方法を提供することにある。 An object of the present invention is to provide a supercritical fluid processing apparatus and method for preventing destruction of a filter, having high cleanliness, and further reducing energy consumption when cleaning or drying an object to be processed with a supercritical fluid. is there.
本発明は、高圧容器内に被処理物が設置され、前記高圧容器内に常温及び常圧では気体で高圧下では液体となる溶媒を液体又は超臨界状態で導入して前記被処理物を洗浄又は乾燥させる超臨界流体処理装置において、前記溶媒の供給源より供給される前記溶媒を超臨界状態として貯蔵できる超臨界状態貯蔵手段と、該超臨界状態貯蔵手段からの超臨界状態の前記溶媒中の固形物を濾過する濾過手段とを有し、
前記濾過手段と前記高圧容器との間に、前記濾過手段により濾過された前記超臨界状態の溶媒を再度液体状態として貯蔵できる再液体状態貯蔵手段を有することを特徴とする超臨界流体処理装置にある。
The present invention, the object to be treated is placed into a high-pressure vessel, the pressure vessel to atmospheric temperature and pressure in the processing object by introducing a solvent containing liquid in liquid or supercritical state under high pressure gas In a supercritical fluid processing apparatus to be cleaned or dried, a supercritical state storage means capable of storing the solvent supplied from the solvent supply source as a supercritical state, and the supercritical state solvent from the supercritical state storage means the solids in possess a filtering means for filtering,
Wherein between the filter means and the high pressure vessel, said filtration means supercritical fluid processing apparatus characterized by chromatic re liquid state storage means capable of storing a solvent liquid state again in the supercritical state which is filtered by It is in.
本発明の超臨界流体処理装置は、前記溶媒の供給源と超臨界状態貯蔵手段との間に前記供給源より供給される前記溶媒を液体状態として貯蔵できる液体状態貯蔵手段を有すること、前記濾過手段と前記高圧容器との間に、前記濾過手段により濾過された前記超臨界状態の溶媒を再度液体状態として貯蔵できる再液体状態貯蔵手段を有すること、前記液体状態貯蔵手段は前記溶媒を液化する液化手段を有し、該液化された溶媒を前記超臨界状態貯蔵手段に送出する圧力印加手段を有すること、前記超臨界状態貯蔵手段は、前記溶媒を超臨界状態とする圧力及び温度を制御する制御手段を有することが好ましい。 The supercritical fluid processing apparatus of the present invention has liquid state storage means capable of storing the solvent supplied from the supply source as a liquid state between the solvent supply source and the supercritical state storage means, and the filtration A re-liquid state storage means capable of storing the supercritical solvent filtered by the filtering means as a liquid state again between the means and the high-pressure vessel; and the liquid state storage means liquefies the solvent Liquefying means, pressure application means for sending the liquefied solvent to the supercritical state storage means, the supercritical state storage means controlling the pressure and temperature at which the solvent is in a supercritical state It is preferable to have a control means.
更に、本発明の超臨界流体処理装置は、前記濾過手段が目の粗さが3μm〜3nmであるフィルタとその外周に設けられた加熱手段と前記溶媒を超臨界状態とする圧力及び温度を制御する制御手段を有し、前記フィルタと加熱手段とが複数段直列に配置されていること、前記液体状態貯蔵手段、前記超臨界状態貯蔵手段、前記濾過手段及び前記高圧容器が順次高い位置に設置され、前記溶媒の流れが下部から上部の方向となるように配置されていること、前記再液体状態貯蔵手段が前記濾過手段と前記高圧容器との間に順次高い位置に設置されていること、前記溶媒が前記高圧容器内の前記被処理物よりも低い位置より導入されること、前記高圧容器から大気に排出される前記溶媒の排出口が前記高圧容器の上部に設けられていることが好ましい。 Furthermore, in the supercritical fluid processing apparatus of the present invention, the filtration means controls the pressure and temperature at which the filter has a mesh size of 3 μm to 3 nm, the heating means provided on the outer periphery thereof, and the solvent in a supercritical state. A plurality of stages of the filter and the heating means arranged in series, the liquid state storage means, the supercritical state storage means, the filtration means and the high pressure vessel are sequentially installed at a higher position. Being arranged so that the flow of the solvent is in the direction from the lower part to the upper part, the re-liquid state storage means being sequentially installed at a higher position between the filtration means and the high-pressure vessel, It is preferable that the solvent is introduced from a position lower than the object to be processed in the high-pressure vessel, and a discharge port for the solvent discharged from the high-pressure vessel to the atmosphere is provided in the upper portion of the high-pressure vessel. .
本発明は、高圧容器内に被処理物が設置され、前記高圧容器内に常温及び常圧では気体で高圧下では液体となる溶媒を液体又は超臨界状態で導入して前記被処理物を洗浄又は乾燥させる超臨界流体処理方法において、前記溶媒の供給源より供給される前記溶媒を超臨界状態として貯蔵し、該超臨界状態で貯蔵された超臨界状態の前記溶媒を超臨界状態でその中の固形物を濾過すると共に、該濾過された超臨界状態の溶媒を再度液体状態として貯蔵し、該貯蔵された液体状態の前記溶媒を前記高圧容器に供給することを特徴とする超臨界流体処理方法にある。 The present invention, the object to be treated is placed into a high-pressure vessel, the pressure vessel to atmospheric temperature and pressure in the processing object by introducing a solvent containing liquid in liquid or supercritical state under high pressure gas In the supercritical fluid processing method for washing or drying, the solvent supplied from the solvent supply source is stored as a supercritical state, and the supercritical state solvent stored in the supercritical state is stored in the supercritical state. A supercritical fluid characterized by filtering solid matter therein , storing the filtered supercritical solvent again in a liquid state, and supplying the stored liquid solvent to the high-pressure vessel It is in the processing method.
又、本発明の超臨界流体処理方法は、前記供給源より供給される前記溶媒を液体状態で貯蔵し、該貯蔵された液体状態の前記溶媒を前記超臨界状態での貯蔵に供給すること、前記濾過された超臨界状態の溶媒を再度液体状態として貯蔵し、該貯蔵された液体状態の前記溶媒を前記高圧容器に供給すること、前記溶媒を超臨界状態とする圧力及び温度を制御しながら前記濾過を行うこと、前記液体状態での貯蔵、前記超臨界状態での貯蔵、前記濾過及び高圧容器内での前記被処理物の洗浄又は乾燥を順次に高い位置で行うこと、前記再液体状態での貯蔵を、前記濾過と高圧容器内での前記被処理物の洗浄又は乾燥との間で順次高い位置で行うことが好ましい。 In the supercritical fluid processing method of the present invention, the solvent supplied from the supply source is stored in a liquid state , and the stored liquid state solvent is supplied to the storage in the supercritical state. The filtered supercritical solvent is stored again as a liquid state, the stored liquid state solvent is supplied to the high-pressure vessel, and the pressure and temperature at which the solvent is brought into a supercritical state are controlled. Performing the filtration, storing in the liquid state, storing in the supercritical state, performing the filtration and washing or drying of the object to be processed in a high-pressure vessel sequentially at a high position, the re-liquid state It is preferable to perform storage at a high position sequentially between the filtration and washing or drying of the object to be processed in a high-pressure vessel.
市販されている5N(99.999%)高純度液化二酸化炭素中の水分に溶解した不純物やボンベなどから溶け出した金属微粒子が、径0.3μm以上のものが108ケ/cF程度あることが知られている。また、不純物や金属微粒子を分析したところ、Al、Ca、Cr、Fe、Ni、Cu、Au、Na等であること見出し、これらの比重が超臨界二酸化炭素よりも大きい物質であることが分った。従って、本発明は、溶媒を超臨界状態にて一旦貯蔵して重い金属微粒子を容器の下部に集めることにより、フィルタには極めてわずかな不純物や金属微粒子だけを濾過することになり、清浄性能が極めて高いものとなる。 It is known that there are about 10 8 pieces / cF of metal fine particles with a diameter of 0.3 μm or more, which are dissolved from water and impurities dissolved in moisture in 5N (99.999%) high purity liquefied carbon dioxide that is commercially available. ing. In addition, analysis of impurities and fine metal particles revealed that they are Al, Ca, Cr, Fe, Ni, Cu, Au, Na, etc., and that these specific substances are larger than supercritical carbon dioxide. It was. Therefore, according to the present invention, the solvent is temporarily stored in the supercritical state and the heavy metal fine particles are collected at the lower part of the container, so that only a very small amount of impurities and metal fine particles are filtered in the filter. Extremely expensive.
特に、本発明は、溶媒を超臨界状態にした後、一次側より上向きに連結されたフィルタにより濾過すること、溶媒の流路を順次高い位置に配置することで、不純物や金属微粒子自体を搬送せずに、低い位置で停滞させ分離することで、被処理物に到達させないようにすることができ、且つフィルタの破壊を防止することができること、更にエネルギー消費の少ない処理を行うことができる。更に、本発明においては、溶媒となる超臨界流体自身の清浄性能が極めて高いため被処理物の洗浄又は乾燥を高清浄に行うことができる。 In particular, according to the present invention, after the solvent is brought into a supercritical state, it is filtered through a filter connected upward from the primary side, and the solvent flow path is sequentially arranged at a higher position, thereby conveying impurities and metal fine particles themselves. Without being stagnated, it is possible to prevent the filter from being broken, to prevent the filter from being broken, and to perform processing with less energy consumption. Furthermore, in the present invention, since the cleaning performance of the supercritical fluid itself as the solvent is extremely high, the object to be processed can be washed or dried with high cleanliness.
更に、本発明では、被処理物を洗浄又は乾燥する溶媒(二酸化炭素)を貯蔵する貯蔵手段より気体/液体混合の状態で取り出し、十分に冷却された液体状態貯蔵手段にて液化し液体状態にて送出ポンプにより送出する。その後、液体より超臨界状態として貯蔵できる超臨界状態貯蔵手段にて貯蔵した後、超臨界状態のまま下から上部方向に連結設置したフィルタにて溶媒中に含有される水分に溶解した不純物やボンベなどから溶け出した金属微粒子を濾過(分離)し高清浄化する。更に高清浄化された溶媒を再液化して貯蔵できる再液化状態貯蔵手段より高圧容器へ溶媒を送出する。そして、液体状態貯蔵手段、超臨界状態貯蔵手段、濾過手段、再液化状態貯蔵手段及び高圧容器を順次高い位置に配置することで、液体二酸化炭素中に含有される水分に溶解した不純物やサイホン管付液取りボンベなどから溶け出した重い金属微粒子との比重差を利用し、上部へ持ち上がらせない(搬送しない)手法を見出した。 Further, in the present invention, a gas / liquid mixed state is taken out from a storage means for storing a solvent (carbon dioxide) for cleaning or drying the object to be processed, and liquefied into a liquid state by a sufficiently cooled liquid state storage means. And send it out with a delivery pump. After that, after storing in a supercritical state storage means that can be stored as a supercritical state from a liquid, impurities or cylinders dissolved in water contained in the solvent with a filter that is connected in the supercritical state from below to above. Filtration (separation) of metal fine particles that have melted away from the surface and other components is highly purified. Furthermore, the solvent is sent to the high-pressure vessel from the re-liquefied state storage means that can re-liquefy and store the highly purified solvent. The liquid state storage means, the supercritical state storage means, the filtration means, the reliquefied state storage means, and the high-pressure vessel are sequentially arranged at a high position so that impurities or siphon tubes dissolved in the water contained in the liquid carbon dioxide can be obtained. Using the difference in specific gravity with heavy metal fine particles that have melted out from a liquid collecting cylinder, etc., we have found a method that prevents them from being lifted up (not transported).
また、超臨界状態より再液化することで、気体より再液化する場合のエネルギー消費を約半分とすることとし、エネルギーの消費を低減することができた。更に、フィルタ部分における断熱膨張に起因するフィルタの破壊等を防止することができる。 In addition, by re-liquefying from the supercritical state, energy consumption when re-liquefying from gas was reduced to about half, and energy consumption could be reduced. Furthermore, it is possible to prevent the filter from being damaged due to adiabatic expansion in the filter portion.
特に本発明においては、前記被処理物をリンス液に浸漬又は濡れた状態で前記高圧容器内に設置し、前記高圧容器内に導入した前記流体によって前記被処理物から前記リンス液を除去すると共に、前記被処理物を乾燥させる場合に極めて有効である。 In particular, in the present invention, the object to be treated is placed in the high-pressure vessel in a state immersed or wet in a rinsing liquid, and the rinsing liquid is removed from the object to be treated by the fluid introduced into the high-pressure container. It is extremely effective when drying the workpiece.
本発明によれば、液体或いは超臨界状態の溶媒の清浄度を高くでき、LSIやMEMS素子等を超臨界流体を用いて現像後の低パーティクルな洗浄又は乾燥を行うことが可能となり、歩留まりが向上する。また、フィルタ部分での溶媒の固体化を防止し、フィルタの損傷を防止することができ、信頼性を向上させることができる。更に、再液化の際のエネルギー消費を抑えることができコストダウンを図ることができる。 According to the present invention, it is possible to increase the cleanliness of a liquid or supercritical solvent, and it is possible to perform cleaning or drying with low particles after development of LSI or MEMS elements using a supercritical fluid, resulting in a high yield. improves. Moreover, solidification of the solvent in the filter portion can be prevented, damage to the filter can be prevented, and reliability can be improved. Furthermore, energy consumption at the time of reliquefaction can be suppressed, and cost reduction can be achieved.
本発明は、高圧容器内に被処理物が設置され、前記高圧容器中に常温及び常圧では気体で高圧下では液体となる溶媒を液体又は超臨界状態で導入して前記被処理物を洗浄又は乾燥させる超臨界流体処理装置において、前記溶媒の供給源より供給される前記溶媒を超臨界状態として前記溶媒を超臨界状態とする圧力及び温度を制御する制御手段を有し貯蔵できる超臨界状態貯蔵手段と、該超臨界状態貯蔵手段からの超臨界状態の前記溶媒中の固形物を濾過するフィルタとその外周に設けられた加熱手段とを有する複数段直列に配置した濾過手段と、更に、前記溶媒の供給源と超臨界状態貯蔵手段との間に前記供給源より供給される前記溶媒を液体状態として貯蔵できる液体状態貯蔵手段と、前記濾過手段と前記高圧容器との間に前記濾過手段により濾過された前記超臨界状態の溶媒を再度液体状態として前記溶媒を液化する液化手段と貯蔵できる再液体状態貯蔵手段と、該液化された溶媒を前記超臨界状態貯蔵手段に送出する圧力印加手段とを有し、前記液体状態貯蔵手段、前記超臨界状態貯蔵手段、前記濾過手段、前記再液体状態貯蔵手段及び前記高圧容器は、順次高い位置に設置され、前記溶媒の流れが下部から上部の方向となるように配置されていること特徴とする超臨界流体処理装置にある。 The present invention, the object to be treated is placed into a high-pressure vessel, the pressure vessel said object to be processed under high pressure gaseous at normal temperature and normal pressure by introducing a solvent containing liquid in liquid or supercritical state during In a supercritical fluid processing apparatus for cleaning or drying, a supercritical fluid that can be stored with control means for controlling the pressure and temperature at which the solvent supplied from the solvent supply source is in a supercritical state and the solvent is in a supercritical state. A plurality of stages of filtration means arranged in series, comprising: a state storage means; a filter for filtering the solid matter in the supercritical state solvent from the supercritical state storage means; and a heating means provided on the outer periphery thereof; and The liquid state storage means capable of storing the solvent supplied from the supply source as a liquid state between the solvent supply source and the supercritical state storage means, and the filtration between the filtration means and the high pressure vessel. To the means Liquefied means for liquefying the solvent by re-filtering the filtered supercritical solvent again, re-liquid state storing means for storing, and pressure applying means for sending the liquefied solvent to the supercritical state storage means The liquid state storage means, the supercritical state storage means, the filtration means, the re-liquid state storage means and the high-pressure vessel are sequentially installed at a high position, and the flow of the solvent is from the lower part to the upper part. The supercritical fluid processing apparatus is characterized by being arranged in a direction.
更に、本発明は、高圧容器内に被処理物が設置され、前記高圧容器中に常温及び常圧では気体で高圧下では液体となる溶媒を液体又は超臨界状態で導入して前記被処理物を洗浄又は乾燥させる超臨界流体処理方法において、前記溶媒の供給源より供給される前記溶媒を超臨界状態として貯蔵し、該超臨界状態で貯蔵された前記溶媒を超臨界状態でその中の固形物を濾過することを特徴とし、更に、前記供給源より供給される前記溶媒を液体状態で貯蔵し、該貯蔵された液体状態の前記溶媒を前記超臨界状態での貯蔵に供給すること、前記濾過された超臨界状態の溶媒を再度液体状態として貯蔵し、該貯蔵された液体状態の前記溶媒を前記高圧容器に供給すること、前記溶媒を超臨界状態とする圧力及び温度を制御しながら前記濾過を行うこと、前記液体状態での貯蔵、前記超臨界状態での貯蔵、前記濾過、前記再液体状態での貯蔵及び高圧容器内での前記被処理物の洗浄又は乾燥を順次に高い位置で行うことを特徴とする超臨界流体処理方法にある。
〔実験例1〕
Furthermore, the present invention is installed to be treated into the high pressure vessel, said at normal temperature and normal pressure in the high pressure vessel wherein the object to be processed by introducing a solvent containing liquid in liquid or supercritical state under high pressure in a gas In a supercritical fluid processing method for washing or drying an object, the solvent supplied from the solvent source is stored as a supercritical state, and the solvent stored in the supercritical state is stored in the supercritical state. the solid was characterized by filtering, further to the solvent supplied from the supply source and stored in a liquid state, supplying the solvent reservoir liquid state for storage of the supercritical state, The filtered supercritical solvent is stored again as a liquid state, the stored liquid state solvent is supplied to the high-pressure vessel, and the pressure and temperature at which the solvent is brought into a supercritical state are controlled. Performing the filtration Storage in the liquid state, storage in the supercritical state, filtration, storage in the re-liquid state, and washing or drying of the object to be processed in a high-pressure vessel are sequentially performed at a high position. A supercritical fluid processing method.
[Experimental Example 1]
図1は、本実験例の微細構造物乾燥装置のブロック図である。図1に示すように、乾燥溶媒を貯蔵するサイホン管付液取りボンベやCEからなるボンベ100、乾燥溶媒を送出するための高圧ポンプ101、乾燥溶媒中に含有される水分に溶解した不純物やボンベなどから溶け出した金属微粒子を濾過(分離)するためのフィルタを有する濾過手段102、被乾燥物を保持して処理するための高圧乾燥処理容器103、乾燥溶媒を供給するためのバルブ104、乾燥溶媒を開放するための調節弁105、被乾燥物106、高圧ポンプより送出された乾燥溶媒を超臨界状態として貯蔵できる超臨界状態貯蔵手段200を有する。濾過手段102と超臨界状態貯蔵手段200には加熱手段と乾燥溶媒の圧力及び温度を制御する制御手段を有する。
FIG. 1 is a block diagram of the fine structure drying apparatus of this experimental example . As shown in FIG. 1, a liquid collecting cylinder with a siphon tube for storing a dry solvent or a
以下、図1に示した微細構造乾燥装置における被乾燥物の乾燥方法について説明する。本実験例は、乾燥溶媒として液化二酸化炭素を用いた場合の例である。
(1)乾燥しようとする被乾燥物106を高圧乾燥処理容器103に搬入・保持し、終了後に高圧乾燥処理容器103の蓋を閉める。
(2)次に、ボンベ100の頭上弁のバルブ104を開放する。バルブ104を開放すると、気体/液体混合の二酸化炭素がリンス置換に必要な流量を高圧ポンプ101にて送出する。
(3)高圧ポンプ101にて送出された気体/液体混合の二酸化炭素は、超臨界状態貯蔵手段200にて、超臨界圧力及び温度に制御され超臨界状態に変換される。
(4)超臨界状態となった二酸化炭素は、濾過手段102の焼結フィルタやメンブレンフィルタなど除去目的の目の粗さに合わせた2つ以上のフィルタにて超臨界状態前の液体二酸化炭素中に含有される水分に溶解した不純物やサイホン管付液取りボンベなどから溶け出した金属微粒子を濾過(分離)し、高清浄化する。濾過手段102の外周にはヒータがあり、超臨界温度状態に保たれる。
Hereinafter, a method for drying an object to be dried in the fine structure drying apparatus shown in FIG. 1 will be described. This experiment is an example of a case of using liquid carbon dioxide as a dry solvent.
(1) The object to be dried 106 to be dried is carried and held in the high-pressure
(2) Next, the
(3) The gas / liquid mixed carbon dioxide delivered by the high-
(4) The carbon dioxide that has reached the supercritical state is contained in the liquid carbon dioxide before the supercritical state by using two or more filters that match the roughness of the eyes to be removed, such as a sintered filter or membrane filter of the filtering means 102. Impurities dissolved in the water contained in the water and metal fine particles dissolved from the liquid collecting cylinder with siphon tube are filtered (separated) to be highly purified. There is a heater on the outer periphery of the filtering means 102, and the supercritical temperature state is maintained.
高清浄化された超臨界二酸化炭素は液体二酸化炭素の状態で高圧乾燥処理容器103へ供給する。
The highly purified supercritical carbon dioxide is supplied to the high-pressure drying
高圧乾燥処理容器103へ高清浄化された液体二酸化炭素が導入されると、乾燥される被乾燥物106が液体状態の二酸化炭素で満たされ、微細構造間に残留しているリンス液が液体二酸化炭素に置換される。
When highly purified liquid carbon dioxide is introduced into the high-pressure drying
リンス液の置換が終了した後、乾燥溶媒の圧力を保ちながら高圧乾燥処理容器103の温度を18℃から40℃に制御する。これにより、液体の二酸化炭素が超臨界状態となる。
After completion of the rinsing liquid replacement, the temperature of the high-pressure drying
超臨界状態となった後、制御温度40℃を保ちながら調節弁105を開けて、高圧乾燥処理容器103内の超臨界二酸化炭素を開放する。これにより、超臨界状態から開放するため気体/液体の界面を介さない、高清浄な状態で乾燥を終了することができる。
After reaching the supercritical state, the control valve 105 is opened while maintaining the control temperature of 40 ° C., and the supercritical carbon dioxide in the high-pressure drying
以上のように、本実験例の微細構造乾燥装置では、乾燥溶媒を高圧乾燥処理容器に供給する前に、乾燥溶媒を超臨界状態として、その時にフィルタで液体二酸化炭素中に含有される水分に溶解した不純物やサイホン管付液取りボンベなどから溶け出した金属微粒子を濾過(分離)するため、乾燥溶媒の清浄度を高くすることができ、また、フィルタ部分での乾燥溶媒の固体化を防止できるため、フィルタ自身を傷めることなく清浄化できる。本実施例では、超臨界状態貯蔵手段200、濾過手段102及び高圧乾燥処理容器103は同一高さで配管されているが、これらを順次高い位置に設置することにより後述する実施例3と同様に金属微粒子を清浄度を高く除去することができる。
〔実験例2〕
As described above, moisture microstructure drying apparatus of the present real Kenrei, prior to feeding the dried solvent to the high-pressure drying chamber, the drying solvent as the supercritical state, which is contained in the liquid carbon dioxide in the filter at that time Filtering (separating) the impurities dissolved in the metal and the metal fine particles dissolved in the liquid collecting cylinder with siphon tube, etc., it is possible to increase the cleanliness of the dry solvent and to solidify the dry solvent in the filter part. Since it can prevent, it can clean without damaging the filter itself. In the present embodiment, the supercritical state storage means 200, the filtration means 102, and the high-pressure drying
[Experimental Example 2]
図2は、実験例の他の例を示す微細構造物乾燥装置の構成図である。図2に示すように、乾燥溶媒を貯蔵するサイホン管付液取りボンベやCEからなるボンベ100、乾燥溶媒を送出するための高圧ポンプ101、乾燥溶媒中に含有される水分に溶解した不純物やボンベなどから溶け出した金属微粒子を濾過(分離)するための濾過手段102、被乾燥物を保持して処理するための高圧乾燥処理容器103、乾燥溶媒を供給するためのバルブ104、乾燥溶媒を開放するための調節弁105、被乾燥物106、高圧ポンプより送出された乾燥溶媒を超臨界状態として貯蔵できる超臨界状態貯蔵手段200、乾燥溶媒を冷却して液化し貯蔵できる液体状態貯蔵手段300を有する。濾過手段102と超臨界状態貯蔵手段200には加熱手段と圧力及び温度を制御する制御手段とを有する。
FIG. 2 is a configuration diagram of a fine structure drying apparatus showing another example of the experimental example . As shown in FIG. 2, a liquid collecting cylinder with a siphon tube for storing a dry solvent or a
以下、図2に示した微細構造乾燥装置における被乾燥物の乾燥方法について説明する。本実験例は乾燥溶媒として液化二酸化炭素を用いた場合の例である。
(1)まず、乾燥しようとする被乾燥物106を高圧乾燥処理容器103に搬入・保持し、終了後に高圧乾燥処理容器103の蓋を閉める。
(2)次に、ボンベ100の頭上弁のバルブ104を開放する。バルブ104を開放すると、気体/液体混合の二酸化炭素が液体状態貯蔵手段300に導入される。この時、液体状態貯蔵手段300は-10℃に保たれているので気体であった二酸化炭素も冷却され液体となる。
(3)次に、液化二酸化炭素をリンス置換に必要な流量で高圧ポンプ101にて送出する。
(4)高圧ポンプ101にて送出された液体二酸化炭素は、超臨界状態貯蔵手段200にて、超臨界圧力・温度に制御され超臨界状態に変換される。
(5)超臨界状態となった二酸化炭素は、濾過手段102の焼結フィルタやメンブレンフィルタなど除去目的の目の粗さに合わせた2つ以上のフィルタにて液体二酸化炭素中に含有される水分に溶解した不純物やサイホン管付液取りボンベなどから溶け出した金属微粒子を濾過 (分離)し、高清浄化する。
Hereinafter, a method for drying an object to be dried in the microstructure drying apparatus shown in FIG. 2 will be described. This experiment provides an example of a case of using liquid carbon dioxide as a dry solvent.
(1) First, the object to be dried 106 to be dried is carried and held in the high-pressure
(2) Next, the
(3) Next, liquefied carbon dioxide is sent out by the high-
(4) The liquid carbon dioxide delivered by the high-
(5) The carbon dioxide in the supercritical state is water contained in the liquid carbon dioxide by two or more filters according to the roughness of the eyes to be removed, such as a sintered filter or a membrane filter of the filtering means 102. Filter (separate) and purify the impurities dissolved in the metal and metal fine particles dissolved in the liquid collecting cylinder with siphon tube.
高清浄化された超臨界二酸化炭素は液体二酸化炭素の状態で高圧乾燥処理容器103へ供給する。
The highly purified supercritical carbon dioxide is supplied to the high-pressure drying
高圧乾燥処理容器103へ高清浄化された液体二酸化炭素が導入されると、乾燥される被乾燥物106が液体状態の液体二酸化炭素で満たされ、微細構造間に残留しているリンス液が液体二酸化炭素に置換される。
When highly purified liquid carbon dioxide is introduced into the high-pressure drying
リンス液の置換が終了した後、乾燥溶媒の圧力を保ちながら高圧乾燥処理容器103の温度を18℃から40℃に制御する。これにより、液体二酸化炭素が超臨界状態となる。
After completion of the rinsing liquid replacement, the temperature of the high-pressure drying
超臨界状態となった後、制御温度40℃を保ちながら調節弁105を開けて、高圧乾燥処理容器103内の超臨界二酸化炭素を開放する。これにより、超臨界状態から開放するため気体/液体の界面を介さない、高清浄な状態で乾燥を終了することができる。
After reaching the supercritical state, the control valve 105 is opened while maintaining the control temperature of 40 ° C., and the supercritical carbon dioxide in the high-pressure drying
以上のように、本実験例の微細構造乾燥装置では、乾燥溶媒を高圧乾燥処理容器に供給する前に、乾燥溶媒を超臨界状態として、その時にフィルタで液体二酸化炭素中に含有される水分に溶解した不純物やサイホン管付液取りボンベなどから溶け出した金属微粒子を濾過(分離)するため、乾燥溶媒の清浄度を高くすることができ、また、フィルタ部分での乾燥溶媒の固体化を防止できるため、フィルタを傷めることなく清浄化できる。又、濾過手段102の外周にはヒータがあり、超臨界温度状態に保たれる。
本実験例においても、液体状態貯蔵手段300、超臨界状態貯蔵手段200、濾過手段102及び高圧乾燥処理容器103は同一高さで配管されているが、これらを順次高い位置に設置することにより後述する実施例1と同様に金属微粒子を清浄度を高く除去することができる。
〔実施例1〕
As described above, moisture microstructure drying apparatus of the present real Kenrei, prior to feeding the dried solvent to the high-pressure drying chamber, the drying solvent as the supercritical state, which is contained in the liquid carbon dioxide in the filter at that time Filtering (separating) the impurities dissolved in the metal and the metal fine particles dissolved in the liquid collecting cylinder with siphon tube, etc., it is possible to increase the cleanliness of the dry solvent and to solidify the dry solvent in the filter part. Since it can prevent, it can clean without damaging a filter. In addition, a heater is provided on the outer periphery of the filtering means 102 and is maintained in a supercritical temperature state.
In this experiment example, a liquid state storage means 300, a supercritical state storage means 200, although the filtering means 102 and the high-
[Example 1 ]
図3は、本発明の微細構造物乾燥装置の構成図である。図3に示すように、乾燥溶媒を貯蔵するサイホン管付液取りボンベやCEからなるボンベ100、乾燥溶媒を送出するための高圧ポンプ101、乾燥溶媒中に含有される水分に溶解した不純物やボンベなどから溶け出した金属微粒子を濾過(分離)するための濾過手段102、被乾燥物を保持して処理するための高圧乾燥処理容器103、乾燥溶媒を供給するためのバルブ104、乾燥溶媒を開放するための調節弁105、被乾燥物106、高圧ポンプより送出された乾燥溶媒を超臨界状態として貯蔵できる超臨界状態貯蔵手段200、乾燥溶媒を冷却して液化し貯蔵できる液体状態貯蔵手段300、高清浄化された乾燥溶媒を冷却して再液化し貯蔵できる再液化状態貯蔵手段400を有する。濾過手段102と超臨界状態貯蔵手段200には加熱手段と圧力及び温度を制御する制御手段とを有する。
Figure 3 is a block diagram of a micro-fine structures drying apparatus of the present invention. As shown in FIG. 3, a liquid collecting cylinder with a siphon tube for storing a dry solvent or a
本実施例においては、超臨界状態貯蔵手段200、濾過手段102、液体状態貯蔵手段300、再液化状態貯蔵手段400及び高圧乾燥処理容器103の順に設置位置が高くなっており、液体二酸化炭素中に含有される水分に溶解した不純物やサイホン管付液取りボンベなどから溶け出した重い金属微粒子との比重差を利用し、重い金属微粒子を上部へ持ち上がらせない(搬送しない)ようにして、より高清浄化された乾燥溶媒を高圧乾燥処理容器103に供給できるものである。
In the present embodiment, the supercritical state storage means 200, the filtration means 102, the liquid state storage means 300, the reliquefied state storage means 400, and the high-pressure drying
以下、図3に示した微細構造乾燥装置における被乾燥物の乾燥方法について説明する。表1は、図3における各部位での乾燥溶媒の状態を示す表である。表1において、温度及び圧力は乾燥溶媒として液化二酸化炭素を用いた場合の例である。
Hereinafter, a method for drying an object to be dried in the microstructure drying apparatus shown in FIG. 3 will be described. Table 1 is a table showing the state of the dry solvent at each site in FIG. In Table 1, the temperature and pressure are examples when liquefied carbon dioxide is used as the drying solvent.
(1)乾燥しようとする被乾燥物106を高圧乾燥処理容器103に搬入・保持し、終了後に高圧乾燥処理容器103の蓋を閉める。
(2)次に、ボンベ100の頭上弁のバルブ104を開放する。バルブ104を開放すると、気体/液体混合の二酸化炭素が液体状態貯蔵手段300に導入される。この時、液体状態貯蔵手段300は-10℃に保たれているので気体であった二酸化炭素も冷却され液体となる(表1の3参照)。
(3)次に、液化二酸化炭素をリンス置換に必要な流量を高圧ポンプ101にて送出する。
(4)高圧ポンプ101にて送出された液体二酸化炭素は、超臨界状態貯蔵手段200にて、超臨界圧力・温度に制御され超臨界状態に変換される(表1の5参照)。
(5)超臨界状態となった二酸化炭素は、濾過手段102の焼結フィルタやメンブレンフィルタなど除去目的の目の粗さに合わせた2段以上のフィルタにて液体二酸化炭素中に含有される水分に溶解した不純物やサイホン管付液取りボンベなどから溶け出した金属微粒子を濾過(分離)し、高清浄化する。濾過手段102の外周にはいずれもヒータがあり、超臨界温度状態に保たれる。
(6)高清浄化された超臨界二酸化炭素を再液化状態貯蔵手段400にて冷却し液体へ再変換し(表1の7参照)、高圧乾燥処理容器103へ供給する。
(7)高圧乾燥処理容器103へ高清浄化された液体二酸化炭素が導入されると、乾燥される被乾燥物106が液体状態の二酸化炭素で満たされ、微細構造間に残留しているリンス液が液体二酸化炭素に置換される。
(8)リンス液の置換が終了した後、乾燥溶媒の圧力を保ちながら高圧乾燥処理容器103の温度を18℃から40℃に制御する。これにより、液体で有った二酸化炭素が超臨界状態(表1の8、9参照)となる。
(9)超臨界状態となった後、制御温度40℃を保ちながら調節弁105を開けて、高圧乾燥処理容器103内の超臨界状態の二酸化炭素を開放する。これにより、超臨界状態から開放するため気体/液体の界面を介さない、高清浄な状態で乾燥を終了することができる。
(1) The object to be dried 106 to be dried is carried and held in the high-pressure
(2) Next, the
(3) Next, the high-
(4) The liquid carbon dioxide delivered by the high-
(5) The carbon dioxide that has reached the supercritical state is water contained in the liquid carbon dioxide by two or more stages of filters, such as a sintered filter or a membrane filter of the filtering means 102, which are adjusted to the roughness of the eyes to be removed. Filter (separate) and purify the impurities dissolved in the metal and metal fine particles dissolved in the liquid collecting cylinder with siphon tube. There is a heater on the outer periphery of the filtering means 102, and the supercritical temperature state is maintained.
(6) The highly purified supercritical carbon dioxide is cooled in the reliquefied state storage means 400, reconverted into a liquid (see 7 in Table 1), and supplied to the high-pressure drying
(7) When highly purified liquid carbon dioxide is introduced into the high-pressure drying
(8) After the replacement of the rinse liquid is completed, the temperature of the high-pressure
(9) After reaching the supercritical state, the control valve 105 is opened while maintaining the control temperature of 40 ° C., and the supercritical carbon dioxide in the high-pressure drying
以上のように、本実施の形態の微細構造乾燥装置では、乾燥溶媒を高圧乾燥処理容器に供給する前に、乾燥溶媒を超臨界状態として、その時にフィルタで液体二酸化炭素中に含有される水分に溶解した不純物やサイホン管付液取りボンベなどから溶け出した金属微粒子を濾過(分離)するため、乾燥溶媒の清浄度を高くすることができ、また、フィルタ部分での乾燥溶媒の固体化を防止できるため、フィルタを傷めることなく清浄化できる。 As described above, in the microstructure drying apparatus of the present embodiment, before supplying the drying solvent to the high-pressure drying processing vessel, the drying solvent is set to a supercritical state, and the moisture contained in the liquid carbon dioxide at that time by the filter Filtering (separating) the impurities dissolved in the metal and the metal fine particles dissolved in the liquid collecting cylinder with siphon tube, etc., it is possible to increase the cleanliness of the dry solvent and to solidify the dry solvent in the filter part. Since it can prevent, it can clean without damaging a filter.
また、液体状態貯蔵手段・超臨界状態貯蔵手段・フィルタ・再液化状態貯蔵手段を其々順次高い位置に配置すること、更に乾燥溶媒が下から導入され、上から供給することで、液体二酸化炭素中に含有される水分に溶解した不純物やサイホン管付液取りボンベなどから溶け出した金属微粒子自体を搬送させずに、低い位置に停滞させることで乾燥溶媒の清浄度を高める効果を高くすることができる。 Also, liquid carbon dioxide can be obtained by arranging the liquid state storage means, supercritical state storage means, filter, and reliquefaction state storage means sequentially at a higher position, and further introducing a dry solvent from below and supplying from above. Improve the cleanliness of the dry solvent by stagnating at a low position without transporting the impurities dissolved in the water contained in it or the metal fine particles dissolved from the liquid collecting cylinder with siphon tube. Can do.
更に、超臨界状態で濾過(分離)を行うため、気体状態で濾過(分離)する場合と比べて、再液化する際のエネルギーの消費を半減することができる。また、本実施の形態のように乾燥溶媒を再利用する構成となっていなくとも良いことは言うまでもない。 Furthermore, since filtration (separation) is performed in a supercritical state, energy consumption during reliquefaction can be halved compared to filtration (separation) in a gas state. Needless to say, the configuration may not be such that the dry solvent is reused as in the present embodiment.
100…ボンベ、101…高圧ポンプ、102…フィルタ、103…高圧乾燥処理装置、104…バルブ、105…調節弁、106…被乾燥物、200…超臨界状態貯蔵手段、300…液体状態貯蔵手段、400…再液化状態貯蔵手段。
DESCRIPTION OF
Claims (16)
前記溶媒の供給源より供給される前記溶媒を超臨界状態として貯蔵できる超臨界状態貯蔵手段と、該超臨界状態貯蔵手段からの超臨界状態の前記溶媒中の固形物を濾過する濾過手段とを有し、
前記濾過手段と前記高圧容器との間に、前記濾過手段により濾過された前記超臨界状態の溶媒を再度液体状態として貯蔵できる再液体状態貯蔵手段を有することを特徴とする超臨界流体処理装置。 The object to be treated is placed into a high-pressure vessel, thereby cleaning or drying the object to be treated by introducing a solvent containing liquid in liquid or supercritical state under high pressure gaseous at normal temperature and normal pressure in the high pressure vessel In supercritical fluid processing equipment,
Supercritical state storage means capable of storing the solvent supplied from the solvent supply source as a supercritical state; and filtration means for filtering solid matter in the supercritical state solvent from the supercritical state storage means. Yes, and
Wherein between the filter means and the high pressure vessel, said filtration means supercritical fluid processing apparatus characterized by chromatic re liquid state storage means capable of storing a solvent liquid state again in the supercritical state which is filtered by .
前記溶媒の供給源より供給される前記溶媒を超臨界状態として貯蔵し、該超臨界状態で貯蔵された超臨界状態の前記溶媒を超臨界状態でその中の固形物を濾過すると共に、該濾過された超臨界状態の溶媒を再度液体状態として貯蔵し、該貯蔵された液体状態の前記溶媒を前記高圧容器に供給することを特徴とする超臨界流体処理方法。 The object to be treated is placed into a high-pressure vessel, thereby cleaning or drying the object to be treated by introducing a solvent containing liquid in liquid or supercritical state under high pressure gaseous at normal temperature and normal pressure in the high pressure vessel In the supercritical fluid processing method,
The solvent supplied from the solvent supply source is stored in a supercritical state, the supercritical solvent stored in the supercritical state is filtered in the supercritical state, and the solids therein are filtered. A supercritical fluid processing method , wherein the stored supercritical solvent is stored again as a liquid state, and the stored liquid solvent is supplied to the high-pressure vessel .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003348639A JP4231376B2 (en) | 2003-10-07 | 2003-10-07 | Supercritical fluid processing apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003348639A JP4231376B2 (en) | 2003-10-07 | 2003-10-07 | Supercritical fluid processing apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005116757A JP2005116757A (en) | 2005-04-28 |
JP4231376B2 true JP4231376B2 (en) | 2009-02-25 |
Family
ID=34540775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003348639A Expired - Fee Related JP4231376B2 (en) | 2003-10-07 | 2003-10-07 | Supercritical fluid processing apparatus and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4231376B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5147002B2 (en) * | 2008-02-13 | 2013-02-20 | オルガノ株式会社 | High pressure carbon dioxide filtration method and filtration apparatus |
WO2015173934A1 (en) * | 2014-05-15 | 2015-11-19 | Ykk株式会社 | Method and device for separating and recovering supercritical fluid |
KR102429099B1 (en) | 2018-12-20 | 2022-08-04 | 주식회사 엘지화학 | Supercritical drying method for silica wetgel blanket |
-
2003
- 2003-10-07 JP JP2003348639A patent/JP4231376B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005116757A (en) | 2005-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW438631B (en) | Low cost equipment for cleaning using liquefiable gases | |
JP5013567B2 (en) | Fluid supply system | |
TWI558450B (en) | Supply device and supply method for liquid carbon dioxide | |
JP2004122127A (en) | Co2 recovery method for supercritical extraction | |
EP0332356A2 (en) | Supply of carbon dioxide | |
TWI230774B (en) | Generation and delivery system for high pressure ultra high purity product | |
JP4231376B2 (en) | Supercritical fluid processing apparatus and method | |
KR970069111A (en) | Method and apparatus for delivering ultra high purity helium | |
JP5583007B2 (en) | Method for removing cutting oil from a mixture of tool steel cutting particulate matter and cutting oil | |
WO2006012172A2 (en) | Method and apparatus for pretreatment of polymeric materials | |
JP2001232134A (en) | Method and device for neon recovering | |
JP3010099B2 (en) | Supercritical fluid extraction device | |
JP3725629B2 (en) | Supercritical fluid cleaning equipment | |
JP2001261320A (en) | Method and device for supplying purified liquefied carbon dioxide and method and device for cleaning with dry ice snow | |
JP3017637B2 (en) | Cleaning equipment | |
JP4252295B2 (en) | Metal mask cleaning method and apparatus | |
JP3598287B2 (en) | Cleaning equipment | |
JP7562632B2 (en) | Method for separating alternative gas mixtures for use as insulation materials | |
US7076969B2 (en) | System for supply and delivery of high purity and ultrahigh purity carbon dioxide | |
JPH1116873A (en) | Method and equipment for drying | |
JP2000308862A (en) | Rinsing method using supercritical or subcritical fluid and its apparatus | |
JP4142357B2 (en) | Waste high pressure fluid treatment method and apparatus | |
JPH1050648A (en) | Supercritical fluid cleaner | |
JP2003117510A (en) | Cleaning device | |
JPH11207276A (en) | Supercritical degreasing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080909 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081202 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081205 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121212 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131212 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |